ctlreg.h revision 1.8 1 /* $NetBSD: ctlreg.h,v 1.8 1999/05/22 20:25:49 eeh Exp $ */
2
3 /*
4 * Copyright (c) 1996
5 * The President and Fellows of Harvard College. All rights reserved.
6 * Copyright (c) 1992, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * This software was developed by the Computer Systems Engineering group
10 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11 * contributed to Berkeley.
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Harvard University.
16 * This product includes software developed by the University of
17 * California, Lawrence Berkeley Laboratory.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgement:
29 * This product includes software developed by the University of
30 * California, Berkeley and its contributors.
31 * 4. Neither the name of the University nor the names of its contributors
32 * may be used to endorse or promote products derived from this software
33 * without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 *
47 * @(#)ctlreg.h 8.1 (Berkeley) 6/11/93
48 */
49
50 /*
51 * Sun4u support by Eduardo Horvath
52 * Changes Copyright (c) 1996 Eduardo Horvath
53 * All rights reserved.
54 */
55
56 /*
57 * Sun 4u control registers. (includes address space definitions
58 * and some registers in control space).
59 */
60
61 /*
62 * The Alternate address spaces.
63 *
64 * 0x00-0x7f are privileged
65 * 0x80-0xff can be used by users
66 */
67
68 #define ASI_LITTLE 0x08 /* This bit should make an ASI little endian */
69
70 #define ASI_NUCLEUS 0x04 /* [4u] kernel address space */
71 #define ASI_NUCLEUS_LITTLE 0x0c /* [4u] kernel address space, little endian */
72
73 #define ASI_AS_IF_USER_PRIMARY 0x10 /* [4u] primary user address space */
74 #define ASI_AS_IF_USER_SECONDARY 0x11 /* [4u] secondary user address space */
75
76 #define ASI_PHYS_CACHED 0x14 /* [4u] MMU bypass to main memory */
77 #define ASI_PHYS_NON_CACHED 0x15 /* [4u] MMU bypass to I/O location */
78
79 #define ASI_AS_IF_USER_PRIMARY_LITTLE 0x18 /* [4u] primary user address space, little endian */
80 #define ASI_AS_IF_USER_SECONDARY_LITTIE 0x19 /* [4u] secondary user address space, little endian */
81
82 #define ASI_PHYS_CACHED_LITTLE 0x1c /* [4u] MMU bypass to main memory, little endian */
83 #define ASI_PHYS_NON_CACHED_LITTLE 0x1d /* [4u] MMU bypass to I/O location, little endian */
84
85 #define ASI_NUCLEUS_QUAD_LDD 0x24 /* [4u] use w/LDDA to load 128-bit item */
86 #define ASI_NUCLEUS_QUAD_LDD_LITTLE 0x2c /* [4u] use w/LDDA to load 128-bit item, little endian */
87
88 #define ASI_FLUSH_D_PAGE_PRIMARY 0x38 /* [4u] flush D-cache page using primary context */
89 #define ASI_FLUSH_D_PAGE_SECONDARY 0x39 /* [4u] flush D-cache page using secondary context */
90 #define ASI_FLUSH_D_CTX_PRIMARY 0x3a /* [4u] flush D-cache context using primary context */
91 #define ASI_FLUSH_D_CTX_SECONDARY 0x3b /* [4u] flush D-cache context using secondary context */
92
93 #define ASI_LSU_CONTROL_REGISTER 0x45 /* [4u] load/store unit control register */
94
95 #define ASI_DCACHE_DATA 0x46 /* [4u] diagnostic access to D-cache data RAM */
96 #define ASI_DCACHE_TAG 0x47 /* [4u] diagnostic access to D-cache tag RAM */
97
98 #define ASI_INTR_DISPATCH_STATUS 0x48 /* [4u] interrupt dispatch status register */
99 #define ASI_INTR_RECEIVE 0x49 /* [4u] interrupt receive status register */
100 #define ASI_MID_REG 0x4a /* [4u] hardware config and MID */
101 #define ASI_ERROR_EN_REG 0x4b /* [4u] asynchronous error enables */
102 #define ASI_AFSR 0x4c /* [4u] asynchronous fault status register */
