ctlreg.h revision 1.30 1 /* $NetBSD: ctlreg.h,v 1.30 2002/04/24 23:54:24 eeh Exp $ */
2
3 /*
4 * Copyright (c) 1996-2002 Eduardo Horvath
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
13 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
16 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
17 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
19 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
21 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
22 * SUCH DAMAGE.
23 *
24 */
25
26 /*
27 * Sun 4u control registers. (includes address space definitions
28 * and some registers in control space).
29 */
30
31 /*
32 * The Alternate address spaces.
33 *
34 * 0x00-0x7f are privileged
35 * 0x80-0xff can be used by users
36 */
37
38 #define ASI_LITTLE 0x08 /* This bit should make an ASI little endian */
39
40 #define ASI_NUCLEUS 0x04 /* [4u] kernel address space */
41 #define ASI_NUCLEUS_LITTLE 0x0c /* [4u] kernel address space, little endian */
42
43 #define ASI_AS_IF_USER_PRIMARY 0x10 /* [4u] primary user address space */
44 #define ASI_AS_IF_USER_SECONDARY 0x11 /* [4u] secondary user address space */
45
46 #define ASI_PHYS_CACHED 0x14 /* [4u] MMU bypass to main memory */
47 #define ASI_PHYS_NON_CACHED 0x15 /* [4u] MMU bypass to I/O location */
48
49 #define ASI_AS_IF_USER_PRIMARY_LITTLE 0x18 /* [4u] primary user address space, little endian */
50 #define ASI_AS_IF_USER_SECONDARY_LITTIE 0x19 /* [4u] secondary user address space, little endian */
51
52 #define ASI_PHYS_CACHED_LITTLE 0x1c /* [4u] MMU bypass to main memory, little endian */
53 #define ASI_PHYS_NON_CACHED_LITTLE 0x1d /* [4u] MMU bypass to I/O location, little endian */
54
55 #define ASI_NUCLEUS_QUAD_LDD 0x24 /* [4u] use w/LDDA to load 128-bit item */
56 #define ASI_NUCLEUS_QUAD_LDD_LITTLE 0x2c /* [4u] use w/LDDA to load 128-bit item, little endian */
57
58 #define ASI_FLUSH_D_PAGE_PRIMARY 0x38 /* [4u] flush D-cache page using primary context */
59 #define ASI_FLUSH_D_PAGE_SECONDARY 0x39 /* [4u] flush D-cache page using secondary context */
60 #define ASI_FLUSH_D_CTX_PRIMARY 0x3a /* [4u] flush D-cache context using primary context */
61 #define ASI_FLUSH_D_CTX_SECONDARY 0x3b /* [4u] flush D-cache context using secondary context */
62
63 #define ASI_LSU_CONTROL_REGISTER 0x45 /* [4u] load/store unit control register */
64
65 #define ASI_DCACHE_DATA 0x46 /* [4u] diagnostic access to D-cache data RAM */
66 #define ASI_DCACHE_TAG 0x47 /* [4u] diagnostic access to D-cache tag RAM */
67
68 #define ASI_INTR_DISPATCH_STATUS 0x48 /* [4u] interrupt dispatch status register */
69 #define ASI_INTR_RECEIVE 0x49 /* [4u] interrupt receive status register */
70 #define ASI_MID_REG 0x4a /* [4u] hardware config and MID */
71 #define ASI_ERROR_EN_REG 0x4b /* [4u] asynchronous error enables */
72 #define ASI_AFSR 0x4c /* [4u] asynchronous fault status register */
73 #define ASI_AFAR 0x4d /* [4u] asynchronous fault address register */
74
75 #define ASI_ICACHE_DATA 0x66 /* [4u] diagnostic access to D-cache data RAM */
76 #define ASI_ICACHE_TAG 0x67 /* [4u] diagnostic access to D-cache tag RAM */
77 #define ASI_FLUSH_I_PAGE_PRIMARY 0x68 /* [4u] flush D-cache page using primary context */
78 #define ASI_FLUSH_I_PAGE_SECONDARY 0x69 /* [4u] flush D-cache page using secondary context */
79 #define ASI_FLUSH_I_CTX_PRIMARY 0x6a /* [4u] flush D-cache context using primary context */
80 #define ASI_FLUSH_I_CTX_SECONDARY 0x6b /* [4u] flush D-cache context using secondary context */
81
82 #define ASI_BLOCK_AS_IF_USER_PRIMARY 0x70 /* [4u] primary user address space, block loads/stores */
83 #define ASI_BLOCK_AS_IF_USER_SECONDARY 0x71 /* [4u] secondary user address space, block loads/stores */
84
85 #define ASI_ECACHE_DIAG 0x76 /* [4u] diag access to E-cache tag and data */
86 #define ASI_DATAPATH_ERR_REG_WRITE 0x77 /* [4u] ASI is reused */
87
88 #define ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE 0x78 /* [4u] primary user address space, block loads/stores */
89 #define ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE 0x79 /* [4u] secondary user address space, block loads/stores */
90
91 #define ASI_INTERRUPT_RECEIVE_DATA 0x7f /* [4u] interrupt receive data registers {0,1,2} */
92 #define ASI_DATAPATH_ERR_REG_READ 0x7f /* [4u] read access to datapath error registers (ASI reused) */
93
94 #define ASI_PRIMARY 0x80 /* [4u] primary address space */
95 #define ASI_SECONDARY 0x81 /* [4u] secondary address space */
96 #define ASI_PRIMARY_NOFAULT 0x82 /* [4u] primary address space, no fault */
97 #define ASI_SECONDARY_NOFAULT 0x83 /* [4u] secondary address space, no fault */
98
99 #define ASI_PRIMARY_LITTLE 0x88 /* [4u] primary address space, little endian */
