Home | History | Annotate | Line # | Download | only in include
ctlreg.h revision 1.30
      1 /*	$NetBSD: ctlreg.h,v 1.30 2002/04/24 23:54:24 eeh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996-2002 Eduardo Horvath
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     13  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     14  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     15  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     16  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     17  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     18  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     19  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     20  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     21  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     22  * SUCH DAMAGE.
     23  *
     24  */
     25 
     26 /*
     27  * Sun 4u control registers. (includes address space definitions
     28  * and some registers in control space).
     29  */
     30 
     31 /*
     32  * The Alternate address spaces.
     33  *
     34  * 0x00-0x7f are privileged
     35  * 0x80-0xff can be used by users
     36  */
     37 
     38 #define	ASI_LITTLE	0x08		/* This bit should make an ASI little endian */
     39 
     40 #define	ASI_NUCLEUS			0x04	/* [4u] kernel address space */
     41 #define	ASI_NUCLEUS_LITTLE		0x0c	/* [4u] kernel address space, little endian */
     42 
     43 #define	ASI_AS_IF_USER_PRIMARY		0x10	/* [4u] primary user address space */
     44 #define	ASI_AS_IF_USER_SECONDARY	0x11	/* [4u] secondary user address space */
     45 
     46 #define	ASI_PHYS_CACHED			0x14	/* [4u] MMU bypass to main memory */
     47 #define	ASI_PHYS_NON_CACHED		0x15	/* [4u] MMU bypass to I/O location */
     48 
     49 #define	ASI_AS_IF_USER_PRIMARY_LITTLE	0x18	/* [4u] primary user address space, little endian  */
     50 #define	ASI_AS_IF_USER_SECONDARY_LITTIE	0x19	/* [4u] secondary user address space, little endian  */
     51 
     52 #define	ASI_PHYS_CACHED_LITTLE		0x1c	/* [4u] MMU bypass to main memory, little endian */
     53 #define	ASI_PHYS_NON_CACHED_LITTLE	0x1d	/* [4u] MMU bypass to I/O location, little endian */
     54 
     55 #define	ASI_NUCLEUS_QUAD_LDD		0x24	/* [4u] use w/LDDA to load 128-bit item */
     56 #define	ASI_NUCLEUS_QUAD_LDD_LITTLE	0x2c	/* [4u] use w/LDDA to load 128-bit item, little endian */
     57 
     58 #define	ASI_FLUSH_D_PAGE_PRIMARY	0x38	/* [4u] flush D-cache page using primary context */
     59 #define	ASI_FLUSH_D_PAGE_SECONDARY	0x39	/* [4u] flush D-cache page using secondary context */
     60 #define	ASI_FLUSH_D_CTX_PRIMARY		0x3a	/* [4u] flush D-cache context using primary context */
     61 #define	ASI_FLUSH_D_CTX_SECONDARY	0x3b	/* [4u] flush D-cache context using secondary context */
     62 
     63 #define	ASI_LSU_CONTROL_REGISTER	0x45	/* [4u] load/store unit control register */
     64 
     65 #define	ASI_DCACHE_DATA			0x46	/* [4u] diagnostic access to D-cache data RAM */
     66 #define	ASI_DCACHE_TAG			0x47	/* [4u] diagnostic access to D-cache tag RAM */
     67 
     68 #define	ASI_INTR_DISPATCH_STATUS	0x48	/* [4u] interrupt dispatch status register */
     69 #define	ASI_INTR_RECEIVE		0x49	/* [4u] interrupt receive status register */
     70 #define	ASI_MID_REG			0x4a	/* [4u] hardware config and MID */
     71 #define	ASI_ERROR_EN_REG		0x4b	/* [4u] asynchronous error enables */
     72 #define	ASI_AFSR			0x4c	/* [4u] asynchronous fault status register */
     73 #define	ASI_AFAR			0x4d	/* [4u] asynchronous fault address register */
     74 
     75 #define	ASI_ICACHE_DATA			0x66	/* [4u] diagnostic access to D-cache data RAM */
     76 #define	ASI_ICACHE_TAG			0x67	/* [4u] diagnostic access to D-cache tag RAM */
     77 #define	ASI_FLUSH_I_PAGE_PRIMARY	0x68	/* [4u] flush D-cache page using primary context */
     78 #define	ASI_FLUSH_I_PAGE_SECONDARY	0x69	/* [4u] flush D-cache page using secondary context */
     79 #define	ASI_FLUSH_I_CTX_PRIMARY		0x6a	/* [4u] flush D-cache context using primary context */
     80 #define	ASI_FLUSH_I_CTX_SECONDARY	0x6b	/* [4u] flush D-cache context using secondary context */
     81 
     82 #define	ASI_BLOCK_AS_IF_USER_PRIMARY	0x70	/* [4u] primary user address space, block loads/stores */
     83 #define	ASI_BLOCK_AS_IF_USER_SECONDARY	0x71	/* [4u] secondary user address space, block loads/stores */
     84 
     85 #define	ASI_ECACHE_DIAG			0x76	/* [4u] diag access to E-cache tag and data */
     86 #define	ASI_DATAPATH_ERR_REG_WRITE	0x77	/* [4u] ASI is reused */
     87 
     88 #define	ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE	0x78	/* [4u] primary user address space, block loads/stores */
     89 #define	ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE	0x79	/* [4u] secondary user address space, block loads/stores */
     90 
     91 #define	ASI_INTERRUPT_RECEIVE_DATA	0x7f	/* [4u] interrupt receive data registers {0,1,2} */
     92 #define	ASI_DATAPATH_ERR_REG_READ	0x7f	/* [4u] read access to datapath error registers (ASI reused) */
     93 
     94 #define	ASI_PRIMARY			0x80	/* [4u] primary address space */
     95 #define	ASI_SECONDARY			0x81	/* [4u] secondary address space */
