ctlreg.h revision 1.29 1 /* $NetBSD: ctlreg.h,v 1.29 2002/01/14 20:44:30 eeh Exp $ */
2
3 /*
4 * Copyright (c) 1996-2001 Eduardo Horvath
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
13 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
16 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
17 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
19 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
21 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
22 * SUCH DAMAGE.
23 *
24 */
25
26 /*
27 * Sun 4u control registers. (includes address space definitions
28 * and some registers in control space).
29 */
30
31 /*
32 * The Alternate address spaces.
33 *
34 * 0x00-0x7f are privileged
35 * 0x80-0xff can be used by users
36 */
37
38 #define ASI_LITTLE 0x08 /* This bit should make an ASI little endian */
39
40 #define ASI_NUCLEUS 0x04 /* [4u] kernel address space */
41 #define ASI_NUCLEUS_LITTLE 0x0c /* [4u] kernel address space, little endian */
42
43 #define ASI_AS_IF_USER_PRIMARY 0x10 /* [4u] primary user address space */
44 #define ASI_AS_IF_USER_SECONDARY 0x11 /* [4u] secondary user address space */
45
46 #define ASI_PHYS_CACHED 0x14 /* [4u] MMU bypass to main memory */
47 #define ASI_PHYS_NON_CACHED 0x15 /* [4u] MMU bypass to I/O location */
48
49 #define ASI_AS_IF_USER_PRIMARY_LITTLE 0x18 /* [4u] primary user address space, little endian */
50 #define ASI_AS_IF_USER_SECONDARY_LITTIE 0x19 /* [4u] secondary user address space, little endian */
51
52 #define ASI_PHYS_CACHED_LITTLE 0x1c /* [4u] MMU bypass to main memory, little endian */
53 #define ASI_PHYS_NON_CACHED_LITTLE 0x1d /* [4u] MMU bypass to I/O location, little endian */
54
55 #define ASI_NUCLEUS_QUAD_LDD 0x24 /* [4u] use w/LDDA to load 128-bit item */
56 #define ASI_NUCLEUS_QUAD_LDD_LITTLE 0x2c /* [4u] use w/LDDA to load 128-bit item, little endian */
57
58 #define ASI_FLUSH_D_PAGE_PRIMARY 0x38 /* [4u] flush D-cache page using primary context */
59 #define ASI_FLUSH_D_PAGE_SECONDARY 0x39 /* [4u] flush D-cache page using secondary context */
60 #define ASI_FLUSH_D_CTX_PRIMARY 0x3a /* [4u] flush D-cache context using primary context */
61 #define ASI_FLUSH_D_CTX_SECONDARY 0x3b /* [4u] flush D-cache context using secondary context */
62
63 #define ASI_LSU_CONTROL_REGISTER 0x45 /* [4u] load/store unit control register */
64
65 #define ASI_DCACHE_DATA 0x46 /* [4u] diagnostic access to D-cache data RAM */
66 #define ASI_DCACHE_TAG 0x47 /* [4u] diagnostic access to D-cache tag RAM */
67
68 #define ASI_INTR_DISPATCH_STATUS 0x48 /* [4u] interrupt dispatch status register */
69 #define ASI_INTR_RECEIVE 0x49 /* [4u] interrupt receive status register */
70 #define ASI_MID_REG 0x4a /* [4u] hardware config and MID */
71 #define ASI_ERROR_EN_REG 0x4b /* [4u] asynchronous error enables */
72 #define ASI_AFSR 0x4c /* [4u] asynchronous fault status register */
73 #define ASI_AFAR 0x4d /* [4u] asynchronous fault address register */
74
75 #define ASI_ICACHE_DATA 0x66 /* [4u] diagnostic access to D-cache data RAM */
76 #define ASI_ICACHE_TAG 0x67 /* [4u] diagnostic access to D-cache tag RAM */
77 #define ASI_FLUSH_I_PAGE_PRIMARY 0x68 /* [4u] flush D-cache page using primary context */
78 #define ASI_FLUSH_I_PAGE_SECONDARY 0x69 /* [4u] flush D-cache page using secondary context */
79 #define ASI_FLUSH_I_CTX_PRIMARY 0x6a /* [4u] flush D-cache context using primary context */
80 #define ASI_FLUSH_I_CTX_SECONDARY 0x6b /* [4u] flush D-cache context using secondary context */
81
82 #define ASI_BLOCK_AS_IF_USER_PRIMARY 0x70 /* [4u] primary user address space, block loads/stores */
83 #define ASI_BLOCK_AS_IF_USER_SECONDARY 0x71 /* [4u] secondary user address space, block loads/stores */
84
85 #define ASI_ECACHE_DIAG 0x76 /* [4u] diag access to E-cache tag and data */
86 #define ASI_DATAPATH_ERR_REG_WRITE 0x77 /* [4u] ASI is reused */
87
88 #define ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE 0x78 /* [4u] primary user address space, block loads/stores */
89 #define ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE 0x79 /* [4u] secondary user address space, block loads/stores */
90
91 #define ASI_INTERRUPT_RECEIVE_DATA 0x7f /* [4u] interrupt receive data registers {0,1,2} */
92 #define ASI_DATAPATH_ERR_REG_READ 0x7f /* [4u] read access to datapath error registers (ASI reused) */
93
94 #define ASI_PRIMARY 0x80 /* [4u] primary address space */
95 #define ASI_SECONDARY 0x81 /* [4u] secondary address space */
96 #define ASI_PRIMARY_NOFAULT 0x82 /* [4u] primary address space, no fault */
97 #define ASI_SECONDARY_NOFAULT 0x83 /* [4u] secondary address space, no fault */
98
99 #define ASI_PRIMARY_LITTLE 0x88 /* [4u] primary address space, little endian */
100 #define ASI_SECONDARY_LITTLE 0x89 /* [4u] secondary address space, little endian */
101 #define ASI_PRIMARY_NOFAULT_LITTLE 0x8a /* [4u] primary address space, no fault, little endian */
102 #define ASI_SECONDARY_NOFAULT_LITTLE 0x8b /* [4u] secondary address space, no fault, little endian */
103
104 #define ASI_PST8_PRIMARY 0xc0 /* [VIS] Eight 8-bit partial store, primary */
105 #define ASI_PST8_SECONDARY 0xc1 /* [VIS] Eight 8-bit partial store, secondary */
106 #define ASI_PST16_PRIMARY 0xc2 /* [VIS] Four 16-bit partial store, primary */
107 #define ASI_PST16_SECONDARY 0xc3 /* [VIS] Fout 16-bit partial store, secondary */
108 #define ASI_PST32_PRIMARY 0xc4 /* [VIS] Two 32-bit partial store, primary */