100 #define ASI_SECONDARY_LITTLE 0x89 /* [4u] secondary address space, little endian */
101 #define ASI_PRIMARY_NOFAULT_LITTLE 0x8a /* [4u] primary address space, no fault, little endian */
102 #define ASI_SECONDARY_NOFAULT_LITTLE 0x8b /* [4u] secondary address space, no fault, little endian */
103
104 #define ASI_PST8_PRIMARY 0xc0 /* [VIS] Eight 8-bit partial store, primary */
105 #define ASI_PST8_SECONDARY 0xc1 /* [VIS] Eight 8-bit partial store, secondary */
106 #define ASI_PST16_PRIMARY 0xc2 /* [VIS] Four 16-bit partial store, primary */
107 #define ASI_PST16_SECONDARY 0xc3 /* [VIS] Fout 16-bit partial store, secondary */
108 #define ASI_PST32_PRIMARY 0xc4 /* [VIS] Two 32-bit partial store, primary */
109 #define ASI_PST32_SECONDARY 0xc5 /* [VIS] Two 32-bit partial store, secondary */
110
111 #define ASI_PST8_PRIMARY_LITTLE 0xc8 /* [VIS] Eight 8-bit partial store, primary, little endian */
112 #define ASI_PST8_SECONDARY_LITTLE 0xc9 /* [VIS] Eight 8-bit partial store, secondary, little endian */
113 #define ASI_PST16_PRIMARY_LITTLE 0xca /* [VIS] Four 16-bit partial store, primary, little endian */
114 #define ASI_PST16_SECONDARY_LITTLE 0xcb /* [VIS] Fout 16-bit partial store, secondary, little endian */
115 #define ASI_PST32_PRIMARY_LITTLE 0xcc /* [VIS] Two 32-bit partial store, primary, little endian */
116 #define ASI_PST32_SECONDARY_LITTLE 0xcd /* [VIS] Two 32-bit partial store, secondary, little endian */
117
118 #define ASI_FL8_PRIMARY 0xd0 /* [VIS] One 8-bit load/store floating, primary */
119 #define ASI_FL8_SECONDARY 0xd1 /* [VIS] One 8-bit load/store floating, secondary */
120 #define ASI_FL16_PRIMARY 0xd2 /* [VIS] One 16-bit load/store floating, primary */
121 #define ASI_FL16_SECONDARY 0xd3 /* [VIS] One 16-bit load/store floating, secondary */
122
123 #define ASI_FL8_PRIMARY_LITTLE 0xd8 /* [VIS] One 8-bit load/store floating, primary, little endian */
124 #define ASI_FL8_SECONDARY_LITTLE 0xd9 /* [VIS] One 8-bit load/store floating, secondary, little endian */
125 #define ASI_FL16_PRIMARY_LITTLE 0xda /* [VIS] One 16-bit load/store floating, primary, little endian */
126 #define ASI_FL16_SECONDARY_LITTLE 0xdb /* [VIS] One 16-bit load/store floating, secondary, little endian */
127
128 #define ASI_BLOCK_COMMIT_PRIMARY 0xe0 /* [4u] block store with commit, primary */
129 #define ASI_BLOCK_COMMIT_SECONDARY 0xe1 /* [4u] block store with commit, secondary */
130 #define ASI_BLOCK_PRIMARY 0xf0 /* [4u] block load/store, primary */
131 #define ASI_BLOCK_SECONDARY 0xf1 /* [4u] block load/store, secondary */
132 #define ASI_BLOCK_PRIMARY_LITTLE 0xf8 /* [4u] block load/store, primary, little endian */
133 #define ASI_BLOCK_SECONDARY_LITTLE 0xf9 /* [4u] block load/store, secondary, little endian */
134
135
136 /*
137 * These are the shorter names used by Solaris
138 */
139
140 #define ASI_N ASI_NUCLEUS
141 #define ASI_NL ASI_NUCLEUS_LITTLE
142 #define ASI_AIUP ASI_AS_IF_USER_PRIMARY
143 #define ASI_AIUS ASI_AS_IF_USER_SECONDARY
144 #define ASI_AIUPL ASI_AS_IF_USER_PRIMARY_LITTLE
145 #define ASI_AIUSL ASI_AS_IF_USER_SECONDARY_LITTLE
146 #define ASI_P ASI_PRIMARY
147 #define ASI_S ASI_SECONDARY
148 #define ASI_PNF ASI_PRIMARY_NOFAULT
149 #define ASI_SNF ASI_SECONDARY_NOFAULT
150 #define ASI_PL ASI_PRIMARY_LITTLE
151 #define ASI_SL ASI_SECONDARY_LITTLE
152 #define ASI_PNFL ASI_PRIMARY_NOFAULT_LITTLE
153 #define ASI_SNFL ASI_SECONDARY_NOFAULT_LITTLE
154 #define ASI_FL8_P ASI_FL8_PRIMARY
155 #define ASI_FL8_S ASI_FL8_SECONDARY
156 #define ASI_FL16_P ASI_FL16_PRIMARY
157 #define ASI_FL16_S ASI_FL16_SECONDARY
158 #define ASI_FL8_PL ASI_FL8_PRIMARY_LITTLE
159 #define ASI_FL8_SL ASI_FL8_SECONDARY_LITTLE
160 #define ASI_FL16_PL ASI_FL16_PRIMARY_LITTLE
161 #define ASI_FL16_SL ASI_FL16_SECONDARY_LITTLE
162 #define ASI_BLK_AIUP ASI_BLOCK_AS_IF_USER_PRIMARY
163 #define ASI_BLK_AIUPL ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
164 #define ASI_BLK_AIUS ASI_BLOCK_AS_IF_USER_SECONDARY
165 #define ASI_BLK_AIUSL ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
166 #define ASI_BLK_COMMIT_P ASI_BLOCK_COMMIT_PRIMARY
167 #define ASI_BLK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_PRIMARY
168 #define ASI_BLK_COMMIT_S ASI_BLOCK_COMMIT_SECONDARY
169 #define ASI_BLK_COMMIT_SECONDARY ASI_BLOCK_COMMIT_SECONDARY
170 #define ASI_BLK_P ASI_BLOCK_PRIMARY
171 #define ASI_BLK_PL ASI_BLOCK_PRIMARY_LITTLE
172 #define ASI_BLK_S ASI_BLOCK_SECONDARY
173 #define ASI_BLK_SL ASI_BLOCK_SECONDARY_LITTLE
174
175 /* Alternative spellings */
176 #define ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NOFAULT
177 #define ASI_PRIMARY_NO_FAULT_LITTLE ASI_PRIMARY_NOFAULT_LITTLE
