ctlreg.h revision 1.31 1 /* $NetBSD: ctlreg.h,v 1.31 2004/03/14 18:18:54 chs Exp $ */
2
3 /*
4 * Copyright (c) 1996-2002 Eduardo Horvath
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
13 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
16 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
17 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
19 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
21 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
22 * SUCH DAMAGE.
23 *
24 */
25
26 /*
27 * Sun 4u control registers. (includes address space definitions
28 * and some registers in control space).
29 */
30
31 /*
32 * The Alternate address spaces.
33 *
34 * 0x00-0x7f are privileged
35 * 0x80-0xff can be used by users
36 */
37
38 #define ASI_LITTLE 0x08 /* This bit should make an ASI little endian */
39
40 #define ASI_NUCLEUS 0x04 /* [4u] kernel address space */
41 #define ASI_NUCLEUS_LITTLE 0x0c /* [4u] kernel address space, little endian */
42
43 #define ASI_AS_IF_USER_PRIMARY 0x10 /* [4u] primary user address space */
44 #define ASI_AS_IF_USER_SECONDARY 0x11 /* [4u] secondary user address space */
45
46 #define ASI_PHYS_CACHED 0x14 /* [4u] MMU bypass to main memory */
47 #define ASI_PHYS_NON_CACHED 0x15 /* [4u] MMU bypass to I/O location */
48
49 #define ASI_AS_IF_USER_PRIMARY_LITTLE 0x18 /* [4u] primary user address space, little endian */
50 #define ASI_AS_IF_USER_SECONDARY_LITTIE 0x19 /* [4u] secondary user address space, little endian */
51
52 #define ASI_PHYS_CACHED_LITTLE 0x1c /* [4u] MMU bypass to main memory, little endian */
53 #define ASI_PHYS_NON_CACHED_LITTLE 0x1d /* [4u] MMU bypass to I/O location, little endian */
54
55 #define ASI_NUCLEUS_QUAD_LDD 0x24 /* [4u] use w/LDDA to load 128-bit item */
56 #define ASI_NUCLEUS_QUAD_LDD_LITTLE 0x2c /* [4u] use w/LDDA to load 128-bit item, little endian */
57
58 #define ASI_FLUSH_D_PAGE_PRIMARY 0x38 /* [4u] flush D-cache page using primary context */
59 #define ASI_FLUSH_D_PAGE_SECONDARY 0x39 /* [4u] flush D-cache page using secondary context */
60 #define ASI_FLUSH_D_CTX_PRIMARY 0x3a /* [4u] flush D-cache context using primary context */
61 #define ASI_FLUSH_D_CTX_SECONDARY 0x3b /* [4u] flush D-cache context using secondary context */
62
63 #define ASI_LSU_CONTROL_REGISTER 0x45 /* [4u] load/store unit control register */
64
65 #define ASI_DCACHE_DATA 0x46 /* [4u] diagnostic access to D-cache data RAM */
66 #define ASI_DCACHE_TAG 0x47 /* [4u] diagnostic access to D-cache tag RAM */
67
68 #define ASI_INTR_DISPATCH_STATUS 0x48 /* [4u] interrupt dispatch status register */
69 #define ASI_INTR_RECEIVE 0x49 /* [4u] interrupt receive status register */
70 #define ASI_MID_REG 0x4a /* [4u] hardware config and MID */
71 #define ASI_ERROR_EN_REG 0x4b /* [4u] asynchronous error enables */
72 #define ASI_AFSR 0x4c /* [4u] asynchronous fault status register */
73 #define ASI_AFAR 0x4d /* [4u] asynchronous fault address register */
74
75 #define ASI_ICACHE_DATA 0x66 /* [4u] diagnostic access to D-cache data RAM */
76 #define ASI_ICACHE_TAG 0x67 /* [4u] diagnostic access to D-cache tag RAM */
77 #define ASI_FLUSH_I_PAGE_PRIMARY 0x68 /* [4u] flush D-cache page using primary context */
78 #define ASI_FLUSH_I_PAGE_SECONDARY 0x69 /* [4u] flush D-cache page using secondary context */
79 #define ASI_FLUSH_I_CTX_PRIMARY 0x6a /* [4u] flush D-cache context using primary context */
80 #define ASI_FLUSH_I_CTX_SECONDARY 0x6b /* [4u] flush D-cache context using secondary context */
81
82 #define ASI_BLOCK_AS_IF_USER_PRIMARY 0x70 /* [4u] primary user address space, block loads/stores */
83 #define ASI_BLOCK_AS_IF_USER_SECONDARY 0x71 /* [4u] secondary user address space, block loads/stores */
84
85 #define ASI_ECACHE_DIAG 0x76 /* [4u] diag access to E-cache tag and data */
86 #define ASI_DATAPATH_ERR_REG_WRITE 0x77 /* [4u] ASI is reused */
87
88 #define ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE 0x78 /* [4u] primary user address space, block loads/stores */
89 #define ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE 0x79 /* [4u] secondary user address space, block loads/stores */
90
91 #define ASI_INTERRUPT_RECEIVE_DATA 0x7f /* [4u] interrupt receive data registers {0,1,2} */
92 #define ASI_DATAPATH_ERR_REG_READ 0x7f /* [4u] read access to datapath error registers (ASI reused) */
93
94 #define ASI_PRIMARY 0x80 /* [4u] primary address space */
95 #define ASI_SECONDARY 0x81 /* [4u] secondary address space */
96 #define ASI_PRIMARY_NOFAULT 0x82 /* [4u] primary address space, no fault */
97 #define ASI_SECONDARY_NOFAULT 0x83 /* [4u] secondary address space, no fault */
98
99 #define ASI_PRIMARY_LITTLE 0x88 /* [4u] primary address space, little endian */
100 #define ASI_SECONDARY_LITTLE 0x89 /* [4u] secondary address space, little endian */
101 #define ASI_PRIMARY_NOFAULT_LITTLE 0x8a /* [4u] primary address space, no fault, little endian */
102 #define ASI_SECONDARY_NOFAULT_LITTLE 0x8b /* [4u] secondary address space, no fault, little endian */
103
104 #define ASI_PST8_PRIMARY 0xc0 /* [VIS] Eight 8-bit partial store, primary */
105 #define ASI_PST8_SECONDARY 0xc1 /* [VIS] Eight 8-bit partial store, secondary */
106 #define ASI_PST16_PRIMARY 0xc2 /* [VIS] Four 16-bit partial store, primary */
107 #define ASI_PST16_SECONDARY 0xc3 /* [VIS] Fout 16-bit partial store, secondary */