109 #define ASI_PST32_SECONDARY 0xc5 /* [VIS] Two 32-bit partial store, secondary */
110
111 #define ASI_PST8_PRIMARY_LITTLE 0xc8 /* [VIS] Eight 8-bit partial store, primary, little endian */
112 #define ASI_PST8_SECONDARY_LITTLE 0xc9 /* [VIS] Eight 8-bit partial store, secondary, little endian */
113 #define ASI_PST16_PRIMARY_LITTLE 0xca /* [VIS] Four 16-bit partial store, primary, little endian */
114 #define ASI_PST16_SECONDARY_LITTLE 0xcb /* [VIS] Fout 16-bit partial store, secondary, little endian */
115 #define ASI_PST32_PRIMARY_LITTLE 0xcc /* [VIS] Two 32-bit partial store, primary, little endian */
116 #define ASI_PST32_SECONDARY_LITTLE 0xcd /* [VIS] Two 32-bit partial store, secondary, little endian */
117
118 #define ASI_FL8_PRIMARY 0xd0 /* [VIS] One 8-bit load/store floating, primary */
119 #define ASI_FL8_SECONDARY 0xd1 /* [VIS] One 8-bit load/store floating, secondary */
120 #define ASI_FL16_PRIMARY 0xd2 /* [VIS] One 16-bit load/store floating, primary */
121 #define ASI_FL16_SECONDARY 0xd3 /* [VIS] One 16-bit load/store floating, secondary */
122
123 #define ASI_FL8_PRIMARY_LITTLE 0xd8 /* [VIS] One 8-bit load/store floating, primary, little endian */
124 #define ASI_FL8_SECONDARY_LITTLE 0xd9 /* [VIS] One 8-bit load/store floating, secondary, little endian */
125 #define ASI_FL16_PRIMARY_LITTLE 0xda /* [VIS] One 16-bit load/store floating, primary, little endian */
126 #define ASI_FL16_SECONDARY_LITTLE 0xdb /* [VIS] One 16-bit load/store floating, secondary, little endian */
127
128 #define ASI_BLOCK_COMMIT_PRIMARY 0xe0 /* [4u] block store with commit, primary */
129 #define ASI_BLOCK_COMMIT_SECONDARY 0xe1 /* [4u] block store with commit, secondary */
130 #define ASI_BLOCK_PRIMARY 0xf0 /* [4u] block load/store, primary */
131 #define ASI_BLOCK_SECONDARY 0xf1 /* [4u] block load/store, secondary */
132 #define ASI_BLOCK_PRIMARY_LITTLE 0xf8 /* [4u] block load/store, primary, little endian */
133 #define ASI_BLOCK_SECONDARY_LITTLE 0xf9 /* [4u] block load/store, secondary, little endian */
134
135
136 /*
137 * These are the shorter names used by Solaris
138 */
139
140 #define ASI_N ASI_NUCLEUS
141 #define ASI_NL ASI_NUCLEUS_LITTLE
142 #define ASI_AIUP ASI_AS_IF_USER_PRIMARY
143 #define ASI_AIUS ASI_AS_IF_USER_SECONDARY
144 #define ASI_AIUPL ASI_AS_IF_USER_PRIMARY_LITTLE
145 #define ASI_AIUSL ASI_AS_IF_USER_SECONDARY_LITTLE
146 #define ASI_P ASI_PRIMARY
147 #define ASI_S ASI_SECONDARY
148 #define ASI_PNF ASI_PRIMARY_NOFAULT
149 #define ASI_SNF ASI_SECONDARY_NOFAULT
150 #define ASI_PL ASI_PRIMARY_LITTLE
151 #define ASI_SL ASI_SECONDARY_LITTLE
152 #define ASI_PNFL ASI_PRIMARY_NOFAULT_LITTLE
153 #define ASI_SNFL ASI_SECONDARY_NOFAULT_LITTLE
154 #define ASI_FL8_P ASI_FL8_PRIMARY
155 #define ASI_FL8_S ASI_FL8_SECONDARY
156 #define ASI_FL16_P ASI_FL16_PRIMARY
157 #define ASI_FL16_S ASI_FL16_SECONDARY
158 #define ASI_FL8_PL ASI_FL8_PRIMARY_LITTLE
159 #define ASI_FL8_SL ASI_FL8_SECONDARY_LITTLE
160 #define ASI_FL16_PL ASI_FL16_PRIMARY_LITTLE
161 #define ASI_FL16_SL ASI_FL16_SECONDARY_LITTLE
162 #define ASI_BLK_AIUP ASI_BLOCK_AS_IF_USER_PRIMARY
163 #define ASI_BLK_AIUPL ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
164 #define ASI_BLK_AIUS ASI_BLOCK_AS_IF_USER_SECONDARY
165 #define ASI_BLK_AIUSL ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
166 #define ASI_BLK_COMMIT_P ASI_BLOCK_COMMIT_PRIMARY
167 #define ASI_BLK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_PRIMARY
168 #define ASI_BLK_COMMIT_S ASI_BLOCK_COMMIT_SECONDARY
169 #define ASI_BLK_COMMIT_SECONDARY ASI_BLOCK_COMMIT_SECONDARY
170 #define ASI_BLK_P ASI_BLOCK_PRIMARY
171 #define ASI_BLK_PL ASI_BLOCK_PRIMARY_LITTLE
172 #define ASI_BLK_S ASI_BLOCK_SECONDARY
173 #define ASI_BLK_SL ASI_BLOCK_SECONDARY_LITTLE
174
175 /* Alternative spellings */
176 #define ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NOFAULT
177 #define ASI_PRIMARY_NO_FAULT_LITTLE ASI_PRIMARY_NOFAULT_LITTLE
178 #define ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NOFAULT
179 #define ASI_SECONDARY_NO_FAULT_LITTLE ASI_SECONDARY_NOFAULT_LITTLE
180
181 #define PHYS_ASI(x) (((x) | 0x09) == 0x1d)
182 #define LITTLE_ASI(x) ((x) & ASI_LITTLE)
183
184 /*
185 * The following are 4u control registers
186 */
187
188
189 /* Get the CPU's UPAID */
190 #define UPA_CR_MID(x) (((x)>>17)&0x1f)
191 #define CPU_UPAID UPA_CR_MID(ldxa(0, ASI_MID_REG))
192
193 /*
194 * [4u] MMU and Cache Control Register (MCCR)
195 * use ASI = 0x45
196 */
197 #define ASI_MCCR ASI_LSU_CONTROL_REGISTER
198 #define MCCR 0x00
199
200 /* MCCR Bits and their meanings */
201 #define MCCR_DMMU_EN 0x08
202 #define MCCR_IMMU_EN 0x04
203 #define MCCR_DCACHE_EN 0x02
204 #define MCCR_ICACHE_EN 0x01
205
206
207 /*
208 * MMU control registers
209 */
210
211 /* Choose an MMU */
212 #define ASI_DMMU 0x58
213 #define ASI_IMMU 0x50
214
215 /* Other assorted MMU ASIs */
216 #define ASI_IMMU_8KPTR 0x51
217 #define ASI_IMMU_64KPTR 0x52
218 #define ASI_IMMU_DATA_IN 0x54
219 #define ASI_IMMU_TLB_DATA 0x55
220 #define ASI_IMMU_TLB_TAG 0x56
221 #define ASI_DMMU_8KPTR 0x59
222 #define ASI_DMMU_64KPTR 0x5a
223 #define ASI_DMMU_DATA_IN 0x5c
224 #define ASI_DMMU_TLB_DATA 0x5d
225 #define ASI_DMMU_TLB_TAG 0x5e
226
227 /*
228 * The following are the control registers
229 * They work on both MMUs unless noted.
230 *
231 * Register contents are defined later on individual registers.