103 #define ASI_AFAR 0x4d /* [4u] asynchronous fault address register */
104
105 #define ASI_ICACHE_DATA 0x66 /* [4u] diagnostic access to D-cache data RAM */
106 #define ASI_ICACHE_TAG 0x67 /* [4u] diagnostic access to D-cache tag RAM */
107 #define ASI_FLUSH_I_PAGE_PRIMARY 0x68 /* [4u] flush D-cache page using primary context */
108 #define ASI_FLUSH_I_PAGE_SECONDARY 0x69 /* [4u] flush D-cache page using secondary context */
109 #define ASI_FLUSH_I_CTX_PRIMARY 0x6a /* [4u] flush D-cache context using primary context */
110 #define ASI_FLUSH_I_CTX_SECONDARY 0x6b /* [4u] flush D-cache context using secondary context */
111
112 #define ASI_BLOCK_AS_IF_USER_PRIMARY 0x70 /* [4u] primary user address space, block loads/stores */
113 #define ASI_BLOCK_AS_IF_USER_SECONDARY 0x71 /* [4u] secondary user address space, block loads/stores */
114
115 #define ASI_ECACHE_DIAG 0x76 /* [4u] diag access to E-cache tag and data */
116 #define ASI_DATAPATH_ERR_REG_WRITE 0x77 /* [4u] ASI is reused */
117
118 #define ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE 0x78 /* [4u] primary user address space, block loads/stores */
119 #define ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE 0x79 /* [4u] secondary user address space, block loads/stores */
120
121 #define ASI_INTERRUPT_RECEIVE_DATA 0x7f /* [4u] interrupt receive data registers {0,1,2} */
122 #define ASI_DATAPATH_ERR_REG_READ 0x7f /* [4u] read access to datapath error registers (ASI reused) */
123
124 #define ASI_PRIMARY 0x80 /* [4u] primary address space */
125 #define ASI_SECONDARY 0x81 /* [4u] secondary address space */
126 #define ASI_PRIMARY_NO_FAULT 0x82 /* [4u] primary address space, no fault */
127 #define ASI_SECONDARY_NO_FAULT 0x83 /* [4u] secondary address space, no fault */
128
129 #define ASI_PRIMARY_LITTLE 0x88 /* [4u] primary address space, little endian */
130 #define ASI_SECONDARY_LITTLE 0x89 /* [4u] secondary address space, little endian */
131 #define ASI_PRIMARY_NO_FAULT_LITTLE 0x8a /* [4u] primary address space, no fault, little endian */
132 #define ASI_SECONDARY_NO_FAULT_LITTLE 0x8b /* [4u] secondary address space, no fault, little endian */
133
134 #define ASI_PST8_PRIMARY 0xc0 /* [VIS] Eight 8-bit partial store, primary */
135 #define ASI_PST8_SECONDARY 0xc1 /* [VIS] Eight 8-bit partial store, secondary */
136 #define ASI_PST16_PRIMARY 0xc2 /* [VIS] Four 16-bit partial store, primary */
137 #define ASI_PST16_SECONDARY 0xc3 /* [VIS] Fout 16-bit partial store, secondary */
138 #define ASI_PST32_PRIMARY 0xc4 /* [VIS] Two 32-bit partial store, primary */
139 #define ASI_PST32_SECONDARY 0xc5 /* [VIS] Two 32-bit partial store, secondary */
140
141 #define ASI_PST8_PRIMARY_LITTLE 0xc8 /* [VIS] Eight 8-bit partial store, primary, little endian */
142 #define ASI_PST8_SECONDARY_LITTLE 0xc9 /* [VIS] Eight 8-bit partial store, secondary, little endian */
143 #define ASI_PST16_PRIMARY_LITTLE 0xca /* [VIS] Four 16-bit partial store, primary, little endian */
144 #define ASI_PST16_SECONDARY_LITTLE 0xcb /* [VIS] Fout 16-bit partial store, secondary, little endian */
145 #define ASI_PST32_PRIMARY_LITTLE 0xcc /* [VIS] Two 32-bit partial store, primary, little endian */
146 #define ASI_PST32_SECONDARY_LITTLE 0xcd /* [VIS] Two 32-bit partial store, secondary, little endian */
147
148 #define ASI_FL8_PRIMARY 0xd0 /* [VIS] One 8-bit load/store floating, primary */
149 #define ASI_FL8_SECONDARY 0xd1 /* [VIS] One 8-bit load/store floating, secondary */