108 #define ASI_PST32_PRIMARY 0xc4 /* [VIS] Two 32-bit partial store, primary */
109 #define ASI_PST32_SECONDARY 0xc5 /* [VIS] Two 32-bit partial store, secondary */
110
111 #define ASI_PST8_PRIMARY_LITTLE 0xc8 /* [VIS] Eight 8-bit partial store, primary, little endian */
112 #define ASI_PST8_SECONDARY_LITTLE 0xc9 /* [VIS] Eight 8-bit partial store, secondary, little endian */
113 #define ASI_PST16_PRIMARY_LITTLE 0xca /* [VIS] Four 16-bit partial store, primary, little endian */
114 #define ASI_PST16_SECONDARY_LITTLE 0xcb /* [VIS] Fout 16-bit partial store, secondary, little endian */
115 #define ASI_PST32_PRIMARY_LITTLE 0xcc /* [VIS] Two 32-bit partial store, primary, little endian */
116 #define ASI_PST32_SECONDARY_LITTLE 0xcd /* [VIS] Two 32-bit partial store, secondary, little endian */
117
118 #define ASI_FL8_PRIMARY 0xd0 /* [VIS] One 8-bit load/store floating, primary */
119 #define ASI_FL8_SECONDARY 0xd1 /* [VIS] One 8-bit load/store floating, secondary */
120 #define ASI_FL16_PRIMARY 0xd2 /* [VIS] One 16-bit load/store floating, primary */
121 #define ASI_FL16_SECONDARY 0xd3 /* [VIS] One 16-bit load/store floating, secondary */
122
123 #define ASI_FL8_PRIMARY_LITTLE 0xd8 /* [VIS] One 8-bit load/store floating, primary, little endian */
124 #define ASI_FL8_SECONDARY_LITTLE 0xd9 /* [VIS] One 8-bit load/store floating, secondary, little endian */
125 #define ASI_FL16_PRIMARY_LITTLE 0xda /* [VIS] One 16-bit load/store floating, primary, little endian */
126 #define ASI_FL16_SECONDARY_LITTLE 0xdb /* [VIS] One 16-bit load/store floating, secondary, little endian */
127
128 #define ASI_BLOCK_COMMIT_PRIMARY 0xe0 /* [4u] block store with commit, primary */
129 #define ASI_BLOCK_COMMIT_SECONDARY 0xe1 /* [4u] block store with commit, secondary */
130 #define ASI_BLOCK_PRIMARY 0xf0 /* [4u] block load/store, primary */
131 #define ASI_BLOCK_SECONDARY 0xf1 /* [4u] block load/store, secondary */
132 #define ASI_BLOCK_PRIMARY_LITTLE 0xf8 /* [4u] block load/store, primary, little endian */
133 #define ASI_BLOCK_SECONDARY_LITTLE 0xf9 /* [4u] block load/store, secondary, little endian */
134
135
136 /*
137 * These are the shorter names used by Solaris
138 */
139
140 #define ASI_N ASI_NUCLEUS
141 #define ASI_NL ASI_NUCLEUS_LITTLE
142 #define ASI_AIUP ASI_AS_IF_USER_PRIMARY
143 #define ASI_AIUS ASI_AS_IF_USER_SECONDARY
144 #define ASI_AIUPL ASI_AS_IF_USER_PRIMARY_LITTLE
145 #define ASI_AIUSL ASI_AS_IF_USER_SECONDARY_LITTLE
146 #define ASI_P ASI_PRIMARY
147 #define ASI_S ASI_SECONDARY
148 #define ASI_PNF ASI_PRIMARY_NOFAULT
149 #define ASI_SNF ASI_SECONDARY_NOFAULT
150 #define ASI_PL ASI_PRIMARY_LITTLE
151 #define ASI_SL ASI_SECONDARY_LITTLE
152 #define ASI_PNFL ASI_PRIMARY_NOFAULT_LITTLE
153 #define ASI_SNFL ASI_SECONDARY_NOFAULT_LITTLE
154 #define ASI_FL8_P ASI_FL8_PRIMARY
155 #define ASI_FL8_S ASI_FL8_SECONDARY
156 #define ASI_FL16_P ASI_FL16_PRIMARY
157 #define ASI_FL16_S ASI_FL16_SECONDARY
158 #define ASI_FL8_PL ASI_FL8_PRIMARY_LITTLE
159 #define ASI_FL8_SL ASI_FL8_SECONDARY_LITTLE
160 #define ASI_FL16_PL ASI_FL16_PRIMARY_LITTLE
161 #define ASI_FL16_SL ASI_FL16_SECONDARY_LITTLE
162 #define ASI_BLK_AIUP ASI_BLOCK_AS_IF_USER_PRIMARY
163 #define ASI_BLK_AIUPL ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
164 #define ASI_BLK_AIUS ASI_BLOCK_AS_IF_USER_SECONDARY
165 #define ASI_BLK_AIUSL ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
166 #define ASI_BLK_COMMIT_P ASI_BLOCK_COMMIT_PRIMARY
167 #define ASI_BLK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_PRIMARY
168 #define ASI_BLK_COMMIT_S ASI_BLOCK_COMMIT_SECONDARY
169 #define ASI_BLK_COMMIT_SECONDARY ASI_BLOCK_COMMIT_SECONDARY
170 #define ASI_BLK_P ASI_BLOCK_PRIMARY
171 #define ASI_BLK_PL ASI_BLOCK_PRIMARY_LITTLE
172 #define ASI_BLK_S ASI_BLOCK_SECONDARY
173 #define ASI_BLK_SL ASI_BLOCK_SECONDARY_LITTLE
174
175 /* Alternative spellings */
176 #define ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NOFAULT
177 #define ASI_PRIMARY_NO_FAULT_LITTLE ASI_PRIMARY_NOFAULT_LITTLE
178 #define ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NOFAULT
179 #define ASI_SECONDARY_NO_FAULT_LITTLE ASI_SECONDARY_NOFAULT_LITTLE
180
181 #define PHYS_ASI(x) (((x) | 0x09) == 0x1d)
182 #define LITTLE_ASI(x) ((x) & ASI_LITTLE)
183
184 /*
185 * The following are 4u control registers
186 */
187
188
189 /* Get the CPU's UPAID */
190 #define UPA_CR_MID(x) (((x)>>17)&0x1f)
191 #define CPU_UPAID UPA_CR_MID(ldxa(0, ASI_MID_REG))
192
193 /*
194 * [4u] MMU and Cache Control Register (MCCR)
195 * use ASI = 0x45
196 */
197 #define ASI_MCCR ASI_LSU_CONTROL_REGISTER
198 #define MCCR 0x00
199
200 /* MCCR Bits and their meanings */
201 #define MCCR_DMMU_EN 0x08
202 #define MCCR_IMMU_EN 0x04
203 #define MCCR_DCACHE_EN 0x02
204 #define MCCR_ICACHE_EN 0x01
205
206
207 /*
208 * MMU control registers
209 */
210
211 /* Choose an MMU */
212 #define ASI_DMMU 0x58
213 #define ASI_IMMU 0x50
214
215 /* Other assorted MMU ASIs */
216 #define ASI_IMMU_8KPTR 0x51
217 #define ASI_IMMU_64KPTR 0x52
218 #define ASI_IMMU_DATA_IN 0x54
219 #define ASI_IMMU_TLB_DATA 0x55
220 #define ASI_IMMU_TLB_TAG 0x56
221 #define ASI_DMMU_8KPTR 0x59
222 #define ASI_DMMU_64KPTR 0x5a
223 #define ASI_DMMU_DATA_IN 0x5c
224 #define ASI_DMMU_TLB_DATA 0x5d
225 #define ASI_DMMU_TLB_TAG 0x5e
226
227 /*
228 * The following are the control registers
229 * They work on both MMUs unless noted.
