Home | History | Annotate | Line # | Download | only in include
ctlreg.h revision 1.18
      1 /*	$NetBSD: ctlreg.h,v 1.18 2000/06/19 23:30:34 eeh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996-1999 Eduardo Horvath
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     13  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     14  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     15  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     16  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     17  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     18  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     19  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     20  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     21  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     22  * SUCH DAMAGE.
     23  *
     24  */
     25 
     26 /*
     27  * Sun 4u control registers. (includes address space definitions
     28  * and some registers in control space).
     29  */
     30 
     31 /*
     32  * The Alternate address spaces.
     33  *
     34  * 0x00-0x7f are privileged
     35  * 0x80-0xff can be used by users
     36  */
     37 
     38 #define ASI_LITTLE	0x08		/* This bit should make an ASI little endian */
     39 
     40 #define ASI_NUCLEUS			0x04	/* [4u] kernel address space */
     41 #define ASI_NUCLEUS_LITTLE		0x0c	/* [4u] kernel address space, little endian */
     42 
     43 #define ASI_AS_IF_USER_PRIMARY		0x10	/* [4u] primary user address space */
     44 #define ASI_AS_IF_USER_SECONDARY	0x11	/* [4u] secondary user address space */
     45 
     46 #define ASI_PHYS_CACHED			0x14	/* [4u] MMU bypass to main memory */
     47 #define ASI_PHYS_NON_CACHED		0x15	/* [4u] MMU bypass to I/O location */
     48 
     49 #define ASI_AS_IF_USER_PRIMARY_LITTLE	0x18	/* [4u] primary user address space, little endian  */
     50 #define ASI_AS_IF_USER_SECONDARY_LITTIE	0x19	/* [4u] secondary user address space, little endian  */
     51 
     52 #define ASI_PHYS_CACHED_LITTLE		0x1c	/* [4u] MMU bypass to main memory, little endian */
     53 #define ASI_PHYS_NON_CACHED_LITTLE	0x1d	/* [4u] MMU bypass to I/O location, little endian */
     54 
     55 #define ASI_NUCLEUS_QUAD_LDD		0x24	/* [4u] use w/LDDA to load 128-bit item */
     56 #define ASI_NUCLEUS_QUAD_LDD_LITTLE	0x2c	/* [4u] use w/LDDA to load 128-bit item, little endian */
     57 
     58 #define ASI_FLUSH_D_PAGE_PRIMARY	0x38	/* [4u] flush D-cache page using primary context */
     59 #define ASI_FLUSH_D_PAGE_SECONDARY	0x39	/* [4u] flush D-cache page using secondary context */
     60 #define ASI_FLUSH_D_CTX_PRIMARY		0x3a	/* [4u] flush D-cache context using primary context */
     61 #define ASI_FLUSH_D_CTX_SECONDARY	0x3b	/* [4u] flush D-cache context using secondary context */
     62 
     63 #define ASI_LSU_CONTROL_REGISTER	0x45	/* [4u] load/store unit control register */
     64 
     65 #define ASI_DCACHE_DATA			0x46	/* [4u] diagnostic access to D-cache data RAM */
     66 #define ASI_DCACHE_TAG			0x47	/* [4u] diagnostic access to D-cache tag RAM */
     67 
     68 #define ASI_INTR_DISPATCH_STATUS	0x48	/* [4u] interrupt dispatch status register */
     69 #define ASI_INTR_RECEIVE		0x49	/* [4u] interrupt receive status register */
     70 #define ASI_MID_REG			0x4a	/* [4u] hardware config and MID */
     71 #define ASI_ERROR_EN_REG		0x4b	/* [4u] asynchronous error enables */
     72 #define ASI_AFSR			0x4c	/* [4u] asynchronous fault status register */
     73 #define ASI_AFAR			0x4d	/* [4u] asynchronous fault address register */
     74 
     75 #define ASI_ICACHE_DATA			0x66	/* [4u] diagnostic access to D-cache data RAM */
     76 #define ASI_ICACHE_TAG			0x67	/* [4u] diagnostic access to D-cache tag RAM */
     77 #define ASI_FLUSH_I_PAGE_PRIMARY	0x68	/* [4u] flush D-cache page using primary context */
     78 #define ASI_FLUSH_I_PAGE_SECONDARY	0x69	/* [4u] flush D-cache page using secondary context */
     79 #define ASI_FLUSH_I_CTX_PRIMARY		0x6a	/* [4u] flush D-cache context using primary context */
     80 #define ASI_FLUSH_I_CTX_SECONDARY	0x6b	/* [4u] flush D-cache context using secondary context */
     81 
     82 #define ASI_BLOCK_AS_IF_USER_PRIMARY	0x70	/* [4u] primary user address space, block loads/stores */
     83 #define ASI_BLOCK_AS_IF_USER_SECONDARY	0x71	/* [4u] secondary user address space, block loads/stores */
     84 
     85 #define ASI_ECACHE_DIAG			0x76	/* [4u] diag access to E-cache tag and data */
     86 #define ASI_DATAPATH_ERR_REG_WRITE	0x77	/* [4u] ASI is reused */
     87 
     88 #define ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE	0x78	/* [4u] primary user address space, block loads/stores */
     89 #define ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE	0x79	/* [4u] secondary user address space, block loads/stores */
     90 
     91 #define ASI_INTERRUPT_RECEIVE_DATA	0x7f	/* [4u] interrupt receive data registers {0,1,2} */
     92 #define ASI_DATAPATH_ERR_REG_READ	0x7f	/* [4u] read access to datapath error registers (ASI reused) */
     93 
     94 #define ASI_PRIMARY			0x80	/* [4u] primary address space */
     95 #define ASI_SECONDARY			0x81	/* [4u] secondary address space */
     96 #define ASI_PRIMARY_NO_FAULT		0x82	/* [4u] primary address space, no fault */
     97 #define ASI_SECONDARY_NO_FAULT		0x83	/* [4u] secondary address space, no fault */
     98 
     99 #define ASI_PRIMARY_LITTLE		0x88	/* [4u] primary address space, little endian */
    100 #define ASI_SECONDARY_LITTLE		0x89	/* [4u] secondary address space, little endian */
    101 #define ASI_PRIMARY_NO_FAULT_LITTLE	0x8a	/* [4u] primary address space, no fault, little endian */