232 */
233 #define TSB_TAG_TARGET 0x0
234 #define TLB_DATA_IN 0x0
235 #define CTX_PRIMARY 0x08 /* primary context -- DMMU only */
236 #define CTX_SECONDARY 0x10 /* secondary context -- DMMU only */
237 #define SFSR 0x18
238 #define SFAR 0x20 /* fault address -- DMMU only */
239 #define TSB 0x28
240 #define TLB_TAG_ACCESS 0x30
241 #define VIRTUAL_WATCHPOINT 0x38
242 #define PHYSICAL_WATCHPOINT 0x40
243
244 /* Tag Target bits */
245 #define TAG_TARGET_VA_MASK 0x03ffffffffffffffffLL
246 #define TAG_TARGET_VA(x) (((x)<<22)&TAG_TARGET_VA_MASK)
247 #define TAG_TARGET_CONTEXT(x) ((x)>>48)
248 #define TAG_TARGET(c,v) ((((uint64_t)c)<<48)|(((uint64_t)v)&TAG_TARGET_VA_MASK))
249
250 /* SFSR bits for both D_SFSR and I_SFSR */
251 #define SFSR_ASI(x) ((x)>>16)
252 #define SFSR_FT_VA_OOR_2 0x02000 /* IMMU: jumpl or return to unsupportd VA */
253 #define SFSR_FT_VA_OOR_1 0x01000 /* fault at unsupported VA */
254 #define SFSR_FT_NFO 0x00800 /* DMMU: Access to page marked NFO */
255 #define SFSR_ILL_ASI 0x00400 /* DMMU: Illegal (unsupported) ASI */
256 #define SFSR_FT_IO_ATOMIC 0x00200 /* DMMU: Atomic access to noncacheable page */
257 #define SFSR_FT_ILL_NF 0x00100 /* DMMU: NF load or flush to page marked E (has side effects) */
258 #define SFSR_FT_PRIV 0x00080 /* Privilege violation */
259 #define SFSR_FT_E 0x00040 /* DMUU: value of E bit associated address */
260 #define SFSR_CTXT(x) (((x)>>4)&0x3)
261 #define SFSR_CTXT_IS_PRIM(x) (SFSR_CTXT(x)==0x00)
262 #define SFSR_CTXT_IS_SECOND(x) (SFSR_CTXT(x)==0x01)
263 #define SFSR_CTXT_IS_NUCLEUS(x) (SFSR_CTXT(x)==0x02)
264 #define SFSR_PRIV 0x00008 /* value of PSTATE.PRIV for faulting access */
265 #define SFSR_W 0x00004 /* DMMU: attempted write */
266 #define SFSR_OW 0x00002 /* Overwrite; prev vault was still valid */
267 #define SFSR_FV 0x00001 /* Fault is valid */
268 #define SFSR_FT (SFSR_FT_VA_OOR_2|SFSR_FT_VA_OOR_1|SFSR_FT_NFO|SFSR_ILL_ASI|SFSR_FT_IO_ATOMIC|SFSR_FT_ILL_NF|SFSR_FT_PRIV)
269
270 #if 0
271 /* Old bits */
272 #define SFSR_BITS "\40\16VAT\15VAD\14NFO\13ASI\12A\11NF\10PRIV\7E\6NUCLEUS\5SECONDCTX\4PRIV\3W\2OW\1FV"
273 #else
274 /* New bits */
275 #define SFSR_BITS "\177\20" \
276 "f\20\30ASI\0" "b\16VAT\0" "b\15VAD\0" "b\14NFO\0" "b\13ASI\0" "b\12A\0" "b\11NF\0" "b\10PRIV\0" \
277 "b\7E\0" "b\6NUCLEUS\0" "b\5SECONDCTX\0" "b\4PRIV\0" "b\3W\0" "b\2OW\0" "b\1FV\0"
278 #endif
279
280 /* ASFR bits */
281 #define ASFR_ME 0x100000000LL
282 #define ASFR_PRIV 0x080000000LL
283 #define ASFR_ISAP 0x040000000LL
284 #define ASFR_ETP 0x020000000LL
285 #define ASFR_IVUE 0x010000000LL
286 #define ASFR_TO 0x008000000LL
287 #define ASFR_BERR 0x004000000LL
288 #define ASFR_LDP 0x002000000LL
289 #define ASFR_CP 0x001000000LL
290 #define ASFR_WP 0x000800000LL
291 #define ASFR_EDP 0x000400000LL
292 #define ASFR_UE 0x000200000LL
293 #define ASFR_CE 0x000100000LL
294 #define ASFR_ETS 0x0000f0000LL
295 #define ASFT_P_SYND 0x00000ffffLL
296
297 #define AFSR_BITS "\177\20" \
298 "b\40ME\0" "b\37PRIV\0" "b\36ISAP\0" "b\35ETP\0" \
299 "b\34IVUE\0" "b\33TO\0" "b\32BERR\0" "b\31LDP\0" \
300 "b\30CP\0" "b\27WP\0" "b\26EDP\0" "b\25UE\0" \
301 "b\24CE\0" "f\20\4ETS\0" "f\0\20P_SYND\0"
302
303 /*
304 * Here's the spitfire TSB control register bits.
305 *
306 * Each TSB entry is 16-bytes wide. The TSB must be size aligned
307 */
308 #define TSB_SIZE_512 0x0 /* 8kB, etc. */
309 #define TSB_SIZE_1K 0x01
310 #define TSB_SIZE_2K 0x02
311 #define TSB_SIZE_4K 0x03
312 #define TSB_SIZE_8K 0x04
313 #define TSB_SIZE_16K 0x05
314 #define TSB_SIZE_32K 0x06
315 #define TSB_SIZE_64K 0x07
316 #define TSB_SPLIT 0x1000
317 #define TSB_BASE 0xffffffffffffe000
318
319 /* TLB Tag Access bits */
320 #define TLB_TAG_ACCESS_VA 0xffffffffffffe000
321 #define TLB_TAG_ACCESS_CTX 0x0000000000001fff
322
323 /*
324 * TLB demap registers. TTEs are defined in v9pte.h
325 *
326 * Use the address space to select between IMMU and DMMU.
327 * The address of the register selects which context register
328 * to read the ASI from.
329 *
330 * The data stored in the register is interpreted as the VA to
331 * use. The DEMAP_CTX_<> registers ignore the address and demap the
332 * entire ASI.
333 *
334 */
335 #define ASI_IMMU_DEMAP 0x57 /* [4u] IMMU TLB demap */
336 #define ASI_DMMU_DEMAP 0x5f /* [4u] IMMU TLB demap */
337
338 #define DEMAP_PAGE_NUCLEUS ((0x02)<<4) /* Demap page from kernel AS */
339 #define DEMAP_PAGE_PRIMARY ((0x00)<<4) /* Demap a page from primary CTXT */
340 #define DEMAP_PAGE_SECONDARY ((0x01)<<4) /* Demap page from secondary CTXT (DMMU only) */
341 #define DEMAP_CTX_NUCLEUS ((0x06)<<4) /* Demap all of kernel CTXT */
342 #define DEMAP_CTX_PRIMARY ((0x04)<<4) /* Demap all of primary CTXT */
343 #define DEMAP_CTX_SECONDARY ((0x05)<<4) /* Demap all of secondary CTXT */
344
345 /*
346 * Interrupt registers. This really gets hairy.