150 #define ASI_FL16_PRIMARY 0xd2 /* [VIS] One 16-bit load/store floating, primary */
151 #define ASI_FL16_SECONDARY 0xd3 /* [VIS] One 16-bit load/store floating, secondary */
152
153 #define ASI_FL8_PRIMARY_LITTLE 0xd8 /* [VIS] One 8-bit load/store floating, primary, little endian */
154 #define ASI_FL8_SECONDARY_LITTLE 0xd9 /* [VIS] One 8-bit load/store floating, secondary, little endian */
155 #define ASI_FL16_PRIMARY_LITTLE 0xda /* [VIS] One 16-bit load/store floating, primary, little endian */
156 #define ASI_FL16_SECONDARY_LITTLE 0xdb /* [VIS] One 16-bit load/store floating, secondary, little endian */
157
158 #define ASI_BLOCK_COMMIT_PRIMARY 0xe0 /* [4u] block store with commit, primary */
159 #define ASI_BLOCK_COMMIT_SECONDARY 0xe1 /* [4u] block store with commit, secondary */
160 #define ASI_BLOCK_PRIMARY 0xf0 /* [4u] block load/store, primary */
161 #define ASI_BLOCK_SECONDARY 0xf1 /* [4u] block load/store, secondary */
162 #define ASI_BLOCK_PRIMARY_LITTLE 0xf8 /* [4u] block load/store, primary, little endian */
163 #define ASI_BLOCK_SECONDARY_LITTLE 0xf9 /* [4u] block load/store, secondary, little endian */
164
165
166 /*
167 * These are the shorter names used by Solaris
168 */
169
170 #define ASI_N ASI_NUCLEUS
171 #define ASI_NL ASI_NUCLEUS_LITTLE
172 #define ASI_AIUP ASI_AS_IF_USER_PRIMARY
173 #define ASI_AIUS ASI_AS_IF_USER_SECONDARY
174 #define ASI_AIUPL ASI_AS_IF_USER_PRIMARY_LITTLE
175 #define ASI_AIUSL ASI_AS_IF_USER_SECONDARY_LITTLE
176 #define ASI_P ASI_PRIMARY
177 #define ASI_S ASI_SECONDARY
178 #define ASI_PNF ASI_PRIMARY_NO_FAULT
179 #define ASI_SNF ASI_SECONDARY_NO_FAULT
180 #define ASI_PL ASI_PRIMARY_LITTLE
181 #define ASI_SL ASI_SECONDARY_LITTLE
182 #define ASI_PNFL ASI_PRIMARY_NO_FAULT_LITTLE
183 #define ASI_SNFL ASI_SECONDARY_NO_FAULT_LITTLE
184 #define ASI_BLK_AIUP ASI_BLOCK_AS_IF_USER_PRIMARY
185 #define ASI_BLK_AIUPL ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
186 #define ASI_BLK_AIUS ASI_BLOCK_AS_IF_USER_SECONDARY
187 #define ASI_BLK_AIUSL ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
188 #define ASI_BLK_COMMIT_P ASI_BLOCK_COMMIT_PRIMARY
189 #define ASI_BLK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_PRIMARY
190 #define ASI_BLK_COMMIT_S ASI_BLOCK_COMMIT_SECONDARY
191 #define ASI_BLK_COMMIT_SECONDARY ASI_BLOCK_COMMIT_SECONDARY
192 #define ASI_BLK_P ASI_BLOCK_PRIMARY
193 #define ASI_BLK_PL ASI_BLOCK_PRIMARY_LITTLE
194 #define ASI_BLK_S ASI_BLOCK_SECONDARY
195 #define ASI_BLK_SL ASI_BLOCK_SECONDARY_LITTLE
196
197 /*
198 * The following are 4u control registers
199 */
200
201 /*
202 * [4u] MMU and Cache Control Register (MCCR)
203 * use ASI = 0x45
204 */
205 #define ASI_MCCR ASI_LSU_CONTROL_REGISTER
206 #define MCCR 0x00
207
208 /* MCCR Bits and their meanings */
209 #define MCCR_DMMU_EN 0x08
210 #define MCCR_IMMU_EN 0x04
211 #define MCCR_DCACHE_EN 0x02
212 #define MCCR_ICACHE_EN 0x01
213
214
215 /*
216 * MMU control registers
217 */
218
219 /* Choose an MMU */
220 #define ASI_DMMU 0x58
221 #define ASI_IMMU 0x50
222
223 /* Other assorted MMU ASIs */
224 #define ASI_IMMU_8KPTR 0x51
225 #define ASI_IMMU_64KPTR 0x52
226 #define ASI_IMMU_DATA_IN 0x54
227 #define ASI_IMMU_TLB_DATA 0x55
228 #define ASI_IMMU_TLB_TAG 0x56
229 #define ASI_DMMU_8KPTR 0x59
230 #define ASI_DMMU_64KPTR 0x5a
231 #define ASI_DMMU_DATA_IN 0x5c
232 #define ASI_DMMU_TLB_DATA 0x5d
233 #define ASI_DMMU_TLB_TAG 0x5e
234
235 /*
236 * The following are the control registers
237 * They work on both MMUs unless noted.
238 *
239 * Register contents are defined later on individual registers.