     96 #define	ASI_PRIMARY_NOFAULT		0x82	/* [4u] primary address space, no fault */
     97 #define	ASI_SECONDARY_NOFAULT		0x83	/* [4u] secondary address space, no fault */
     98 
     99 #define	ASI_PRIMARY_LITTLE		0x88	/* [4u] primary address space, little endian */
    100 #define	ASI_SECONDARY_LITTLE		0x89	/* [4u] secondary address space, little endian */
    101 #define	ASI_PRIMARY_NOFAULT_LITTLE	0x8a	/* [4u] primary address space, no fault, little endian */
    102 #define	ASI_SECONDARY_NOFAULT_LITTLE	0x8b	/* [4u] secondary address space, no fault, little endian */
    103 
    104 #define	ASI_PST8_PRIMARY		0xc0	/* [VIS] Eight 8-bit partial store, primary */
    105 #define	ASI_PST8_SECONDARY		0xc1	/* [VIS] Eight 8-bit partial store, secondary */
    106 #define	ASI_PST16_PRIMARY		0xc2	/* [VIS] Four 16-bit partial store, primary */
    107 #define	ASI_PST16_SECONDARY		0xc3	/* [VIS] Fout 16-bit partial store, secondary */
    108 #define	ASI_PST32_PRIMARY		0xc4	/* [VIS] Two 32-bit partial store, primary */
    109 #define	ASI_PST32_SECONDARY		0xc5	/* [VIS] Two 32-bit partial store, secondary */
    110 
    111 #define	ASI_PST8_PRIMARY_LITTLE		0xc8	/* [VIS] Eight 8-bit partial store, primary, little endian */
    112 #define	ASI_PST8_SECONDARY_LITTLE	0xc9	/* [VIS] Eight 8-bit partial store, secondary, little endian */
    113 #define	ASI_PST16_PRIMARY_LITTLE	0xca	/* [VIS] Four 16-bit partial store, primary, little endian */
    114 #define	ASI_PST16_SECONDARY_LITTLE	0xcb	/* [VIS] Fout 16-bit partial store, secondary, little endian */
    115 #define	ASI_PST32_PRIMARY_LITTLE	0xcc	/* [VIS] Two 32-bit partial store, primary, little endian */
    116 #define	ASI_PST32_SECONDARY_LITTLE	0xcd	/* [VIS] Two 32-bit partial store, secondary, little endian */
    117 
    118 #define	ASI_FL8_PRIMARY			0xd0	/* [VIS] One 8-bit load/store floating, primary */
    119 #define	ASI_FL8_SECONDARY		0xd1	/* [VIS] One 8-bit load/store floating, secondary */
    120 #define	ASI_FL16_PRIMARY		0xd2	/* [VIS] One 16-bit load/store floating, primary */
    121 #define	ASI_FL16_SECONDARY		0xd3	/* [VIS] One 16-bit load/store floating, secondary */
    122 
    123 #define	ASI_FL8_PRIMARY_LITTLE		0xd8	/* [VIS] One 8-bit load/store floating, primary, little endian */
    124 #define	ASI_FL8_SECONDARY_LITTLE	0xd9	/* [VIS] One 8-bit load/store floating, secondary, little endian */
    125 #define	ASI_FL16_PRIMARY_LITTLE		0xda	/* [VIS] One 16-bit load/store floating, primary, little endian */
    126 #define	ASI_FL16_SECONDARY_LITTLE	0xdb	/* [VIS] One 16-bit load/store floating, secondary, little endian */
    127 
    128 #define	ASI_BLOCK_COMMIT_PRIMARY	0xe0	/* [4u] block store with commit, primary */
    129 #define	ASI_BLOCK_COMMIT_SECONDARY	0xe1	/* [4u] block store with commit, secondary */
    130 #define	ASI_BLOCK_PRIMARY		0xf0	/* [4u] block load/store, primary */
    131 #define	ASI_BLOCK_SECONDARY		0xf1	/* [4u] block load/store, secondary */
    132 #define	ASI_BLOCK_PRIMARY_LITTLE	0xf8	/* [4u] block load/store, primary, little endian */
    133 #define	ASI_BLOCK_SECONDARY_LITTLE	0xf9	/* [4u] block load/store, secondary, little endian */
    134 
    135 
    136 /*
    137  * These are the shorter names used by Solaris
    138  */
    139 
    140 #define	ASI_N		ASI_NUCLEUS
    141 #define	ASI_NL		ASI_NUCLEUS_LITTLE
    142 #define	ASI_AIUP	ASI_AS_IF_USER_PRIMARY
    143 #define	ASI_AIUS	ASI_AS_IF_USER_SECONDARY
    144 #define	ASI_AIUPL	ASI_AS_IF_USER_PRIMARY_LITTLE
    145 #define	ASI_AIUSL	ASI_AS_IF_USER_SECONDARY_LITTLE
    146 #define	ASI_P		ASI_PRIMARY
    147 #define	ASI_S		ASI_SECONDARY
    148 #define	ASI_PNF		ASI_PRIMARY_NOFAULT
    149 #define	ASI_SNF		ASI_SECONDARY_NOFAULT
    150 #define	ASI_PL		ASI_PRIMARY_LITTLE
    151 #define	ASI_SL		ASI_SECONDARY_LITTLE
    152 #define	ASI_PNFL	ASI_PRIMARY_NOFAULT_LITTLE
    153 #define	ASI_SNFL	ASI_SECONDARY_NOFAULT_LITTLE
    154 #define	ASI_FL8_P	ASI_FL8_PRIMARY
    155 #define	ASI_FL8_S	ASI_FL8_SECONDARY
    156 #define	ASI_FL16_P	ASI_FL16_PRIMARY
    157 #define	ASI_FL16_S	ASI_FL16_SECONDARY
    158 #define	ASI_FL8_PL	ASI_FL8_PRIMARY_LITTLE
    159 #define	ASI_FL8_SL	ASI_FL8_SECONDARY_LITTLE
    160 #define	ASI_FL16_PL	ASI_FL16_PRIMARY_LITTLE
    161 #define	ASI_FL16_SL	ASI_FL16_SECONDARY_LITTLE
    162 #define	ASI_BLK_AIUP	ASI_BLOCK_AS_IF_USER_PRIMARY
    163 #define	ASI_BLK_AIUPL	ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
    164 #define	ASI_BLK_AIUS	ASI_BLOCK_AS_IF_USER_SECONDARY
    165 #define	ASI_BLK_AIUSL	ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
    166 #define	ASI_BLK_COMMIT_P		ASI_BLOCK_COMMIT_PRIMARY
    167 #define	ASI_BLK_COMMIT_PRIMARY		ASI_BLOCK_COMMIT_PRIMARY
    168 #define	ASI_BLK_COMMIT_S		ASI_BLOCK_COMMIT_SECONDARY
    169 #define	ASI_BLK_COMMIT_SECONDARY	ASI_BLOCK_COMMIT_SECONDARY
    170 #define	ASI_BLK_P			ASI_BLOCK_PRIMARY
    171 #define	ASI_BLK_PL			ASI_BLOCK_PRIMARY_LITTLE
    172 #define	ASI_BLK_S			ASI_BLOCK_SECONDARY
    173 #define	ASI_BLK_SL			ASI_BLOCK_SECONDARY_LITTLE
    174 
    175 /* Alternative spellings */
    176 #define ASI_PRIMARY_NO_FAULT		ASI_PRIMARY_NOFAULT
    177 #define ASI_PRIMARY_NO_FAULT_LITTLE	ASI_PRIMARY_NOFAULT_LITTLE
    178 #define ASI_SECONDARY_NO_FAULT		ASI_SECONDARY_NOFAULT