347 */
348
349 /* IRSR -- Interrupt Receive Status Ragister */
350 #define ASI_IRSR 0x49
351 #define IRSR 0x00
352 #define IRSR_BUSY 0x020
353 #define IRSR_MID(x) (x&0x1f)
354
355 /* IRDR -- Interrupt Receive Data Registers */
356 #define ASI_IRDR 0x7f
357 #define IRDR_0H 0x40
358 #define IRDR_0L 0x48 /* unimplemented */
359 #define IRDR_1H 0x50
360 #define IRDR_1L 0x58 /* unimplemented */
361 #define IRDR_2H 0x60
362 #define IRDR_2L 0x68 /* unimplemented */
363 #define IRDR_3H 0x70 /* unimplemented */
364 #define IRDR_3L 0x78 /* unimplemented */
365
366 /* SOFTINT ASRs */
367 #define SET_SOFTINT %asr20 /* Sets these bits */
368 #define CLEAR_SOFTINT %asr21 /* Clears these bits */
369 #define SOFTINT %asr22 /* Reads the register */
370 #define TICK_CMPR %asr23
371
372 #define TICK_INT 0x01 /* level-14 clock tick */
373 #define SOFTINT1 (0x1<<1)
374 #define SOFTINT2 (0x1<<2)
375 #define SOFTINT3 (0x1<<3)
376 #define SOFTINT4 (0x1<<4)
377 #define SOFTINT5 (0x1<<5)
378 #define SOFTINT6 (0x1<<6)
379 #define SOFTINT7 (0x1<<7)
380 #define SOFTINT8 (0x1<<8)
381 #define SOFTINT9 (0x1<<9)
382 #define SOFTINT10 (0x1<<10)
383 #define SOFTINT11 (0x1<<11)
384 #define SOFTINT12 (0x1<<12)
385 #define SOFTINT13 (0x1<<13)
386 #define SOFTINT14 (0x1<<14)
387 #define SOFTINT15 (0x1<<15)
388
389 /* Interrupt Dispatch -- usually reserved for cross-calls */
390 #define ASR_IDSR 0x48 /* Interrupt dispatch status reg */
391 #define IDSR 0x00
392 #define IDSR_NACK 0x02
393 #define IDSR_BUSY 0x01
394
395 #define ASI_INTERRUPT_DISPATCH 0x77 /* [4u] spitfire interrupt dispatch regs */
396 #define IDCR(x) (((x)<<14)&0x70) /* Store anything to this address to dispatch crosscall to CPU (x) */
397 #define IDDR_0H 0x40 /* Store data to send in these regs */
398 #define IDDR_0L 0x48 /* unimplemented */
399 #define IDDR_1H 0x50
400 #define IDDR_1L 0x58 /* unimplemented */
401 #define IDDR_2H 0x60
402 #define IDDR_2L 0x68 /* unimplemented */
403 #define IDDR_3H 0x70 /* unimplemented */
404 #define IDDR_3L 0x78 /* unimplemented */
405
406 /*
407 * Error registers
408 */
409
410 /* Since we won't try to fix async errs, we don't care about the bits in the regs */
411 #define ASI_AFAR 0x4d /* Asynchronous fault address register */
412 #define AFAR 0x00
413 #define ASI_AFSR 0x4c /* Asynchronous fault status register */
414 #define AFSR 0x00
415
416 #define ASI_P_EER 0x4b /* Error enable register */
417 #define P_EER 0x00
418 #define P_EER_ISAPEN 0x04 /* Enable fatal on ISAP */
419 #define P_EER_NCEEN 0x02 /* Enable trap on uncorrectable errs */
420 #define P_EER_CEEN 0x01 /* Enable trap on correctable errs */
421
422 #define ASI_DATAPATH_READ 0x7f /* Read the regs */
423 #define ASI_DATAPATH_WRITE 0x77 /* Write to the regs */
424 #define P_DPER_0 0x00 /* Datapath err reg 0 */
425 #define P_DPER_1 0x18 /* Datapath err reg 1 */
426 #define P_DCR_0 0x20 /* Datapath control reg 0 */
427 #define P_DCR_1 0x38 /* Datapath control reg 0 */
428
429
430 /* From sparc64/asm.h which I think I'll deprecate since it makes bus.h a pain. */
431
432 #ifndef _LOCORE
433 /*
434 * GCC __asm constructs for doing assembly stuff.
435 */
436
437 /*
438 * ``Routines'' to load and store from/to alternate address space.
439 * The location can be a variable, the asi value (address space indicator)
440 * must be a constant.
441 *
442 * N.B.: You can put as many special functions here as you like, since
443 * they cost no kernel space or time if they are not used.
444 *
445 * These were static inline functions, but gcc screws up the constraints
446 * on the address space identifiers (the "n"umeric value part) because
447 * it inlines too late, so we have to use the funny valued-macro syntax.
448 */
449
450 /*
451 * Apparently the definition of bypass ASIs is that they all use the
452 * D$ so we need to flush the D$ to make sure we don't get data pollution.
453 */
454
455 static __inline__ u_char lduba __P((paddr_t loc, int asi));
456 static __inline__ u_short lduha __P((paddr_t loc, int asi));
457 static __inline__ u_int lda __P((paddr_t loc, int asi));
458 static __inline__ int ldswa __P((paddr_t loc, int asi));
459 static __inline__ u_int64_t ldxa __P((paddr_t loc, int asi));
460 static __inline__ u_int64_t ldda __P((paddr_t loc, int asi));
461
462 static __inline__ void stba __P((paddr_t loc, int asi, u_char value));
463 static __inline__ void stha __P((paddr_t loc, int asi, u_short value));
464 static __inline__ void sta __P((paddr_t loc, int asi, u_int value));
465 static __inline__ void stxa __P((paddr_t loc, int asi, u_int64_t value));
466 static __inline__ void stda __P((paddr_t loc, int asi, u_int64_t value));
467
468 #if 0
469 static __inline__ unsigned int casa __P((paddr_t loc, int asi,
470 unsigned int value, unsigned int oldvalue));
471 static __inline__ u_int64_t casxa __P((paddr_t loc, int asi,
472 u_int64_t value, u_int64_t oldvalue));
473 #endif
474
475 #ifdef __arch64__
476 static __inline__ u_char
477 lduba(paddr_t loc, int asi)
478 {
479 register unsigned int _lduba_v;
480
481 if (PHYS_ASI(asi)) {
482 __asm __volatile("wr %3,%%g0,%%asi; "
483 " andn %2,0x1f,%0; stxa %%g0,[%0] %4; membar #Sync; "
484 " lduba [%2]%%asi,%0; andn %2,0x1f,%1; membar #Sync; "
485 " stxa %%g0,[%1] %4; membar #Sync; wr %%g0, 0x82, %%asi" :
486 "=&r" (_lduba_v), "=r" (loc):
487 "r" ((unsigned long)(loc)),
488 "r" (asi), "n" (ASI_DCACHE_TAG));
489 } else {
490 __asm __volatile("wr %2,%%g0,%%asi; "
491 " lduba [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
492 "=r" (_lduba_v) :
493 "r" ((unsigned long)(loc)), "r" (asi));
494 }
495 return (_lduba_v);
496 }
497 #else
498 static __inline__ u_char