240 */
241 #define TSB_TAG_TARGET 0x0
242 #define TLB_DATA_IN 0x0
243 #define CTX_PRIMARY 0x08 /* primary context -- DMMU only */
244 #define CTX_SECONDARY 0x10 /* secondary context -- DMMU only */
245 #define SFSR 0x18
246 #define SFAR 0x20 /* fault address -- DMMU only */
247 #define TSB 0x28
248 #define TLB_TAG_ACCESS 0x30
249 #define VIRTUAL_WATCHPOINT 0x38
250 #define PHYSICAL_WATCHPOINT 0x40
251
252 /* Tag Target bits */
253 #define TAG_TARGET_VA_MASK 0x03ffffffffffffffffLL
254 #define TAG_TARGET_VA(x) (((x)<<22)&TAG_TARGET_VA_MASK)
255 #define TAG_TARGET_CONTEXT(x) ((x)>>48)
256 #define TAG_TARGET(c,v) ((((uint64_t)c)<<48)|(((uint64_t)v)&TAG_TARGET_VA_MASK))
257
258 /* SFSR bits for both D_SFSR and I_SFSR */
259 #define SFSR_ASI(x) ((x)>>16)
260 #define SFSR_FT_VA_OOR_2 0x02000 /* IMMU: jumpl or return to unsupportd VA */
261 #define SFSR_FT_VA_OOR_1 0x01000 /* fault at unsupported VA */
262 #define SFSR_FT_NFO 0x00800 /* DMMU: Access to page marked NFO */
263 #define SFSR_ILL_ASI 0x00400 /* DMMU: Illegal (unsupported) ASI */
264 #define SFSR_FT_IO_ATOMIC 0x00200 /* DMMU: Atomic access to noncacheable page */
265 #define SFSR_FT_ILL_NF 0x00100 /* DMMU: NF load or flush to page marked E (has side effects) */
266 #define SFSR_FT_PRIV 0x00080 /* Privilege violation */
267 #define SFSR_FT_E 0x00040 /* DMUU: value of E bit associated address */
268 #define SFSR_CTXT(x) (((x)>>4)&0x3)
269 #define SFSR_CTXT_IS_PRIM(x) (SFSR_CTXT(x)==0x00)
270 #define SFSR_CTXT_IS_SECOND(x) (SFSR_CTXT(x)==0x01)
271 #define SFSR_CTXT_IS_NUCLEUS(x) (SFSR_CTXT(x)==0x02)
272 #define SFSR_PRIV 0x00008 /* value of PSTATE.PRIV for faulting access */
273 #define SFSR_W 0x00004 /* DMMU: attempted write */
274 #define SFSR_OW 0x00002 /* Overwrite; prev vault was still valid */
275 #define SFSR_FV 0x00001 /* Fault is valid */
276 #define SFSR_FT (SFSR_FT_VA_OOR_2|SFSR_FT_VA_OOR_1|SFSR_FT_NFO|SFSR_ILL_ASI|SFSR_FT_IO_ATOMIC|SFSR_FT_ILL_NF|SFSR_FT_PRIV)
277
278 #if 0
279 /* Old bits */
280 #define SFSR_BITS "\40\16VAT\15VAD\14NFO\13ASI\12A\11NF\10PRIV\7E\6NUCLEUS\5SECONDCTX\4PRIV\3W\2OW\1FV"
281 #else
282 /* New bits */
283 #define SFSR_BITS "\177\20" \
284 "f\20\30ASI\0" "b\16VAT\0" "b\15VAD\0" "b\14NFO\0" "b\13ASI\0" "b\12A\0" "b\11NF\0" "b\10PRIV\0" \
285 "b\7E\0" "b\6NUCLEUS\0" "b\5SECONDCTX\0" "b\4PRIV\0" "b\3W\0" "b\2OW\0" "b\1FV\0"
286 #endif
287
288 /* ASFR bits */
289 #define ASFR_ME 0x100000000LL
290 #define ASFR_PRIV 0x080000000LL
291 #define ASFR_ISAP 0x040000000LL
292 #define ASFR_ETP 0x020000000LL
293 #define ASFR_IVUE 0x010000000LL
294 #define ASFR_TO 0x008000000LL
295 #define ASFR_BERR 0x004000000LL
296 #define ASFR_LDP 0x002000000LL
297 #define ASFR_CP 0x001000000LL
298 #define ASFR_WP 0x000800000LL
299 #define ASFR_EDP 0x000400000LL
300 #define ASFR_UE 0x000200000LL
301 #define ASFR_CE 0x000100000LL
302 #define ASFR_ETS 0x0000f0000LL
303 #define ASFT_P_SYND 0x00000ffffLL
304
305 #define AFSR_BITS "\177\20" \
306 "b\40ME\0" "b\37PRIV\0" "b\36ISAP\0" "b\35ETP\0" \
307 "b\34IVUE\0" "b\33TO\0" "b\32BERR\0" "b\31LDP\0" \
308 "b\30CP\0" "b\27WP\0" "b\26EDP\0" "b\25UE\0" \
309 "b\24CE\0" "f\20\4ETS\0" "f\0\20P_SYND\0"
310
311 /*
312 * Here's the spitfire TSB control register bits.
313 *
314 * Each TSB entry is 16-bytes wide. The TSB must be size aligned
315 */
316 #define TSB_SIZE_512 0x0 /* 8kB, etc. */
317 #define TSB_SIZE_1K 0x01
318 #define TSB_SIZE_2K 0x02
319 #define TSB_SIZE_4K 0x03
320 #define TSB_SIZE_8K 0x04
321 #define TSB_SIZE_16K 0x05
322 #define TSB_SIZE_32K 0x06
323 #define TSB_SIZE_64K 0x07
324 #define TSB_SPLIT 0x1000
325 #define TSB_BASE 0xffffffffffffe000
326
327 /* TLB Tag Access bits */
328 #define TLB_TAG_ACCESS_VA 0xffffffffffffe000
329 #define TLB_TAG_ACCESS_CTX 0x0000000000001fff
330
331 /*
332 * TLB demap registers. TTEs are defined in v9pte.h
333 *
334 * Use the address space to select between IMMU and DMMU.