    179 #define ASI_SECONDARY_NO_FAULT_LITTLE	ASI_SECONDARY_NOFAULT_LITTLE
    180 
    181 #define	PHYS_ASI(x)	(((x) | 0x09) == 0x1d)
    182 #define	LITTLE_ASI(x)	((x) & ASI_LITTLE)
    183 
    184 /*
    185  * The following are 4u control registers
    186  */
    187 
    188 
    189 /* Get the CPU's UPAID */
    190 #define	UPA_CR_MID(x)	(((x)>>17)&0x1f)
    191 #define	CPU_UPAID	UPA_CR_MID(ldxa(0, ASI_MID_REG))
    192 
    193 /*
    194  * [4u] MMU and Cache Control Register (MCCR)
    195  * use ASI = 0x45
    196  */
    197 #define	ASI_MCCR	ASI_LSU_CONTROL_REGISTER
    198 #define	MCCR		0x00
    199 
    200 /* MCCR Bits and their meanings */
    201 #define	MCCR_DMMU_EN	0x08
    202 #define	MCCR_IMMU_EN	0x04
    203 #define	MCCR_DCACHE_EN	0x02
    204 #define	MCCR_ICACHE_EN	0x01
    205 
    206 
    207 /*
    208  * MMU control registers
    209  */
    210 
    211 /* Choose an MMU */
    212 #define	ASI_DMMU		0x58
    213 #define	ASI_IMMU		0x50
    214 
    215 /* Other assorted MMU ASIs */
    216 #define	ASI_IMMU_8KPTR		0x51
    217 #define	ASI_IMMU_64KPTR		0x52
    218 #define	ASI_IMMU_DATA_IN	0x54
    219 #define	ASI_IMMU_TLB_DATA	0x55
    220 #define	ASI_IMMU_TLB_TAG	0x56
    221 #define	ASI_DMMU_8KPTR		0x59
    222 #define	ASI_DMMU_64KPTR		0x5a
    223 #define	ASI_DMMU_DATA_IN	0x5c
    224 #define	ASI_DMMU_TLB_DATA	0x5d
    225 #define	ASI_DMMU_TLB_TAG	0x5e
    226 
    227 /*
    228  * The following are the control registers
    229  * They work on both MMUs unless noted.
    230  *
    231  * Register contents are defined later on individual registers.
    232  */
    233 #define	TSB_TAG_TARGET		0x0
    234 #define	TLB_DATA_IN		0x0
    235 #define	CTX_PRIMARY		0x08	/* primary context -- DMMU only */
    236 #define	CTX_SECONDARY		0x10	/* secondary context -- DMMU only */
    237 #define	SFSR			0x18
    238 #define	SFAR			0x20	/* fault address -- DMMU only */
    239 #define	TSB			0x28
    240 #define	TLB_TAG_ACCESS		0x30
    241 #define	VIRTUAL_WATCHPOINT	0x38
    242 #define	PHYSICAL_WATCHPOINT	0x40
    243 
    244 /* Tag Target bits */
    245 #define	TAG_TARGET_VA_MASK	0x03ffffffffffffffffLL
    246 #define	TAG_TARGET_VA(x)	(((x)<<22)&TAG_TARGET_VA_MASK)
    247 #define	TAG_TARGET_CONTEXT(x)	((x)>>48)
    248 #define	TAG_TARGET(c,v)		((((uint64_t)c)<<48)|(((uint64_t)v)&TAG_TARGET_VA_MASK))
    249 
    250 /* SFSR bits for both D_SFSR and I_SFSR */
    251 #define	SFSR_ASI(x)		((x)>>16)
    252 #define	SFSR_FT_VA_OOR_2	0x02000 /* IMMU: jumpl or return to unsupportd VA */
    253 #define	SFSR_FT_VA_OOR_1	0x01000 /* fault at unsupported VA */
    254 #define	SFSR_FT_NFO		0x00800	/* DMMU: Access to page marked NFO */
    255 #define	SFSR_ILL_ASI		0x00400	/* DMMU: Illegal (unsupported) ASI */
    256 #define	SFSR_FT_IO_ATOMIC	0x00200	/* DMMU: Atomic access to noncacheable page */
    257 #define	SFSR_FT_ILL_NF		0x00100	/* DMMU: NF load or flush to page marked E (has side effects) */
    258 #define	SFSR_FT_PRIV		0x00080	/* Privilege violation */
    259 #define	SFSR_FT_E		0x00040	/* DMUU: value of E bit associated address */
    260 #define	SFSR_CTXT(x)		(((x)>>4)&0x3)
    261 #define	SFSR_CTXT_IS_PRIM(x)	(SFSR_CTXT(x)==0x00)
    262 #define	SFSR_CTXT_IS_SECOND(x)	(SFSR_CTXT(x)==0x01)
    263 #define	SFSR_CTXT_IS_NUCLEUS(x)	(SFSR_CTXT(x)==0x02)
    264 #define	SFSR_PRIV		0x00008	/* value of PSTATE.PRIV for faulting access */
    265 #define	SFSR_W			0x00004 /* DMMU: attempted write */
    266 #define	SFSR_OW			0x00002 /* Overwrite; prev vault was still valid */
    267 #define	SFSR_FV			0x00001	/* Fault is valid */
    268 #define	SFSR_FT	(SFSR_FT_VA_OOR_2|SFSR_FT_VA_OOR_1|SFSR_FT_NFO|SFSR_ILL_ASI|SFSR_FT_IO_ATOMIC|SFSR_FT_ILL_NF|SFSR_FT_PRIV)
    269 
    270 #if 0
    271 /* Old bits */
    272 #define	SFSR_BITS "\40\16VAT\15VAD\14NFO\13ASI\12A\11NF\10PRIV\7E\6NUCLEUS\5SECONDCTX\4PRIV\3W\2OW\1FV"
    273 #else
    274 /* New bits */
    275 #define	SFSR_BITS "\177\20" \
    276 	"f\20\30ASI\0" "b\16VAT\0" "b\15VAD\0" "b\14NFO\0" "b\13ASI\0" "b\12A\0" "b\11NF\0" "b\10PRIV\0" \
    277 	 "b\7E\0" "b\6NUCLEUS\0" "b\5SECONDCTX\0" "b\4PRIV\0" "b\3W\0" "b\2OW\0" "b\1FV\0"
    278 #endif
    279 
    280 /* ASFR bits */
    281 #define	ASFR_ME			0x100000000LL
    282 #define	ASFR_PRIV		0x080000000LL
    283 #define	ASFR_ISAP		0x040000000LL
    284 #define	ASFR_ETP		0x020000000LL
    285 #define	ASFR_IVUE		0x010000000LL
    286 #define	ASFR_TO			0x008000000LL
    287 #define	ASFR_BERR		0x004000000LL
    288 #define	ASFR_LDP		0x002000000LL
    289 #define	ASFR_CP			0x001000000LL
    290 #define	ASFR_WP			0x000800000LL
    291 #define	ASFR_EDP		0x000400000LL
    292 #define	ASFR_UE			0x000200000LL
    293 #define	ASFR_CE			0x000100000LL
    294 #define	ASFR_ETS		0x0000f0000LL
    295 #define	ASFT_P_SYND		0x00000ffffLL
    296 
    297 #define	AFSR_BITS "\177\20" \
    298         "b\40ME\0"      "b\37PRIV\0"    "b\36ISAP\0"    "b\35ETP\0" \
    299         "b\34IVUE\0"    "b\33TO\0"      "b\32BERR\0"    "b\31LDP\0" \
    300         "b\30CP\0"      "b\27WP\0"      "b\26EDP\0"     "b\25UE\0" \
    301         "b\24CE\0"      "f\20\4ETS\0"   "f\0\20P_SYND\0"
    302 
    303 /*
    304  * Here's the spitfire TSB control register bits.
