cpu.h revision 1.44 1 /* $NetBSD: cpu.h,v 1.44 2004/06/18 00:05:05 petrov Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)cpu.h 8.4 (Berkeley) 1/5/94
41 */
42
43 #ifndef _CPU_H_
44 #define _CPU_H_
45
46 /*
47 * CTL_MACHDEP definitions.
48 */
49 #define CPU_BOOTED_KERNEL 1 /* string: booted kernel name */
50 #define CPU_BOOTED_DEVICE 2 /* string: device booted from */
51 #define CPU_BOOT_ARGS 3 /* string: args booted with */
52 #define CPU_ARCH 4 /* integer: cpu architecture version */
53 #define CPU_MAXID 5 /* number of valid machdep ids */
54
55 #define CTL_MACHDEP_NAMES { \
56 { 0, 0 }, \
57 { "booted_kernel", CTLTYPE_STRING }, \
58 { "booted_device", CTLTYPE_STRING }, \
59 { "boot_args", CTLTYPE_STRING }, \
60 { "cpu_arch", CTLTYPE_INT }, \
61 }
62
63 #ifdef _KERNEL
64 /*
65 * Exported definitions unique to SPARC cpu support.
66 */
67
68 #if defined(_KERNEL_OPT)
69 #include "opt_multiprocessor.h"
70 #include "opt_lockdebug.h"
71 #endif
72
73 #include <machine/psl.h>
74 #include <machine/reg.h>
75 #include <machine/intr.h>
76 #include <machine/cpuset.h>
77 #include <sparc64/sparc64/intreg.h>
78
79 #include <sys/sched.h>
80 /*
81 * The cpu_info structure is part of a 64KB structure mapped both the kernel
82 * pmap and a single locked TTE a CPUINFO_VA for that particular processor.
83 * Each processor's cpu_info is accessible at CPUINFO_VA only for that
84 * processor. Other processors can access that through an additional mapping
85 * in the kernel pmap.
86 *
87 * The 64KB page contains:
88 *
89 * cpu_info
90 * interrupt stack (all remaining space)
91 * idle PCB
92 * idle stack (STACKSPACE - sizeof(PCB))
93 * 32KB TSB
94 */
95
96 struct cpu_info {
97
98 /*
99 * SPARC cpu_info structures live at two VAs: one global
100 * VA (so each CPU can access any other CPU's cpu_info)
101 * and an alias VA CPUINFO_VA which is the same on each
102 * CPU and maps to that CPU's cpu_info. Since the alias
103 * CPUINFO_VA is how we locate our cpu_info, we have to
104 * self-reference the global VA so that we can return it
105 * in the curcpu() macro.
106 */
107 struct cpu_info * __volatile ci_self;
108
109 /* Most important fields first */
110 struct lwp *ci_curlwp;
111 struct pcb *ci_cpcb;
112 struct cpu_info *ci_next;
113
114 struct lwp *ci_fplwp;
115 int ci_number;
116 int ci_upaid;
117 int ci_cpuid;
118 struct schedstate_percpu ci_schedstate;
119
120 /*
121 * Variables used by cc_microtime().
122 */
123 struct timeval ci_cc_time;
124 int64_t ci_cc_cc;
125 int64_t ci_cc_ms_delta;
126 int64_t ci_cc_denom;
127
128 /* DEBUG/DIAGNOSTIC stuff */
129 u_long ci_spin_locks;
130 u_long ci_simple_locks;
131
132 /* Spinning up the CPU */
133 void (*ci_spinup) __P((void));
134 void *ci_initstack;
135 paddr_t ci_paddr;
136
137 /* CPU PROM information. */
138 u_int ci_node;
139
140 int ci_flags;
141 int ci_want_ast;
142 int ci_want_resched;
143
144 void *ci_eintstack;
145 struct pcb *ci_idle_u;
146 };
147
148 #define CPUF_PRIMARY 1
149
150 /*
151 * CPU boot arguments. Used by secondary CPUs at the bootstrap time.