499 lduba(paddr_t loc, int asi)
500 {
501 register unsigned int _lduba_v, _loc_hi, _pstate;
502
503 _loc_hi = (((u_int64_t)loc)>>32);
504 if (PHYS_ASI(asi)) {
505 __asm __volatile("wr %4,%%g0,%%asi; "
506 " andn %2,0x1f,%0; stxa %%g0,[%0] %5; rdpr %%pstate,%1; "
507 " sllx %3,32,%0; or %0,%2,%0; wrpr %1,8,%%pstate; "
508 " membar #Sync; lduba [%0]%%asi,%0; wrpr %1,0,%%pstate; "
509 " andn %2,0x1f,%1; membar #Sync; stxa %%g0,[%1] %5; "
510 " membar #Sync; wr %%g0, 0x82, %%asi" :
511 "=&r" (_lduba_v), "=&r" (_pstate) :
512 "r" ((unsigned long)(loc)), "r" (_loc_hi),
513 "r" (asi), "n" (ASI_DCACHE_TAG));
514 } else {
515 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
516 " or %0,%1,%0; lduba [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduba_v) :
517 "r" ((unsigned long)(loc)),
518 "r" (_loc_hi), "r" (asi));
519 }
520 return (_lduba_v);
521 }
522 #endif
523
524 #ifdef __arch64__
525 /* load half-word from alternate address space */
526 static __inline__ u_short
527 lduha(paddr_t loc, int asi)
528 {
529 register unsigned int _lduha_v;
530
531 if (PHYS_ASI(asi)) {
532 __asm __volatile("wr %3,%%g0,%%asi; "
533 " andn %2,0x1f,%0; stxa %%g0,[%0] %4; membar #Sync; "
534 " lduha [%2]%%asi,%0; andn %2,0x1f,%1; membar #Sync; "
535 " stxa %%g0,[%1] %4; membar #Sync; "
536 " wr %%g0, 0x82, %%asi" : "=&r" (_lduha_v), "=r" (loc) :
537 "r" ((unsigned long)(loc)),
538 "r" (asi), "n" (ASI_DCACHE_TAG));
539 } else {
540 __asm __volatile("wr %2,%%g0,%%asi; lduha [%1]%%asi,%0; "
541 " wr %%g0, 0x82, %%asi" :
542 "=r" (_lduha_v) :
543 "r" ((unsigned long)(loc)), "r" (asi));
544 }
545 return (_lduha_v);
546 }
547 #else
548 /* load half-word from alternate address space */
549 static __inline__ u_short
550 lduha(paddr_t loc, int asi) {
551 register unsigned int _lduha_v, _loc_hi, _pstate;
552
553 _loc_hi = (((u_int64_t)loc)>>32);
554
555 if (PHYS_ASI(asi)) {
556 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1; "
557 " andn %2,0x1f,%0; stxa %%g0,[%0] %5; wrpr %1,8,%%pstate; sllx %3,32,%0; "
558 " or %0,%2,%0; membar #Sync; lduha [%0]%%asi,%0; wrpr %1,0,%%pstate; "
559 " andn %2,0x1f,%1; membar #Sync; stxa %%g0,[%1] %5; "
560 " membar #Sync; wr %%g0, 0x82, %%asi" :
561 "=&r" (_lduha_v), "=&r" (_pstate) :
562 "r" ((unsigned long)(loc)), "r" (_loc_hi),
563 "r" (asi), "n" (ASI_DCACHE_TAG));
564 } else {
565 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
566 " or %0,%1,%0; lduha [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduha_v) :
567 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
568 }
569 return (_lduha_v);
570 }
571 #endif
572
573
574 #ifdef __arch64__
575 /* load unsigned int from alternate address space */
576 static __inline__ u_int
577 lda(paddr_t loc, int asi)
578 {
579 register unsigned int _lda_v;
580
581 if (PHYS_ASI(asi)) {
582 __asm __volatile("wr %3,%%g0,%%asi; "
583 " andn %2,0x1f,%0; stxa %%g0,[%0] %4; membar #Sync; "
584 " lda [%2]%%asi,%0; andn %2,0x1f,%1; membar #Sync; "
585 " stxa %%g0,[%1] %4; membar #Sync; "
586 " wr %%g0, 0x82, %%asi" : "=&r" (_lda_v), "=r" (loc) :
587 "r" ((unsigned long)(loc)),
588 "r" (asi), "n" (ASI_DCACHE_TAG));
589 } else {
590 __asm __volatile("wr %2,%%g0,%%asi; lda [%1]%%asi,%0" :
591 "=r" (_lda_v) :
592 "r" ((unsigned long)(loc)), "r" (asi));
593 }
594 return (_lda_v);
595 }
596
597 /* load signed int from alternate address space */
598 static __inline__ int
599 ldswa(paddr_t loc, int asi)
600 {
601 register int _lda_v;
602
603 if (PHYS_ASI(asi)) {
604 __asm __volatile("wr %3,%%g0,%%asi; "
605 " andn %2,0x1f,%0; stxa %%g0,[%0] %4; membar #Sync; "
606 " ldswa [%2]%%asi,%0; andn %2,0x1f,%1; membar #Sync; "
607 " stxa %%g0,[%1] %4; membar #Sync; "
608 " wr %%g0, 0x82, %%asi" : "=&r" (_lda_v), "=r" (loc) :
609 "r" ((unsigned long)(loc)),
610 "r" (asi), "n" (ASI_DCACHE_TAG));
611 } else {
612 __asm __volatile("wr %2,%%g0,%%asi; "
613 " ldswa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
614 "=r" (_lda_v) :
615 "r" ((unsigned long)(loc)), "r" (asi));
616 }
617 return (_lda_v);
618 }
619 #else /* __arch64__ */
620 /* load unsigned int from alternate address space */
621 static __inline__ u_int
622 lda(paddr_t loc, int asi)
623 {
624 register unsigned int _lda_v, _loc_hi, _pstate;
625
626 _loc_hi = (((u_int64_t)loc)>>32);
627 if (PHYS_ASI(asi)) {
628 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
629 " andn %2,0x1f,%0; stxa %%g0,[%0] %5; wrpr %1,8,%%pstate; "
630 " sllx %3,32,%0; or %0,%2,%0; membar #Sync;lda [%0]%%asi,%0; "
631 " wrpr %1,0,%%pstate; andn %2,0x1f,%1; membar #Sync; "
632 " stxa %%g0,[%1] %5; membar #Sync; "
633 " wr %%g0, 0x82, %%asi" : "=&r" (_lda_v), "=&r" (_pstate) :
634 "r" ((unsigned long)(loc)), "r" (_loc_hi),
635 "r" (asi), "n" (ASI_DCACHE_TAG));
636 } else {
637 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
638 " or %0,%1,%0; lda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
639 "r" ((unsigned long)(loc)),
640 "r" (_loc_hi), "r" (asi));
641 }
642 return (_lda_v);
643 }
644
645 /* load signed int from alternate address space */
646 static __inline__ int
647 ldswa(paddr_t loc, int asi)
648 {
649 register int _lda_v, _loc_hi, _pstate;
650
651 _loc_hi = (((u_int64_t)loc)>>32);
652 if (PHYS_ASI(asi)) {
653 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
654 " andn %2,0x1f,%0; stxa %%g0,[%0] %5; wrpr %1,8,%%pstate; sllx %3,32,%0;"
655 " or %0,%2,%0; membar #Sync; ldswa [%0]%%asi,%0; wrpr %1,0,%%pstate; "
656 " andn %2,0x1f,%1; membar #Sync; stxa %%g0,[%1] %5; membar #Sync; "
657 " wr %%g0, 0x82, %%asi" :
658 "=&r" (_lda_v), "=&r" (_pstate) :
659 "r" ((unsigned long)(loc)), "r" (_loc_hi),
660 "r" (asi), "n" (ASI_DCACHE_TAG));
661 } else {
