cpu.h revision 1.46 1 1.46 yamt /* $NetBSD: cpu.h,v 1.46 2004/09/22 11:32:03 yamt Exp $ */
2 1.1 eeh
3 1.1 eeh /*
4 1.1 eeh * Copyright (c) 1992, 1993
5 1.1 eeh * The Regents of the University of California. All rights reserved.
6 1.1 eeh *
7 1.1 eeh * This software was developed by the Computer Systems Engineering group
8 1.1 eeh * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 eeh * contributed to Berkeley.
10 1.1 eeh *
11 1.1 eeh * All advertising materials mentioning features or use of this software
12 1.1 eeh * must display the following acknowledgement:
13 1.1 eeh * This product includes software developed by the University of
14 1.1 eeh * California, Lawrence Berkeley Laboratory.
15 1.1 eeh *
16 1.1 eeh * Redistribution and use in source and binary forms, with or without
17 1.1 eeh * modification, are permitted provided that the following conditions
18 1.1 eeh * are met:
19 1.1 eeh * 1. Redistributions of source code must retain the above copyright
20 1.1 eeh * notice, this list of conditions and the following disclaimer.
21 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 eeh * notice, this list of conditions and the following disclaimer in the
23 1.1 eeh * documentation and/or other materials provided with the distribution.
24 1.36 agc * 3. Neither the name of the University nor the names of its contributors
25 1.1 eeh * may be used to endorse or promote products derived from this software
26 1.1 eeh * without specific prior written permission.
27 1.1 eeh *
28 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 eeh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 eeh * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 eeh * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 eeh * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 eeh * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 eeh * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 eeh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 eeh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 eeh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 eeh * SUCH DAMAGE.
39 1.1 eeh *
40 1.1 eeh * @(#)cpu.h 8.4 (Berkeley) 1/5/94
41 1.1 eeh */
42 1.1 eeh
43 1.1 eeh #ifndef _CPU_H_
44 1.1 eeh #define _CPU_H_
45 1.1 eeh
46 1.1 eeh /*
47 1.1 eeh * CTL_MACHDEP definitions.
48 1.1 eeh */
49 1.13 eeh #define CPU_BOOTED_KERNEL 1 /* string: booted kernel name */
50 1.33 pk #define CPU_BOOTED_DEVICE 2 /* string: device booted from */
51 1.33 pk #define CPU_BOOT_ARGS 3 /* string: args booted with */
52 1.33 pk #define CPU_ARCH 4 /* integer: cpu architecture version */
53 1.33 pk #define CPU_MAXID 5 /* number of valid machdep ids */
54 1.1 eeh
55 1.13 eeh #define CTL_MACHDEP_NAMES { \
56 1.13 eeh { 0, 0 }, \
57 1.13 eeh { "booted_kernel", CTLTYPE_STRING }, \
58 1.33 pk { "booted_device", CTLTYPE_STRING }, \
59 1.33 pk { "boot_args", CTLTYPE_STRING }, \
60 1.33 pk { "cpu_arch", CTLTYPE_INT }, \
61 1.1 eeh }
62 1.1 eeh
63 1.1 eeh #ifdef _KERNEL
64 1.1 eeh /*
65 1.1 eeh * Exported definitions unique to SPARC cpu support.
66 1.1 eeh */
67 1.1 eeh
68 1.37 tsutsui #if defined(_KERNEL_OPT)
69 1.17 thorpej #include "opt_multiprocessor.h"
70 1.17 thorpej #include "opt_lockdebug.h"
71 1.17 thorpej #endif
72 1.17 thorpej
73 1.1 eeh #include <machine/psl.h>
74 1.1 eeh #include <machine/reg.h>
75 1.6 mrg #include <machine/intr.h>
76 1.43 chs #include <machine/cpuset.h>
77 1.1 eeh #include <sparc64/sparc64/intreg.h>
78 1.17 thorpej
79 1.46 yamt #include <sys/cpu_data.h>
80 1.46 yamt #include <sys/cc_microtime.h>
81 1.19 eeh /*
82 1.19 eeh * The cpu_info structure is part of a 64KB structure mapped both the kernel
83 1.19 eeh * pmap and a single locked TTE a CPUINFO_VA for that particular processor.