152 */
153 struct cpu_bootargs {
154 u_int cb_node; /* PROM CPU node */
155 __volatile int cb_flags;
156
157 vaddr_t cb_ktext;
158 paddr_t cb_ktextp;
159 vaddr_t cb_ektext;
160
161 vaddr_t cb_kdata;
162 paddr_t cb_kdatap;
163 vaddr_t cb_ekdata;
164
165 paddr_t cb_cpuinfo;
166
167 void *cb_initstack;
168 };
169
170 extern struct cpu_bootargs *cpu_args;
171
172 extern int ncpus;
173 extern struct cpu_info *cpus;
174
175 #define curcpu() (((struct cpu_info *)CPUINFO_VA)->ci_self)
176 #define cpu_number() (curcpu()->ci_number)
177 #define CPU_IS_PRIMARY(ci) ((ci)->ci_flags & CPUF_PRIMARY)
178
179 #define CPU_INFO_ITERATOR int
180 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = cpus; ci != NULL; \
181 ci = ci->ci_next
182
183 #define curlwp curcpu()->ci_curlwp
184 #define fplwp curcpu()->ci_fplwp
185 #define curpcb curcpu()->ci_cpcb
186
187 #define want_ast curcpu()->ci_want_ast
188 #define want_resched curcpu()->ci_want_resched
189
190 /*
191 * definitions of cpu-dependent requirements
192 * referenced in generic code
193 */
194 #define cpu_swapin(p) /* nothing */
195 #define cpu_swapout(p) /* nothing */
196 #define cpu_wait(p) /* nothing */
197
198 /* This really should be somewhere else. */
199 #define cpu_proc_fork(p1, p2) /* nothing */
200
201 #if defined(MULTIPROCESSOR)
202 void cpu_mp_startup __P((void));
203 void cpu_boot_secondary_processors __P((void));
204 #endif
205
206 /*
207 * definitions for MI microtime().
208 */
209 extern struct timeval cc_microset_time;
210 #define microtime(tv) cc_microtime(tv)
211 void cc_microtime __P((struct timeval *));
212 void cc_microset __P((struct cpu_info *));
213
214 extern uint64_t cpu_clockrate[];
215
216 /*
217 * Arguments to hardclock, softclock and gatherstats encapsulate the
218 * previous machine state in an opaque clockframe. The ipl is here
219 * as well for strayintr (see locore.s:interrupt and intr.c:strayintr).
220 * Note that CLKF_INTR is valid only if CLKF_USERMODE is false.
221 */
222 extern int intstack[];
223 extern int eintstack[];
224 struct clockframe {
225 struct trapframe64 t;
226 };
227
228 #define CLKF_USERMODE(framep) (((framep)->t.tf_tstate & TSTATE_PRIV) == 0)
229 /*
230 * XXX Disable CLKF_BASEPRI() for now. If we use a counter-timer for
231 * the clock, the interrupt remains blocked until the interrupt handler
232 * returns and we write to the clear interrupt register. If we use
233 * %tick for the clock, we could get multiple interrupts, but the
234 * currently enabled INTR_INTERLOCK will prevent the interrupt from being
235 * posted twice anyway.
236 *
237 * Switching to %tick for all machines and disabling INTR_INTERLOCK
238 * in locore.s would allow us to take advantage of CLKF_BASEPRI().
239 */
240 #if 0
241 #define CLKF_BASEPRI(framep) (((framep)->t.tf_oldpil) == 0)
242 #else
243 #define CLKF_BASEPRI(framep) (0)
244 #endif
245 #define CLKF_PC(framep) ((framep)->t.tf_pc)
246 /* Since some files in sys/kern do not know BIAS, I'm using 0x7ff here */
247 #define CLKF_INTR(framep) \
248 ((!CLKF_USERMODE(framep))&& \
249 (((framep)->t.tf_out[6] & 1 ) ? \
250 (((vaddr_t)(framep)->t.tf_out[6] < \
251 (vaddr_t)EINTSTACK-0x7ff) && \
252 ((vaddr_t)(framep)->t.tf_out[6] > \
253 (vaddr_t)INTSTACK-0x7ff)) : \
254 (((vaddr_t)(framep)->t.tf_out[6] < \
255 (vaddr_t)EINTSTACK) && \
256 ((vaddr_t)(framep)->t.tf_out[6] > \
257 (vaddr_t)INTSTACK))))
258
259
260 extern struct intrhand soft01intr, soft01net, soft01clock;
261
262 void setsoftint __P((void));
263 void setsoftnet __P((void));
264
265 /*
266 * Preempt the current process if in interrupt from user mode,
267 * or after the current trap/syscall if in system mode.
268 */
269 #define need_resched(ci) (want_resched = 1, want_ast = 1)
270
271 /*
272 * Give a profiling tick to the current process when the user profiling
273 * buffer pages are invalid. On the sparc, request an ast to send us
274 * through trap(), marking the proc as needing a profiling tick.
275 */
276 #define need_proftick(p) ((p)->p_flag |= P_OWEUPC, want_ast = 1)
277
278 /*
279 * Notify the current process (p) that it has a signal pending,
280 * process as soon as possible.