662 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
663 " or %0,%1,%0; ldswa [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
664 "r" ((unsigned long)(loc)),
665 "r" (_loc_hi), "r" (asi));
666 }
667 return (_lda_v);
668 }
669 #endif /* __arch64__ */
670
671 #ifdef __arch64__
672 /* load 64-bit int from alternate address space -- these should never be used */
673 static __inline__ u_int64_t
674 ldda(paddr_t loc, int asi)
675 {
676 register long long _lda_v;
677
678 if (PHYS_ASI(asi)) {
679 __asm __volatile("wr %3,%%g0,%%asi; "
680 " andn %2,0x1f,%0; stxa %%g0,[%0] %4; membar #Sync; "
681 " ldda [%2]%%asi,%0; andn %2,0x1f,%1; membar #Sync; "
682 " stxa %%g0,[%1] %4; membar #Sync; "
683 " wr %%g0, 0x82, %%asi" : "=&r" (_lda_v), "=&r" (loc) :
684 "r" ((unsigned long)(loc)),
685 "r" (asi), "n" (ASI_DCACHE_TAG));
686 } else {
687 __asm __volatile("wr %2,%%g0,%%asi; "
688 " ldda [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
689 "=r" (_lda_v) :
690 "r" ((unsigned long)(loc)), "r" (asi));
691 }
692 return (_lda_v);
693 }
694 #else
695 /* load 64-bit int from alternate address space */
696 static __inline__ u_int64_t
697 ldda(paddr_t loc, int asi)
698 {
699 register long long _lda_v, _loc_hi, _pstate;
700
701 _loc_hi = (((u_int64_t)loc)>>32);
702 if (PHYS_ASI(asi)) {
703 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
704 " andn %2,0x1f,%0; rdpr %%pstate,%1; stxa %%g0,[%0] %5; wrpr %1,8,%%pstate;"
705 " sllx %3,32,%0; or %0,%2,%0; membar #Sync; ldda [%0]%%asi,%0; wrpr %1,0,%%pstate; "
706 " andn %2,0x1f,%1; membar #Sync; stxa %%g0,[%1] %5; membar #Sync; "
707 " wr %%g0, 0x82, %%asi" :
708 "=&r" (_lda_v), "=&r" (_pstate) :
709 "r" ((unsigned long)(loc)), "r" (_loc_hi),
710 "r" (asi), "n" (ASI_DCACHE_TAG));
711 } else {
712 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
713 " or %0,%1,%0; ldda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
714 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
715 }
716 return (_lda_v);
717 }
718 #endif
719
720
721 #ifdef __arch64__
722 /* native load 64-bit int from alternate address space w/64-bit compiler*/
723 static __inline__ u_int64_t
724 ldxa(paddr_t loc, int asi)
725 {
726 register unsigned long _lda_v;
727
728 if (PHYS_ASI(asi)) {
729 __asm __volatile("wr %3,%%g0,%%asi; "
730 " andn %2,0x1f,%0; stxa %%g0,[%0] %4; membar #Sync; "
731 " ldxa [%2]%%asi,%0; andn %2,0x1f,%1; membar #Sync; "
732 " stxa %%g0,[%1] %4; membar #Sync; "
733 " wr %%g0, 0x82, %%asi" : "=&r" (_lda_v), "=r" (loc) :
734 "r" ((unsigned long)(loc)),
735 "r" (asi), "n" (ASI_DCACHE_TAG));
736 } else {
737 __asm __volatile("wr %2,%%g0,%%asi; "
738 " ldxa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
739 "=r" (_lda_v) :
740 "r" ((unsigned long)(loc)), "r" (asi));
741 }
742 return (_lda_v);
743 }
744 #else
745 /* native load 64-bit int from alternate address space w/32-bit compiler*/
746 static __inline__ u_int64_t
747 ldxa(paddr_t loc, int asi)
748 {
749 register unsigned long _ldxa_lo, _ldxa_hi, _loc_hi;
750
751 _loc_hi = (((u_int64_t)loc)>>32);
752 if (PHYS_ASI(asi)) {
753 __asm __volatile("wr %4,%%g0,%%asi; "
754 " andn %2,0x1f,%0; rdpr %%pstate,%1; stxa %%g0,[%0] %5; "
755 " sllx %3,32,%0; wrpr %1,8,%%pstate; or %0,%2,%0; membar #Sync; ldxa [%0]%%asi,%0; "
756 " wrpr %1,0,%%pstate; andn %2,0x1f,%1; membar #Sync; stxa %%g0,[%1] %5; membar #Sync; "
757 " srlx %0,32,%1; srl %0,0,%0; wr %%g0, 0x82, %%asi" :
758 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
759 "r" ((unsigned long)(loc)), "r" (_loc_hi),
760 "r" (asi), "n" (ASI_DCACHE_TAG));
761 } else {
762 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
763 " or %0,%2,%0; ldxa [%0]%%asi,%0; srlx %0,32,%1; "
764 " srl %0,0,%0;; wr %%g0, 0x82, %%asi" :
765 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
766 "r" ((unsigned long)(loc)), "r" (_loc_hi),
767 "r" (asi));
768 }
769 return ((((int64_t)_ldxa_hi)<<32)|_ldxa_lo);
770 }
771 #endif
772
773 /* store byte to alternate address space */
774 #ifdef __arch64__
775 static __inline__ void
776 stba(paddr_t loc, int asi, u_char value)
777 {
778 if (PHYS_ASI(asi)) {
779 __asm __volatile("wr %3,%%g0,%%asi; stba %1,[%2]%%asi;"
780 " andn %2,0x1f,%0; membar #Sync; stxa %%g0,[%0] %4; membar #Sync; "
781 " wr %%g0, 0x82, %%asi" :
782 "=&r" (loc) :
783 "r" ((int)(value)), "r" ((unsigned long)(loc)),
784 "r" (asi), "n" (ASI_DCACHE_TAG));
785 } else {
786 __asm __volatile("wr %2,%%g0,%%asi; stba %0,[%1]%%asi; "
787 " wr %%g0, 0x82, %%asi" : :
788 "r" ((int)(value)), "r" ((unsigned long)(loc)),
789 "r" (asi));
790 }
791 }
792 #else
793 static __inline__ void
794 stba(paddr_t loc, int asi, u_char value)
795 {
796 register int _loc_hi, _pstate;
797
798 _loc_hi = (((u_int64_t)loc)>>32);
799 if (PHYS_ASI(asi)) {
800 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; rdpr %%pstate,%1;"
801 " or %3,%0,%0; wrpr %1,8,%%pstate; stba %2,[%0]%%asi; wrpr %1,0,%%pstate; "
802 " andn %0,0x1f,%1; membar #Sync; stxa %%g0,[%1] %6; membar #Sync; "
803 " wr %%g0, 0x82, %%asi" :
804 "=&r" (_loc_hi), "=&r" (_pstate) :
805 "r" ((int)(value)), "r" ((unsigned long)(loc)),
806 "r" (_loc_hi), "r" (asi), "n" (ASI_DCACHE_TAG));
807 } else {
808 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
809 " or %2,%0,%0; stba %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
810 "r" ((int)(value)), "r" ((unsigned long)(loc)),
811 "r" (_loc_hi), "r" (asi));
812 }
813 }
814 #endif
815
816 /* store half-word to alternate address space */
817 #ifdef __arch64__
818 static __inline__ void
819 stha(paddr_t loc, int asi, u_short value)
820 {
821 if (PHYS_ASI(asi)) {
822 __asm __volatile("wr %3,%%g0,%%asi; stha %1,[%2]%%asi;"
