cpu.h revision 1.54 1 /* $NetBSD: cpu.h,v 1.54 2006/06/07 22:39:38 kardel Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)cpu.h 8.4 (Berkeley) 1/5/94
41 */
42
43 #ifndef _CPU_H_
44 #define _CPU_H_
45
46 /*
47 * CTL_MACHDEP definitions.
48 */
49 #define CPU_BOOTED_KERNEL 1 /* string: booted kernel name */
50 #define CPU_BOOTED_DEVICE 2 /* string: device booted from */
51 #define CPU_BOOT_ARGS 3 /* string: args booted with */
52 #define CPU_ARCH 4 /* integer: cpu architecture version */
53 #define CPU_MAXID 5 /* number of valid machdep ids */
54
55 #define CTL_MACHDEP_NAMES { \
56 { 0, 0 }, \
57 { "booted_kernel", CTLTYPE_STRING }, \
58 { "booted_device", CTLTYPE_STRING }, \
59 { "boot_args", CTLTYPE_STRING }, \
60 { "cpu_arch", CTLTYPE_INT }, \
61 }
62
63 #ifdef _KERNEL
64 /*
65 * Exported definitions unique to SPARC cpu support.
66 */
67
68 #if defined(_KERNEL_OPT)
69 #include "opt_multiprocessor.h"
70 #include "opt_lockdebug.h"
71 #endif
72
73 #include <machine/psl.h>
74 #include <machine/reg.h>
75 #include <machine/intr.h>
76 #include <machine/cpuset.h>
77 #include <sparc64/sparc64/intreg.h>
78
79 #include <sys/cpu_data.h>
80 /*
81 * The cpu_info structure is part of a 64KB structure mapped both the kernel
82 * pmap and a single locked TTE a CPUINFO_VA for that particular processor.
83 * Each processor's cpu_info is accessible at CPUINFO_VA only for that
84 * processor. Other processors can access that through an additional mapping
85 * in the kernel pmap.
86 *
87 * The 64KB page contains:
88 *
89 * cpu_info
90 * interrupt stack (all remaining space)
91 * idle PCB
92 * idle stack (STACKSPACE - sizeof(PCB))
93 * 32KB TSB
94 */
95
96 struct cpu_info {
97
98 /*
99 * SPARC cpu_info structures live at two VAs: one global
100 * VA (so each CPU can access any other CPU's cpu_info)
101 * and an alias VA CPUINFO_VA which is the same on each
102 * CPU and maps to that CPU's cpu_info. Since the alias
103 * CPUINFO_VA is how we locate our cpu_info, we have to
104 * self-reference the global VA so that we can return it
105 * in the curcpu() macro.
106 */
107 struct cpu_info * volatile ci_self;
108
109 /* Most important fields first */
110 struct lwp *ci_curlwp;
111 struct pcb *ci_cpcb;
112 struct cpu_info *ci_next;
113
114 struct lwp *ci_fplwp;
115
116 void *ci_eintstack;
117 struct pcb *ci_idle_u;
118
119 /* Spinning up the CPU */
120 void (*ci_spinup)(void);
121 void *ci_initstack;
122 paddr_t ci_paddr;
123
124 int ci_number;
125 int ci_upaid;
126 int ci_cpuid;
127
128 /* CPU PROM information. */
129 u_int ci_node;
130
131 int ci_flags;
132 int ci_want_ast;
133 int ci_want_resched;
134
135 struct cpu_data ci_data; /* MI per-cpu data */
136 };
137
138 #define CPUF_PRIMARY 1
139
140 /*
141 * CPU boot arguments. Used by secondary CPUs at the bootstrap time.