230 *
231 * Register contents are defined later on individual registers.
232 */
233 #define TSB_TAG_TARGET 0x0
234 #define TLB_DATA_IN 0x0
235 #define CTX_PRIMARY 0x08 /* primary context -- DMMU only */
236 #define CTX_SECONDARY 0x10 /* secondary context -- DMMU only */
237 #define SFSR 0x18
238 #define SFAR 0x20 /* fault address -- DMMU only */
239 #define TSB 0x28
240 #define TLB_TAG_ACCESS 0x30
241 #define VIRTUAL_WATCHPOINT 0x38
242 #define PHYSICAL_WATCHPOINT 0x40
243
244 /* Tag Target bits */
245 #define TAG_TARGET_VA_MASK 0x03ffffffffffffffffLL
246 #define TAG_TARGET_VA(x) (((x)<<22)&TAG_TARGET_VA_MASK)
247 #define TAG_TARGET_CONTEXT(x) ((x)>>48)
248 #define TAG_TARGET(c,v) ((((uint64_t)c)<<48)|(((uint64_t)v)&TAG_TARGET_VA_MASK))
249
250 /* SFSR bits for both D_SFSR and I_SFSR */
251 #define SFSR_ASI(x) ((x)>>16)
252 #define SFSR_FT_VA_OOR_2 0x02000 /* IMMU: jumpl or return to unsupportd VA */
253 #define SFSR_FT_VA_OOR_1 0x01000 /* fault at unsupported VA */
254 #define SFSR_FT_NFO 0x00800 /* DMMU: Access to page marked NFO */
255 #define SFSR_ILL_ASI 0x00400 /* DMMU: Illegal (unsupported) ASI */
256 #define SFSR_FT_IO_ATOMIC 0x00200 /* DMMU: Atomic access to noncacheable page */
257 #define SFSR_FT_ILL_NF 0x00100 /* DMMU: NF load or flush to page marked E (has side effects) */
258 #define SFSR_FT_PRIV 0x00080 /* Privilege violation */
259 #define SFSR_FT_E 0x00040 /* DMUU: value of E bit associated address */
260 #define SFSR_CTXT(x) (((x)>>4)&0x3)
261 #define SFSR_CTXT_IS_PRIM(x) (SFSR_CTXT(x)==0x00)
262 #define SFSR_CTXT_IS_SECOND(x) (SFSR_CTXT(x)==0x01)
263 #define SFSR_CTXT_IS_NUCLEUS(x) (SFSR_CTXT(x)==0x02)
264 #define SFSR_PRIV 0x00008 /* value of PSTATE.PRIV for faulting access */
265 #define SFSR_W 0x00004 /* DMMU: attempted write */
266 #define SFSR_OW 0x00002 /* Overwrite; prev vault was still valid */
267 #define SFSR_FV 0x00001 /* Fault is valid */
268 #define SFSR_FT (SFSR_FT_VA_OOR_2|SFSR_FT_VA_OOR_1|SFSR_FT_NFO|SFSR_ILL_ASI|SFSR_FT_IO_ATOMIC|SFSR_FT_ILL_NF|SFSR_FT_PRIV)
269
270 #if 0
271 /* Old bits */
272 #define SFSR_BITS "\40\16VAT\15VAD\14NFO\13ASI\12A\11NF\10PRIV\7E\6NUCLEUS\5SECONDCTX\4PRIV\3W\2OW\1FV"
273 #else
274 /* New bits */
275 #define SFSR_BITS "\177\20" \
276 "f\20\30ASI\0" "b\16VAT\0" "b\15VAD\0" "b\14NFO\0" "b\13ASI\0" "b\12A\0" "b\11NF\0" "b\10PRIV\0" \
277 "b\7E\0" "b\6NUCLEUS\0" "b\5SECONDCTX\0" "b\4PRIV\0" "b\3W\0" "b\2OW\0" "b\1FV\0"
278 #endif
279
280 /* ASFR bits */
281 #define ASFR_ME 0x100000000LL
282 #define ASFR_PRIV 0x080000000LL
283 #define ASFR_ISAP 0x040000000LL
284 #define ASFR_ETP 0x020000000LL
285 #define ASFR_IVUE 0x010000000LL
286 #define ASFR_TO 0x008000000LL
287 #define ASFR_BERR 0x004000000LL
288 #define ASFR_LDP 0x002000000LL
289 #define ASFR_CP 0x001000000LL
290 #define ASFR_WP 0x000800000LL
291 #define ASFR_EDP 0x000400000LL
292 #define ASFR_UE 0x000200000LL
293 #define ASFR_CE 0x000100000LL
294 #define ASFR_ETS 0x0000f0000LL
295 #define ASFT_P_SYND 0x00000ffffLL
296
297 #define AFSR_BITS "\177\20" \
298 "b\40ME\0" "b\37PRIV\0" "b\36ISAP\0" "b\35ETP\0" \
299 "b\34IVUE\0" "b\33TO\0" "b\32BERR\0" "b\31LDP\0" \
300 "b\30CP\0" "b\27WP\0" "b\26EDP\0" "b\25UE\0" \
301 "b\24CE\0" "f\20\4ETS\0" "f\0\20P_SYND\0"
302
303 /*
304 * Here's the spitfire TSB control register bits.