    305  *
    306  * Each TSB entry is 16-bytes wide.  The TSB must be size aligned
    307  */
    308 #define	TSB_SIZE_512		0x0	/* 8kB, etc. */
    309 #define	TSB_SIZE_1K		0x01
    310 #define	TSB_SIZE_2K		0x02
    311 #define	TSB_SIZE_4K		0x03
    312 #define	TSB_SIZE_8K		0x04
    313 #define	TSB_SIZE_16K		0x05
    314 #define	TSB_SIZE_32K		0x06
    315 #define	TSB_SIZE_64K		0x07
    316 #define	TSB_SPLIT		0x1000
    317 #define	TSB_BASE		0xffffffffffffe000
    318 
    319 /*  TLB Tag Access bits */
    320 #define	TLB_TAG_ACCESS_VA	0xffffffffffffe000
    321 #define	TLB_TAG_ACCESS_CTX	0x0000000000001fff
    322 
    323 /*
    324  * TLB demap registers.  TTEs are defined in v9pte.h
    325  *
    326  * Use the address space to select between IMMU and DMMU.
    327  * The address of the register selects which context register
    328  * to read the ASI from.
    329  *
    330  * The data stored in the register is interpreted as the VA to
    331  * use.  The DEMAP_CTX_<> registers ignore the address and demap the
    332  * entire ASI.
    333  *
    334  */
    335 #define	ASI_IMMU_DEMAP			0x57	/* [4u] IMMU TLB demap */
    336 #define	ASI_DMMU_DEMAP			0x5f	/* [4u] IMMU TLB demap */
    337 
    338 #define	DEMAP_PAGE_NUCLEUS		((0x02)<<4)	/* Demap page from kernel AS */
    339 #define	DEMAP_PAGE_PRIMARY		((0x00)<<4)	/* Demap a page from primary CTXT */
    340 #define	DEMAP_PAGE_SECONDARY		((0x01)<<4)	/* Demap page from secondary CTXT (DMMU only) */
    341 #define	DEMAP_CTX_NUCLEUS		((0x06)<<4)	/* Demap all of kernel CTXT */
    342 #define	DEMAP_CTX_PRIMARY		((0x04)<<4)	/* Demap all of primary CTXT */
    343 #define	DEMAP_CTX_SECONDARY		((0x05)<<4)	/* Demap all of secondary CTXT */
    344 
    345 /*
    346  * Interrupt registers.  This really gets hairy.
    347  */
    348 
    349 /* IRSR -- Interrupt Receive Status Ragister */
    350 #define	ASI_IRSR	0x49
    351 #define	IRSR		0x00
    352 #define	IRSR_BUSY	0x020
    353 #define	IRSR_MID(x)	(x&0x1f)
    354 
    355 /* IRDR -- Interrupt Receive Data Registers */
    356 #define	ASI_IRDR	0x7f
    357 #define	IRDR_0H		0x40
    358 #define	IRDR_0L		0x48	/* unimplemented */
    359 #define	IRDR_1H		0x50
    360 #define	IRDR_1L		0x58	/* unimplemented */
    361 #define	IRDR_2H		0x60
    362 #define	IRDR_2L		0x68	/* unimplemented */
    363 #define	IRDR_3H		0x70	/* unimplemented */
    364 #define	IRDR_3L		0x78	/* unimplemented */
    365 
    366 /* SOFTINT ASRs */
    367 #define	SET_SOFTINT	%asr20	/* Sets these bits */
    368 #define	CLEAR_SOFTINT	%asr21	/* Clears these bits */
    369 #define	SOFTINT		%asr22	/* Reads the register */
    370 #define	TICK_CMPR	%asr23
    371 
    372 #define	TICK_INT	0x01	/* level-14 clock tick */
    373 #define	SOFTINT1	(0x1<<1)
    374 #define	SOFTINT2	(0x1<<2)
    375 #define	SOFTINT3	(0x1<<3)
    376 #define	SOFTINT4	(0x1<<4)
    377 #define	SOFTINT5	(0x1<<5)
    378 #define	SOFTINT6	(0x1<<6)
    379 #define	SOFTINT7	(0x1<<7)
    380 #define	SOFTINT8	(0x1<<8)
    381 #define	SOFTINT9	(0x1<<9)
    382 #define	SOFTINT10	(0x1<<10)
    383 #define	SOFTINT11	(0x1<<11)
    384 #define	SOFTINT12	(0x1<<12)
    385 #define	SOFTINT13	(0x1<<13)
    386 #define	SOFTINT14	(0x1<<14)
    387 #define	SOFTINT15	(0x1<<15)
    388 
    389 /* Interrupt Dispatch -- usually reserved for cross-calls */
    390 #define	ASR_IDSR	0x48 /* Interrupt dispatch status reg */
    391 #define	IDSR		0x00
    392 #define	IDSR_NACK	0x02
    393 #define	IDSR_BUSY	0x01
    394 
    395 #define	ASI_INTERRUPT_DISPATCH		0x77	/* [4u] spitfire interrupt dispatch regs */
    396 #define	IDCR(x)		(((x)<<14)&0x70)	/* Store anything to this address to dispatch crosscall to CPU (x) */
    397 #define	IDDR_0H		0x40			/* Store data to send in these regs */
    398 #define	IDDR_0L		0x48	/* unimplemented */
    399 #define	IDDR_1H		0x50
    400 #define	IDDR_1L		0x58	/* unimplemented */
    401 #define	IDDR_2H		0x60
    402 #define	IDDR_2L		0x68	/* unimplemented */
    403 #define	IDDR_3H		0x70	/* unimplemented */
    404 #define	IDDR_3L		0x78	/* unimplemented */
    405 
    406 /*
    407  * Error registers
    408  */
    409 
    410 /* Since we won't try to fix async errs, we don't care about the bits in the regs */
    411 #define	ASI_AFAR	0x4d	/* Asynchronous fault address register */
    412 #define	AFAR		0x00
    413 #define	ASI_AFSR	0x4c	/* Asynchronous fault status register */
    414 #define	AFSR		0x00
    415 
    416 #define	ASI_P_EER	0x4b	/* Error enable register */
    417 #define	P_EER		0x00
    418 #define	P_EER_ISAPEN	0x04	/* Enable fatal on ISAP */
    419 #define	P_EER_NCEEN	0x02	/* Enable trap on uncorrectable errs */
    420 #define	P_EER_CEEN	0x01	/* Enable trap on correctable errs */
    421 
    422 #define	ASI_DATAPATH_READ	0x7f /* Read the regs */
    423 #define	ASI_DATAPATH_WRITE	0x77 /* Write to the regs */
    424 #define	P_DPER_0	0x00	/* Datapath err reg 0 */
    425 #define	P_DPER_1	0x18	/* Datapath err reg 1 */
    426 #define	P_DCR_0		0x20	/* Datapath control reg 0 */
    427 #define	P_DCR_1		0x38	/* Datapath control reg 0 */
    428 
    429 
    430 /* From sparc64/asm.h which I think I'll deprecate since it makes bus.h a pain. */
    431 
    432 #ifndef _LOCORE
    433 /*
    434  * GCC __asm constructs for doing assembly stuff.