335 * The address of the register selects which context register
336 * to read the ASI from.
337 *
338 * The data stored in the register is interpreted as the VA to
339 * use. The DEMAP_CTX_<> registers ignore the address and demap the
340 * entire ASI.
341 *
342 */
343 #define ASI_IMMU_DEMAP 0x57 /* [4u] IMMU TLB demap */
344 #define ASI_DMMU_DEMAP 0x5f /* [4u] IMMU TLB demap */
345
346 #define DEMAP_PAGE_NUCLEUS ((0x02)<<4) /* Demap page from kernel AS */
347 #define DEMAP_PAGE_PRIMARY ((0x00)<<4) /* Demap a page from primary CTXT */
348 #define DEMAP_PAGE_SECONDARY ((0x01)<<4) /* Demap page from secondary CTXT (DMMU only) */
349 #define DEMAP_CTX_NUCLEUS ((0x06)<<4) /* Demap all of kernel CTXT */
350 #define DEMAP_CTX_PRIMARY ((0x04)<<4) /* Demap all of primary CTXT */
351 #define DEMAP_CTX_SECONDARY ((0x05)<<4) /* Demap all of secondary CTXT */
352
353 /*
354 * Interrupt registers. This really gets hairy.
355 */
356
357 /* IRSR -- Interrupt Receive Status Ragister */
358 #define ASI_IRSR 0x49
359 #define IRSR 0x00
360 #define IRSR_BUSY 0x010
361 #define IRSR_MID(x) (x&0xf)
362
363 /* IRDR -- Interrupt Receive Data Registers */
364 #define ASI_IRDR 0x7f
365 #define IRDR_0H 0x40
366 #define IRDR_0L 0x48 /* unimplemented */
367 #define IRDR_1H 0x50
368 #define IRDR_1L 0x58 /* unimplemented */
369 #define IRDR_2H 0x60
370 #define IRDR_2L 0x68 /* unimplemented */
371 #define IRDR_3H 0x70 /* unimplemented */
372 #define IRDR_3L 0x78 /* unimplemented */
373
374 /* SOFTINT ASRs */
375 #define SET_SOFTINT %asr20 /* Sets these bits */
376 #define CLEAR_SOFTINT %asr21 /* Clears these bits */
377 #define SOFTINT %asr22 /* Reads the register */
378
379 #define TICK_INT 0x01 /* level-14 clock tick */
380 #define SOFTINT1 (0x1<<1)
381 #define SOFTINT2 (0x1<<2)
382 #define SOFTINT3 (0x1<<3)
383 #define SOFTINT4 (0x1<<4)
384 #define SOFTINT5 (0x1<<5)
385 #define SOFTINT6 (0x1<<6)
386 #define SOFTINT7 (0x1<<7)
387 #define SOFTINT8 (0x1<<8)
388 #define SOFTINT9 (0x1<<9)
389 #define SOFTINT10 (0x1<<10)
390 #define SOFTINT11 (0x1<<11)
391 #define SOFTINT12 (0x1<<12)
392 #define SOFTINT13 (0x1<<13)
393 #define SOFTINT14 (0x1<<14)
394 #define SOFTINT15 (0x1<<15)
395
396 /* Interrupt Dispatch -- usually reserved for cross-calls */
397 #define ASR_IDSR 0x48 /* Interrupt dispatch status reg */
398 #define IDSR 0x00
399 #define IDSR_NACK 0x02
400 #define IDSR_BUSY 0x01
401
402 #define ASI_INTERRUPT_DISPATCH 0x77 /* [4u] spitfire interrupt dispatch regs */
403 #define IDCR(x) (((x)<<14)&0x70) /* Store anything to this address to dispatch crosscall to CPU (x) */
404 #define IDDR_0H 0x40 /* Store data to send in these regs */
405 #define IDDR_0L 0x48 /* unimplemented */
406 #define IDDR_1H 0x50
407 #define IDDR_1L 0x58 /* unimplemented */
408 #define IDDR_2H 0x60
409 #define IDDR_2L 0x68 /* unimplemented */
410 #define IDDR_3H 0x70 /* unimplemented */
411 #define IDDR_3L 0x78 /* unimplemented */
412
413 /*
414 * Error registers
415 */
416
417 /* Since we won't try to fix async errs, we don't care about the bits in the regs */
418 #define ASI_AFAR 0x4d /* Asynchronous fault address register */
419 #define AFAR 0x00
420 #define ASI_AFSR 0x4c /* Asynchronous fault status register */
421 #define AFSR 0x00
422
423 #define ASI_P_EER 0x4b /* Error enable register */
424 #define P_EER 0x00
425 #define P_EER_ISAPEN 0x04 /* Enable fatal on ISAP */
426 #define P_EER_NCEEN 0x02 /* Enable trap on uncorrectable errs */
427 #define P_EER_CEEN 0x01 /* Enable trap on correctable errs */
428
429 #define ASI_DATAPATH_READ 0x7f /* Read the regs */
430 #define ASI_DATAPATH_WRITE 0x77 /* Write to the regs */
431 #define P_DPER_0 0x00 /* Datapath err reg 0 */
432 #define P_DPER_1 0x18 /* Datapath err reg 1 */
433 #define P_DCR_0 0x20 /* Datapath control reg 0 */
434 #define P_DCR_1 0x38 /* Datapath control reg 0 */
435
436
437 /* From sparc64/asm.h which I think I'll deprecate since it makes bus.h a pain. */
438
439 /*
440 * GCC __asm constructs for doing assembly stuff.