305 *
306 * Each TSB entry is 16-bytes wide. The TSB must be size aligned
307 */
308 #define TSB_SIZE_512 0x0 /* 8kB, etc. */
309 #define TSB_SIZE_1K 0x01
310 #define TSB_SIZE_2K 0x02
311 #define TSB_SIZE_4K 0x03
312 #define TSB_SIZE_8K 0x04
313 #define TSB_SIZE_16K 0x05
314 #define TSB_SIZE_32K 0x06
315 #define TSB_SIZE_64K 0x07
316 #define TSB_SPLIT 0x1000
317 #define TSB_BASE 0xffffffffffffe000
318
319 /* TLB Tag Access bits */
320 #define TLB_TAG_ACCESS_VA 0xffffffffffffe000
321 #define TLB_TAG_ACCESS_CTX 0x0000000000001fff
322
323 /*
324 * TLB demap registers. TTEs are defined in v9pte.h
325 *
326 * Use the address space to select between IMMU and DMMU.
327 * The address of the register selects which context register
328 * to read the ASI from.
329 *
330 * The data stored in the register is interpreted as the VA to
331 * use. The DEMAP_CTX_<> registers ignore the address and demap the
332 * entire ASI.
333 *
334 */
335 #define ASI_IMMU_DEMAP 0x57 /* [4u] IMMU TLB demap */
336 #define ASI_DMMU_DEMAP 0x5f /* [4u] IMMU TLB demap */
337
338 #define DEMAP_PAGE_NUCLEUS ((0x02)<<4) /* Demap page from kernel AS */
339 #define DEMAP_PAGE_PRIMARY ((0x00)<<4) /* Demap a page from primary CTXT */
340 #define DEMAP_PAGE_SECONDARY ((0x01)<<4) /* Demap page from secondary CTXT (DMMU only) */
341 #define DEMAP_CTX_NUCLEUS ((0x06)<<4) /* Demap all of kernel CTXT */
342 #define DEMAP_CTX_PRIMARY ((0x04)<<4) /* Demap all of primary CTXT */
343 #define DEMAP_CTX_SECONDARY ((0x05)<<4) /* Demap all of secondary CTXT */
344
345 /*
346 * Interrupt registers. This really gets hairy.
347 */
348
349 /* IRSR -- Interrupt Receive Status Ragister */
350 #define ASI_IRSR 0x49
351 #define IRSR 0x00
352 #define IRSR_BUSY 0x020
353 #define IRSR_MID(x) (x&0x1f)
354
355 /* IRDR -- Interrupt Receive Data Registers */
356 #define ASI_IRDR 0x7f
357 #define IRDR_0H 0x40
358 #define IRDR_0L 0x48 /* unimplemented */
359 #define IRDR_1H 0x50
360 #define IRDR_1L 0x58 /* unimplemented */
361 #define IRDR_2H 0x60
362 #define IRDR_2L 0x68 /* unimplemented */
363 #define IRDR_3H 0x70 /* unimplemented */
364 #define IRDR_3L 0x78 /* unimplemented */
365
366 /* SOFTINT ASRs */
367 #define SET_SOFTINT %asr20 /* Sets these bits */
368 #define CLEAR_SOFTINT %asr21 /* Clears these bits */
369 #define SOFTINT %asr22 /* Reads the register */
370 #define TICK_CMPR %asr23
371
372 #define TICK_INT 0x01 /* level-14 clock tick */
373 #define SOFTINT1 (0x1<<1)
374 #define SOFTINT2 (0x1<<2)
375 #define SOFTINT3 (0x1<<3)
376 #define SOFTINT4 (0x1<<4)
377 #define SOFTINT5 (0x1<<5)
378 #define SOFTINT6 (0x1<<6)
379 #define SOFTINT7 (0x1<<7)
380 #define SOFTINT8 (0x1<<8)
381 #define SOFTINT9 (0x1<<9)
382 #define SOFTINT10 (0x1<<10)
383 #define SOFTINT11 (0x1<<11)
384 #define SOFTINT12 (0x1<<12)
385 #define SOFTINT13 (0x1<<13)
386 #define SOFTINT14 (0x1<<14)
387 #define SOFTINT15 (0x1<<15)
388
389 /* Interrupt Dispatch -- usually reserved for cross-calls */
390 #define ASR_IDSR 0x48 /* Interrupt dispatch status reg */
391 #define IDSR 0x00
392 #define IDSR_NACK 0x02
393 #define IDSR_BUSY 0x01
394
395 #define ASI_INTERRUPT_DISPATCH 0x77 /* [4u] spitfire interrupt dispatch regs */
396
397 /* Interrupt delivery initiation */
398 #define IDCR(x) ((((uint64_t)(x)) << 14) | 0x70)
399
400 #define IDDR_0H 0x40 /* Store data to send in these regs */
401 #define IDDR_0L 0x48 /* unimplemented */
402 #define IDDR_1H 0x50
403 #define IDDR_1L 0x58 /* unimplemented */
404 #define IDDR_2H 0x60
405 #define IDDR_2L 0x68 /* unimplemented */
406 #define IDDR_3H 0x70 /* unimplemented */
407 #define IDDR_3L 0x78 /* unimplemented */
408
409 /*
410 * Error registers
411 */
412
413 /* Since we won't try to fix async errs, we don't care about the bits in the regs */
414 #define ASI_AFAR 0x4d /* Asynchronous fault address register */
415 #define AFAR 0x00
416 #define ASI_AFSR 0x4c /* Asynchronous fault status register */
417 #define AFSR 0x00
418
419 #define ASI_P_EER 0x4b /* Error enable register */
420 #define P_EER 0x00
421 #define P_EER_ISAPEN 0x04 /* Enable fatal on ISAP */
422 #define P_EER_NCEEN 0x02 /* Enable trap on uncorrectable errs */
423 #define P_EER_CEEN 0x01 /* Enable trap on correctable errs */
424
425 #define ASI_DATAPATH_READ 0x7f /* Read the regs */
426 #define ASI_DATAPATH_WRITE 0x77 /* Write to the regs */
427 #define P_DPER_0 0x00 /* Datapath err reg 0 */
428 #define P_DPER_1 0x18 /* Datapath err reg 1 */
429 #define P_DCR_0 0x20 /* Datapath control reg 0 */
430 #define P_DCR_1 0x38 /* Datapath control reg 0 */
431
432
433 /* From sparc64/asm.h which I think I'll deprecate since it makes bus.h a pain. */
434
435 #ifndef _LOCORE
436 /*
437 * GCC __asm constructs for doing assembly stuff.