    102 #define ASI_SECONDARY_NO_FAULT_LITTLE	0x8b	/* [4u] secondary address space, no fault, little endian */
    103 
    104 #define ASI_PST8_PRIMARY		0xc0	/* [VIS] Eight 8-bit partial store, primary */
    105 #define ASI_PST8_SECONDARY		0xc1	/* [VIS] Eight 8-bit partial store, secondary */
    106 #define ASI_PST16_PRIMARY		0xc2	/* [VIS] Four 16-bit partial store, primary */
    107 #define ASI_PST16_SECONDARY		0xc3	/* [VIS] Fout 16-bit partial store, secondary */
    108 #define ASI_PST32_PRIMARY		0xc4	/* [VIS] Two 32-bit partial store, primary */
    109 #define ASI_PST32_SECONDARY		0xc5	/* [VIS] Two 32-bit partial store, secondary */
    110 
    111 #define ASI_PST8_PRIMARY_LITTLE		0xc8	/* [VIS] Eight 8-bit partial store, primary, little endian */
    112 #define ASI_PST8_SECONDARY_LITTLE	0xc9	/* [VIS] Eight 8-bit partial store, secondary, little endian */
    113 #define ASI_PST16_PRIMARY_LITTLE	0xca	/* [VIS] Four 16-bit partial store, primary, little endian */
    114 #define ASI_PST16_SECONDARY_LITTLE	0xcb	/* [VIS] Fout 16-bit partial store, secondary, little endian */
    115 #define ASI_PST32_PRIMARY_LITTLE	0xcc	/* [VIS] Two 32-bit partial store, primary, little endian */
    116 #define ASI_PST32_SECONDARY_LITTLE	0xcd	/* [VIS] Two 32-bit partial store, secondary, little endian */
    117 
    118 #define ASI_FL8_PRIMARY			0xd0	/* [VIS] One 8-bit load/store floating, primary */
    119 #define ASI_FL8_SECONDARY		0xd1	/* [VIS] One 8-bit load/store floating, secondary */
    120 #define ASI_FL16_PRIMARY		0xd2	/* [VIS] One 16-bit load/store floating, primary */
    121 #define ASI_FL16_SECONDARY		0xd3	/* [VIS] One 16-bit load/store floating, secondary */
    122 
    123 #define ASI_FL8_PRIMARY_LITTLE		0xd8	/* [VIS] One 8-bit load/store floating, primary, little endian */
    124 #define ASI_FL8_SECONDARY_LITTLE	0xd9	/* [VIS] One 8-bit load/store floating, secondary, little endian */
    125 #define ASI_FL16_PRIMARY_LITTLE		0xda	/* [VIS] One 16-bit load/store floating, primary, little endian */
    126 #define ASI_FL16_SECONDARY_LITTLE	0xdb	/* [VIS] One 16-bit load/store floating, secondary, little endian */
    127 
    128 #define ASI_BLOCK_COMMIT_PRIMARY	0xe0	/* [4u] block store with commit, primary */
    129 #define ASI_BLOCK_COMMIT_SECONDARY	0xe1	/* [4u] block store with commit, secondary */
    130 #define ASI_BLOCK_PRIMARY		0xf0	/* [4u] block load/store, primary */
    131 #define ASI_BLOCK_SECONDARY		0xf1	/* [4u] block load/store, secondary */
    132 #define ASI_BLOCK_PRIMARY_LITTLE	0xf8	/* [4u] block load/store, primary, little endian */
    133 #define ASI_BLOCK_SECONDARY_LITTLE	0xf9	/* [4u] block load/store, secondary, little endian */
    134 
    135 
    136 /*
    137  * These are the shorter names used by Solaris
    138  */
    139 
    140 #define ASI_N		ASI_NUCLEUS
    141 #define ASI_NL		ASI_NUCLEUS_LITTLE
    142 #define ASI_AIUP	ASI_AS_IF_USER_PRIMARY
    143 #define ASI_AIUS	ASI_AS_IF_USER_SECONDARY
    144 #define ASI_AIUPL	ASI_AS_IF_USER_PRIMARY_LITTLE
    145 #define ASI_AIUSL	ASI_AS_IF_USER_SECONDARY_LITTLE
    146 #define ASI_P		ASI_PRIMARY
    147 #define ASI_S		ASI_SECONDARY
    148 #define ASI_PNF		ASI_PRIMARY_NO_FAULT
    149 #define ASI_SNF		ASI_SECONDARY_NO_FAULT
    150 #define ASI_PL		ASI_PRIMARY_LITTLE
    151 #define ASI_SL		ASI_SECONDARY_LITTLE
    152 #define ASI_PNFL	ASI_PRIMARY_NO_FAULT_LITTLE
    153 #define ASI_SNFL	ASI_SECONDARY_NO_FAULT_LITTLE
    154 #define ASI_BLK_AIUP	ASI_BLOCK_AS_IF_USER_PRIMARY
    155 #define ASI_BLK_AIUPL	ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
    156 #define ASI_BLK_AIUS	ASI_BLOCK_AS_IF_USER_SECONDARY
    157 #define ASI_BLK_AIUSL	ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
    158 #define ASI_BLK_COMMIT_P		ASI_BLOCK_COMMIT_PRIMARY
    159 #define ASI_BLK_COMMIT_PRIMARY		ASI_BLOCK_COMMIT_PRIMARY
    160 #define ASI_BLK_COMMIT_S		ASI_BLOCK_COMMIT_SECONDARY
    161 #define ASI_BLK_COMMIT_SECONDARY	ASI_BLOCK_COMMIT_SECONDARY
    162 #define ASI_BLK_P			ASI_BLOCK_PRIMARY
    163 #define ASI_BLK_PL			ASI_BLOCK_PRIMARY_LITTLE
    164 #define ASI_BLK_S			ASI_BLOCK_SECONDARY
    165 #define ASI_BLK_SL			ASI_BLOCK_SECONDARY_LITTLE
    166 
    167 #define PHYS_ASI(x)	(((x) | 0x09) == 0x1d)
    168 #define LITTLE_ASI(x)	((x) & ASI_LITTLE)
    169 
    170 /*
    171  * The following are 4u control registers
    172  */
    173 
    174 
    175 /* Get the CPU's UPAID */
    176 #define	UPA_CR_MID(x)	(((x)>>17)&0x1f)
    177 #define	CPU_UPAID	UPA_CR_MID(ldxa(0, ASI_MID_REG))
    178 
    179 /*
    180  * [4u] MMU and Cache Control Register (MCCR)
    181  * use ASI = 0x45
    182  */
    183 #define ASI_MCCR	ASI_LSU_CONTROL_REGISTER
    184 #define MCCR		0x00
    185 
    186 /* MCCR Bits and their meanings */
    187 #define MCCR_DMMU_EN	0x08
    188 #define MCCR_IMMU_EN	0x04
    189 #define MCCR_DCACHE_EN	0x02
    190 #define MCCR_ICACHE_EN	0x01
    191 
    192 
    193 /*
    194  * MMU control registers
    195  */
    196 
    197 /* Choose an MMU */
    198 #define ASI_DMMU		0x58
    199 #define ASI_IMMU		0x50
    200 
    201 /* Other assorted MMU ASIs */
    202 #define ASI_IMMU_8KPTR		0x51
    203 #define ASI_IMMU_64KPTR		0x52
    204 #define ASI_IMMU_DATA_IN	0x54
    205 #define ASI_IMMU_TLB_DATA	0x55
    206 #define ASI_IMMU_TLB_TAG	0x56
    207 #define ASI_DMMU_8KPTR		0x59
    208 #define ASI_DMMU_64KPTR		0x5a
    209 #define ASI_DMMU_DATA_IN	0x5c
    210 #define ASI_DMMU_TLB_DATA	0x5d
    211 #define ASI_DMMU_TLB_TAG	0x5e
    212 
    213 /*
    214  * The following are the control registers
    215  * They work on both MMUs unless noted.