178 #define ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NOFAULT
179 #define ASI_SECONDARY_NO_FAULT_LITTLE ASI_SECONDARY_NOFAULT_LITTLE
180
181 #define PHYS_ASI(x) (((x) | 0x09) == 0x1d)
182 #define LITTLE_ASI(x) ((x) & ASI_LITTLE)
183
184 /*
185 * The following are 4u control registers
186 */
187
188
189 /* Get the CPU's UPAID */
190 #define UPA_CR_MID(x) (((x)>>17)&0x1f)
191 #define CPU_UPAID UPA_CR_MID(ldxa(0, ASI_MID_REG))
192
193 /*
194 * [4u] MMU and Cache Control Register (MCCR)
195 * use ASI = 0x45
196 */
197 #define ASI_MCCR ASI_LSU_CONTROL_REGISTER
198 #define MCCR 0x00
199
200 /* MCCR Bits and their meanings */
201 #define MCCR_DMMU_EN 0x08
202 #define MCCR_IMMU_EN 0x04
203 #define MCCR_DCACHE_EN 0x02
204 #define MCCR_ICACHE_EN 0x01
205
206
207 /*
208 * MMU control registers
209 */
210
211 /* Choose an MMU */
212 #define ASI_DMMU 0x58
213 #define ASI_IMMU 0x50
214
215 /* Other assorted MMU ASIs */
216 #define ASI_IMMU_8KPTR 0x51
217 #define ASI_IMMU_64KPTR 0x52
218 #define ASI_IMMU_DATA_IN 0x54
219 #define ASI_IMMU_TLB_DATA 0x55
220 #define ASI_IMMU_TLB_TAG 0x56
221 #define ASI_DMMU_8KPTR 0x59
222 #define ASI_DMMU_64KPTR 0x5a
223 #define ASI_DMMU_DATA_IN 0x5c
224 #define ASI_DMMU_TLB_DATA 0x5d
225 #define ASI_DMMU_TLB_TAG 0x5e
226
227 /*
228 * The following are the control registers
229 * They work on both MMUs unless noted.
230 *
231 * Register contents are defined later on individual registers.
232 */
233 #define TSB_TAG_TARGET 0x0
234 #define TLB_DATA_IN 0x0
235 #define CTX_PRIMARY 0x08 /* primary context -- DMMU only */
236 #define CTX_SECONDARY 0x10 /* secondary context -- DMMU only */
237 #define SFSR 0x18
238 #define SFAR 0x20 /* fault address -- DMMU only */
239 #define TSB 0x28
240 #define TLB_TAG_ACCESS 0x30
241 #define VIRTUAL_WATCHPOINT 0x38
242 #define PHYSICAL_WATCHPOINT 0x40
243
244 /* Tag Target bits */
245 #define TAG_TARGET_VA_MASK 0x03ffffffffffffffffLL
246 #define TAG_TARGET_VA(x) (((x)<<22)&TAG_TARGET_VA_MASK)
247 #define TAG_TARGET_CONTEXT(x) ((x)>>48)
248 #define TAG_TARGET(c,v) ((((uint64_t)c)<<48)|(((uint64_t)v)&TAG_TARGET_VA_MASK))
249
250 /* SFSR bits for both D_SFSR and I_SFSR */
251 #define SFSR_ASI(x) ((x)>>16)
252 #define SFSR_FT_VA_OOR_2 0x02000 /* IMMU: jumpl or return to unsupportd VA */
253 #define SFSR_FT_VA_OOR_1 0x01000 /* fault at unsupported VA */
254 #define SFSR_FT_NFO 0x00800 /* DMMU: Access to page marked NFO */
255 #define SFSR_ILL_ASI 0x00400 /* DMMU: Illegal (unsupported) ASI */
256 #define SFSR_FT_IO_ATOMIC 0x00200 /* DMMU: Atomic access to noncacheable page */
257 #define SFSR_FT_ILL_NF 0x00100 /* DMMU: NF load or flush to page marked E (has side effects) */
258 #define SFSR_FT_PRIV 0x00080 /* Privilege violation */
259 #define SFSR_FT_E 0x00040 /* DMUU: value of E bit associated address */
260 #define SFSR_CTXT(x) (((x)>>4)&0x3)
261 #define SFSR_CTXT_IS_PRIM(x) (SFSR_CTXT(x)==0x00)
262 #define SFSR_CTXT_IS_SECOND(x) (SFSR_CTXT(x)==0x01)
263 #define SFSR_CTXT_IS_NUCLEUS(x) (SFSR_CTXT(x)==0x02)
264 #define SFSR_PRIV 0x00008 /* value of PSTATE.PRIV for faulting access */
265 #define SFSR_W 0x00004 /* DMMU: attempted write */
266 #define SFSR_OW 0x00002 /* Overwrite; prev vault was still valid */
267 #define SFSR_FV 0x00001 /* Fault is valid */
268 #define SFSR_FT (SFSR_FT_VA_OOR_2|SFSR_FT_VA_OOR_1|SFSR_FT_NFO|SFSR_ILL_ASI|SFSR_FT_IO_ATOMIC|SFSR_FT_ILL_NF|SFSR_FT_PRIV)
269
270 #if 0
271 /* Old bits */
272 #define SFSR_BITS "\40\16VAT\15VAD\14NFO\13ASI\12A\11NF\10PRIV\7E\6NUCLEUS\5SECONDCTX\4PRIV\3W\2OW\1FV"
273 #else
274 /* New bits */
275 #define SFSR_BITS "\177\20" \
276 "f\20\30ASI\0" "b\16VAT\0" "b\15VAD\0" "b\14NFO\0" "b\13ASI\0" "b\12A\0" "b\11NF\0" "b\10PRIV\0" \
277 "b\7E\0" "b\6NUCLEUS\0" "b\5SECONDCTX\0" "b\4PRIV\0" "b\3W\0" "b\2OW\0" "b\1FV\0"
278 #endif
279
280 /* ASFR bits */
281 #define ASFR_ME 0x100000000LL
282 #define ASFR_PRIV 0x080000000LL
283 #define ASFR_ISAP 0x040000000LL
284 #define ASFR_ETP 0x020000000LL
285 #define ASFR_IVUE 0x010000000LL
286 #define ASFR_TO 0x008000000LL
287 #define ASFR_BERR 0x004000000LL
288 #define ASFR_LDP 0x002000000LL
289 #define ASFR_CP 0x001000000LL
290 #define ASFR_WP 0x000800000LL
291 #define ASFR_EDP 0x000400000LL
292 #define ASFR_UE 0x000200000LL
293 #define ASFR_CE 0x000100000LL
294 #define ASFR_ETS 0x0000f0000LL
295 #define ASFT_P_SYND 0x00000ffffLL
296
297 #define AFSR_BITS "\177\20" \
298 "b\40ME\0" "b\37PRIV\0" "b\36ISAP\0" "b\35ETP\0" \
299 "b\34IVUE\0" "b\33TO\0" "b\32BERR\0" "b\31LDP\0" \
300 "b\30CP\0" "b\27WP\0" "b\26EDP\0" "b\25UE\0" \
301 "b\24CE\0" "f\20\4ETS\0" "f\0\20P_SYND\0"
302
303 /*
304 * Here's the spitfire TSB control register bits.