    435  */
    436 
    437 /*
    438  * ``Routines'' to load and store from/to alternate address space.
    439  * The location can be a variable, the asi value (address space indicator)
    440  * must be a constant.
    441  *
    442  * N.B.: You can put as many special functions here as you like, since
    443  * they cost no kernel space or time if they are not used.
    444  *
    445  * These were static inline functions, but gcc screws up the constraints
    446  * on the address space identifiers (the "n"umeric value part) because
    447  * it inlines too late, so we have to use the funny valued-macro syntax.
    448  */
    449 
    450 /*
    451  * Apparently the definition of bypass ASIs is that they all use the
    452  * D$ so we need to flush the D$ to make sure we don't get data pollution.
    453  */
    454 
    455 static __inline__ u_char lduba __P((paddr_t loc, int asi));
    456 static __inline__ u_short lduha __P((paddr_t loc, int asi));
    457 static __inline__ u_int lda __P((paddr_t loc, int asi));
    458 static __inline__ int ldswa __P((paddr_t loc, int asi));
    459 static __inline__ u_int64_t ldxa __P((paddr_t loc, int asi));
    460 static __inline__ u_int64_t ldda __P((paddr_t loc, int asi));
    461 
    462 static __inline__ void stba __P((paddr_t loc, int asi, u_char value));
    463 static __inline__ void stha __P((paddr_t loc, int asi, u_short value));
    464 static __inline__ void sta __P((paddr_t loc, int asi, u_int value));
    465 static __inline__ void stxa __P((paddr_t loc, int asi, u_int64_t value));
    466 static __inline__ void stda __P((paddr_t loc, int asi, u_int64_t value));
    467 
    468 #if 0
    469 static __inline__ unsigned int casa __P((paddr_t loc, int asi,
    470 	unsigned int value, unsigned int oldvalue));
    471 static __inline__ u_int64_t casxa __P((paddr_t loc, int asi,
    472 	u_int64_t value, u_int64_t oldvalue));
    473 #endif
    474 
    475 #ifdef __arch64__
    476 static __inline__ u_char
    477 lduba(paddr_t loc, int asi)
    478 {
    479 	register unsigned int _lduba_v;
    480 
    481 	__asm __volatile("wr %2,%%g0,%%asi; "
    482 		" lduba [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
    483 		"=r" (_lduba_v) :
    484 		"r" ((unsigned long)(loc)), "r" (asi));
    485 	return (_lduba_v);
    486 }
    487 #else
    488 static __inline__ u_char
    489 lduba(paddr_t loc, int asi)
    490 {
    491 	register unsigned int _lduba_v, _loc_hi, _pstate;
    492 
    493 	_loc_hi = (((u_int64_t)loc)>>32);
    494 	if (PHYS_ASI(asi)) {
    495 		__asm __volatile("wr %4,%%g0,%%asi;  sllx %3,32,%0; "
    496 " rdpr %%pstate,%1; or %0,%2,%0; wrpr %1,8,%%pstate; "
    497 " membar #Sync; lduba [%0]%%asi,%0; wrpr %1,0,%%pstate; "
    498 " membar #Sync; wr %%g0, 0x82, %%asi" :
    499 				 "=&r" (_lduba_v),  "=&r" (_pstate) :
    500 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
    501 				 "r" (asi));
    502 	} else {
    503 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
    504 " or %0,%1,%0; lduba [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduba_v) :
    505 				 "r" ((unsigned long)(loc)),
    506 				 "r" (_loc_hi), "r" (asi));
    507 	}
    508 	return (_lduba_v);
    509 }
    510 #endif
    511 
    512 #ifdef __arch64__
    513 /* load half-word from alternate address space */
    514 static __inline__ u_short
    515 lduha(paddr_t loc, int asi)
    516 {
    517 	register unsigned int _lduha_v;
    518 
    519 	__asm __volatile("wr %2,%%g0,%%asi; lduha [%1]%%asi,%0; "
    520 		" wr %%g0, 0x82, %%asi" :
    521 		"=r" (_lduha_v) :
    522 		"r" ((unsigned long)(loc)), "r" (asi));
    523 	return (_lduha_v);
    524 }
    525 #else
    526 /* load half-word from alternate address space */
    527 static __inline__ u_short
    528 lduha(paddr_t loc, int asi) {
    529 	register unsigned int _lduha_v, _loc_hi, _pstate;
    530 
    531 	_loc_hi = (((u_int64_t)loc)>>32);
    532 
    533 	if (PHYS_ASI(asi)) {
    534 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
    535 " rdpr %%pstate,%1; wrpr %1,8,%%pstate; "
    536 " or %0,%2,%0; membar #Sync; lduha [%0]%%asi,%0; wrpr %1,0,%%pstate; "
    537 " membar #Sync; wr %%g0, 0x82, %%asi" :
    538 				 "=&r" (_lduha_v), "=&r" (_pstate) :
    539 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
    540 				 "r" (asi));
    541 	} else {
    542 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
    543 " or %0,%1,%0; lduha [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduha_v) :
    544 				 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
    545 	}
    546 	return (_lduha_v);
    547 }
    548 #endif
    549 
    550 
    551 #ifdef __arch64__
    552 /* load unsigned int from alternate address space */
    553 static __inline__ u_int
    554 lda(paddr_t loc, int asi)
    555 {
    556 	register unsigned int _lda_v;
    557 
    558 	__asm __volatile("wr %2,%%g0,%%asi; lda [%1]%%asi,%0" :
    559 		"=r" (_lda_v) :
    560 		"r" ((unsigned long)(loc)), "r" (asi));
    561 	return (_lda_v);
    562 }
    563 
    564 /* load signed int from alternate address space */
    565 static __inline__ int
    566 ldswa(paddr_t loc, int asi)
    567 {
    568 	register int _lda_v;
    569 
    570 	__asm __volatile("wr %2,%%g0,%%asi; "
    571 		" ldswa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
    572 		"=r" (_lda_v) :
    573 		"r" ((unsigned long)(loc)), "r" (asi));
    574 	return (_lda_v);
    575 }
    576 #else	/* __arch64__ */
    577 /* load unsigned int from alternate address space */
    578 static __inline__ u_int
    579 lda(paddr_t loc, int asi)
    580 {
    581 	register unsigned int _lda_v, _loc_hi, _pstate;
    582 
    583 	_loc_hi = (((u_int64_t)loc)>>32);
    584 	if (PHYS_ASI(asi)) {
    585 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
    586 " sllx %3,32,%0;  wrpr %1,8,%%pstate;  or %0,%2,%0; membar #Sync; "
    587 " lda [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; "
    588 " wr %%g0, 0x82, %%asi" : "=&r" (_lda_v), "=&r" (_pstate) :
    589 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
    590 				 "r" (asi));