438 */
439
440 /*
441 * ``Routines'' to load and store from/to alternate address space.
442 * The location can be a variable, the asi value (address space indicator)
443 * must be a constant.
444 *
445 * N.B.: You can put as many special functions here as you like, since
446 * they cost no kernel space or time if they are not used.
447 *
448 * These were static inline functions, but gcc screws up the constraints
449 * on the address space identifiers (the "n"umeric value part) because
450 * it inlines too late, so we have to use the funny valued-macro syntax.
451 */
452
453 /*
454 * Apparently the definition of bypass ASIs is that they all use the
455 * D$ so we need to flush the D$ to make sure we don't get data pollution.
456 */
457
458 static __inline__ u_char lduba __P((paddr_t loc, int asi));
459 static __inline__ u_short lduha __P((paddr_t loc, int asi));
460 static __inline__ u_int lda __P((paddr_t loc, int asi));
461 static __inline__ int ldswa __P((paddr_t loc, int asi));
462 static __inline__ u_int64_t ldxa __P((paddr_t loc, int asi));
463 static __inline__ u_int64_t ldda __P((paddr_t loc, int asi));
464
465 static __inline__ void stba __P((paddr_t loc, int asi, u_char value));
466 static __inline__ void stha __P((paddr_t loc, int asi, u_short value));
467 static __inline__ void sta __P((paddr_t loc, int asi, u_int value));
468 static __inline__ void stxa __P((paddr_t loc, int asi, u_int64_t value));
469 static __inline__ void stda __P((paddr_t loc, int asi, u_int64_t value));
470
471 #if 0
472 static __inline__ unsigned int casa __P((paddr_t loc, int asi,
473 unsigned int value, unsigned int oldvalue));
474 static __inline__ u_int64_t casxa __P((paddr_t loc, int asi,
475 u_int64_t value, u_int64_t oldvalue));
476 #endif
477
478 #ifdef __arch64__
479 static __inline__ u_char
480 lduba(paddr_t loc, int asi)
481 {
482 register unsigned int _lduba_v;
483
484 __asm __volatile("wr %2,%%g0,%%asi; "
485 " lduba [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
486 "=r" (_lduba_v) :
487 "r" ((unsigned long)(loc)), "r" (asi));
488 return (_lduba_v);
489 }
490 #else
491 static __inline__ u_char
492 lduba(paddr_t loc, int asi)
493 {
494 register unsigned int _lduba_v, _loc_hi, _pstate;
495
496 _loc_hi = (((u_int64_t)loc)>>32);
497 if (PHYS_ASI(asi)) {
498 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
499 " rdpr %%pstate,%1; or %0,%2,%0; wrpr %1,8,%%pstate; "
500 " membar #Sync; lduba [%0]%%asi,%0; wrpr %1,0,%%pstate; "
501 " membar #Sync; wr %%g0, 0x82, %%asi" :
502 "=&r" (_lduba_v), "=&r" (_pstate) :
503 "r" ((unsigned long)(loc)), "r" (_loc_hi),
504 "r" (asi));
505 } else {
506 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
507 " or %0,%1,%0; lduba [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduba_v) :
508 "r" ((unsigned long)(loc)),
509 "r" (_loc_hi), "r" (asi));
510 }
511 return (_lduba_v);
512 }
513 #endif
514
515 #ifdef __arch64__
516 /* load half-word from alternate address space */
517 static __inline__ u_short
518 lduha(paddr_t loc, int asi)
519 {
520 register unsigned int _lduha_v;
521
522 __asm __volatile("wr %2,%%g0,%%asi; lduha [%1]%%asi,%0; "
523 " wr %%g0, 0x82, %%asi" :
524 "=r" (_lduha_v) :
525 "r" ((unsigned long)(loc)), "r" (asi));
526 return (_lduha_v);
527 }
528 #else
529 /* load half-word from alternate address space */
530 static __inline__ u_short
531 lduha(paddr_t loc, int asi) {
532 register unsigned int _lduha_v, _loc_hi, _pstate;
533
534 _loc_hi = (((u_int64_t)loc)>>32);
535
536 if (PHYS_ASI(asi)) {
537 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
538 " rdpr %%pstate,%1; wrpr %1,8,%%pstate; "
539 " or %0,%2,%0; membar #Sync; lduha [%0]%%asi,%0; wrpr %1,0,%%pstate; "
540 " membar #Sync; wr %%g0, 0x82, %%asi" :
541 "=&r" (_lduha_v), "=&r" (_pstate) :
542 "r" ((unsigned long)(loc)), "r" (_loc_hi),
543 "r" (asi));
544 } else {
545 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
546 " or %0,%1,%0; lduha [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lduha_v) :
547 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
548 }
549 return (_lduha_v);
550 }
551 #endif
552
553
554 #ifdef __arch64__
555 /* load unsigned int from alternate address space */
556 static __inline__ u_int
557 lda(paddr_t loc, int asi)
558 {
559 register unsigned int _lda_v;
560
561 __asm __volatile("wr %2,%%g0,%%asi; lda [%1]%%asi,%0" :
562 "=r" (_lda_v) :
563 "r" ((unsigned long)(loc)), "r" (asi));
564 return (_lda_v);
565 }
566
567 /* load signed int from alternate address space */
568 static __inline__ int
569 ldswa(paddr_t loc, int asi)
570 {
571 register int _lda_v;
572
573 __asm __volatile("wr %2,%%g0,%%asi; "
574 " ldswa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
575 "=r" (_lda_v) :
576 "r" ((unsigned long)(loc)), "r" (asi));
577 return (_lda_v);
578 }
579 #else /* __arch64__ */
580 /* load unsigned int from alternate address space */
581 static __inline__ u_int
582 lda(paddr_t loc, int asi)
583 {
584 register unsigned int _lda_v, _loc_hi, _pstate;
585
586 _loc_hi = (((u_int64_t)loc)>>32);
587 if (PHYS_ASI(asi)) {
588 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
589 " sllx %3,32,%0; wrpr %1,8,%%pstate; or %0,%2,%0; membar #Sync; "
590 " lda [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; "
591 " wr %%g0, 0x82, %%asi" : "=&r" (_lda_v), "=&r" (_pstate) :