305 *
306 * Each TSB entry is 16-bytes wide. The TSB must be size aligned
307 */
308 #define TSB_SIZE_512 0x0 /* 8kB, etc. */
309 #define TSB_SIZE_1K 0x01
310 #define TSB_SIZE_2K 0x02
311 #define TSB_SIZE_4K 0x03
312 #define TSB_SIZE_8K 0x04
313 #define TSB_SIZE_16K 0x05
314 #define TSB_SIZE_32K 0x06
315 #define TSB_SIZE_64K 0x07
316 #define TSB_SPLIT 0x1000
317 #define TSB_BASE 0xffffffffffffe000
318
319 /* TLB Tag Access bits */
320 #define TLB_TAG_ACCESS_VA 0xffffffffffffe000
321 #define TLB_TAG_ACCESS_CTX 0x0000000000001fff
322
323 /*
324 * TLB demap registers. TTEs are defined in v9pte.h
325 *
326 * Use the address space to select between IMMU and DMMU.
327 * The address of the register selects which context register
328 * to read the ASI from.
329 *
330 * The data stored in the register is interpreted as the VA to
331 * use. The DEMAP_CTX_<> registers ignore the address and demap the
332 * entire ASI.
333 *
334 */
335 #define ASI_IMMU_DEMAP 0x57 /* [4u] IMMU TLB demap */
336 #define ASI_DMMU_DEMAP 0x5f /* [4u] IMMU TLB demap */
337
338 #define DEMAP_PAGE_NUCLEUS ((0x02)<<4) /* Demap page from kernel AS */
339 #define DEMAP_PAGE_PRIMARY ((0x00)<<4) /* Demap a page from primary CTXT */
340 #define DEMAP_PAGE_SECONDARY ((0x01)<<4) /* Demap page from secondary CTXT (DMMU only) */
341 #define DEMAP_CTX_NUCLEUS ((0x06)<<4) /* Demap all of kernel CTXT */
342 #define DEMAP_CTX_PRIMARY ((0x04)<<4) /* Demap all of primary CTXT */
343 #define DEMAP_CTX_SECONDARY ((0x05)<<4) /* Demap all of secondary CTXT */
344
345 /*
346 * Interrupt registers. This really gets hairy.
347 */
348
349 /* IRSR -- Interrupt Receive Status Ragister */
350 #define ASI_IRSR 0x49
351 #define IRSR 0x00
352 #define IRSR_BUSY 0x020
353 #define IRSR_MID(x) (x&0x1f)
354
355 /* IRDR -- Interrupt Receive Data Registers */
356 #define ASI_IRDR 0x7f
357 #define IRDR_0H 0x40
358 #define IRDR_0L 0x48 /* unimplemented */
359 #define IRDR_1H 0x50
360 #define IRDR_1L 0x58 /* unimplemented */
361 #define IRDR_2H 0x60
362 #define IRDR_2L 0x68 /* unimplemented */
363 #define IRDR_3H 0x70 /* unimplemented */
364 #define IRDR_3L 0x78 /* unimplemented */
365
366 /* SOFTINT ASRs */
367 #define SET_SOFTINT %asr20 /* Sets these bits */
368 #define CLEAR_SOFTINT %asr21 /* Clears these bits */
369 #define SOFTINT %asr22 /* Reads the register */
370 #define TICK_CMPR %asr23
371
372 #define TICK_INT 0x01 /* level-14 clock tick */
373 #define SOFTINT1 (0x1<<1)
374 #define SOFTINT2 (0x1<<2)
375 #define SOFTINT3 (0x1<<3)
376 #define SOFTINT4 (0x1<<4)
377 #define SOFTINT5 (0x1<<5)
378 #define SOFTINT6 (0x1<<6)
379 #define SOFTINT7 (0x1<<7)
380 #define SOFTINT8 (0x1<<8)
381 #define SOFTINT9 (0x1<<9)
382 #define SOFTINT10 (0x1<<10)
383 #define SOFTINT11 (0x1<<11)
384 #define SOFTINT12 (0x1<<12)
385 #define SOFTINT13 (0x1<<13)
386 #define SOFTINT14 (0x1<<14)
387 #define SOFTINT15 (0x1<<15)
388
389 /* Interrupt Dispatch -- usually reserved for cross-calls */
390 #define ASR_IDSR 0x48 /* Interrupt dispatch status reg */
391 #define IDSR 0x00
392 #define IDSR_NACK 0x02
393 #define IDSR_BUSY 0x01
394
395 #define ASI_INTERRUPT_DISPATCH 0x77 /* [4u] spitfire interrupt dispatch regs */
396 #define IDCR(x) (((x)<<14)&0x70) /* Store anything to this address to dispatch crosscall to CPU (x) */
397 #define IDDR_0H 0x40 /* Store data to send in these regs */
398 #define IDDR_0L 0x48 /* unimplemented */
399 #define IDDR_1H 0x50
400 #define IDDR_1L 0x58 /* unimplemented */
401 #define IDDR_2H 0x60
402 #define IDDR_2L 0x68 /* unimplemented */
403 #define IDDR_3H 0x70 /* unimplemented */
404 #define IDDR_3L 0x78 /* unimplemented */
405
406 /*
407 * Error registers
408 */
409
410 /* Since we won't try to fix async errs, we don't care about the bits in the regs */
411 #define ASI_AFAR 0x4d /* Asynchronous fault address register */
412 #define AFAR 0x00
413 #define ASI_AFSR 0x4c /* Asynchronous fault status register */
414 #define AFSR 0x00
415
416 #define ASI_P_EER 0x4b /* Error enable register */
417 #define P_EER 0x00
418 #define P_EER_ISAPEN 0x04 /* Enable fatal on ISAP */
419 #define P_EER_NCEEN 0x02 /* Enable trap on uncorrectable errs */
420 #define P_EER_CEEN 0x01 /* Enable trap on correctable errs */
421
422 #define ASI_DATAPATH_READ 0x7f /* Read the regs */
423 #define ASI_DATAPATH_WRITE 0x77 /* Write to the regs */
424 #define P_DPER_0 0x00 /* Datapath err reg 0 */
425 #define P_DPER_1 0x18 /* Datapath err reg 1 */
426 #define P_DCR_0 0x20 /* Datapath control reg 0 */
427 #define P_DCR_1 0x38 /* Datapath control reg 0 */
428
429
430 /* From sparc64/asm.h which I think I'll deprecate since it makes bus.h a pain. */
431
432 #ifndef _LOCORE
433 /*
434 * GCC __asm constructs for doing assembly stuff.