84 1.19 eeh * Each processor's cpu_info is accessible at CPUINFO_VA only for that
85 1.19 eeh * processor. Other processors can access that through an additional mapping
86 1.19 eeh * in the kernel pmap.
87 1.19 eeh *
88 1.19 eeh * The 64KB page contains:
89 1.19 eeh *
90 1.19 eeh * cpu_info
91 1.19 eeh * interrupt stack (all remaining space)
92 1.19 eeh * idle PCB
93 1.19 eeh * idle stack (STACKSPACE - sizeof(PCB))
94 1.19 eeh * 32KB TSB
95 1.19 eeh */
96 1.19 eeh
97 1.17 thorpej struct cpu_info {
98 1.43 chs
99 1.42 petrov /*
100 1.42 petrov * SPARC cpu_info structures live at two VAs: one global
101 1.42 petrov * VA (so each CPU can access any other CPU's cpu_info)
102 1.42 petrov * and an alias VA CPUINFO_VA which is the same on each
103 1.42 petrov * CPU and maps to that CPU's cpu_info. Since the alias
104 1.42 petrov * CPUINFO_VA is how we locate our cpu_info, we have to
105 1.42 petrov * self-reference the global VA so that we can return it
106 1.42 petrov * in the curcpu() macro.
107 1.42 petrov */
108 1.42 petrov struct cpu_info * __volatile ci_self;
109 1.42 petrov
110 1.20 eeh /* Most important fields first */
111 1.34 thorpej struct lwp *ci_curlwp;
112 1.46 yamt struct cpu_data ci_data; /* MI per-cpu data */
113 1.32 chs struct pcb *ci_cpcb;
114 1.19 eeh struct cpu_info *ci_next;
115 1.20 eeh
116 1.34 thorpej struct lwp *ci_fplwp;
117 1.19 eeh int ci_number;
118 1.20 eeh int ci_upaid;
119 1.38 petrov int ci_cpuid;
120 1.20 eeh
121 1.35 nakayama /*
122 1.35 nakayama * Variables used by cc_microtime().
123 1.35 nakayama */
124 1.46 yamt struct cc_microtime_state ci_cc;
125 1.20 eeh
126 1.20 eeh /* Spinning up the CPU */
127 1.32 chs void (*ci_spinup) __P((void));
128 1.20 eeh void *ci_initstack;
129 1.32 chs paddr_t ci_paddr;
130 1.42 petrov
131 1.42 petrov /* CPU PROM information. */
132 1.42 petrov u_int ci_node;
133 1.42 petrov
134 1.42 petrov int ci_flags;
135 1.42 petrov int ci_want_ast;
136 1.42 petrov int ci_want_resched;
137 1.42 petrov
138 1.42 petrov void *ci_eintstack;
139 1.42 petrov struct pcb *ci_idle_u;
140 1.17 thorpej };
141 1.17 thorpej
142 1.42 petrov #define CPUF_PRIMARY 1
143 1.42 petrov
144 1.42 petrov /*
145 1.42 petrov * CPU boot arguments. Used by secondary CPUs at the bootstrap time.