592 "r" ((unsigned long)(loc)), "r" (_loc_hi),
593 "r" (asi));
594 } else {
595 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
596 " or %0,%1,%0; lda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
597 "r" ((unsigned long)(loc)),
598 "r" (_loc_hi), "r" (asi));
599 }
600 return (_lda_v);
601 }
602
603 /* load signed int from alternate address space */
604 static __inline__ int
605 ldswa(paddr_t loc, int asi)
606 {
607 register int _lda_v, _loc_hi, _pstate;
608
609 _loc_hi = (((u_int64_t)loc)>>32);
610 if (PHYS_ASI(asi)) {
611 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
612 " wrpr %1,8,%%pstate; sllx %3,32,%0;"
613 " or %0,%2,%0; membar #Sync; ldswa [%0]%%asi,%0; wrpr %1,0,%%pstate; "
614 " membar #Sync; wr %%g0, 0x82, %%asi" :
615 "=&r" (_lda_v), "=&r" (_pstate) :
616 "r" ((unsigned long)(loc)), "r" (_loc_hi),
617 "r" (asi));
618 } else {
619 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
620 " or %0,%1,%0; ldswa [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
621 "r" ((unsigned long)(loc)),
622 "r" (_loc_hi), "r" (asi));
623 }
624 return (_lda_v);
625 }
626 #endif /* __arch64__ */
627
628 #ifdef __arch64__
629 /* load 64-bit int from alternate address space -- these should never be used */
630 static __inline__ u_int64_t
631 ldda(paddr_t loc, int asi)
632 {
633 register long long _lda_v;
634
635 __asm __volatile("wr %2,%%g0,%%asi; "
636 " ldda [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
637 "=r" (_lda_v) :
638 "r" ((unsigned long)(loc)), "r" (asi));
639 return (_lda_v);
640 }
641 #else
642 /* load 64-bit int from alternate address space */
643 static __inline__ u_int64_t
644 ldda(paddr_t loc, int asi)
645 {
646 register long long _lda_v, _loc_hi, _pstate;
647
648 _loc_hi = (((u_int64_t)loc)>>32);
649 if (PHYS_ASI(asi)) {
650 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1;"
651 " wrpr %1,8,%%pstate; sllx %3,32,%0; or %0,%2,%0; membar #Sync;"
652 " ldda [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
653 "=&r" (_lda_v), "=&r" (_pstate) :
654 "r" ((unsigned long)(loc)), "r" (_loc_hi),
655 "r" (asi));
656 } else {
657 __asm __volatile("wr %3,%%g0,%%asi; sllx %2,32,%0; "
658 " or %0,%1,%0; ldda [%0]%%asi,%0; wr %%g0, 0x82, %%asi" : "=&r" (_lda_v) :
659 "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
660 }
661 return (_lda_v);
662 }
663 #endif
664
665
666 #ifdef __arch64__
667 /* native load 64-bit int from alternate address space w/64-bit compiler*/
668 static __inline__ u_int64_t
669 ldxa(paddr_t loc, int asi)
670 {
671 register unsigned long _lda_v;
672
673 __asm __volatile("wr %2,%%g0,%%asi; "
674 " ldxa [%1]%%asi,%0; wr %%g0, 0x82, %%asi" :
675 "=r" (_lda_v) :
676 "r" ((unsigned long)(loc)), "r" (asi));
677 return (_lda_v);
678 }
679 #else
680 /* native load 64-bit int from alternate address space w/32-bit compiler*/
681 static __inline__ u_int64_t
682 ldxa(paddr_t loc, int asi)
683 {
684 register unsigned long _ldxa_lo, _ldxa_hi, _loc_hi;
685
686 _loc_hi = (((u_int64_t)loc)>>32);
687 if (PHYS_ASI(asi)) {
688 __asm __volatile("wr %4,%%g0,%%asi; rdpr %%pstate,%1; "
689 " sllx %3,32,%0; wrpr %1,8,%%pstate; or %0,%2,%0; membar #Sync; "
690 " ldxa [%0]%%asi,%0; wrpr %1,0,%%pstate; membar #Sync; "
691 " srlx %0,32,%1; srl %0,0,%0; wr %%g0, 0x82, %%asi" :
692 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
693 "r" ((unsigned long)(loc)), "r" (_loc_hi),
694 "r" (asi));
695 } else {
696 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
697 " or %0,%2,%0; ldxa [%0]%%asi,%0; srlx %0,32,%1; "
698 " srl %0,0,%0;; wr %%g0, 0x82, %%asi" :
699 "=&r" (_ldxa_lo), "=&r" (_ldxa_hi) :
700 "r" ((unsigned long)(loc)), "r" (_loc_hi),
701 "r" (asi));
702 }
703 return ((((int64_t)_ldxa_hi)<<32)|_ldxa_lo);
704 }
705 #endif
706
707 /* store byte to alternate address space */
708 #ifdef __arch64__
709 static __inline__ void
710 stba(paddr_t loc, int asi, u_char value)
711 {
712 __asm __volatile("wr %2,%%g0,%%asi; stba %0,[%1]%%asi; "
713 " wr %%g0, 0x82, %%asi" : :
714 "r" ((int)(value)), "r" ((unsigned long)(loc)),
715 "r" (asi));
716 }
717 #else
718 static __inline__ void
719 stba(paddr_t loc, int asi, u_char value)
720 {
721 register int _loc_hi, _pstate;
722
723 _loc_hi = (((u_int64_t)loc)>>32);
724 if (PHYS_ASI(asi)) {
725 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
726 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stba %2,[%0]%%asi; "
727 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
728 "=&r" (_loc_hi), "=&r" (_pstate) :
729 "r" ((int)(value)), "r" ((unsigned long)(loc)),
730 "r" (_loc_hi), "r" (asi));
731 } else {
732 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
733 " or %2,%0,%0; stba %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
734 "r" ((int)(value)), "r" ((unsigned long)(loc)),
735 "r" (_loc_hi), "r" (asi));
736 }
737 }
738 #endif
739
740 /* store half-word to alternate address space */
741 #ifdef __arch64__
742 static __inline__ void
743 stha(paddr_t loc, int asi, u_short value)
744 {
745 __asm __volatile("wr %2,%%g0,%%asi; stha %0,[%1]%%asi; "
746 " wr %%g0, 0x82, %%asi" : :
747 "r" ((int)(value)), "r" ((unsigned long)(loc)),
748 "r" (asi) : "memory");
749 }
750 #else
751 static __inline__ void
752 stha(paddr_t loc, int asi, u_short value)
753 {
754 register int _loc_hi, _pstate;
755
756 _loc_hi = (((u_int64_t)loc)>>32);