435 */
436
437 /*
438 * ``Routines'' to load and store from/to alternate address space.
439 * The location can be a variable, the asi value (address space indicator)
440 * must be a constant.
441 *
442 * N.B.: You can put as many special functions here as you like, since
443 * they cost no kernel space or time if they are not used.
444 *
445 * These were static inline functions, but gcc screws up the constraints
446 * on the address space identifiers (the "n"umeric value part) because
447 * it inlines too late, so we have to use the funny valued-macro syntax.
448 */
449
450 /*
451 * Apparently the definition of bypass ASIs is that they all use the
452 * D$ so we need to flush the D$ to make sure we don't get data pollution.
453 */
454
455 static __inline__ u_char lduba __P((paddr_t loc, int asi));
456 static __inline__ u_short lduha __P((paddr_t loc, int asi));
457 static __inline__ u_int lda __P((paddr_t loc, int asi));
458 static __inline__ int ldswa __P((paddr_t loc, int asi));
459 static __inline__ u_int64_t ldxa __P((paddr_t loc, int asi));
460 static __inline__ u_int64_t ldda __P((paddr_t loc, int asi));
461
462 static __inline__ void stba __P((paddr_t loc, int asi, u_char value));
463 static __inline__ void stha __P((paddr_t loc, int asi, u_short value));
464 static __inline__ void sta __P((paddr_t loc, int asi, u_int value));
465 static __inline__ void stxa __P((paddr_t loc, int asi, u_int64_t value));
466 static __inline__ void stda __P((paddr_t loc, int asi, u_int64_t value));
467
468 #if 0
469 static __inline__ unsigned int casa __P((paddr_t loc, int asi,
470 unsigned int value, unsigned int oldvalue));
471 static __inline__ u_int64_t casxa __P((paddr_t loc, int asi,
472 u_int64_t value, u_int64_t oldvalue));
473 #endif
474
475 #ifdef __arch64__
476 static __inline__ u_char
477 lduba(paddr_t loc, int asi)
478 {
479 register unsigned int _lduba_v;
480
481 __asm __volatile("wr %2,%%g0,%%asi; "
482 " lduba [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
483 "=r" (_lduba_v) :
484 "r" ((unsigned long)(loc)), "r" (asi));
485 return (_lduba_v);
486 }
487 #else
488 static __inline__ u_char
489 lduba(paddr_t loc, int asi)
490 {
491 register unsigned int _lduba_v, _loc_hi, _pstate;
492
493 _loc_hi = (((u_int64_t)loc)>>32);
494 if (PHYS_ASI(asi)) {
495 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
496 " rdpr %%pstate,%1; or %0,%2,%0; wrpr %1,8,%%pstate; "
497 " membar #Sync; lduba [%0]%%asi,%0; wrpr %1,0,%%pstate; "
498 " membar #Sync; wr %%g0, 0x82, %%asi" :
499 "=&r" (_lduba_v), "=&r" (_pstate) :
500 "r" ((unsigned long)(loc)), "r" (_loc_hi),
501 "r" (asi));
502 } else {
503 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
504 " or %0,%1,%0; lduba [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduba_v) :
505 "r" ((unsigned long)(loc)),
506 "r" (_loc_hi), "r" (asi));
507 }
508 return (_lduba_v);
509 }
510 #endif
511
512 #ifdef __arch64__
513 /* load half-word from alternate address space */
514 static __inline__ u_short
515 lduha(paddr_t loc, int asi)
516 {
517 register unsigned int _lduha_v;
518
519 __asm __volatile("wr %2,%%g0,%%asi; lduha [%1]%%asi,%0; "
520 " wr %%g0, 0x82, %%asi" :
521 "=r" (_lduha_v) :
522 "r" ((unsigned long)(loc)), "r" (asi));
523 return (_lduha_v);
524 }
525 #else
526 /* load half-word from alternate address space */
527 static __inline__ u_short
528 lduha(paddr_t loc, int asi) {
529 register unsigned int _lduha_v, _loc_hi, _pstate;
530
531 _loc_hi = (((u_int64_t)loc)>>32);
532
533 if (PHYS_ASI(asi)) {
534 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
535 " rdpr %%pstate,%1; wrpr %1,8,%%pstate; "
536 " or %0,%2,%0; membar #Sync; lduha [%0]%%asi,%0; wrpr %1,0,%%pstate; "
537 " membar #Sync; wr %%g0, 0x82, %%asi" :
538 "=&r" (_lduha_v), "=&r" (_pstate) :
539 "r" ((unsigned long)(loc)), "r" (_loc_hi),
540 "r" (asi));
541 } else {
542 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
543 " or %0,%1,%0; lduha [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduha_v) :
544 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
545 }
546 return (_lduha_v);
547 }
548 #endif
549
550
551 #ifdef __arch64__
552 /* load unsigned int from alternate address space */
553 static __inline__ u_int
554 lda(paddr_t loc, int asi)
555 {
556 register unsigned int _lda_v;
557
558 __asm __volatile("wr %2,%%g0,%%asi; lda [%1]%%asi,%0" :
559 "=r" (_lda_v) :
560 "r" ((unsigned long)(loc)), "r" (asi));
561 return (_lda_v);
562 }
563
564 /* load signed int from alternate address space */
565 static __inline__ int
566 ldswa(paddr_t loc, int asi)
567 {
568 register int _lda_v;
569
570 __asm __volatile("wr %2,%%g0,%%asi; "
571 " ldswa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
572 "=r" (_lda_v) :
573 "r" ((unsigned long)(loc)), "r" (asi));
574 return (_lda_v);
575 }
576 #else /* __arch64__ */
577 /* load unsigned int from alternate address space */
578 static __inline__ u_int
579 lda(paddr_t loc, int asi)
580 {
581 register unsigned int _lda_v, _loc_hi, _pstate;
582
583 _loc_hi = (((u_int64_t)loc)>>32);
584 if (PHYS_ASI(asi)) {
585 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
586 " sllx %3,32,%0; wrpr %1,8,%%pstate; or %0,%2,%0; membar #Sync; "
587 " lda [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; "
588 " wr %%g0, 0x82, %%asi" : "=&r" (_lda_v), "=&r" (_pstate) :