146 1.42 petrov */
147 1.42 petrov struct cpu_bootargs {
148 1.42 petrov u_int cb_node; /* PROM CPU node */
149 1.42 petrov __volatile int cb_flags;
150 1.42 petrov
151 1.42 petrov vaddr_t cb_ktext;
152 1.42 petrov paddr_t cb_ktextp;
153 1.42 petrov vaddr_t cb_ektext;
154 1.42 petrov
155 1.42 petrov vaddr_t cb_kdata;
156 1.42 petrov paddr_t cb_kdatap;
157 1.42 petrov vaddr_t cb_ekdata;
158 1.42 petrov
159 1.42 petrov paddr_t cb_cpuinfo;
160 1.42 petrov
161 1.42 petrov void *cb_initstack;
162 1.42 petrov };
163 1.42 petrov
164 1.42 petrov extern struct cpu_bootargs *cpu_args;
165 1.42 petrov
166 1.42 petrov extern int ncpus;
167 1.19 eeh extern struct cpu_info *cpus;
168 1.17 thorpej
169 1.43 chs #define curcpu() (((struct cpu_info *)CPUINFO_VA)->ci_self)
170 1.42 petrov #define cpu_number() (curcpu()->ci_number)
171 1.42 petrov #define CPU_IS_PRIMARY(ci) ((ci)->ci_flags & CPUF_PRIMARY)
172 1.42 petrov
173 1.43 chs #define CPU_INFO_ITERATOR int
174 1.43 chs #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = cpus; ci != NULL; \
175 1.43 chs ci = ci->ci_next
176 1.43 chs
177 1.40 cdi #define curlwp curcpu()->ci_curlwp
178 1.40 cdi #define fplwp curcpu()->ci_fplwp
179 1.40 cdi #define curpcb curcpu()->ci_cpcb
180 1.1 eeh
181 1.42 petrov #define want_ast curcpu()->ci_want_ast
182 1.42 petrov #define want_resched curcpu()->ci_want_resched
183 1.42 petrov
184 1.1 eeh /*
185 1.1 eeh * definitions of cpu-dependent requirements
186 1.1 eeh * referenced in generic code
187 1.1 eeh */
188 1.1 eeh #define cpu_swapin(p) /* nothing */
189 1.1 eeh #define cpu_swapout(p) /* nothing */
190 1.42 petrov #define cpu_wait(p) /* nothing */
191 1.1 eeh
192 1.34 thorpej /* This really should be somewhere else. */
193 1.34 thorpej #define cpu_proc_fork(p1, p2) /* nothing */
194 1.38 petrov
195 1.38 petrov #if defined(MULTIPROCESSOR)
196 1.42 petrov void cpu_mp_startup __P((void));
197 1.38 petrov void cpu_boot_secondary_processors __P((void));
198 1.38 petrov #endif
199 1.35 nakayama
200 1.35 nakayama /*
201 1.35 nakayama * definitions for MI microtime().
202 1.35 nakayama */
203 1.35 nakayama #define microtime(tv) cc_microtime(tv)
204 1.35 nakayama
205 1.35 nakayama extern uint64_t cpu_clockrate[];
206 1.34 thorpej
207 1.1 eeh /*
208 1.1 eeh * Arguments to hardclock, softclock and gatherstats encapsulate the
209 1.1 eeh * previous machine state in an opaque clockframe. The ipl is here
210 1.1 eeh * as well for strayintr (see locore.s:interrupt and intr.c:strayintr).
211 1.1 eeh * Note that CLKF_INTR is valid only if CLKF_USERMODE is false.
212 1.1 eeh */
213 1.15 eeh extern int intstack[];
214 1.1 eeh extern int eintstack[];
215 1.1 eeh struct clockframe {
216 1.14 eeh struct trapframe64 t;
217 1.1 eeh };
218 1.1 eeh
219 1.1 eeh #define CLKF_USERMODE(framep) (((framep)->t.tf_tstate & TSTATE_PRIV) == 0)
220 1.31 eeh /*
221 1.31 eeh * XXX Disable CLKF_BASEPRI() for now. If we use a counter-timer for
222 1.31 eeh * the clock, the interrupt remains blocked until the interrupt handler
223 1.31 eeh * returns and we write to the clear interrupt register. If we use
224 1.31 eeh * %tick for the clock, we could get multiple interrupts, but the
225 1.31 eeh * currently enabled INTR_INTERLOCK will prevent the interrupt from being
226 1.31 eeh * posted twice anyway.
227 1.31 eeh *
228 1.31 eeh * Switching to %tick for all machines and disabling INTR_INTERLOCK
229 1.31 eeh * in locore.s would allow us to take advantage of CLKF_BASEPRI().