142 */
143 struct cpu_bootargs {
144 u_int cb_node; /* PROM CPU node */
145 volatile int cb_flags;
146
147 vaddr_t cb_ktext;
148 paddr_t cb_ktextp;
149 vaddr_t cb_ektext;
150
151 vaddr_t cb_kdata;
152 paddr_t cb_kdatap;
153 vaddr_t cb_ekdata;
154
155 paddr_t cb_cpuinfo;
156
157 void *cb_initstack;
158 };
159
160 extern struct cpu_bootargs *cpu_args;
161
162 extern int sparc_ncpus;
163 extern struct cpu_info *cpus;
164
165 #define curcpu() (((struct cpu_info *)CPUINFO_VA)->ci_self)
166 #define cpu_number() (curcpu()->ci_number)
167 #define CPU_IS_PRIMARY(ci) ((ci)->ci_flags & CPUF_PRIMARY)
168
169 #define CPU_INFO_ITERATOR int
170 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = cpus; ci != NULL; \
171 ci = ci->ci_next
172
173 #define curlwp curcpu()->ci_curlwp
174 #define fplwp curcpu()->ci_fplwp
175 #define curpcb curcpu()->ci_cpcb
176
177 #define want_ast curcpu()->ci_want_ast
178 #define want_resched curcpu()->ci_want_resched
179
180 /*
181 * definitions of cpu-dependent requirements
182 * referenced in generic code
183 */
184 #define cpu_swapin(p) /* nothing */
185 #define cpu_swapout(p) /* nothing */
186 #define cpu_wait(p) /* nothing */
187 void cpu_proc_fork(struct proc *, struct proc *);
188
189 #if defined(MULTIPROCESSOR)
190 extern vaddr_t cpu_spinup_trampoline;
191
192 extern char *mp_tramp_code;
193 extern u_long mp_tramp_code_len;
194 extern u_long mp_tramp_tlb_slots;
195 extern u_long mp_tramp_func;
196 extern u_long mp_tramp_ci;
197
198 void cpu_hatch(void);
199 void cpu_boot_secondary_processors(void);
200 #endif
201
202 extern uint64_t cpu_clockrate[];
203
204 /*
205 * Arguments to hardclock, softclock and gatherstats encapsulate the
206 * previous machine state in an opaque clockframe. The ipl is here
207 * as well for strayintr (see locore.s:interrupt and intr.c:strayintr).
208 * Note that CLKF_INTR is valid only if CLKF_USERMODE is false.
209 */
210 extern int intstack[];
211 extern int eintstack[];
212 struct clockframe {
213 struct trapframe64 t;
214 };
215
216 #define CLKF_USERMODE(framep) (((framep)->t.tf_tstate & TSTATE_PRIV) == 0)
217 /*
218 * XXX Disable CLKF_BASEPRI() for now. If we use a counter-timer for
219 * the clock, the interrupt remains blocked until the interrupt handler
220 * returns and we write to the clear interrupt register. If we use
221 * %tick for the clock, we could get multiple interrupts, but the
222 * currently enabled INTR_INTERLOCK will prevent the interrupt from being
223 * posted twice anyway.
224 *
225 * Switching to %tick for all machines and disabling INTR_INTERLOCK
226 * in locore.s would allow us to take advantage of CLKF_BASEPRI().
227 */
228 #if 0
229 #define CLKF_BASEPRI(framep) (((framep)->t.tf_oldpil) == 0)
230 #else
231 #define CLKF_BASEPRI(framep) (0)
232 #endif
233 #define CLKF_PC(framep) ((framep)->t.tf_pc)
234 /* Since some files in sys/kern do not know BIAS, I'm using 0x7ff here */
235 #define CLKF_INTR(framep) \
236 ((!CLKF_USERMODE(framep))&& \
237 (((framep)->t.tf_out[6] & 1 ) ? \
238 (((vaddr_t)(framep)->t.tf_out[6] < \
239 (vaddr_t)EINTSTACK-0x7ff) && \
240 ((vaddr_t)(framep)->t.tf_out[6] > \
241 (vaddr_t)INTSTACK-0x7ff)) : \
242 (((vaddr_t)(framep)->t.tf_out[6] < \
243 (vaddr_t)EINTSTACK) && \
244 ((vaddr_t)(framep)->t.tf_out[6] > \
245 (vaddr_t)INTSTACK))))
246
247
248 extern struct intrhand soft01intr, soft01net, soft01clock;
249
250 void setsoftint(void);
251 void setsoftnet(void);
252
253 /*
254 * Preempt the current process if in interrupt from user mode,
255 * or after the current trap/syscall if in system mode.