    216  *
    217  * Register contents are defined later on individual registers.
    218  */
    219 #define TSB_TAG_TARGET		0x0
    220 #define TLB_DATA_IN		0x0
    221 #define CTX_PRIMARY		0x08	/* primary context -- DMMU only */
    222 #define CTX_SECONDARY		0x10	/* secondary context -- DMMU only */
    223 #define SFSR			0x18
    224 #define SFAR			0x20	/* fault address -- DMMU only */
    225 #define TSB			0x28
    226 #define TLB_TAG_ACCESS		0x30
    227 #define VIRTUAL_WATCHPOINT	0x38
    228 #define PHYSICAL_WATCHPOINT	0x40
    229 
    230 /* Tag Target bits */
    231 #define TAG_TARGET_VA_MASK	0x03ffffffffffffffffLL
    232 #define TAG_TARGET_VA(x)	(((x)<<22)&TAG_TARGET_VA_MASK)
    233 #define TAG_TARGET_CONTEXT(x)	((x)>>48)
    234 #define TAG_TARGET(c,v)		((((uint64_t)c)<<48)|(((uint64_t)v)&TAG_TARGET_VA_MASK))
    235 
    236 /* SFSR bits for both D_SFSR and I_SFSR */
    237 #define SFSR_ASI(x)		((x)>>16)
    238 #define SFSR_FT_VA_OOR_2	0x02000 /* IMMU: jumpl or return to unsupportd VA */
    239 #define SFSR_FT_VA_OOR_1	0x01000 /* fault at unsupported VA */
    240 #define SFSR_FT_NFO		0x00800	/* DMMU: Access to page marked NFO */
    241 #define SFSR_ILL_ASI		0x00400	/* DMMU: Illegal (unsupported) ASI */
    242 #define SFSR_FT_IO_ATOMIC	0x00200	/* DMMU: Atomic access to noncacheable page */
    243 #define SFSR_FT_ILL_NF		0x00100	/* DMMU: NF load or flush to page marked E (has side effects) */
    244 #define SFSR_FT_PRIV		0x00080	/* Privilege violation */
    245 #define SFSR_FT_E		0x00040	/* DMUU: value of E bit associated address */
    246 #define SFSR_CTXT(x)		(((x)>>4)&0x3)
    247 #define SFSR_CTXT_IS_PRIM(x)	(SFSR_CTXT(x)==0x00)
    248 #define SFSR_CTXT_IS_SECOND(x)	(SFSR_CTXT(x)==0x01)
    249 #define SFSR_CTXT_IS_NUCLEUS(x)	(SFSR_CTXT(x)==0x02)
    250 #define SFSR_PRIV		0x00008	/* value of PSTATE.PRIV for faulting access */
    251 #define SFSR_W			0x00004 /* DMMU: attempted write */
    252 #define SFSR_OW			0x00002 /* Overwrite; prev vault was still valid */
    253 #define SFSR_FV			0x00001	/* Fault is valid */
    254 #define SFSR_FT	(SFSR_FT_VA_OOR_2|SFSR_FT_VA_OOR_1|SFSR_FT_NFO|SFSR_ILL_ASI|SFSR_FT_IO_ATOMIC|SFSR_FT_ILL_NF|SFSR_FT_PRIV)
    255 
    256 #if 0
    257 /* Old bits */
    258 #define SFSR_BITS "\40\16VAT\15VAD\14NFO\13ASI\12A\11NF\10PRIV\7E\6NUCLEUS\5SECONDCTX\4PRIV\3W\2OW\1FV"
    259 #else
    260 /* New bits */
    261 #define SFSR_BITS "\177\20" \
    262 	"f\20\30ASI\0" "b\16VAT\0" "b\15VAD\0" "b\14NFO\0" "b\13ASI\0" "b\12A\0" "b\11NF\0" "b\10PRIV\0" \
    263 	 "b\7E\0" "b\6NUCLEUS\0" "b\5SECONDCTX\0" "b\4PRIV\0" "b\3W\0" "b\2OW\0" "b\1FV\0"
    264 #endif
    265 
    266 /* ASFR bits */
    267 #define ASFR_ME			0x100000000LL
    268 #define ASFR_PRIV		0x080000000LL
    269 #define ASFR_ISAP		0x040000000LL
    270 #define ASFR_ETP		0x020000000LL
    271 #define ASFR_IVUE		0x010000000LL
    272 #define ASFR_TO			0x008000000LL
    273 #define ASFR_BERR		0x004000000LL
    274 #define ASFR_LDP		0x002000000LL
    275 #define ASFR_CP			0x001000000LL
    276 #define ASFR_WP			0x000800000LL
    277 #define ASFR_EDP		0x000400000LL
    278 #define ASFR_UE			0x000200000LL
    279 #define ASFR_CE			0x000100000LL
    280 #define ASFR_ETS		0x0000f0000LL
    281 #define ASFT_P_SYND		0x00000ffffLL
    282 
    283 #define AFSR_BITS "\177\20" \
    284         "b\40ME\0"      "b\37PRIV\0"    "b\36ISAP\0"    "b\35ETP\0" \
    285         "b\34IVUE\0"    "b\33TO\0"      "b\32BERR\0"    "b\31LDP\0" \
    286         "b\30CP\0"      "b\27WP\0"      "b\26EDP\0"     "b\25UE\0" \
    287         "b\24CE\0"      "f\20\4ETS\0"   "f\0\20P_SYND\0"
    288 
    289 /*
    290  * Here's the spitfire TSB control register bits.
    291  *
    292  * Each TSB entry is 16-bytes wide.  The TSB must be size aligned
    293  */
    294 #define TSB_SIZE_512		0x0	/* 8kB, etc. */
    295 #define TSB_SIZE_1K		0x01
    296 #define TSB_SIZE_2K		0x02
    297 #define TSB_SIZE_4K		0x03
    298 #define	TSB_SIZE_8K		0x04
    299 #define TSB_SIZE_16K		0x05
    300 #define TSB_SIZE_32K		0x06
    301 #define TSB_SIZE_64K		0x07
    302 #define TSB_SPLIT		0x1000
    303 #define TSB_BASE		0xffffffffffffe000
    304 
    305 /*  TLB Tag Access bits */
    306 #define TLB_TAG_ACCESS_VA	0xffffffffffffe000
    307 #define TLB_TAG_ACCESS_CTX	0x0000000000001fff
    308 
    309 /*
    310  * TLB demap registers.  TTEs are defined in v9pte.h
    311  *
    312  * Use the address space to select between IMMU and DMMU.
    313  * The address of the register selects which context register
    314  * to read the ASI from.
    315  *
    316  * The data stored in the register is interpreted as the VA to
    317  * use.  The DEMAP_CTX_<> registers ignore the address and demap the
    318  * entire ASI.