230 1.31 eeh */
231 1.31 eeh #if 0
232 1.1 eeh #define CLKF_BASEPRI(framep) (((framep)->t.tf_oldpil) == 0)
233 1.31 eeh #else
234 1.31 eeh #define CLKF_BASEPRI(framep) (0)
235 1.31 eeh #endif
236 1.1 eeh #define CLKF_PC(framep) ((framep)->t.tf_pc)
237 1.30 eeh /* Since some files in sys/kern do not know BIAS, I'm using 0x7ff here */
238 1.30 eeh #define CLKF_INTR(framep) \
239 1.30 eeh ((!CLKF_USERMODE(framep))&& \
240 1.30 eeh (((framep)->t.tf_out[6] & 1 ) ? \
241 1.30 eeh (((vaddr_t)(framep)->t.tf_out[6] < \
242 1.30 eeh (vaddr_t)EINTSTACK-0x7ff) && \
243 1.30 eeh ((vaddr_t)(framep)->t.tf_out[6] > \
244 1.30 eeh (vaddr_t)INTSTACK-0x7ff)) : \
245 1.30 eeh (((vaddr_t)(framep)->t.tf_out[6] < \
246 1.30 eeh (vaddr_t)EINTSTACK) && \
247 1.30 eeh ((vaddr_t)(framep)->t.tf_out[6] > \
248 1.30 eeh (vaddr_t)INTSTACK))))
249 1.1 eeh
250 1.1 eeh
251 1.16 eeh extern struct intrhand soft01intr, soft01net, soft01clock;
252 1.16 eeh
253 1.16 eeh void setsoftint __P((void));
254 1.16 eeh void setsoftnet __P((void));
255 1.1 eeh
256 1.1 eeh /*
257 1.1 eeh * Preempt the current process if in interrupt from user mode,
258 1.1 eeh * or after the current trap/syscall if in system mode.
259 1.1 eeh */
260 1.24 thorpej #define need_resched(ci) (want_resched = 1, want_ast = 1)
261 1.1 eeh
262 1.1 eeh /*
263 1.1 eeh * Give a profiling tick to the current process when the user profiling
264 1.1 eeh * buffer pages are invalid. On the sparc, request an ast to send us
265 1.1 eeh * through trap(), marking the proc as needing a profiling tick.
266 1.1 eeh */
267 1.1 eeh #define need_proftick(p) ((p)->p_flag |= P_OWEUPC, want_ast = 1)
268 1.1 eeh
269 1.1 eeh /*
270 1.1 eeh * Notify the current process (p) that it has a signal pending,
271 1.1 eeh * process as soon as possible.
272 1.1 eeh */
273 1.1 eeh #define signotify(p) (want_ast = 1)
274 1.1 eeh
275 1.1 eeh /*
276 1.1 eeh * Interrupt handler chains. Interrupt handlers should return 0 for
277 1.1 eeh * ``not me'' or 1 (``I took care of it''). intr_establish() inserts a
278 1.1 eeh * handler into the list. The handler is called with its (single)
279 1.1 eeh * argument, or with a pointer to a clockframe if ih_arg is NULL.
280 1.1 eeh */
281 1.1 eeh struct intrhand {
282 1.18 mrg int (*ih_fun) __P((void *));
283 1.18 mrg void *ih_arg;
284 1.18 mrg short ih_number; /* interrupt number */
285 1.18 mrg /* the H/W provides */
286 1.23 eeh char ih_pil; /* interrupt priority */
287 1.21 eeh struct intrhand *ih_next; /* global list */
288 1.26 eeh struct intrhand *ih_pending; /* interrupt queued */
289 1.18 mrg volatile u_int64_t *ih_map; /* Interrupt map reg */
290 1.18 mrg volatile u_int64_t *ih_clr; /* clear interrupt reg */
291 1.1 eeh };
292 1.29 mrg extern struct intrhand *intrhand[];
293 1.1 eeh extern struct intrhand *intrlev[MAXINTNUM];
294 1.1 eeh
295 1.1 eeh void intr_establish __P((int level, struct intrhand *));
296 1.1 eeh
297 1.19 eeh /* cpu.c */
298 1.42 petrov paddr_t cpu_alloc __P((void));
299 1.42 petrov void cpu_start __P((int));
300 1.42 petrov
301 1.45 martin #define mp_pause_cpus() sparc64_ipi_pause_cpus()
302 1.44 petrov #define mp_resume_cpus() sparc64_ipi_resume_cpus()
303 1.44 petrov
304 1.1 eeh /* disksubr.c */
305 1.1 eeh struct dkbad;