    591 	} else {
    592 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
    593 " or %0,%1,%0; lda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
    594 				 "r" ((unsigned long)(loc)),
    595 				 "r" (_loc_hi), "r" (asi));
    596 	}
    597 	return (_lda_v);
    598 }
    599 
    600 /* load signed int from alternate address space */
    601 static __inline__ int
    602 ldswa(paddr_t loc, int asi)
    603 {
    604 	register int _lda_v, _loc_hi, _pstate;
    605 
    606 	_loc_hi = (((u_int64_t)loc)>>32);
    607 	if (PHYS_ASI(asi)) {
    608 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
    609 " wrpr %1,8,%%pstate; sllx %3,32,%0;"
    610 " or %0,%2,%0; membar #Sync; ldswa [%0]%%asi,%0; wrpr %1,0,%%pstate; "
    611 " membar #Sync; wr %%g0, 0x82, %%asi" :
    612 				 "=&r" (_lda_v), "=&r" (_pstate) :
    613 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
    614 				 "r" (asi));
    615 	} else {
    616 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
    617 " or %0,%1,%0; ldswa [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
    618 				 "r" ((unsigned long)(loc)),
    619 				 "r" (_loc_hi), "r" (asi));
    620 	}
    621 	return (_lda_v);
    622 }
    623 #endif /* __arch64__ */
    624 
    625 #ifdef	__arch64__
    626 /* load 64-bit int from alternate address space -- these should never be used */
    627 static __inline__ u_int64_t
    628 ldda(paddr_t loc, int asi)
    629 {
    630 	register long long _lda_v;
    631 
    632 	__asm __volatile("wr %2,%%g0,%%asi; "
    633 		" ldda [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
    634 		"=r" (_lda_v) :
    635 		"r" ((unsigned long)(loc)), "r" (asi));
    636 	return (_lda_v);
    637 }
    638 #else
    639 /* load 64-bit int from alternate address space */
    640 static __inline__ u_int64_t
    641 ldda(paddr_t loc, int asi)
    642 {
    643 	register long long _lda_v, _loc_hi, _pstate;
    644 
    645 	_loc_hi = (((u_int64_t)loc)>>32);
    646 	if (PHYS_ASI(asi)) {
    647 		__asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
    648 " wrpr %1,8,%%pstate; sllx %3,32,%0; or %0,%2,%0; membar #Sync;"
    649 " ldda [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync;  wr %%g0, 0x82, %%asi" :
    650 				 "=&r" (_lda_v), "=&r" (_pstate) :
    651 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
    652 				 "r" (asi));
    653 	} else {
    654 		__asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
    655 " or %0,%1,%0; ldda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
    656 				 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
    657 	}
    658 	return (_lda_v);
    659 }
    660 #endif
    661 
    662 
    663 #ifdef __arch64__
    664 /* native load 64-bit int from alternate address space w/64-bit compiler*/
    665 static __inline__ u_int64_t
    666 ldxa(paddr_t loc, int asi)
    667 {
    668 	register unsigned long _lda_v;
    669 
    670 	__asm __volatile("wr %2,%%g0,%%asi; "
    671 		" ldxa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
    672 		"=r" (_lda_v) :
    673 		"r" ((unsigned long)(loc)), "r" (asi));
    674 	return (_lda_v);
    675 }
    676 #else
    677 /* native load 64-bit int from alternate address space w/32-bit compiler*/
    678 static __inline__ u_int64_t
    679 ldxa(paddr_t loc, int asi)
    680 {
    681 	register unsigned long _ldxa_lo, _ldxa_hi, _loc_hi;
    682 
    683 	_loc_hi = (((u_int64_t)loc)>>32);
    684 	if (PHYS_ASI(asi)) {
    685 		__asm __volatile("wr %4,%%g0,%%asi;  rdpr %%pstate,%1; "
    686 " sllx %3,32,%0; wrpr %1,8,%%pstate; or %0,%2,%0; membar #Sync; "
    687 " ldxa [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; "
    688 " srlx %0,32,%1; srl %0,0,%0; wr %%g0, 0x82, %%asi" :
    689 				 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
    690 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
    691 				 "r" (asi));
    692 	} else {
    693 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
    694 " or %0,%2,%0; ldxa [%0]%%asi,%0; srlx %0,32,%1; "
    695 " srl %0,0,%0;; wr %%g0, 0x82, %%asi" :
    696 				 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
    697 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
    698 				 "r" (asi));
    699 	}
    700 	return ((((int64_t)_ldxa_hi)<<32)|_ldxa_lo);
    701 }
    702 #endif
    703 
    704 /* store byte to alternate address space */
    705 #ifdef __arch64__
    706 static __inline__ void
    707 stba(paddr_t loc, int asi, u_char value)
    708 {
    709 	__asm __volatile("wr %2,%%g0,%%asi; stba %0,[%1]%%asi; "
    710 		" wr %%g0, 0x82, %%asi" : :
    711 		"r" ((int)(value)), "r" ((unsigned long)(loc)),
    712 		"r" (asi));
    713 }
    714 #else
    715 static __inline__ void
    716 stba(paddr_t loc, int asi, u_char value)
    717 {
    718 	register int _loc_hi, _pstate;
    719 
    720 	_loc_hi = (((u_int64_t)loc)>>32);
    721 	if (PHYS_ASI(asi)) {
    722 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
    723 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stba %2,[%0]%%asi; "
    724 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
    725 				 "=&r" (_loc_hi), "=&r" (_pstate) :
    726 				 "r" ((int)(value)), "r" ((unsigned long)(loc)),
    727 				 "r" (_loc_hi), "r" (asi));
    728 	} else {
    729 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
    730 " or %2,%0,%0; stba %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
    731 				 "r" ((int)(value)), "r" ((unsigned long)(loc)),
    732 				 "r" (_loc_hi), "r" (asi));
    733 	}
    734 }
    735 #endif
    736 
    737 /* store half-word to alternate address space */
    738 #ifdef __arch64__
    739 static __inline__ void
    740 stha(paddr_t loc, int asi, u_short value)
    741 {
    742 	__asm __volatile("wr %2,%%g0,%%asi; stha %0,[%1]%%asi; "
    743 		" wr %%g0, 0x82, %%asi" : :
    744 		"r" ((int)(value)), "r" ((unsigned long)(loc)),
    745 		"r" (asi) : "memory");
    746 }
    747 #else
    748 static __inline__ void
    749 stha(paddr_t loc, int asi, u_short value)
    750 {
    751 	register int _loc_hi, _pstate;
    752 