    319  *
    320  */
    321 #define ASI_IMMU_DEMAP			0x57	/* [4u] IMMU TLB demap */
    322 #define ASI_DMMU_DEMAP			0x5f	/* [4u] IMMU TLB demap */
    323 
    324 #define DEMAP_PAGE_NUCLEUS		((0x02)<<4)	/* Demap page from kernel AS */
    325 #define DEMAP_PAGE_PRIMARY		((0x00)<<4)	/* Demap a page from primary CTXT */
    326 #define DEMAP_PAGE_SECONDARY		((0x01)<<4)	/* Demap page from secondary CTXT (DMMU only) */
    327 #define DEMAP_CTX_NUCLEUS		((0x06)<<4)	/* Demap all of kernel CTXT */
    328 #define DEMAP_CTX_PRIMARY		((0x04)<<4)	/* Demap all of primary CTXT */
    329 #define DEMAP_CTX_SECONDARY		((0x05)<<4)	/* Demap all of secondary CTXT */
    330 
    331 /*
    332  * Interrupt registers.  This really gets hairy.
    333  */
    334 
    335 /* IRSR -- Interrupt Receive Status Ragister */
    336 #define ASI_IRSR	0x49
    337 #define IRSR		0x00
    338 #define IRSR_BUSY	0x020
    339 #define IRSR_MID(x)	(x&0x1f)
    340 
    341 /* IRDR -- Interrupt Receive Data Registers */
    342 #define ASI_IRDR	0x7f
    343 #define IRDR_0H		0x40
    344 #define IRDR_0L		0x48	/* unimplemented */
    345 #define IRDR_1H		0x50
    346 #define IRDR_1L		0x58	/* unimplemented */
    347 #define IRDR_2H		0x60
    348 #define IRDR_2L		0x68	/* unimplemented */
    349 #define IRDR_3H		0x70	/* unimplemented */
    350 #define IRDR_3L		0x78	/* unimplemented */
    351 
    352 /* SOFTINT ASRs */
    353 #define SET_SOFTINT	%asr20	/* Sets these bits */
    354 #define CLEAR_SOFTINT	%asr21	/* Clears these bits */
    355 #define SOFTINT		%asr22	/* Reads the register */
    356 #define TICK_CMPR	%asr23
    357 
    358 #define	TICK_INT	0x01	/* level-14 clock tick */
    359 #define SOFTINT1	(0x1<<1)
    360 #define SOFTINT2	(0x1<<2)
    361 #define SOFTINT3	(0x1<<3)
    362 #define SOFTINT4	(0x1<<4)
    363 #define SOFTINT5	(0x1<<5)
    364 #define SOFTINT6	(0x1<<6)
    365 #define SOFTINT7	(0x1<<7)
    366 #define SOFTINT8	(0x1<<8)
    367 #define SOFTINT9	(0x1<<9)
    368 #define SOFTINT10	(0x1<<10)
    369 #define SOFTINT11	(0x1<<11)
    370 #define SOFTINT12	(0x1<<12)
    371 #define SOFTINT13	(0x1<<13)
    372 #define SOFTINT14	(0x1<<14)
    373 #define SOFTINT15	(0x1<<15)
    374 
    375 /* Interrupt Dispatch -- usually reserved for cross-calls */
    376 #define ASR_IDSR	0x48 /* Interrupt dispatch status reg */
    377 #define IDSR		0x00
    378 #define IDSR_NACK	0x02
    379 #define IDSR_BUSY	0x01
    380 
    381 #define ASI_INTERRUPT_DISPATCH		0x77	/* [4u] spitfire interrupt dispatch regs */
    382 #define IDCR(x)		(((x)<<14)&0x70)	/* Store anything to this address to dispatch crosscall to CPU (x) */
    383 #define IDDR_0H		0x40			/* Store data to send in these regs */
    384 #define IDDR_0L		0x48	/* unimplemented */
    385 #define IDDR_1H		0x50
    386 #define IDDR_1L		0x58	/* unimplemented */
    387 #define IDDR_2H		0x60
    388 #define IDDR_2L		0x68	/* unimplemented */
    389 #define IDDR_3H		0x70	/* unimplemented */
    390 #define IDDR_3L		0x78	/* unimplemented */
    391 
    392 /*
    393  * Error registers
    394  */
    395 
    396 /* Since we won't try to fix async errs, we don't care about the bits in the regs */
    397 #define ASI_AFAR	0x4d	/* Asynchronous fault address register */
    398 #define AFAR		0x00
    399 #define ASI_AFSR	0x4c	/* Asynchronous fault status register */
    400 #define AFSR		0x00
    401 
    402 #define ASI_P_EER	0x4b	/* Error enable register */
    403 #define P_EER		0x00
    404 #define P_EER_ISAPEN	0x04	/* Enable fatal on ISAP */
    405 #define P_EER_NCEEN	0x02	/* Enable trap on uncorrectable errs */
    406 #define P_EER_CEEN	0x01	/* Enable trap on correctable errs */
    407 
    408 #define ASI_DATAPATH_READ	0x7f /* Read the regs */
    409 #define ASI_DATAPATH_WRITE	0x77 /* Write to the regs */
    410 #define P_DPER_0	0x00	/* Datapath err reg 0 */
    411 #define P_DPER_1	0x18	/* Datapath err reg 1 */
    412 #define P_DCR_0		0x20	/* Datapath control reg 0 */
    413 #define P_DCR_1		0x38	/* Datapath control reg 0 */
    414 
    415 
    416 /* From sparc64/asm.h which I think I'll deprecate since it makes bus.h a pain. */
    417 
    418 /*
    419  * GCC __asm constructs for doing assembly stuff.
    420  */
    421 
    422 /*
    423  * ``Routines'' to load and store from/to alternate address space.
    424  * The location can be a variable, the asi value (address space indicator)
    425  * must be a constant.
    426  *
    427  * N.B.: You can put as many special functions here as you like, since
    428  * they cost no kernel space or time if they are not used.
    429  *
    430  * These were static inline functions, but gcc screws up the constraints
    431  * on the address space identifiers (the "n"umeric value part) because
    432  * it inlines too late, so we have to use the funny valued-macro syntax.