589 "r" ((unsigned long)(loc)), "r" (_loc_hi),
590 "r" (asi));
591 } else {
592 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
593 " or %0,%1,%0; lda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
594 "r" ((unsigned long)(loc)),
595 "r" (_loc_hi), "r" (asi));
596 }
597 return (_lda_v);
598 }
599
600 /* load signed int from alternate address space */
601 static __inline__ int
602 ldswa(paddr_t loc, int asi)
603 {
604 register int _lda_v, _loc_hi, _pstate;
605
606 _loc_hi = (((u_int64_t)loc)>>32);
607 if (PHYS_ASI(asi)) {
608 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
609 " wrpr %1,8,%%pstate; sllx %3,32,%0;"
610 " or %0,%2,%0; membar #Sync; ldswa [%0]%%asi,%0; wrpr %1,0,%%pstate; "
611 " membar #Sync; wr %%g0, 0x82, %%asi" :
612 "=&r" (_lda_v), "=&r" (_pstate) :
613 "r" ((unsigned long)(loc)), "r" (_loc_hi),
614 "r" (asi));
615 } else {
616 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
617 " or %0,%1,%0; ldswa [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
618 "r" ((unsigned long)(loc)),
619 "r" (_loc_hi), "r" (asi));
620 }
621 return (_lda_v);
622 }
623 #endif /* __arch64__ */
624
625 #ifdef __arch64__
626 /* load 64-bit int from alternate address space -- these should never be used */
627 static __inline__ u_int64_t
628 ldda(paddr_t loc, int asi)
629 {
630 register long long _lda_v;
631
632 __asm __volatile("wr %2,%%g0,%%asi; "
633 " ldda [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
634 "=r" (_lda_v) :
635 "r" ((unsigned long)(loc)), "r" (asi));
636 return (_lda_v);
637 }
638 #else
639 /* load 64-bit int from alternate address space */
640 static __inline__ u_int64_t
641 ldda(paddr_t loc, int asi)
642 {
643 register long long _lda_v, _loc_hi, _pstate;
644
645 _loc_hi = (((u_int64_t)loc)>>32);
646 if (PHYS_ASI(asi)) {
647 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
648 " wrpr %1,8,%%pstate; sllx %3,32,%0; or %0,%2,%0; membar #Sync;"
649 " ldda [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
650 "=&r" (_lda_v), "=&r" (_pstate) :
651 "r" ((unsigned long)(loc)), "r" (_loc_hi),
652 "r" (asi));
653 } else {
654 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
655 " or %0,%1,%0; ldda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
656 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
657 }
658 return (_lda_v);
659 }
660 #endif
661
662
663 #ifdef __arch64__
664 /* native load 64-bit int from alternate address space w/64-bit compiler*/
665 static __inline__ u_int64_t
666 ldxa(paddr_t loc, int asi)
667 {
668 register unsigned long _lda_v;
669
670 __asm __volatile("wr %2,%%g0,%%asi; "
671 " ldxa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
672 "=r" (_lda_v) :
673 "r" ((unsigned long)(loc)), "r" (asi));
674 return (_lda_v);
675 }
676 #else
677 /* native load 64-bit int from alternate address space w/32-bit compiler*/
678 static __inline__ u_int64_t
679 ldxa(paddr_t loc, int asi)
680 {
681 register unsigned long _ldxa_lo, _ldxa_hi, _loc_hi;
682
683 _loc_hi = (((u_int64_t)loc)>>32);
684 if (PHYS_ASI(asi)) {
685 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1; "
686 " sllx %3,32,%0; wrpr %1,8,%%pstate; or %0,%2,%0; membar #Sync; "
687 " ldxa [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; "
688 " srlx %0,32,%1; srl %0,0,%0; wr %%g0, 0x82, %%asi" :
689 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
690 "r" ((unsigned long)(loc)), "r" (_loc_hi),
691 "r" (asi));
692 } else {
693 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
694 " or %0,%2,%0; ldxa [%0]%%asi,%0; srlx %0,32,%1; "
695 " srl %0,0,%0;; wr %%g0, 0x82, %%asi" :
696 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
697 "r" ((unsigned long)(loc)), "r" (_loc_hi),
698 "r" (asi));
699 }
700 return ((((int64_t)_ldxa_hi)<<32)|_ldxa_lo);
701 }
702 #endif
703
704 /* store byte to alternate address space */
705 #ifdef __arch64__
706 static __inline__ void
707 stba(paddr_t loc, int asi, u_char value)
708 {
709 __asm __volatile("wr %2,%%g0,%%asi; stba %0,[%1]%%asi; "
710 " wr %%g0, 0x82, %%asi" : :
711 "r" ((int)(value)), "r" ((unsigned long)(loc)),
712 "r" (asi));
713 }
714 #else
715 static __inline__ void
716 stba(paddr_t loc, int asi, u_char value)
717 {
718 register int _loc_hi, _pstate;
719
720 _loc_hi = (((u_int64_t)loc)>>32);
721 if (PHYS_ASI(asi)) {
722 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
723 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stba %2,[%0]%%asi; "
724 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
725 "=&r" (_loc_hi), "=&r" (_pstate) :
726 "r" ((int)(value)), "r" ((unsigned long)(loc)),
727 "r" (_loc_hi), "r" (asi));
728 } else {
729 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
730 " or %2,%0,%0; stba %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
731 "r" ((int)(value)), "r" ((unsigned long)(loc)),
732 "r" (_loc_hi), "r" (asi));
733 }
734 }
735 #endif
736
737 /* store half-word to alternate address space */
738 #ifdef __arch64__
739 static __inline__ void
740 stha(paddr_t loc, int asi, u_short value)
741 {
742 __asm __volatile("wr %2,%%g0,%%asi; stha %0,[%1]%%asi; "
743 " wr %%g0, 0x82, %%asi" : :
744 "r" ((int)(value)), "r" ((unsigned long)(loc)),
745 "r" (asi) : "memory");
746 }
747 #else
748 static __inline__ void
749 stha(paddr_t loc, int asi, u_short value)
750 {
751 register int _loc_hi, _pstate;
752
753 _loc_hi = (((u_int64_t)loc)>>32);