256 */
257 #define need_resched(ci) (want_resched = 1, want_ast = 1)
258
259 /*
260 * Give a profiling tick to the current process when the user profiling
261 * buffer pages are invalid. On the sparc, request an ast to send us
262 * through trap(), marking the proc as needing a profiling tick.
263 */
264 #define need_proftick(p) ((p)->p_flag |= P_OWEUPC, want_ast = 1)
265
266 /*
267 * Notify the current process (p) that it has a signal pending,
268 * process as soon as possible.
269 */
270 #define signotify(p) (want_ast = 1)
271
272 /*
273 * Interrupt handler chains. Interrupt handlers should return 0 for
274 * ``not me'' or 1 (``I took care of it''). intr_establish() inserts a
275 * handler into the list. The handler is called with its (single)
276 * argument, or with a pointer to a clockframe if ih_arg is NULL.
277 */
278 struct intrhand {
279 int (*ih_fun)(void *);
280 void *ih_arg;
281 short ih_number; /* interrupt number */
282 /* the H/W provides */
283 char ih_pil; /* interrupt priority */
284 struct intrhand *ih_next; /* global list */
285 struct intrhand *ih_pending; /* interrupt queued */
286 volatile uint64_t *ih_map; /* Interrupt map reg */
287 volatile uint64_t *ih_clr; /* clear interrupt reg */
288 };
289 extern struct intrhand *intrhand[];
290 extern struct intrhand *intrlev[MAXINTNUM];
291
292 void intr_establish(int level, struct intrhand *);
293
294 #define mp_pause_cpus() sparc64_ipi_pause_cpus()
295 #define mp_resume_cpus() sparc64_ipi_resume_cpus()
296
297 /* disksubr.c */
298 struct dkbad;
299 int isbad(struct dkbad *bt, int, int, int);
300 /* machdep.c */
301 caddr_t reserve_dumppages(caddr_t);
302 /* clock.c */
303 struct timeval;
304 int tickintr(void *); /* level 10 (tick) interrupt code */
305 int clockintr(void *); /* level 10 (clock) interrupt code */
306 int statintr(void *); /* level 14 (statclock) interrupt code */
307 /* locore.s */
308 struct fpstate64;
309 void savefpstate(struct fpstate64 *);
310 void loadfpstate(struct fpstate64 *);
311 uint64_t probeget(paddr_t, int, int);
312 int probeset(paddr_t, int, int, uint64_t);
313
314 #define write_all_windows() __asm volatile("flushw" : : )
315 #define write_user_windows() __asm volatile("flushw" : : )
316
317 void proc_trampoline(void);
318 struct pcb;
319 void snapshot(struct pcb *);
320 struct frame *getfp(void);
321 void switchtoctx(int);
322 /* trap.c */
323 void kill_user_windows(struct lwp *);
324 int rwindow_save(struct lwp *);
325 /* cons.c */
326 int cnrom(void);
327 /* zs.c */
328 void zsconsole(struct tty *, int, int, void (**)(struct tty *, int));
329 #ifdef KGDB
330 void zs_kgdb_init(void);
331 #endif
332 /* fb.c */
333 void fb_unblank(void);
334 /* kgdb_stub.c */
335 #ifdef KGDB
336 void kgdb_attach(int (*)(void *), void (*)(void *, int), void *);
337 void kgdb_connect(int);
338 void kgdb_panic(void);
339 #endif
340 /* emul.c */
341 int fixalign(struct lwp *, struct trapframe64 *);
342 int emulinstr(vaddr_t, struct trapframe64 *);
343
344 /*
345 *
346 * The SPARC has a Trap Base Register (TBR) which holds the upper 20 bits
347 * of the trap vector table. The next eight bits are supplied by the
348 * hardware when the trap occurs, and the bottom four bits are always
349 * zero (so that we can shove up to 16 bytes of executable code---exactly
350 * four instructions---into each trap vector).
351 *
352 * The hardware allocates half the trap vectors to hardware and half to
353 * software.
354 *
355 * Traps have priorities assigned (lower number => higher priority).
356 */
357
358 struct trapvec {
359 int tv_instr[8]; /* the eight instructions */
360 };
361 extern struct trapvec *trapbase; /* the 256 vectors */
362
363 #endif /* _KERNEL */
364 #endif /* _CPU_H_ */
365