    433  */
    434 
    435 /* DCACHE_BUG forces a flush of the D$ line on every ASI load */
    436 #define DCACHE_BUG
    437 
    438 #ifdef __arch64__
    439 /* load byte from alternate address space */
    440 #ifdef DCACHE_BUG
    441 #define	lduba(loc, asi) ({ \
    442 	register unsigned int _lduba_v; \
    443 	if (PHYS_ASI(asi)) { \
    444 		__asm __volatile("wr %2,%%g0,%%asi; " \
    445 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
    446 " lduba [%1]%%asi,%0" : "=&r" (_lduba_v) : \
    447 		"r" ((unsigned long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
    448 	} else { \
    449 		__asm __volatile("wr %2,%%g0,%%asi; lduba [%1]%%asi,%0" : \
    450 		"=r" (_lduba_v) : \
    451 		"r" ((unsigned long)(loc)), "r" (asi)); \
    452 	} \
    453 	_lduba_v; \
    454 })
    455 #else
    456 #define	lduba(loc, asi) ({ \
    457 	register unsigned int _lduba_v; \
    458 	__asm __volatile("wr %2,%%g0,%%asi; lduba [%1]%%asi,%0" : \
    459 		"=r" (_lduba_v) : \
    460 		"r" ((unsigned long)(loc)), "r" (asi)); \
    461 	_lduba_v; \
    462 })
    463 #endif
    464 #else
    465 /* load byte from alternate address space */
    466 #ifdef DCACHE_BUG
    467 #define	lduba(loc, asi) ({ \
    468 	register unsigned int _lduba_v, _loc_hi, _pstate; \
    469 	_loc_hi = (((u_int64_t)loc)>>32); \
    470 	if (PHYS_ASI(asi)) { \
    471 		__asm __volatile("wr %4,%%g0,%%asi; " \
    472 " andn %2,0x1f,%0; stxa %%g0,[%0] %5; rdpr %%pstate,%1; " \
    473 " sllx %3,32,%0; or %0,%2,%0; wrpr %1,8,%%pstate; " \
    474 " membar #Sync; lduba [%0]%%asi,%0; wrpr %1,0,%%pstate" : \
    475 		"=&r" (_lduba_v),  "=&r" (_pstate) : \
    476 		"r" ((unsigned long)(loc)), "r" (_loc_hi), \
    477 		"r" (asi), "n" (ASI_DCACHE_TAG)); \
    478 	} else { \
    479 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; " \
    480 " or %0,%1,%0; lduba [%0]%%asi,%0" : "=&r" (_lduba_v) : \
    481 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    482 	} \
    483 	_lduba_v; \
    484 })
    485 #else
    486 #define	lduba(loc, asi) ({ \
    487 	register unsigned int _lduba_v, _loc_hi, _pstate; \
    488 	_loc_hi = (((u_int64_t)loc)>>32); \
    489 	__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1; sllx %3,32,%0; " \
    490 " wrpr %1,8,%%pstate; or %0,%2,%0; lduba [%0]%%asi,%0; wrpr %1,0,%%pstate" : \
    491 		"=&r" (_lduba_v), "=&r" (_pstate) : \
    492 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    493 	_lduba_v; \
    494 })
    495 #endif
    496 #endif
    497 
    498 #ifdef __arch64__
    499 /* load half-word from alternate address space */
    500 #ifdef DCACHE_BUG
    501 #define	lduha(loc, asi) ({ \
    502 	register unsigned int _lduha_v; \
    503 	if (PHYS_ASI(asi)) { \
    504 		__asm __volatile("wr %2,%%g0,%%asi; " \
    505 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
    506 " lduha [%1]%%asi,%0" : "=&r" (_lduha_v) : \
    507 		"r" ((unsigned long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
    508 	} else { \
    509 		__asm __volatile("wr %2,%%g0,%%asi; lduha [%1]%%asi,%0" : "=r" (_lduha_v) : \
    510 		"r" ((unsigned long)(loc)), "r" (asi)); \
    511 	} \
    512 	_lduha_v; \
    513 })
    514 #else
    515 #define	lduha(loc, asi) ({ \
    516 	register unsigned int _lduha_v; \
    517 	__asm __volatile("wr %2,%%g0,%%asi; lduha [%1]%%asi,%0" : "=r" (_lduha_v) : \
    518 	    "r" ((unsigned long)(loc)), "r" (asi)); \
    519 	_lduha_v; \
    520 })
    521 #endif
    522 #else
    523 /* load half-word from alternate address space */
    524 #ifdef DCACHE_BUG
    525 #define	lduha(loc, asi) ({ \
    526 	register unsigned int _lduha_v, _loc_hi, _pstate; \
    527 	_loc_hi = (((u_int64_t)loc)>>32); \
    528 	if (PHYS_ASI(asi)) { \
    529 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1; " \
    530 " andn %2,0x1f,%0; stxa %%g0,[%0] %5; wrpr %1,8,%%pstate; sllx %3,32,%0; " \
    531 " or %0,%2,%0; membar #Sync; lduha [%0]%%asi,%0; wrpr %1,0,%%pstate" : \
    532 		"=&r" (_lduha_v), "=&r" (_pstate) : \
    533 		"r" ((unsigned long)(loc)), "r" (_loc_hi), \
    534 		"r" (asi), "n" (ASI_DCACHE_TAG)); \
    535 	} else { \
    536 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; " \
    537 " or %0,%1,%0; lduha [%0]%%asi,%0" : "=&r" (_lduha_v) : \
    538 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    539 	} \
    540 	_lduha_v; \
    541 })
    542 #else
    543 #define	lduha(loc, asi) ({ \
    544 	register unsigned int _lduha_v, _loc_hi, _pstate; \
    545 	_loc_hi = (((u_int64_t)loc)>>32); \
    546 	__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; rdpr %%pstate,%1; " \
    547 " or %0,%2,%0; wrpr %1,8,%%pstate; lduha [%0]%%asi,%0; wrpr %1,0,%%pstate" : \
    548 		"=&r" (_lduha_v), "=&r" (_pstate) : \
    549 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    550 	_lduha_v; \
    551 })
    552 #endif
    553 #endif
    554 
    555 #ifdef __arch64__
    556 /* load unsigned int from alternate address space */
    557 #ifdef DCACHE_BUG
    558 #define	lda(loc, asi) ({ \
    559 	register int _lda_v; \
    560 	if (PHYS_ASI(asi)) { \
    561 		__asm __volatile("wr %2,%%g0,%%asi; " \
    562 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
    563 " lda [%1]%%asi,%0" : "=&r" (_lda_v) : \
    564 		"r" ((unsigned long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
    565 	} else { \
    566 		__asm __volatile("wr %2,%%g0,%%asi; lda [%1]%%asi,%0" : "=r" (_lda_v) : \
    567 		"r" ((unsigned long)(loc)), "r" (asi)); \
    568 	} \
    569 	_lda_v; \
    570 })
    571 
    572 /* load signed int from alternate address space */
    573 #define	ldswa(loc, asi) ({ \
    574 	register int _lda_v; \
    575 	if (PHYS_ASI(asi)) { \
    576 		__asm __volatile("wr %2,%%g0,%%asi; " \
    577 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