754 if (PHYS_ASI(asi)) {
755 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
756 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stha %2,[%0]%%asi; "
757 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
758 "=&r" (_loc_hi), "=&r" (_pstate) :
759 "r" ((int)(value)), "r" ((unsigned long)(loc)),
760 "r" (_loc_hi), "r" (asi) : "memory");
761 } else {
762 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
763 " or %2,%0,%0; stha %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
764 "r" ((int)(value)), "r" ((unsigned long)(loc)),
765 "r" (_loc_hi), "r" (asi) : "memory");
766 }
767 }
768 #endif
769
770
771 /* store int to alternate address space */
772 #ifdef __arch64__
773 static __inline__ void
774 sta(paddr_t loc, int asi, u_int value)
775 {
776 __asm __volatile("wr %2,%%g0,%%asi; sta %0,[%1]%%asi; "
777 " wr %%g0, 0x82, %%asi" : :
778 "r" ((int)(value)), "r" ((unsigned long)(loc)),
779 "r" (asi) : "memory");
780 }
781 #else
782 static __inline__ void
783 sta(paddr_t loc, int asi, u_int value)
784 {
785 register int _loc_hi, _pstate;
786
787 _loc_hi = (((u_int64_t)loc)>>32);
788 if (PHYS_ASI(asi)) {
789 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
790 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; sta %2,[%0]%%asi; "
791 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
792 "=&r" (_loc_hi), "=&r" (_pstate) :
793 "r" ((int)(value)), "r" ((unsigned long)(loc)),
794 "r" (_loc_hi), "r" (asi) : "memory");
795 } else {
796 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
797 " or %2,%0,%0; sta %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
798 "r" ((int)(value)), "r" ((unsigned long)(loc)),
799 "r" (_loc_hi), "r" (asi) : "memory");
800 }
801 }
802 #endif
803
804 /* store 64-bit int to alternate address space */
805 #ifdef __arch64__
806 static __inline__ void
807 stda(paddr_t loc, int asi, u_int64_t value)
808 {
809 __asm __volatile("wr %2,%%g0,%%asi; stda %0,[%1]%%asi; "
810 " wr %%g0, 0x82, %%asi" : :
811 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
812 "r" (asi) : "memory");
813 }
814 #else
815 static __inline__ void
816 stda(paddr_t loc, int asi, u_int64_t value)
817 {
818 register int _loc_hi, _pstate;
819
820 _loc_hi = (((u_int64_t)loc)>>32);
821 if (PHYS_ASI(asi)) {
822 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
823 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stda %2,[%0]%%asi; "
824 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
825 "=&r" (_loc_hi), "=&r" (_pstate) :
826 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
827 "r" (_loc_hi), "r" (asi) : "memory");
828 } else {
829 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
830 " or %2,%0,%0; stda %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
831 "=&r" (_loc_hi) :
832 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
833 "r" (_loc_hi), "r" (asi) : "memory");
834 }
835 }
836 #endif
837
838 #ifdef __arch64__
839 /* native store 64-bit int to alternate address space w/64-bit compiler*/
840 static __inline__ void
841 stxa(paddr_t loc, int asi, u_int64_t value)
842 {
843 __asm __volatile("wr %2,%%g0,%%asi; stxa %0,[%1]%%asi; "
844 " wr %%g0, 0x82, %%asi" : :
845 "r" ((unsigned long)(value)),
846 "r" ((unsigned long)(loc)), "r" (asi) : "memory");
847 }
848 #else
849 /* native store 64-bit int to alternate address space w/32-bit compiler*/
850 static __inline__ void
851 stxa(paddr_t loc, int asi, u_int64_t value)
852 {
853 int _stxa_lo, _stxa_hi, _loc_hi;
854
855 _stxa_lo = value;
856 _stxa_hi = ((u_int64_t)value)>>32;
857 _loc_hi = (((u_int64_t)(u_long)loc)>>32);
858
859 if (PHYS_ASI(asi)) {
860 __asm __volatile("wr %7,%%g0,%%asi; sllx %4,32,%1; "
861 " sllx %6,32,%0; or %1,%3,%1; rdpr %%pstate,%2; or %0,%5,%0; "
862 " wrpr %2,8,%%pstate; stxa %1,[%0]%%asi; wrpr %2,0,%%pstate; "
863 " membar #Sync; wr %%g0, 0x82, %%asi" :
864 "=&r" (_loc_hi), "=&r" (_stxa_hi),
865 "=&r" ((int)(_stxa_lo)) :
866 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
867 "r" ((unsigned long)(loc)), "r" (_loc_hi),
868 "r" (asi) : "memory");
869 } else {
870 __asm __volatile("wr %6,%%g0,%%asi; sllx %3,32,%1; sllx %5,32,%0; "
871 " or %1,%2,%1; or %0,%4,%0; stxa %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
872 "=&r" (_loc_hi), "=&r" (_stxa_hi) :
873 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
874 "r" ((unsigned long)(loc)), "r" (_loc_hi),
875 "r" (asi) : "memory");
876 }
877 }
878 #endif
879
880 #if 0
881 #ifdef __arch64__
882 /* native store 64-bit int to alternate address space w/64-bit compiler*/
883 static __inline__ u_int64_t
884 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
885 {
886 __asm __volatile("wr %3,%%g0,%%asi; casxa [%1]%%asi,%2,%0; "
887 " wr %%g0, 0x82, %%asi" :
888 "+r" (value) :
889 "r" ((unsigned long)(loc)), "r" (oldvalue), "r" (asi) :
890 "memory");
891 return (value);
892 }
893 #else
894 /* native store 64-bit int to alternate address space w/32-bit compiler*/
895 static __inline__ u_int64_t
896 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
897 {
898 int _casxa_lo, _casxa_hi, _loc_hi, _oval_hi;
899
900 _casxa_lo = value;
901 _casxa_hi = ((u_int64_t)value)>>32;
902 _oval_hi = ((u_int64_t)oldvalue)>>32;
903 _loc_hi = (((u_int64_t)(u_long)loc)>>32);
904
905 #ifdef __notyet
906 /*
907 * gcc cannot handle this since it thinks it has >10 asm operands.