281 */
282 #define signotify(p) (want_ast = 1)
283
284 /*
285 * Interrupt handler chains. Interrupt handlers should return 0 for
286 * ``not me'' or 1 (``I took care of it''). intr_establish() inserts a
287 * handler into the list. The handler is called with its (single)
288 * argument, or with a pointer to a clockframe if ih_arg is NULL.
289 */
290 struct intrhand {
291 int (*ih_fun) __P((void *));
292 void *ih_arg;
293 short ih_number; /* interrupt number */
294 /* the H/W provides */
295 char ih_pil; /* interrupt priority */
296 struct intrhand *ih_next; /* global list */
297 struct intrhand *ih_pending; /* interrupt queued */
298 volatile u_int64_t *ih_map; /* Interrupt map reg */
299 volatile u_int64_t *ih_clr; /* clear interrupt reg */
300 };
301 extern struct intrhand *intrhand[];
302 extern struct intrhand *intrlev[MAXINTNUM];
303
304 void intr_establish __P((int level, struct intrhand *));
305
306 /* cpu.c */
307 paddr_t cpu_alloc __P((void));
308 void cpu_start __P((int));
309
310 #define mp_pause_cpus() sparc64_ipi_pause((void*)0)
311 #define mp_resume_cpus() sparc64_ipi_resume_cpus()
312
313 /* disksubr.c */
314 struct dkbad;
315 int isbad __P((struct dkbad *bt, int, int, int));
316 /* machdep.c */
317 int ldcontrolb __P((caddr_t));
318 void dumpconf __P((void));
319 caddr_t reserve_dumppages __P((caddr_t));
320 /* clock.c */
321 struct timeval;
322 int tickintr __P((void *)); /* level 10 (tick) interrupt code */
323 int clockintr __P((void *));/* level 10 (clock) interrupt code */
324 int statintr __P((void *)); /* level 14 (statclock) interrupt code */
325 /* locore.s */
326 struct fpstate64;
327 void savefpstate __P((struct fpstate64 *));
328 void loadfpstate __P((struct fpstate64 *));
329 u_int64_t probeget __P((paddr_t, int, int));
330 int probeset __P((paddr_t, int, int, u_int64_t));
331
332 #define write_all_windows() __asm __volatile("flushw" : : )
333 #define write_user_windows() __asm __volatile("flushw" : : )
334
335 void proc_trampoline __P((void));
336 struct pcb;
337 void snapshot __P((struct pcb *));
338 struct frame *getfp __P((void));
339 int xldcontrolb __P((caddr_t, struct pcb *));
340 void copywords __P((const void *, void *, size_t));
341 void qcopy __P((const void *, void *, size_t));
342 void qzero __P((void *, size_t));
343 void switchtoctx __P((int));
344 /* locore2.c */
345 void remrq __P((struct proc *));
346 /* trap.c */
347 void kill_user_windows __P((struct lwp *));
348 int rwindow_save __P((struct lwp *));
349 /* cons.c */
350 int cnrom __P((void));
351 /* zs.c */
352 void zsconsole __P((struct tty *, int, int, void (**)(struct tty *, int)));
353 #ifdef KGDB
354 void zs_kgdb_init __P((void));
355 #endif
356 /* fb.c */
357 void fb_unblank __P((void));
358 /* kgdb_stub.c */
359 #ifdef KGDB
360 void kgdb_attach __P((int (*)(void *), void (*)(void *, int), void *));
361 void kgdb_connect __P((int));
362 void kgdb_panic __P((void));
363 #endif
364 /* emul.c */
365 int fixalign __P((struct lwp *, struct trapframe64 *));
366 int emulinstr __P((vaddr_t, struct trapframe64 *));
367
368 /*
369 *
370 * The SPARC has a Trap Base Register (TBR) which holds the upper 20 bits
371 * of the trap vector table. The next eight bits are supplied by the
372 * hardware when the trap occurs, and the bottom four bits are always
373 * zero (so that we can shove up to 16 bytes of executable code---exactly
374 * four instructions---into each trap vector).
375 *
376 * The hardware allocates half the trap vectors to hardware and half to
377 * software.
378 *
379 * Traps have priorities assigned (lower number => higher priority).
380 */
381
382 struct trapvec {
383 int tv_instr[8]; /* the eight instructions */
384 };
385 extern struct trapvec *trapbase; /* the 256 vectors */
386
387 #endif /* _KERNEL */
388 #endif /* _CPU_H_ */
389