757 if (PHYS_ASI(asi)) {
758 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
759 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stha %2,[%0]%%asi; "
760 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
761 "=&r" (_loc_hi), "=&r" (_pstate) :
762 "r" ((int)(value)), "r" ((unsigned long)(loc)),
763 "r" (_loc_hi), "r" (asi) : "memory");
764 } else {
765 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
766 " or %2,%0,%0; stha %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
767 "r" ((int)(value)), "r" ((unsigned long)(loc)),
768 "r" (_loc_hi), "r" (asi) : "memory");
769 }
770 }
771 #endif
772
773
774 /* store int to alternate address space */
775 #ifdef __arch64__
776 static __inline__ void
777 sta(paddr_t loc, int asi, u_int value)
778 {
779 __asm __volatile("wr %2,%%g0,%%asi; sta %0,[%1]%%asi; "
780 " wr %%g0, 0x82, %%asi" : :
781 "r" ((int)(value)), "r" ((unsigned long)(loc)),
782 "r" (asi) : "memory");
783 }
784 #else
785 static __inline__ void
786 sta(paddr_t loc, int asi, u_int value)
787 {
788 register int _loc_hi, _pstate;
789
790 _loc_hi = (((u_int64_t)loc)>>32);
791 if (PHYS_ASI(asi)) {
792 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
793 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; sta %2,[%0]%%asi; "
794 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
795 "=&r" (_loc_hi), "=&r" (_pstate) :
796 "r" ((int)(value)), "r" ((unsigned long)(loc)),
797 "r" (_loc_hi), "r" (asi) : "memory");
798 } else {
799 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
800 " or %2,%0,%0; sta %1,[%0]%%asi; wr %%g0, 0x82, %%asi" : "=&r" (_loc_hi) :
801 "r" ((int)(value)), "r" ((unsigned long)(loc)),
802 "r" (_loc_hi), "r" (asi) : "memory");
803 }
804 }
805 #endif
806
807 /* store 64-bit int to alternate address space */
808 #ifdef __arch64__
809 static __inline__ void
810 stda(paddr_t loc, int asi, u_int64_t value)
811 {
812 __asm __volatile("wr %2,%%g0,%%asi; stda %0,[%1]%%asi; "
813 " wr %%g0, 0x82, %%asi" : :
814 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
815 "r" (asi) : "memory");
816 }
817 #else
818 static __inline__ void
819 stda(paddr_t loc, int asi, u_int64_t value)
820 {
821 register int _loc_hi, _pstate;
822
823 _loc_hi = (((u_int64_t)loc)>>32);
824 if (PHYS_ASI(asi)) {
825 __asm __volatile("wr %5,%%g0,%%asi; sllx %4,32,%0; "
826 " rdpr %%pstate,%1; or %3,%0,%0; wrpr %1,8,%%pstate; stda %2,[%0]%%asi; "
827 " wrpr %1,0,%%pstate; membar #Sync; wr %%g0, 0x82, %%asi" :
828 "=&r" (_loc_hi), "=&r" (_pstate) :
829 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
830 "r" (_loc_hi), "r" (asi) : "memory");
831 } else {
832 __asm __volatile("wr %4,%%g0,%%asi; sllx %3,32,%0; "
833 " or %2,%0,%0; stda %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
834 "=&r" (_loc_hi) :
835 "r" ((long long)(value)), "r" ((unsigned long)(loc)),
836 "r" (_loc_hi), "r" (asi) : "memory");
837 }
838 }
839 #endif
840
841 #ifdef __arch64__
842 /* native store 64-bit int to alternate address space w/64-bit compiler*/
843 static __inline__ void
844 stxa(paddr_t loc, int asi, u_int64_t value)
845 {
846 __asm __volatile("wr %2,%%g0,%%asi; stxa %0,[%1]%%asi; "
847 " wr %%g0, 0x82, %%asi" : :
848 "r" ((unsigned long)(value)),
849 "r" ((unsigned long)(loc)), "r" (asi) : "memory");
850 }
851 #else
852 /* native store 64-bit int to alternate address space w/32-bit compiler*/
853 static __inline__ void
854 stxa(paddr_t loc, int asi, u_int64_t value)
855 {
856 int _stxa_lo, _stxa_hi, _loc_hi;
857
858 _stxa_lo = value;
859 _stxa_hi = ((u_int64_t)value)>>32;
860 _loc_hi = (((u_int64_t)(u_long)loc)>>32);
861
862 if (PHYS_ASI(asi)) {
863 __asm __volatile("wr %7,%%g0,%%asi; sllx %4,32,%1; "
864 " sllx %6,32,%0; or %1,%3,%1; rdpr %%pstate,%2; or %0,%5,%0; "
865 " wrpr %2,8,%%pstate; stxa %1,[%0]%%asi; wrpr %2,0,%%pstate; "
866 " membar #Sync; wr %%g0, 0x82, %%asi" :
867 "=&r" (_loc_hi), "=&r" (_stxa_hi),
868 "=&r" ((int)(_stxa_lo)) :
869 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
870 "r" ((unsigned long)(loc)), "r" (_loc_hi),
871 "r" (asi) : "memory");
872 } else {
873 __asm __volatile("wr %6,%%g0,%%asi; sllx %3,32,%1; sllx %5,32,%0; "
874 " or %1,%2,%1; or %0,%4,%0; stxa %1,[%0]%%asi; wr %%g0, 0x82, %%asi" :
875 "=&r" (_loc_hi), "=&r" (_stxa_hi) :
876 "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
877 "r" ((unsigned long)(loc)), "r" (_loc_hi),
878 "r" (asi) : "memory");
879 }
880 }
881 #endif
882
883 #if 0
884 #ifdef __arch64__
885 /* native store 64-bit int to alternate address space w/64-bit compiler*/
886 static __inline__ u_int64_t
887 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
888 {
889 __asm __volatile("wr %3,%%g0,%%asi; casxa [%1]%%asi,%2,%0; "
890 " wr %%g0, 0x82, %%asi" :
891 "+r" (value) :
892 "r" ((unsigned long)(loc)), "r" (oldvalue), "r" (asi) :
893 "memory");
894 return (value);
895 }
896 #else
897 /* native store 64-bit int to alternate address space w/32-bit compiler*/
898 static __inline__ u_int64_t
899 casxa(paddr_t loc, int asi, u_int64_t value, u_int64_t oldvalue)
900 {
901 int _casxa_lo, _casxa_hi, _loc_hi, _oval_hi;
902
903 _casxa_lo = value;
904 _casxa_hi = ((u_int64_t)value)>>32;
905 _oval_hi = ((u_int64_t)oldvalue)>>32;
906 _loc_hi = (((u_int64_t)(u_long)loc)>>32);
907
908 #ifdef __notyet
909 /*
910 * gcc cannot handle this since it thinks it has >10 asm operands.