    753 	_loc_hi = (((u_int64_t)loc)>>32);
    754 	if (PHYS_ASI(asi)) {
    755 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
    756 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stha %2,[%0]%%asi; "
    757 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
    758 			"=&r" (_loc_hi), "=&r" (_pstate) :
    759 			"r" ((int)(value)), "r" ((unsigned long)(loc)),
    760 			"r" (_loc_hi), "r" (asi) : "memory");
    761 	} else {
    762 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
    763 " or %2,%0,%0; stha %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
    764 				 "r" ((int)(value)), "r" ((unsigned long)(loc)),
    765 				 "r" (_loc_hi), "r" (asi) : "memory");
    766 	}
    767 }
    768 #endif
    769 
    770 
    771 /* store int to alternate address space */
    772 #ifdef __arch64__
    773 static __inline__ void
    774 sta(paddr_t loc, int asi, u_int value)
    775 {
    776 	__asm __volatile("wr %2,%%g0,%%asi; sta %0,[%1]%%asi; "
    777 		" wr %%g0, 0x82, %%asi" : :
    778 		"r" ((int)(value)), "r" ((unsigned long)(loc)),
    779 		"r" (asi) : "memory");
    780 }
    781 #else
    782 static __inline__ void
    783 sta(paddr_t loc, int asi, u_int value)
    784 {
    785 	register int _loc_hi, _pstate;
    786 
    787 	_loc_hi = (((u_int64_t)loc)>>32);
    788 	if (PHYS_ASI(asi)) {
    789 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
    790 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; sta %2,[%0]%%asi; "
    791 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
    792 			"=&r" (_loc_hi), "=&r" (_pstate) :
    793 			"r" ((int)(value)), "r" ((unsigned long)(loc)),
    794 			"r" (_loc_hi), "r" (asi) : "memory");
    795 	} else {
    796 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
    797 " or %2,%0,%0; sta %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
    798 				 "r" ((int)(value)), "r" ((unsigned long)(loc)),
    799 				 "r" (_loc_hi), "r" (asi) : "memory");
    800 	}
    801 }
    802 #endif
    803 
    804 /* store 64-bit int to alternate address space */
    805 #ifdef __arch64__
    806 static __inline__ void
    807 stda(paddr_t loc, int asi, u_int64_t value)
    808 {
    809 	__asm __volatile("wr %2,%%g0,%%asi; stda %0,[%1]%%asi; "
    810 		" wr %%g0, 0x82, %%asi" : :
    811 		"r" ((long long)(value)), "r" ((unsigned long)(loc)),
    812 		"r" (asi) : "memory");
    813 }
    814 #else
    815 static __inline__ void
    816 stda(paddr_t loc, int asi, u_int64_t value)
    817 {
    818 	register int _loc_hi, _pstate;
    819 
    820 	_loc_hi = (((u_int64_t)loc)>>32);
    821 	if (PHYS_ASI(asi)) {
    822 		__asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
    823 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stda %2,[%0]%%asi; "
    824 " wrpr %1,0,%%pstate; membar #Sync;  wr %%g0, 0x82, %%asi" :
    825 			"=&r" (_loc_hi), "=&r" (_pstate) :
    826 			"r" ((long long)(value)), "r" ((unsigned long)(loc)),
    827 			"r" (_loc_hi), "r" (asi) : "memory");
    828 	} else {
    829 		__asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
    830 " or %2,%0,%0; stda %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
    831 			"=&r" (_loc_hi) :
    832 			"r" ((long long)(value)), "r" ((unsigned long)(loc)),
    833 			"r" (_loc_hi), "r" (asi) : "memory");
    834 	}
    835 }
    836 #endif
    837 
    838 #ifdef __arch64__
    839 /* native store 64-bit int to alternate address space w/64-bit compiler*/
    840 static __inline__ void
    841 stxa(paddr_t loc, int asi, u_int64_t value)
    842 {
    843 	__asm __volatile("wr %2,%%g0,%%asi; stxa %0,[%1]%%asi; "
    844 		" wr %%g0, 0x82, %%asi" : :
    845 		"r" ((unsigned long)(value)),
    846 		"r" ((unsigned long)(loc)), "r" (asi) : "memory");
    847 }
    848 #else
    849 /* native store 64-bit int to alternate address space w/32-bit compiler*/
    850 static __inline__ void
    851 stxa(paddr_t loc, int asi, u_int64_t value)
    852 {
    853 	int _stxa_lo, _stxa_hi, _loc_hi;
    854 
    855 	_stxa_lo = value;
    856 	_stxa_hi = ((u_int64_t)value)>>32;
    857 	_loc_hi = (((u_int64_t)(u_long)loc)>>32);
    858 
    859 	if (PHYS_ASI(asi)) {
    860 		__asm __volatile("wr %7,%%g0,%%asi; sllx %4,32,%1; "
    861 " sllx %6,32,%0;  or %1,%3,%1; rdpr %%pstate,%2; or %0,%5,%0; "
    862 " wrpr %2,8,%%pstate; stxa %1,[%0]%%asi; wrpr %2,0,%%pstate; "
    863 " membar #Sync; wr %%g0, 0x82, %%asi" :
    864 				 "=&r" (_loc_hi), "=&r" (_stxa_hi),
    865 				 "=&r" ((int)(_stxa_lo)) :
    866 				 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
    867 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
    868 				 "r" (asi) : "memory");
    869 	} else {
    870 		__asm __volatile("wr %6,%%g0,%%asi; sllx %3,32,%1; sllx %5,32,%0; "
    871 " or %1,%2,%1; or %0,%4,%0; stxa %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
    872 				 "=&r" (_loc_hi), "=&r" (_stxa_hi) :
    873 				 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
    874 				 "r" ((unsigned long)(loc)), "r" (_loc_hi),
    875 				 "r" (asi) : "memory");
    876 	}
    877 }
    878 #endif
    879 
    880 #if 0
    881 #ifdef __arch64__
    882 /* native store 64-bit int to alternate address space w/64-bit compiler*/
    883 static __inline__ u_int64_t
    884 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
    885 {
    886 	__asm __volatile("wr %3,%%g0,%%asi; casxa [%1]%%asi,%2,%0; "
    887 		" wr %%g0, 0x82, %%asi" :
    888 		"+r" (value) :
    889 		"r" ((unsigned long)(loc)), "r" (oldvalue), "r" (asi) :
    890 		"memory");
    891 	return (value);
    892 }
    893 #else
    894 /* native store 64-bit int to alternate address space w/32-bit compiler*/
    895 static __inline__ u_int64_t
    896 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
    897 {
    898 	int _casxa_lo, _casxa_hi, _loc_hi, _oval_hi;
    899 
    900 	_casxa_lo = value;
    901 	_casxa_hi = ((u_int64_t)value)>>32;
    902 	_oval_hi = ((u_int64_t)oldvalue)>>32;
    903 	_loc_hi = (((u_int64_t)(u_long)loc)>>32);
    904 
    905 #ifdef __notyet
    906 /*
    907  * gcc cannot handle this since it thinks it has >10 asm operands.