    578 " ldswa [%1]%%asi,%0" : "=&r" (_lda_v) : \
    579 		"r" ((unsigned long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
    580 	} else { \
    581 		__asm __volatile("wr %2,%%g0,%%asi; ldswa [%1]%%asi,%0" : "=r" (_lda_v) : \
    582 		"r" ((unsigned long)(loc)), "r" (asi)); \
    583 	} \
    584 	_lda_v; \
    585 })
    586 #else
    587 #define	lda(loc, asi) ({ \
    588 	register int _lda_v; \
    589 	__asm __volatile("wr %2,%%g0,%%asi; lda [%1]%%asi,%0" : "=r" (_lda_v) : \
    590 	    "r" ((unsigned long)(loc)), "r" (asi)); \
    591 	_lda_v; \
    592 })
    593 
    594 #define	ldswa(loc, asi) ({ \
    595 	register int _lda_v; \
    596 	__asm __volatile("wr %2,%%g0,%%asi; ldswa [%1]%%asi,%0" : "=r" (_lda_v) : \
    597 	    "r" ((unsigned long)(loc)), "r" (asi)); \
    598 	_lda_v; \
    599 })
    600 #endif
    601 #else	/* __arch64__ */
    602 /* load unsigned int from alternate address space */
    603 #ifdef DCACHE_BUG
    604 #define	lda(loc, asi) ({ \
    605 	register int _lda_v, _loc_hi, _pstate; \
    606 	_loc_hi = (((u_int64_t)loc)>>32); \
    607 	if (PHYS_ASI(asi)) { \
    608 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;" \
    609 " andn %2,0x1f,%0; stxa %%g0,[%0] %5; wrpr %1,8,%%pstate; " \
    610 " sllx %3,32,%0; or %0,%2,%0; membar #Sync;lda [%0]%%asi,%0; " \
    611 " wrpr %1,0,%%pstate" : "=&r" (_lda_v), "=&r" (_pstate) : \
    612 		"r" ((unsigned long)(loc)), "r" (_loc_hi), \
    613 		"r" (asi), "n" (ASI_DCACHE_TAG)); \
    614 	} else { \
    615 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; " \
    616 " or %0,%1,%0; lda [%0]%%asi,%0" : "=&r" (_lda_v) : \
    617 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    618 	} \
    619 	_lda_v; \
    620 })
    621 
    622 /* load signed int from alternate address space */
    623 #define	ldswa(loc, asi) ({ \
    624 	register int _lda_v, _loc_hi, _pstate; \
    625 	_loc_hi = (((u_int64_t)loc)>>32); \
    626 	if (PHYS_ASI(asi)) { \
    627 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;" \
    628 " andn %2,0x1f,%0; stxa %%g0,[%0] %5; wrpr %1,8,%%pstate; sllx %3,32,%0;" \
    629 " or %0,%2,%0; membar #Sync; ldswa [%0]%%asi,%0; wrpr %1,0,%%pstate" : \
    630 		"=&r" (_lda_v), "=&r" (_pstate) : \
    631 		"r" ((unsigned long)(loc)), "r" (_loc_hi), \
    632 		"r" (asi), "n" (ASI_DCACHE_TAG)); \
    633 	} else { \
    634 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; " \
    635 " or %0,%1,%0; ldswa [%0]%%asi,%0" : "=&r" (_lda_v) : \
    636 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    637 	} \
    638 	_lda_v; \
    639 })
    640 #else
    641 #define	lda(loc, asi) ({ \
    642 	register int _lda_v, _loc_hi, _pstate; \
    643 	_loc_hi = (((u_int64_t)loc)>>32); \
    644 	__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; rdpr %%pstate,%1;" \
    645 " wrpr %1,8,%%pstate; or %0,%2,%0; lda [%0]%%asi,%0; wrpr %1,0,%%pstate" : \
    646 		"=&r" (_lda_v), "=&r" (_pstate) : \
    647 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    648 	_lda_v; \
    649 })
    650 
    651 #define	ldswa(loc, asi) ({ \
    652 	register int _lda_v, _loc_hi, _pstate;; \
    653 	_loc_hi = (((u_int64_t)loc)>>32); \
    654 	__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; rdpr %%pstate,%1;" \
    655 " wrpr %1,8,%%pstate; or %0,%2,%0; ldswa [%0]%%asi,%0; wrpr %1,0,%pstate" : \
    656 		"=&r" (_lda_v), "=&r" (_pstate) : \
    657 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    658 	_lda_v; \
    659 })
    660 #endif
    661 #endif /* __arch64__ */
    662 
    663 #ifdef DCACHE_BUG
    664 
    665 #ifdef	__arch64__
    666 /* load 64-bit int from alternate address space */
    667 #define	ldda(loc, asi) ({ \
    668 	register long long _lda_v; \
    669 	if (PHYS_ASI(asi)) { \
    670 		__asm __volatile("wr %2,%%g0,%%asi; " \
    671 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
    672 " ldda [%1]%%asi,%0" : "=&r" (_lda_v) : \
    673 		"r" ((unsigned long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
    674 	} else { \
    675 		__asm __volatile("wr %2,%%g0,%%asi; ldda [%1]%%asi,%0" : "=r" (_lda_v) : \
    676 		"r" ((unsigned long)(loc)), "r" (asi)); \
    677 	} \
    678 	_lda_v; \
    679 })
    680 #else
    681 /* load 64-bit int from alternate address space */
    682 #define	ldda(loc, asi) ({ \
    683 	register long long _lda_v, _loc_hi, _pstate; \
    684 	_loc_hi = (((u_int64_t)loc)>>32); \
    685 	if (PHYS_ASI(asi)) { \
    686 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;" \
    687 " andn %2,0x1f,%0; rdpr %%pstate,%1; stxa %%g0,[%0] %5; wrpr %1,8,%%pstate;" \
    688 " sllx %3,32,%0; or %0,%2,%0; membar #Sync; ldda [%0]%%asi,%0; wrpr %1,0,%%pstate" :\
    689 		 "=&r" (_lda_v), "=&r" (_pstate) : \
    690 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi), "n" (ASI_DCACHE_TAG)); \
    691 	} else { \
    692 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; " \
    693 " or %0,%1,%0; ldda [%0]%%asi,%0" : "=&r" (_lda_v) : \
    694 			"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    695 	} \
    696 	_lda_v; \
    697 })
    698 #endif
    699 
    700 #ifdef __arch64__
    701 /* native load 64-bit int from alternate address space w/64-bit compiler*/
    702 #define	ldxa(loc, asi) ({ \
    703 	register unsigned long _lda_v; \
    704 	if (PHYS_ASI(asi)) { \
    705 		__asm __volatile("wr %2,%%g0,%%asi; "\
    706 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
    707 " ldxa [%1]%%asi,%0" : "=&r" (_lda_v) : \
    708 		"r" ((unsigned long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
    709 	} else { \
    710 		__asm __volatile("wr %2,%%g0,%%asi; ldxa [%1]%%asi,%0" : "=r" (_lda_v) : \
    711 		"r" ((unsigned long)(loc)), "r" (asi)); \
    712 	} \
    713 	_lda_v; \
    714 })
    715 #else
    716 /* native load 64-bit int from alternate address space w/32-bit compiler*/