911 */
912 if (PHYS_ASI(asi)) {
913 __asm __volatile("wr %6,%%g0,%%asi; sllx %1,32,%1; rdpr %%pstate,%2; "
914 " sllx %0,32,%0; or %1,%2,%1; sllx %3,32,%3; or %0,%4,%0; or %3,%5,%3; "
915 " wrpr %2,8,%%pstate; casxa [%0]%%asi,%3,%1; wrpr %2,0,%%pstate; "
916 " andn %0,0x1f,%3; membar #Sync; "
917 " sll %1,0,%2; srax %1,32,%1; wr %%g0, 0x82, %%asi " :
918 "+r" (_loc_hi), "+r" (_casxa_hi),
919 "+r" (_casxa_lo), "+r" (_oval_hi) :
920 "r" ((unsigned long)(loc)),
921 "r" ((unsigned int)(oldvalue)),
922 "r" (asi));
923 } else {
924 __asm __volatile("wr %7,%%g0,%%asi; sllx %1,32,%1; sllx %5,32,%0; "
925 " or %1,%2,%1; sllx %3,32,%2; or %0,%4,%0; or %2,%4,%2; "
926 " casxa [%0]%%asi,%2,%1; sll %1,0,%2; srax %o1,32,%o1; wr %%g0, 0x82, %%asi " :
927 "=&r" (_loc_hi), "+r" (_casxa_hi), "+r" (_casxa_lo) :
928 "r" ((int)(_oval_hi)), "r" ((int)(oldvalue)),
929 "r" ((unsigned long)(loc)), "r" (_loc_hi),
930 "r" (asi) : "memory");
931 }
932 #endif
933 return (((u_int64_t)_casxa_hi<<32)|(u_int64_t)_casxa_lo);
934 }
935 #endif
936 #endif /* 0 */
937
938
939
940 /* flush address from data cache */
941 #define flush(loc) ({ \
942 __asm __volatile("flush %0" : : \
943 "r" ((unsigned long)(loc))); \
944 })
945
946 /* Flush a D$ line */
947 #if 0
948 #define flushline(loc) ({ \
949 stxa(((paddr_t)loc)&(~0x1f), (ASI_DCACHE_TAG), 0); \
950 membar_sync(); \
951 })
952 #else
953 #define flushline(loc)
954 #endif
955
956 /* The following two enable or disable the dcache in the LSU control register */
957 #define dcenable() ({ \
958 int res; \
959 __asm __volatile("ldxa [%%g0] %1,%0; or %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
960 : "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
961 })
962 #define dcdisable() ({ \
963 int res; \
964 __asm __volatile("ldxa [%%g0] %1,%0; andn %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
965 : "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
966 })
967
968 /*
969 * SPARC V9 memory barrier instructions.
970 */
971 /* Make all stores complete before next store */
972 #define membar_storestore() __asm __volatile("membar #StoreStore" : :)
973 /* Make all loads complete before next store */
974 #define membar_loadstore() __asm __volatile("membar #LoadStore" : :)
975 /* Make all stores complete before next load */
976 #define membar_storeload() __asm __volatile("membar #StoreLoad" : :)
977 /* Make all loads complete before next load */
978 #define membar_loadload() __asm __volatile("membar #LoadLoad" : :)
979 /* Complete all outstanding memory operations and exceptions */
980 #define membar_sync() __asm __volatile("membar #Sync" : :)
981 /* Complete all outstanding memory operations */
982 #define membar_memissue() __asm __volatile("membar #MemIssue" : :)
983 /* Complete all outstanding stores before any new loads */
984 #define membar_lookaside() __asm __volatile("membar #Lookaside" : :)
985
986 #ifdef __arch64__
987 /* read 64-bit %tick register */
988 #define tick() ({ \
989 register u_long _tick_tmp; \
990 __asm __volatile("rdpr %%tick, %0" : "=r" (_tick_tmp) :); \
991 _tick_tmp; \
992 })
993 #else
994 /* read 64-bit %tick register on 32-bit system */
995 #define tick() ({ \
996 register u_int _tick_hi = 0, _tick_lo = 0; \
997 __asm __volatile("rdpr %%tick, %0; srl %0,0,%1; srlx %0,32,%0 " \
998 : "=r" (_tick_hi), "=r" (_tick_lo) : ); \
999 (((u_int64_t)_tick_hi)<<32)|((u_int64_t)_tick_lo); \
1000 })
1001 #endif
1002
1003 extern void next_tick __P((long));
1004 #endif
1005