823 " andn %2,0x1f,%0; membar #Sync; stxa %%g0,[%0] %4; membar #Sync; "
824 " wr %%g0, 0x82, %%asi" :
825 "=&r" (loc) :
826 "r" ((int)(value)), "r" ((unsigned long)(loc)),
827 "r" (asi), "n" (ASI_DCACHE_TAG) : "memory");
828 } else {
829 __asm __volatile("wr %2,%%g0,%%asi; stha %0,[%1]%%asi; "
830 " wr %%g0, 0x82, %%asi" : :
831 "r" ((int)(value)), "r" ((unsigned long)(loc)),
832 "r" (asi) : "memory");
833 }
834 }
835 #else
836 static __inline__ void
837 stha(paddr_t loc, int asi, u_short value)
838 {
839 register int _loc_hi, _pstate;
840
841 _loc_hi = (((u_int64_t)loc)>>32);
842 if (PHYS_ASI(asi)) {
843 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; rdpr %%pstate,%1;"
844 " or %3,%0,%0; wrpr %1,8,%%pstate; stha %2,[%0]%%asi; wrpr %1,0,%%pstate; "
845 " andn %0,0x1f,%1; membar #Sync; stxa %%g0,[%1] %6; membar #Sync; "
846 " wr %%g0, 0x82, %%asi" :
847 "=&r" (_loc_hi), "=&r" (_pstate) :
848 "r" ((int)(value)), "r" ((unsigned long)(loc)),
849 "r" (_loc_hi), "r" (asi),
850 "n" (ASI_DCACHE_TAG) : "memory");
851 } else {
852 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
853 " or %2,%0,%0; stha %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
854 "r" ((int)(value)), "r" ((unsigned long)(loc)),
855 "r" (_loc_hi), "r" (asi) : "memory");
856 }
857 }
858 #endif
859
860
861 /* store int to alternate address space */
862 #ifdef __arch64__
863 static __inline__ void
864 sta(paddr_t loc, int asi, u_int value)
865 {
866 if (PHYS_ASI(asi)) {
867 __asm __volatile("wr %3,%%g0,%%asi; sta %1,[%2]%%asi;"
868 " andn %2,0x1f,%0; membar #Sync; stxa %%g0,[%0] %4; membar #Sync; "
869 " wr %%g0, 0x82, %%asi" :
870 "=&r" (loc) :
871 "r" ((int)(value)), "r" ((unsigned long)(loc)),
872 "r" (asi), "n" (ASI_DCACHE_TAG) : "memory");
873 } else {
874 __asm __volatile("wr %2,%%g0,%%asi; sta %0,[%1]%%asi; "
875 " wr %%g0, 0x82, %%asi" : :
876 "r" ((int)(value)), "r" ((unsigned long)(loc)),
877 "r" (asi) : "memory");
878 }
879 }
880 #else
881 static __inline__ void
882 sta(paddr_t loc, int asi, u_int value)
883 {
884 register int _loc_hi, _pstate;
885
886 _loc_hi = (((u_int64_t)loc)>>32);
887 if (PHYS_ASI(asi)) {
888 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; rdpr %%pstate,%1;"
889 " or %3,%0,%0; wrpr %1,8,%%pstate; sta %2,[%0]%%asi; wrpr %1,0,%%pstate; "
890 " andn %0,0x1f,%1; membar #Sync; stxa %%g0,[%1] %6; membar #Sync; "
891 " wr %%g0, 0x82, %%asi" :
892 "=&r" (_loc_hi), "=&r" (_pstate) :
893 "r" ((int)(value)), "r" ((unsigned long)(loc)),
894 "r" (_loc_hi), "r" (asi),
895 "n" (ASI_DCACHE_TAG) : "memory");
896 } else {
897 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
898 " or %2,%0,%0; sta %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
899 "r" ((int)(value)), "r" ((unsigned long)(loc)),
900 "r" (_loc_hi), "r" (asi) : "memory");
901 }
902 }
903 #endif
904
905 /* store 64-bit int to alternate address space */
906 #ifdef __arch64__
907 static __inline__ void
908 stda(paddr_t loc, int asi, u_int64_t value)
909 {
910 if (PHYS_ASI(asi)) {
911 __asm __volatile("wr %3,%%g0,%%asi; stda %1,[%2]%%asi;"
912 " andn %2,0x1f,%0; membar #Sync; stxa %%g0,[%0] %4; membar #Sync; "
913 " wr %%g0, 0x82, %%asi" :
914 "=&r" (loc) :
915 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
916 "r" (asi), "n" (ASI_DCACHE_TAG) : "memory");
917 } else {
918 __asm __volatile("wr %2,%%g0,%%asi; stda %0,[%1]%%asi; "
919 " wr %%g0, 0x82, %%asi" : :
920 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
921 "r" (asi) : "memory");
922 }
923 }
924 #else
925 static __inline__ void
926 stda(paddr_t loc, int asi, u_int64_t value)
927 {
928 register int _loc_hi, _pstate;
929
930 _loc_hi = (((u_int64_t)loc)>>32);
931 if (PHYS_ASI(asi)) {
932 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; rdpr %%pstate,%1; "
933 " or %3,%0,%0; wrpr %1,8,%%pstate; stda %2,[%0]%%asi; wrpr %1,0,%%pstate;"
934 " andn %0,0x1f,%1; membar #Sync; stxa %%g0,[%1] %6; membar #Sync; "
935 " wr %%g0, 0x82, %%asi" :
936 "=&r" (_loc_hi), "=&r" (_pstate) :
937 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
938 "r" (_loc_hi), "r" (asi),
939 "n" (ASI_DCACHE_TAG) : "memory");
940 } else {
941 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
942 " or %2,%0,%0; stda %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
943 "=&r" (_loc_hi) :
944 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
945 "r" (_loc_hi), "r" (asi) : "memory");
946 }
947 }
948 #endif
949
950 #ifdef __arch64__
951 /* native store 64-bit int to alternate address space w/64-bit compiler*/
952 static __inline__ void
953 stxa(paddr_t loc, int asi, u_int64_t value)
954 {
955 if (PHYS_ASI(asi)) {
956 __asm __volatile("wr %3,%%g0,%%asi; stxa %1,[%2]%%asi;"
957 " andn %2,0x1f,%0; membar #Sync; stxa %%g0,[%0] %4; membar #Sync; "
958 " wr %%g0, 0x82, %%asi" :
959 "=&r" (asi) :
960 "r" ((unsigned long)(value)),
961 "r" ((unsigned long)(loc)),
962 "r" (asi), "n" (ASI_DCACHE_TAG) : "memory");
963 } else {
964 __asm __volatile("wr %2,%%g0,%%asi; stxa %0,[%1]%%asi; "
965 " wr %%g0, 0x82, %%asi" : :
966 "r" ((unsigned long)(value)),
967 "r" ((unsigned long)(loc)), "r" (asi) : "memory");
968 }
969 }
970 #else
971 /* native store 64-bit int to alternate address space w/32-bit compiler*/
972 static __inline__ void
973 stxa(paddr_t loc, int asi, u_int64_t value)
974 {
975 int _stxa_lo, _stxa_hi, _loc_hi;
976
977 _stxa_lo = value;
978 _stxa_hi = ((u_int64_t)value)>>32;
979 _loc_hi = (((u_int64_t)(u_long)loc)>>32);
980
981 if (PHYS_ASI(asi)) {
982 __asm __volatile("wr %7,%%g0,%%asi; sllx %4,32,%1; sllx %6,32,%0; "
983 " or %1,%3,%1; rdpr %%pstate,%2; or %0,%5,%0; wrpr %2,8,%%pstate; "