    908  */
    909 	if (PHYS_ASI(asi)) {
    910 		__asm __volatile("wr %6,%%g0,%%asi; sllx %1,32,%1; rdpr %%pstate,%2; "
    911 " sllx %0,32,%0; or %1,%2,%1; sllx %3,32,%3; or %0,%4,%0; or %3,%5,%3; "
    912 " wrpr %2,8,%%pstate; casxa [%0]%%asi,%3,%1; wrpr %2,0,%%pstate; "
    913 " andn %0,0x1f,%3; membar #Sync; "
    914 " sll %1,0,%2; srax %1,32,%1; wr %%g0, 0x82, %%asi " :
    915 			"+r" (_loc_hi), "+r" (_casxa_hi),
    916 			"+r" (_casxa_lo), "+r" (_oval_hi) :
    917 			"r" ((unsigned long)(loc)),
    918 			"r" ((unsigned int)(oldvalue)),
    919 			"r" (asi));
    920 	} else {
    921 		__asm __volatile("wr %7,%%g0,%%asi; sllx %1,32,%1; sllx %5,32,%0; "
    922 " or %1,%2,%1; sllx %3,32,%2; or %0,%4,%0; or %2,%4,%2; "
    923 " casxa [%0]%%asi,%2,%1; sll %1,0,%2; srax %o1,32,%o1; wr %%g0, 0x82, %%asi " :
    924 			"=&r" (_loc_hi), "+r" (_casxa_hi), "+r" (_casxa_lo) :
    925 			"r" ((int)(_oval_hi)), "r" ((int)(oldvalue)),
    926 			"r" ((unsigned long)(loc)), "r" (_loc_hi),
    927 			"r" (asi) : "memory");
    928 	}
    929 #endif
    930 	return (((u_int64_t)_casxa_hi<<32)|(u_int64_t)_casxa_lo);
    931 }
    932 #endif
    933 #endif /* 0 */
    934 
    935 
    936 
    937 /* flush address from data cache */
    938 #define	flush(loc) ({ \
    939 	__asm __volatile("flush %0" : : \
    940 	     "r" ((unsigned long)(loc))); \
    941 })
    942 
    943 /* Flush a D$ line */
    944 #if 0
    945 #define	flushline(loc) ({ \
    946 	stxa(((paddr_t)loc)&(~0x1f), (ASI_DCACHE_TAG), 0); \
    947         membar_sync(); \
    948 })
    949 #else
    950 #define	flushline(loc)
    951 #endif
    952 
    953 /* The following two enable or disable the dcache in the LSU control register */
    954 #define	dcenable() ({ \
    955 	int res; \
    956 	__asm __volatile("ldxa [%%g0] %1,%0; or %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
    957 		: "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
    958 })
    959 #define	dcdisable() ({ \
    960 	int res; \
    961 	__asm __volatile("ldxa [%%g0] %1,%0; andn %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
    962 		: "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
    963 })
    964 
    965 /*
    966  * SPARC V9 memory barrier instructions.
    967  */
    968 /* Make all stores complete before next store */
    969 #define	membar_storestore() __asm __volatile("membar #StoreStore" : :)
    970 /* Make all loads complete before next store */
    971 #define	membar_loadstore() __asm __volatile("membar #LoadStore" : :)
    972 /* Make all stores complete before next load */
    973 #define	membar_storeload() __asm __volatile("membar #StoreLoad" : :)
    974 /* Make all loads complete before next load */
    975 #define	membar_loadload() __asm __volatile("membar #LoadLoad" : :)
    976 /* Complete all outstanding memory operations and exceptions */
    977 #define	membar_sync() __asm __volatile("membar #Sync" : :)
    978 /* Complete all outstanding memory operations */
    979 #define	membar_memissue() __asm __volatile("membar #MemIssue" : :)
    980 /* Complete all outstanding stores before any new loads */
    981 #define	membar_lookaside() __asm __volatile("membar #Lookaside" : :)
    982 
    983 #ifdef __arch64__
    984 /* read 64-bit %tick register */
    985 #define	tick() ({ \
    986 	register u_long _tick_tmp; \
    987 	__asm __volatile("rdpr %%tick, %0" : "=r" (_tick_tmp) :); \
    988 	_tick_tmp; \
    989 })
    990 #else
    991 /* read 64-bit %tick register on 32-bit system */
    992 #define	tick() ({ \
    993 	register u_int _tick_hi = 0, _tick_lo = 0; \
    994 	__asm __volatile("rdpr %%tick, %0; srl %0,0,%1; srlx %0,32,%0 " \
    995 		: "=r" (_tick_hi), "=r" (_tick_lo) : ); \
    996 	(((u_int64_t)_tick_hi)<<32)|((u_int64_t)_tick_lo); \
    997 })
    998 #endif
    999 
   1000 extern void next_tick __P((long));
   1001 #endif
   1002