    717 #define	ldxa(loc, asi) ({ \
    718 	register unsigned long _ldxa_lo, _ldxa_hi, _loc_hi; \
    719 	_loc_hi = (((u_int64_t)loc)>>32); \
    720 	if (PHYS_ASI(asi)) { \
    721 		__asm __volatile("wr %4,%%g0,%%asi; " \
    722 " andn %2,0x1f,%0; rdpr %%pstate,%1; stxa %%g0,[%0] %5; " \
    723 " sllx %3,32,%0; wrpr %1,8,%%pstate; or %0,%2,%0; membar #Sync; ldxa [%0]%%asi,%0; " \
    724 " wrpr %1,0,%%pstate; srlx %0,32,%1; srl %0,0,%0" : \
    725 		"=&r" (_ldxa_lo), "=&r" (_ldxa_hi) : \
    726 		"r" ((unsigned long)(loc)), "r" (_loc_hi), \
    727 		"r" (asi), "n" (ASI_DCACHE_TAG)); \
    728 	} else { \
    729 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; " \
    730 " or %0,%2,%0; ldxa [%0]%%asi,%0; srlx %0,32,%1; srl %0,0,%0;" : \
    731 		"=&r" (_ldxa_lo), "=&r" (_ldxa_hi) : \
    732 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    733 	} \
    734 	((((int64_t)_ldxa_hi)<<32)|_ldxa_lo); \
    735 })
    736 #endif
    737 
    738 #else
    739 
    740 #ifdef __arch64__
    741 /* load 64-bit int from alternate address space */
    742 #define	ldda(loc, asi) ({ \
    743 	register long long _lda_v; \
    744 	__asm __volatile("wr %2,%%g0,%%asi; ldda [%1]%%asi,%0" : "=r" (_lda_v) : \
    745 	    "r" ((unsigned long)(loc)), "r" (asi)); \
    746 	_lda_v; \
    747 })
    748 #else
    749 #define	ldda(loc, asi) ({ \
    750 	register long long _lda_v, _loc_hi, _pstate; \
    751 	_loc_hi = (((u_int64_t)loc)>>32); \
    752 	__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; rdpr %%pstate,%1;" \
    753 " or %0,%2,%0; wrpr %1,8,%%pstate; ldda [%0]%%asi,%0; wrpr %1,0,%%pstate" : \
    754 		"=&r" (_lda_v), "=&r" (_pstate) : \
    755 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    756 	_lda_v; \
    757 })
    758 #endif
    759 
    760 #ifdef __arch64__
    761 /* native load 64-bit int from alternate address space w/64-bit compiler*/
    762 #define	ldxa(loc, asi) ({ \
    763 	register long _lda_v; \
    764 	__asm __volatile("wr %2,%%g0,%%asi; ldxa [%1]%%asi,%0" : "=r" (_lda_v) : \
    765 	    "r" ((unsigned long)(loc)), "r" (asi)); \
    766 	_lda_v; \
    767 })
    768 #else
    769 /* native load 64-bit int from alternate address space w/32-bit compiler*/
    770 #define	ldxa(loc, asi) ({ \
    771 	register unsigned long _ldxa_lo, _ldxa_hi, _loc_hi; \
    772 	_loc_hi = (((u_int64_t)loc)>>32); \
    773 	if (PHYS_ASI(asi)) { \
    774 		__asm __volatile("wr %4,%%g0,%%asi; sllx %2,32,%0; rdpr %%pstate,%1;" \
    775 " or %0,%1,%0; wrpr %1,8,%%pstate; ldxa [%0]%%asi,%0; wrpr %1,0,%%pstate;" \
    776 " srlx %0,32,%1; srl %0,0,%0;" : \
    777 	    "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) : \
    778 	    "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    779 	} else { \
    780 		__asm __volatile("wr %4,%%g0,%%asi; sllx %2,32,%0; " \
    781 " or %0,%1,%0; ldxa [%2]%%asi,%0; srlx %0,32,%1; srl %0,0,%0;" : \
    782 	    "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) : \
    783 	    "r" ((long)(loc)), "r" (_loc_hi), "r" (asi)); \
    784 	} \
    785 	((((int64_t)_ldxa_hi)<<32)|_ldxa_lo); \
    786 })
    787 #endif
    788 #endif
    789 
    790 
    791 /* store byte to alternate address space */
    792 #ifdef __arch64__
    793 #define	stba(loc, asi, value) ({ \
    794 	__asm __volatile("wr %2,%%g0,%%asi; stba %0,[%1]%%asi" : : \
    795 	    "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (asi)); \
    796 })
    797 #else
    798 #define	stba(loc, asi, value) ({ \
    799 	register int _loc_hi, _pstate; \
    800 	_loc_hi = (((u_int64_t)loc)>>32); \
    801 	if (PHYS_ASI(asi)) { \
    802 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; rdpr %%pstate,%1;" \
    803 " or %3,%0,%0; wrpr %1,8,%%pstate; stba %2,[%0]%%asi; wrpr %1,0,%%pstate" : \
    804 		"=&r" (_loc_hi), "=&r" (_pstate) : \
    805 		"r" ((int)(value)), "r" ((unsigned long)(loc)), \
    806 		"r" (_loc_hi), "r" (asi)); \
    807 	} else { \
    808 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; " \
    809 " or %2,%0,%0; stba %1,[%0]%%asi" : "=&r" (_loc_hi) : \
    810 		"r" ((int)(value)), "r" ((unsigned long)(loc)), \
    811 		"r" (_loc_hi), "r" (asi)); \
    812 	} \
    813 })
    814 #endif
    815 
    816 /* store half-word to alternate address space */
    817 #ifdef __arch64__
    818 #define	stha(loc, asi, value) ({ \
    819 	__asm __volatile("wr %2,%%g0,%%asi; stha %0,[%1]%%asi" : : \
    820 	    "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (asi)); \
    821 })
    822 #else
    823 #define	stha(loc, asi, value) ({ \
    824 	register int _loc_hi, _pstate; \
    825 	_loc_hi = (((u_int64_t)loc)>>32); \
    826 	if (PHYS_ASI(asi)) { \
    827 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; rdpr %%pstate,%1;" \
    828 " or %3,%0,%0; wrpr %1,8,%%pstate; stha %2,[%0]%%asi; wrpr %1,0,%%pstate" : \
    829 		"=&r" (_loc_hi), "=&r" (_pstate) : \
    830 		"r" ((int)(value)), "r" ((unsigned long)(loc)), \
    831 		"r" (_loc_hi), "r" (asi)); \
    832 	} else { \
    833 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; " \
    834 " or %2,%0,%0; stha %1,[%0]%%asi" : "=&r" (_loc_hi) : \
    835 	    "r" ((int)(value)), "r" ((unsigned long)(loc)), \
    836 		"r" (_loc_hi), "r" (asi)); \
    837 	} \
    838 })
    839 #endif
    840 
    841 /* store int to alternate address space */
    842 #ifdef __arch64__
    843 #define	sta(loc, asi, value) ({ \
    844 	__asm __volatile("wr %2,%%g0,%%asi; sta %0,[%1]%%asi" : : \
    845 	    "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (asi)); \
    846 })
    847 #else
    848 #define	sta(loc, asi, value) ({ \
    849 	register int _loc_hi, _pstate; \
    850 	_loc_hi = (((u_int64_t)loc)>>32); \
    851 	if (PHYS_ASI(asi)) { \