441 */
442
443 /*
444 * ``Routines'' to load and store from/to alternate address space.
445 * The location can be a variable, the asi value (address space indicator)
446 * must be a constant.
447 *
448 * N.B.: You can put as many special functions here as you like, since
449 * they cost no kernel space or time if they are not used.
450 *
451 * These were static inline functions, but gcc screws up the constraints
452 * on the address space identifiers (the "n"umeric value part) because
453 * it inlines too late, so we have to use the funny valued-macro syntax.
454 */
455
456 /* DCACHE_BUG forces a flush of the D$ line on every ASI load */
457 #define DCACHE_BUG
458
459 /* load byte from alternate address space */
460 #ifdef DCACHE_BUG
461 #define lduba(loc, asi) ({ \
462 register int _lduba_v; \
463 if (asi == ASI_PHYS_CACHED) { \
464 __asm __volatile("wr %2,%%g0,%%asi; " \
465 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
466 " lduba [%1]%%asi,%0" : "=r" (_lduba_v) : \
467 "r" ((long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
468 } else { \
469 __asm __volatile("wr %2,%%g0,%%asi; lduba [%1]%%asi,%0" : \
470 "=r" (_lduba_v) : "r" ((long)(loc)), "r" (asi)); \
471 } \
472 _lduba_v; \
473 })
474 #else
475 #define lduba(loc, asi) ({ \
476 register int _lduba_v; \
477 __asm __volatile("wr %2,%%g0,%%asi; lduba [%1]%%asi,%0" : "=r" (_lduba_v) : \
478 "r" ((long)(loc)), "r" (asi)); \
479 _lduba_v; \
480 })
481 #endif
482
483 /* load half-word from alternate address space */
484 #ifdef DCACHE_BUG
485 #define lduha(loc, asi) ({ \
486 register int _lduha_v; \
487 if (asi == ASI_PHYS_CACHED) { \
488 __asm __volatile("wr %2,%%g0,%%asi; " \
489 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
490 " lduha [%1]%%asi,%0" : "=r" (_lduha_v) : \
491 "r" ((long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
492 } else { \
493 __asm __volatile("wr %2,%%g0,%%asi; lduha [%1]%%asi,%0" : "=r" (_lduha_v) : \
494 "r" ((long)(loc)), "r" (asi)); \
495 } \
496 _lduha_v; \
497 })
498 #else
499 #define lduha(loc, asi) ({ \
500 register int _lduha_v; \
501 __asm __volatile("wr %2,%%g0,%%asi; lduha [%1]%%asi,%0" : "=r" (_lduha_v) : \
502 "r" ((long)(loc)), "r" (asi)); \
503 _lduha_v; \
504 })
505 #endif
506
507 /* load unsigned int from alternate address space */
508 #ifdef DCACHE_BUG
509 #define lda(loc, asi) ({ \
510 register int _lda_v; \
511 if (asi == ASI_PHYS_CACHED) { \
512 __asm __volatile("wr %2,%%g0,%%asi; " \
513 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
514 " lda [%1]%%asi,%0" : "=r" (_lda_v) : \
515 "r" ((long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
516 } else { \
517 __asm __volatile("wr %2,%%g0,%%asi; lda [%1]%%asi,%0" : "=r" (_lda_v) : \
518 "r" ((long)(loc)), "r" (asi)); \
519 } \
520 _lda_v; \
521 })
522
523 /* load signed int from alternate address space */
524 #define ldswa(loc, asi) ({ \
525 register int _lda_v; \
526 if (asi == ASI_PHYS_CACHED) { \
527 __asm __volatile("wr %2,%%g0,%%asi; " \
528 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
529 " ldswa [%1]%%asi,%0" : "=r" (_lda_v) : \
530 "r" ((long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
531 } else { \
532 __asm __volatile("wr %2,%%g0,%%asi; ldswa [%1]%%asi,%0" : "=r" (_lda_v) : \
533 "r" ((long)(loc)), "r" (asi)); \
534 } \
535 _lda_v; \
536 })
537 #else
538 #define lda(loc, asi) ({ \
539 register int _lda_v; \
540 __asm __volatile("wr %2,%%g0,%%asi; lda [%1]%%asi,%0" : "=r" (_lda_v) : \
541 "r" ((long)(loc)), "r" (asi)); \
542 _lda_v; \
543 })