306 1.1 eeh int isbad __P((struct dkbad *bt, int, int, int));
307 1.1 eeh /* machdep.c */
308 1.1 eeh int ldcontrolb __P((caddr_t));
309 1.1 eeh void dumpconf __P((void));
310 1.1 eeh caddr_t reserve_dumppages __P((caddr_t));
311 1.1 eeh /* clock.c */
312 1.1 eeh struct timeval;
313 1.7 eeh int tickintr __P((void *)); /* level 10 (tick) interrupt code */
314 1.1 eeh int clockintr __P((void *));/* level 10 (clock) interrupt code */
315 1.1 eeh int statintr __P((void *)); /* level 14 (statclock) interrupt code */
316 1.1 eeh /* locore.s */
317 1.14 eeh struct fpstate64;
318 1.14 eeh void savefpstate __P((struct fpstate64 *));
319 1.14 eeh void loadfpstate __P((struct fpstate64 *));
320 1.25 eeh u_int64_t probeget __P((paddr_t, int, int));
321 1.9 eeh int probeset __P((paddr_t, int, int, u_int64_t));
322 1.42 petrov
323 1.1 eeh #define write_all_windows() __asm __volatile("flushw" : : )
324 1.1 eeh #define write_user_windows() __asm __volatile("flushw" : : )
325 1.42 petrov
326 1.1 eeh void proc_trampoline __P((void));
327 1.1 eeh struct pcb;
328 1.1 eeh void snapshot __P((struct pcb *));
329 1.1 eeh struct frame *getfp __P((void));
330 1.1 eeh int xldcontrolb __P((caddr_t, struct pcb *));
331 1.1 eeh void copywords __P((const void *, void *, size_t));
332 1.1 eeh void qcopy __P((const void *, void *, size_t));
333 1.1 eeh void qzero __P((void *, size_t));
334 1.5 mrg void switchtoctx __P((int));
335 1.1 eeh /* locore2.c */
336 1.1 eeh void remrq __P((struct proc *));
337 1.1 eeh /* trap.c */
338 1.34 thorpej void kill_user_windows __P((struct lwp *));
339 1.34 thorpej int rwindow_save __P((struct lwp *));
340 1.1 eeh /* cons.c */
341 1.1 eeh int cnrom __P((void));
342 1.1 eeh /* zs.c */
343 1.1 eeh void zsconsole __P((struct tty *, int, int, void (**)(struct tty *, int)));
344 1.1 eeh #ifdef KGDB
345 1.1 eeh void zs_kgdb_init __P((void));
346 1.1 eeh #endif
347 1.1 eeh /* fb.c */
348 1.1 eeh void fb_unblank __P((void));
349 1.1 eeh /* kgdb_stub.c */
350 1.1 eeh #ifdef KGDB
351 1.1 eeh void kgdb_attach __P((int (*)(void *), void (*)(void *, int), void *));
352 1.1 eeh void kgdb_connect __P((int));
353 1.1 eeh void kgdb_panic __P((void));
354 1.1 eeh #endif
355 1.5 mrg /* emul.c */
356 1.34 thorpej int fixalign __P((struct lwp *, struct trapframe64 *));
357 1.14 eeh int emulinstr __P((vaddr_t, struct trapframe64 *));
358 1.1 eeh
359 1.1 eeh /*
360 1.1 eeh *
361 1.1 eeh * The SPARC has a Trap Base Register (TBR) which holds the upper 20 bits
362 1.1 eeh * of the trap vector table. The next eight bits are supplied by the
363 1.1 eeh * hardware when the trap occurs, and the bottom four bits are always
364 1.1 eeh * zero (so that we can shove up to 16 bytes of executable code---exactly
365 1.1 eeh * four instructions---into each trap vector).
366 1.1 eeh *
367 1.1 eeh * The hardware allocates half the trap vectors to hardware and half to
368 1.1 eeh * software.
369 1.1 eeh *
370 1.1 eeh * Traps have priorities assigned (lower number => higher priority).
371 1.1 eeh */
372 1.1 eeh
373 1.1 eeh struct trapvec {
374 1.1 eeh int tv_instr[8]; /* the eight instructions */
375 1.1 eeh };
376 1.1 eeh extern struct trapvec *trapbase; /* the 256 vectors */
377 1.1 eeh
378 1.1 eeh #endif /* _KERNEL */
379 1.1 eeh #endif /* _CPU_H_ */
380