984 " stxa %1,[%0]%%asi; wrpr %2,0,%%pstate; andn %0,0x1f,%1; "
985 " membar #Sync; stxa %%g0,[%1] %8; membar #Sync; wr %%g0, 0x82, %%asi" :
986 "=&r" (_loc_hi), "=&r" (_stxa_hi),
987 "=&r" ((int)(_stxa_lo)) :
988 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
989 "r" ((unsigned long)(loc)), "r" (_loc_hi),
990 "r" (asi), "n" (ASI_DCACHE_TAG) : "memory");
991 } else {
992 __asm __volatile("wr %6,%%g0,%%asi; sllx %3,32,%1; sllx %5,32,%0; "
993 " or %1,%2,%1; or %0,%4,%0; stxa %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
994 "=&r" (_loc_hi), "=&r" (_stxa_hi) :
995 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
996 "r" ((unsigned long)(loc)), "r" (_loc_hi),
997 "r" (asi) : "memory");
998 }
999 }
1000 #endif
1001
1002 #if 0
1003 #ifdef __arch64__
1004 /* native store 64-bit int to alternate address space w/64-bit compiler*/
1005 static __inline__ u_int64_t
1006 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
1007 {
1008 if (PHYS_ASI(asi)) {
1009 __asm __volatile("wr %4,%%g0,%%asi; casxa [%3]%%asi,%2,%1;"
1010 " andn %3,0x1f,%0; membar #Sync; stxa %%g0,[%0] %5; membar #Sync; "
1011 " wr %%g0, 0x82, %%asi" :
1012 "=&r" (loc), "+r" (value) :
1013 "r" ((unsigned long)(oldvalue)),
1014 "r" ((unsigned long)(loc)),
1015 "r" (asi), "n" (ASI_DCACHE_TAG) : "memory");
1016 } else {
1017 __asm __volatile("wr %3,%%g0,%%asi; casxa [%1]%%asi,%2,%0; "
1018 " wr %%g0, 0x82, %%asi" :
1019 "+r" (value) :
1020 "r" ((unsigned long)(loc)), "r" (oldvalue), "r" (asi) :
1021 "memory");
1022 }
1023 return (value);
1024 }
1025 #else
1026 /* native store 64-bit int to alternate address space w/32-bit compiler*/
1027 static __inline__ u_int64_t
1028 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
1029 {
1030 int _casxa_lo, _casxa_hi, _loc_hi, _oval_hi;
1031
1032 _casxa_lo = value;
1033 _casxa_hi = ((u_int64_t)value)>>32;
1034 _oval_hi = ((u_int64_t)oldvalue)>>32;
1035 _loc_hi = (((u_int64_t)(u_long)loc)>>32);
1036
1037 #ifdef __notyet
1038 /*
1039 * gcc cannot handle this since it thinks it has >10 asm operands.
1040 */
1041 if (PHYS_ASI(asi)) {
1042 __asm __volatile("wr %6,%%g0,%%asi; sllx %1,32,%1; sllx %0,32,%0; "
1043 " sllx %3,32,%3; or %1,%2,%1; rdpr %%pstate,%2; or %0,%4,%0; or %3,%5,%3; "
1044 " wrpr %2,8,%%pstate; casxa [%0]%%asi,%3,%1; wrpr %2,0,%%pstate; "
1045 " andn %0,0x1f,%3; membar #Sync; stxa %%g0,[%3] %7; membar #Sync; "
1046 " sll %1,0,%2; srax %1,32,%1; wr %%g0, 0x82, %%asi " :
1047 "+r" (_loc_hi), "+r" (_casxa_hi),
1048 "+r" (_casxa_lo), "+r" (_oval_hi) :
1049 "r" ((unsigned long)(loc)),
1050 "r" ((unsigned int)(oldvalue)),
1051 "r" (asi), "n" (ASI_DCACHE_TAG));
1052 } else {
1053 __asm __volatile("wr %7,%%g0,%%asi; sllx %1,32,%1; sllx %5,32,%0; "
1054 " or %1,%2,%1; sllx %3,32,%2; or %0,%4,%0; or %2,%4,%2; "
1055 " casxa [%0]%%asi,%2,%1; sll %1,0,%2; srax %o1,32,%o1; wr %%g0, 0x82, %%asi " :
1056 "=&r" (_loc_hi), "+r" (_casxa_hi), "+r" (_casxa_lo) :
1057 "r" ((int)(_oval_hi)), "r" ((int)(oldvalue)),
1058 "r" ((unsigned long)(loc)), "r" (_loc_hi),
1059 "r" (asi) : "memory");
1060 }
1061 #endif
1062 return (((u_int64_t)_casxa_hi<<32)|(u_int64_t)_casxa_lo);
1063 }
1064 #endif
1065 #endif /* 0 */
1066
1067
1068
1069 /* flush address from data cache */
1070 #define flush(loc) ({ \
1071 __asm __volatile("flush %0" : : \
1072 "r" ((unsigned long)(loc))); \
1073 })
1074
1075 /* Flush a D$ line */
1076 #if 0
1077 #define flushline(loc) ({ \
1078 stxa(((paddr_t)loc)&(~0x1f), (ASI_DCACHE_TAG), 0); \
1079 membar_sync(); \
1080 })
1081 #else
1082 #define flushline(loc)
1083 #endif
1084
1085 /* The following two enable or disable the dcache in the LSU control register */
1086 #define dcenable() ({ \
1087 int res; \
1088 __asm __volatile("ldxa [%%g0] %1,%0; or %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
1089 : "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
1090 })
1091 #define dcdisable() ({ \
1092 int res; \
1093 __asm __volatile("ldxa [%%g0] %1,%0; andn %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
1094 : "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
1095 })
1096
1097 /*
1098 * SPARC V9 memory barrier instructions.
1099 */
1100 /* Make all stores complete before next store */
1101 #define membar_storestore() __asm __volatile("membar #StoreStore" : :)
1102 /* Make all loads complete before next store */
1103 #define membar_loadstore() __asm __volatile("membar #LoadStore" : :)
1104 /* Make all stores complete before next load */
1105 #define membar_storeload() __asm __volatile("membar #StoreLoad" : :)
1106 /* Make all loads complete before next load */
1107 #define membar_loadload() __asm __volatile("membar #LoadLoad" : :)
1108 /* Complete all outstanding memory operations and exceptions */
1109 #define membar_sync() __asm __volatile("membar #Sync" : :)
1110 /* Complete all outstanding memory operations */
1111 #define membar_memissue() __asm __volatile("membar #MemIssue" : :)
1112 /* Complete all outstanding stores before any new loads */
1113 #define membar_lookaside() __asm __volatile("membar #Lookaside" : :)
1114
1115 #ifdef __arch64__
1116 /* read 64-bit %tick register */
1117 #define tick() ({ \
1118 register u_long _tick_tmp; \
1119 __asm __volatile("rdpr %%tick, %0" : "=r" (_tick_tmp) :); \
1120 _tick_tmp; \
1121 })
1122 #else
1123 /* read 64-bit %tick register on 32-bit system */
1124 #define tick() ({ \
1125 register u_int _tick_hi = 0, _tick_lo = 0; \
1126 __asm __volatile("rdpr %%tick, %0; srl %0,0,%1; srlx %0,32,%0 " \
1127 : "=r" (_tick_hi), "=r" (_tick_lo) : ); \
1128 (((u_int64_t)_tick_hi)<<32)|((u_int64_t)_tick_lo); \
1129 })
1130 #endif
1131
1132 extern void next_tick __P((long));
1133 #endif
1134