544
545 #define ldswa(loc, asi) ({ \
546 register int _lda_v; \
547 __asm __volatile("wr %2,%%g0,%%asi; ldswa [%1]%%asi,%0" : "=r" (_lda_v) : \
548 "r" ((long)(loc)), "r" (asi)); \
549 _lda_v; \
550 })
551 #endif
552
553 #ifdef DCACHE_BUG
554
555 /* load 64-bit int from alternate address space */
556 #define ldda(loc, asi) ({ \
557 register long long _lda_v; \
558 if (asi == ASI_PHYS_CACHED) { \
559 __asm __volatile("wr %2,%%g0,%%asi; " \
560 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
561 " ldda [%1]%%asi,%0" : "=r" (_lda_v) : \
562 "r" ((long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
563 } else { \
564 __asm __volatile("wr %2,%%g0,%%asi; ldda [%1]%%asi,%0" : "=r" (_lda_v) : \
565 "r" ((long)(loc)), "r" (asi)); \
566 } \
567 _lda_v; \
568 })
569
570 #ifdef __arch64__
571 /* native load 64-bit int from alternate address space w/64-bit compiler*/
572 #define ldxa(loc, asi) ({ \
573 register long _lda_v; \
574 if (asi == ASI_PHYS_CACHED) { \
575 __asm __volatile("wr %2,%%g0,%%asi; "\
576 " andn %1,0x1f,%0; stxa %%g0,[%0] %3; membar #Sync; " \
577 " ldxa [%1]%%asi,%0" : "=r" (_lda_v) : \
578 "r" ((long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
579 } else { \
580 __asm __volatile("wr %2,%%g0,%%asi; ldxa [%1]%%asi,%0" : "=r" (_lda_v) : \
581 "r" ((long)(loc)), "r" (asi)); \
582 } \
583 _lda_v; \
584 })
585 #else
586 /* native load 64-bit int from alternate address space w/32-bit compiler*/
587 #define ldxa(loc, asi) ({ \
588 volatile register long _ldxa_lo, _ldxa_hi; \
589 if (asi == ASI_PHYS_CACHED) { \
590 __asm __volatile("wr %3,%%g0,%%asi; " \
591 " andn %2,0x1f,%0; stxa %%g0,[%0] %4; membar #Sync; " \
592 " ldxa [%2]%%asi,%0; srlx %0,32,%1; srl %0,0,%0" : \
593 "=r" (_ldxa_lo), "=r" (_ldxa_hi) : \
594 "r" ((long)(loc)), "r" (asi), "n" (ASI_DCACHE_TAG)); \
595 } else { \
596 __asm __volatile("wr %3,%%g0,%%asi; ldxa [%2]%%asi,%0; srlx %0,32,%1; srl %0,0,%0;" : \
597 "=r" (_ldxa_lo), "=r" (_ldxa_hi) : \
598 "r" ((long)(loc)), "r" (asi)); \
599 } \
600 ((((int64_t)_ldxa_hi)<<32)|_ldxa_lo); \
601 })
602 #endif
603
604 #else
605
606 /* load 64-bit int from alternate address space */
607 #define ldda(loc, asi) ({ \
608 register long long _lda_v; \
609 __asm __volatile("wr %2,%%g0,%%asi; ldda [%1]%%asi,%0" : "=r" (_lda_v) : \
610 "r" ((long)(loc)), "r" (asi)); \
611 _lda_v; \
612 })
613
614 #ifdef __arch64__
615 /* native load 64-bit int from alternate address space w/64-bit compiler*/
616 #define ldxa(loc, asi) ({ \
617 register long _lda_v; \
618 __asm __volatile("wr %2,%%g0,%%asi; ldxa [%1]%%asi,%0" : "=r" (_lda_v) : \
619 "r" ((long)(loc)), "r" (asi)); \
620 _lda_v; \
621 })
622 #else
623 /* native load 64-bit int from alternate address space w/32-bit compiler*/
624 #define ldxa(loc, asi) ({ \
625 volatile register long _ldxa_lo, _ldxa_hi; \
626 __asm __volatile("wr %3,%%g0,%%asi; ldxa [%2]%%asi,%0; srlx %0,32,%1; srl %0,0,%0;" : \
627 "=r" (_ldxa_lo), "=r" (_ldxa_hi) : \
628 "r" ((long)(loc)), "r" (asi)); \
629 ((((int64_t)_ldxa_hi)<<32)|_ldxa_lo); \
630 })
631 #endif
632 #endif
633
634
635 /* store byte to alternate address space */
636 #define stba(loc, asi, value) ({ \
637 __asm __volatile("wr %2,%%g0,%%asi; stba %0,[%1]%%asi" : : \
638 "r" ((int)(value)), "r" ((long)(loc)), "r" (asi)); \
639 })
640
641 /* store half-word to alternate address space */
642 #define stha(loc, asi, value) ({ \
643 __asm __volatile("wr %2,%%g0,%%asi; stha %0,[%1]%%asi" : : \
644 "r" ((int)(value)), "r" ((long)(loc)), "r" (asi)); \
645 })
646