    852 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; rdpr %%pstate,%1;" \
    853 " or %3,%0,%0; wrpr %1,8,%%pstate; sta %2,[%0]%%asi; wrpr %1,0,%%pstate" : \
    854 		"=&r" (_loc_hi), "=&r" (_pstate) : \
    855 		"r" ((int)(value)), "r" ((unsigned long)(loc)), \
    856 		"r" (_loc_hi), "r" (asi)); \
    857 	} else { \
    858 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; " \
    859 " or %2,%0,%0; sta %1,[%0]%%asi" : "=&r" (_loc_hi) : \
    860 		"r" ((int)(value)), "r" ((unsigned long)(loc)), \
    861 		"r" (_loc_hi), "r" (asi)); \
    862 	} \
    863 })
    864 #endif
    865 
    866 /* store 64-bit int to alternate address space */
    867 #ifdef __arch64__
    868 #define	stda(loc, asi, value) ({ \
    869 	__asm __volatile("wr %2,%%g0,%%asi; stda %0,[%1]%%asi" : : \
    870 	    "r" ((long long)(value)), "r" ((unsigned long)(loc)), "r" (asi)); \
    871 })
    872 #else
    873 #define	stda(loc, asi, value) ({ \
    874 	register int _loc_hi, _pstate; \
    875 	_loc_hi = (((u_int64_t)loc)>>32); \
    876 	if (PHYS_ASI(asi)) { \
    877 	__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; rdpr %%pstate,%1; " \
    878 " or %3,%0,%0; wrpr %1,8,%%pstate; stda %2,[%0]%%asi; wrpr %1,0,%%pstate" : \
    879 		"=&r" (_loc_hi), "=&r" (_pstate) : \
    880 		"r" ((long long)(value)), "r" ((unsigned long)(loc)), \
    881 		"r" (_loc_hi), "r" (asi)); \
    882 	} else { \
    883 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; " \
    884 " or %2,%0,%0; stda %1,[%0]%%asi" : "=&r" (_loc_hi) : \
    885 		"r" ((long long)(value)), "r" ((unsigned long)(loc)), \
    886 		"r" (_loc_hi), "r" (asi)); \
    887 	} \
    888 })
    889 #endif
    890 
    891 #ifdef __arch64__
    892 /* native store 64-bit int to alternate address space w/64-bit compiler*/
    893 #define	stxa(loc, asi, value) ({ \
    894 	__asm __volatile("wr %2,%%g0,%%asi; stxa %0,[%1]%%asi" : : \
    895 	    "r" ((unsigned long)(value)), "r" ((unsigned long)(loc)), "r" (asi)); \
    896 })
    897 #else
    898 /* native store 64-bit int to alternate address space w/32-bit compiler*/
    899 #define	stxa(loc, asi, value) ({ \
    900 	int _stxa_lo, _stxa_hi, _loc_hi; \
    901 	_stxa_lo = value; _stxa_hi = ((u_int64_t)value)>>32; \
    902 	_loc_hi = (((u_int64_t)(u_long)loc)>>32); \
    903 	if (PHYS_ASI(asi)) { \
    904 		__asm __volatile("wr %7,%%g0,%%asi; sllx %4,32,%1; sllx %6,32,%0; " \
    905 " or %1,%3,%1; rdpr %%pstate,%3; or %0,%5,%0; wrpr %3,8,%%pstate; " \
    906 " stxa %1,[%0]%%asi; wrpr %3,0,%%pstate" : \
    907 		"=&r" (_loc_hi), "=&r" (_stxa_hi), "=&r" ((int)(_stxa_lo)): \
    908 		"r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)), \
    909 		"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    910 	} else { \
    911 	__asm __volatile("wr %6,%%g0,%%asi; sllx %3,32,%1; sllx %5,32,%0; " \
    912 " or %1,%2,%1; or %0,%4,%0; stxa %1,[%0]%%asi" : \
    913 	    "=&r" (_loc_hi), "=&r" (_stxa_hi) : \
    914 	    "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)), \
    915 	    "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)); \
    916 	} \
    917 })
    918 #endif
    919 
    920 /* flush address from data cache */
    921 #define flush(loc) ({ \
    922 	__asm __volatile("flush %0" : : \
    923 	     "r" ((unsigned long)(loc))); \
    924 })
    925 
    926 /* Flush a D$ line */
    927 #if 0
    928 #define flushline(loc) ({ \
    929 	stxa(((paddr_t)loc)&(~0x1f), (ASI_DCACHE_TAG), 0); \
    930         membar_sync(); \
    931 })
    932 #else
    933 #define flushline(loc)
    934 #endif
    935 
    936 /* The following two enable or disable the dcache in the LSU control register */
    937 #define dcenable() ({ \
    938 	int res; \
    939 	__asm __volatile("ldxa [%%g0] %1,%0; or %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
    940 		: "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
    941 })
    942 #define dcdisable() ({ \
    943 	int res; \
    944 	__asm __volatile("ldxa [%%g0] %1,%0; andn %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
    945 		: "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
    946 })
    947 
    948 /*
    949  * SPARC V9 memory barrier instructions.
    950  */
    951 /* Make all stores complete before next store */
    952 #define membar_storestore() __asm __volatile("membar #StoreStore" : :)
    953 /* Make all loads complete before next store */
    954 #define membar_loadstore() __asm __volatile("membar #LoadStore" : :)
    955 /* Make all stores complete before next load */
    956 #define membar_storeload() __asm __volatile("membar #StoreLoad" : :)
    957 /* Make all loads complete before next load */
    958 #define membar_loadload() __asm __volatile("membar #LoadLoad" : :)
    959 /* Complete all outstanding memory operations and exceptions */
    960 #define membar_sync() __asm __volatile("membar #Sync" : :)
    961 /* Complete all outstanding memory operations */
    962 #define membar_memissue() __asm __volatile("membar #MemIssue" : :)
    963 /* Complete all outstanding stores before any new loads */
    964 #define membar_lookaside() __asm __volatile("membar #Lookaside" : :)
    965 
    966 #ifdef __arch64__
    967 /* read 64-bit %tick register */
    968 #define	tick() ({ \
    969 	register u_long _tick_tmp; \
    970 	__asm __volatile("rdpr %%tick, %0" : "=r" (_tick_tmp) :); \
    971 	_tick_tmp; \
    972 })
    973 #else
    974 /* read 64-bit %tick register on 32-bit system */
    975 #define	tick() ({ \
    976 	register int _tick_hi = 0, _tick_lo = 0; \
    977 	__asm __volatile("rdpr %%tick, %1; srlx %0,32,%2; srl %0,0,%0 " \
    978 		: "=r" (_tick_hi), "=r" (_tick_lo) : ); \
    979 	(((u_int64_t)_tick_hi)<<32)|((u_int64_t)_tick_lo); \
    980 })
    981 #endif
    982 
    983 #ifndef _LOCORE
    984 extern void next_tick __P((long));
    985 #endif
    986