908 */
909 if (PHYS_ASI(asi)) {
910 __asm __volatile("wr %6,%%g0,%%asi; sllx %1,32,%1; rdpr %%pstate,%2; "
911 " sllx %0,32,%0; or %1,%2,%1; sllx %3,32,%3; or %0,%4,%0; or %3,%5,%3; "
912 " wrpr %2,8,%%pstate; casxa [%0]%%asi,%3,%1; wrpr %2,0,%%pstate; "
913 " andn %0,0x1f,%3; membar #Sync; "
914 " sll %1,0,%2; srax %1,32,%1; wr %%g0, 0x82, %%asi " :
915 "+r" (_loc_hi), "+r" (_casxa_hi),
916 "+r" (_casxa_lo), "+r" (_oval_hi) :
917 "r" ((unsigned long)(loc)),
918 "r" ((unsigned int)(oldvalue)),
919 "r" (asi));
920 } else {
921 __asm __volatile("wr %7,%%g0,%%asi; sllx %1,32,%1; sllx %5,32,%0; "
922 " or %1,%2,%1; sllx %3,32,%2; or %0,%4,%0; or %2,%4,%2; "
923 " casxa [%0]%%asi,%2,%1; sll %1,0,%2; srax %o1,32,%o1; wr %%g0, 0x82, %%asi " :
924 "=&r" (_loc_hi), "+r" (_casxa_hi), "+r" (_casxa_lo) :
925 "r" ((int)(_oval_hi)), "r" ((int)(oldvalue)),
926 "r" ((unsigned long)(loc)), "r" (_loc_hi),
927 "r" (asi) : "memory");
928 }
929 #endif
930 return (((u_int64_t)_casxa_hi<<32)|(u_int64_t)_casxa_lo);
931 }
932 #endif
933 #endif /* 0 */
934
935
936
937 /* flush address from data cache */
938 #define flush(loc) ({ \
939 __asm __volatile("flush %0" : : \
940 "r" ((unsigned long)(loc))); \
941 })
942
943 /* Flush a D$ line */
944 #if 0
945 #define flushline(loc) ({ \
946 stxa(((paddr_t)loc)&(~0x1f), (ASI_DCACHE_TAG), 0); \
947 membar_sync(); \
948 })
949 #else
950 #define flushline(loc)
951 #endif
952
953 /* The following two enable or disable the dcache in the LSU control register */
954 #define dcenable() ({ \
955 int res; \
956 __asm __volatile("ldxa [%%g0] %1,%0; or %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
957 : "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
958 })
959 #define dcdisable() ({ \
960 int res; \
961 __asm __volatile("ldxa [%%g0] %1,%0; andn %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
962 : "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
963 })
964
965 /*
966 * SPARC V9 memory barrier instructions.
967 */
968 /* Make all stores complete before next store */
969 #define membar_storestore() __asm __volatile("membar #StoreStore" : :)
970 /* Make all loads complete before next store */
971 #define membar_loadstore() __asm __volatile("membar #LoadStore" : :)
972 /* Make all stores complete before next load */
973 #define membar_storeload() __asm __volatile("membar #StoreLoad" : :)
974 /* Make all loads complete before next load */
975 #define membar_loadload() __asm __volatile("membar #LoadLoad" : :)
976 /* Complete all outstanding memory operations and exceptions */
977 #define membar_sync() __asm __volatile("membar #Sync" : :)
978 /* Complete all outstanding memory operations */
979 #define membar_memissue() __asm __volatile("membar #MemIssue" : :)
980 /* Complete all outstanding stores before any new loads */
981 #define membar_lookaside() __asm __volatile("membar #Lookaside" : :)
982
983 #ifdef __arch64__
984 /* read 64-bit %tick register */
985 #define tick() ({ \
986 register u_long _tick_tmp; \
987 __asm __volatile("rdpr %%tick, %0" : "=r" (_tick_tmp) :); \
988 _tick_tmp; \
989 })
990 #else
991 /* read 64-bit %tick register on 32-bit system */
992 #define tick() ({ \
993 register u_int _tick_hi = 0, _tick_lo = 0; \
994 __asm __volatile("rdpr %%tick, %0; srl %0,0,%1; srlx %0,32,%0 " \
995 : "=r" (_tick_hi), "=r" (_tick_lo) : ); \
996 (((u_int64_t)_tick_hi)<<32)|((u_int64_t)_tick_lo); \
997 })
998 #endif
999
1000 extern void next_tick __P((long));
1001 #endif
1002