647 /* store int to alternate address space */
648 #define sta(loc, asi, value) ({ \
649 __asm __volatile("wr %2,%%g0,%%asi; sta %0,[%1]%%asi" : : \
650 "r" ((int)(value)), "r" ((long)(loc)), "r" (asi)); \
651 })
652
653 /* store 64-bit int to alternate address space */
654 #define stda(loc, asi, value) ({ \
655 __asm __volatile("wr %2,%%g0,%%asi; stda %0,[%1]%%asi" : : \
656 "r" ((long long)(value)), "r" ((long)(loc)), "r" (asi)); \
657 })
658
659 #ifdef __arch64__
660 /* native store 64-bit int to alternate address space w/64-bit compiler*/
661 #define stxa(loc, asi, value) ({ \
662 __asm __volatile("wr %2,%%g0,%%asi; stxa %0,[%1]%%asi" : : \
663 "r" ((long)(value)), "r" ((long)(loc)), "r" (asi)); \
664 })
665 #else
666 /* native store 64-bit int to alternate address space w/32-bit compiler*/
667 #define stxa(loc, asi, value) ({ \
668 int64_t _stxa_v; \
669 int64_t *_stxa_a = &_stxa_v; \
670 _stxa_v = value; \
671 __asm __volatile("wr %2,%%g0,%%asi; ldx [%0],%3; stxa %3,[%1]%%asi" : : \
672 "r" ((long)(_stxa_a)), "r" ((long)(loc)), "r" (asi), "r" ((long)(_stxa_v))); \
673 })
674 #endif
675
676 /* flush address from data cache */
677 #define flush(loc) ({ \
678 __asm __volatile("flush %0" : : \
679 "r" ((long)(loc))); \
680 })
681
682 /* Flush a D$ line */
683 #if 0
684 #define flushline(loc) ({ \
685 stxa(((paddr_t)loc)&(~0x1f), (ASI_DCACHE_TAG), 0); \
686 membar_sync(); \
687 })
688 #else
689 #define flushline(loc)
690 #endif
691
692 /* The following two enable or disable the dcache in the LSU control register */
693 #define dcenable() ({ \
694 int res; \
695 __asm __volatile("ldxa [%%g0] %1,%0; or %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
696 : "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
697 })
698 #define dcdisable() ({ \
699 int res; \
700 __asm __volatile("ldxa [%%g0] %1,%0; andn %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
701 : "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
702 })
703
704 /*
705 * SPARC V9 memory barrier instructions.
706 */
707 /* Make all stores complete before next store */
708 #define membar_storestore() __asm __volatile("membar #StoreStore" : :)
709 /* Make all loads complete before next store */
710 #define membar_loadstore() __asm __volatile("membar #LoadStore" : :)
711 /* Make all stores complete before next load */
712 #define membar_storeload() __asm __volatile("membar #StoreLoad" : :)
713 /* Make all loads complete before next load */
714 #define membar_loadload() __asm __volatile("membar #LoadLoad" : :)
715 /* Complete all outstanding memory operations and exceptions */
716 #define membar_sync() __asm __volatile("membar #Sync" : :)
717 /* Complete all outstanding memory operations */
718 #define membar_memissue() __asm __volatile("membar #MemIssue" : :)
719 /* Complete all outstanding stores before any new loads */
720 #define membar_lookaside() __asm __volatile("membar #Lookaside" : :)
721
722 #ifdef __arch64__
723 /* read 64-bit %tick register */
724 #define tick() ({ \
725 register u_long _tick_tmp; \
726 __asm __volatile("rdpr %%tick, %0" : "=r" (_tick_tmp) :); \
727 _tick_tmp; \
728 })
729 #else
730 /* native load 64-bit int from alternate address space w/32-bit compiler*/
731 #define tick() ({ \
732 volatile register u_long _tick_tmp = 0; \
733 volatile u_int64_t _tick_v; \
734 volatile u_int64_t *_tick_a = &_tick_v; \
735 __asm __volatile("rdpr %%tick, %0; stx %0,[%1]; membar #StoreLoad" : "=r" (_tick_tmp) : \
736 "r" ((long)(_tick_a))); \
737 _tick_v; \
738 })
739 #endif
740
741