zs.c revision 1.7 1 /* $NetBSD: zs.c,v 1.7 2003/01/28 12:35:37 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/tty.h>
59 #include <sys/time.h>
60 #include <sys/syslog.h>
61
62 #include <machine/autoconf.h>
63 #include <machine/promlib.h>
64 #include <machine/cpu.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71 #include <dev/sun/kbd_ms_ttyvar.h>
72 #include <ddb/db_output.h>
73
74 #include <sun2/dev/cons.h>
75
76 #include "kbd.h" /* NKBD */
77 #include "ms.h" /* NMS */
78
79 /*
80 * Some warts needed by z8530tty.c -
81 * The default parity REALLY needs to be the same as the PROM uses,
82 * or you can not see messages done with printf during boot-up...
83 */
84 int zs_def_cflag = (CREAD | CS8 | HUPCL);
85
86 /* ZS channel used as the console device (if any) */
87 void *zs_conschan_get, *zs_conschan_put;
88
89 static u_char zs_init_reg[16] = {
90 0, /* 0: CMD (reset, etc.) */
91 0, /* 1: No interrupts yet. */
92 #ifdef ZS_INIT_IVECT
93 ZS_INIT_IVECT, /* 2: IVECT */
94 #else
95 0, /* 2: IVECT */
96 #endif
97 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
98 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
99 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
100 0, /* 6: TXSYNC/SYNCLO */
101 0, /* 7: RXSYNC/SYNCHI */
102 0, /* 8: alias for data port */
103 #ifdef ZS_INIT_IVECT
104 ZSWR9_MASTER_IE,
105 #else
106 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
107 #endif
108 0, /*10: Misc. TX/RX control bits */
109 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
110 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
111 0, /*13: BAUDHI (default=9600) */
112 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
113 ZSWR15_BREAK_IE,
114 };
115
116 /* Console ops */
117 static int zscngetc __P((dev_t));
118 static void zscnputc __P((dev_t, int));
119 static void zscnpollc __P((dev_t, int));
120
121 struct consdev zs_consdev = {
122 NULL,
123 NULL,
124 zscngetc,
125 zscnputc,
126 zscnpollc,
127 NULL,
128 };
129
130
131 /****************************************************************
132 * Autoconfig
133 ****************************************************************/
134
135 static int zs_print __P((void *, const char *name));
136
137 extern struct cfdriver zs_cd;
138
139 /* Interrupt handlers. */
140 int zscheckintr __P((void *));
141 static int zshard __P((void *));
142 static void zssoft __P((void *));
143
144 static int zs_get_speed __P((struct zs_chanstate *));
145
146 /*
147 * Attach a found zs.
148 *
149 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
150 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
151 */
152 void
153 zs_attach(zsc, zsd, pri)
154 struct zsc_softc *zsc;
155 struct zsdevice *zsd;
156 int pri;
157 {
158 struct zsc_attach_args zsc_args;
159 struct zs_chanstate *cs;
160 int s, channel, softpri = IPL_SOFTSERIAL;
161
162 if (zsd == NULL) {
163 printf("configuration incomplete\n");
164 return;
165 }
166
167 printf(" softpri %d\n", softpri);
168
169 /*
170 * Initialize software state for each channel.
171 */
172 for (channel = 0; channel < 2; channel++) {
173 struct zschan *zc;
174 struct device *child;
175
176 zsc_args.channel = channel;
177 cs = &zsc->zsc_cs_store[channel];
178 zsc->zsc_cs[channel] = cs;
179
180 simple_lock_init(&cs->cs_lock);
181 cs->cs_channel = channel;
182 cs->cs_private = NULL;
183 cs->cs_ops = &zsops_null;
184 cs->cs_brg_clk = PCLK / 16;
185
186 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
187
188 zsc_args.consdev = NULL;
189 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
190 zsc->zsc_node,
191 channel);
192
193 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
194 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
195 zsc_args.consdev = &zs_consdev;
196 }
197
198 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
199 zs_conschan_get = zc;
200 }
201 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
202 zs_conschan_put = zc;
203 }
204
205 /* Children need to set cn_dev, etc */
206 cs->cs_reg_csr = &zc->zc_csr;
207 cs->cs_reg_data = &zc->zc_data;
208
209 memcpy(cs->cs_creg, zs_init_reg, 16);
210 memcpy(cs->cs_preg, zs_init_reg, 16);
211
212 /* XXX: Consult PROM properties for this?! */
213 cs->cs_defspeed = zs_get_speed(cs);
214 cs->cs_defcflag = zs_def_cflag;
215
216 /* Make these correspond to cs_defcflag (-crtscts) */
217 cs->cs_rr0_dcd = ZSRR0_DCD;
218 cs->cs_rr0_cts = 0;
219 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
220 cs->cs_wr5_rts = 0;
221
222 /*
223 * Clear the master interrupt enable.
224 * The INTENA is common to both channels,
225 * so just do it on the A channel.
226 */
227 if (channel == 0) {
228 zs_write_reg(cs, 9, 0);
229 }
230
231 /*
232 * Look for a child driver for this channel.
233 * The child attach will setup the hardware.
234 */
235 if (!(child =
236 config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print))) {
237 /* No sub-driver. Just reset it. */
238 u_char reset = (channel == 0) ?
239 ZSWR9_A_RESET : ZSWR9_B_RESET;
240 s = splzs();
241 zs_write_reg(cs, 9, reset);
242 splx(s);
243 }
244 #if (NKBD > 0) || (NMS > 0)
245 /*
246 * If this was a zstty it has a keyboard
247 * property on it we need to attach the
248 * sunkbd and sunms line disciplines.
249 */
250 if (child
251 && (!strcmp(child->dv_cfdata->cf_name,
252 "zstty"))) {
253 struct kbd_ms_tty_attach_args kma;
254 struct zstty_softc {
255 /* The following are the only fields we need here */
256 struct device zst_dev;
257 struct tty *zst_tty;
258 struct zs_chanstate *zst_cs;
259 } *zst = (struct zstty_softc *)child;
260 struct tty *tp;
261
262 kma.kmta_tp = tp = zst->zst_tty;
263 if (tp != NULL) {
264 kma.kmta_dev = tp->t_dev;
265 kma.kmta_consdev = zsc_args.consdev;
266
267 /* Attach 'em if we got 'em. */
268 switch(zs_peripheral_type(zsc->zsc_promunit,
269 zsc->zsc_node,
270 channel)) {
271 case ZS_PERIPHERAL_SUNKBD:
272 #if (NKBD > 0)
273 kma.kmta_name = "keyboard";
274 config_found(child, (void *)&kma, NULL);
275 #endif
276 break;
277 case ZS_PERIPHERAL_SUNMS:
278 #if (NMS > 0)
279 kma.kmta_name = "mouse";
280 config_found(child, (void *)&kma, NULL);
281 #endif
282 break;
283 default:
284 break;
285 }
286 }
287 }
288 #endif
289 }
290
291 /*
292 * Now safe to install interrupt handlers. Note the arguments
293 * to the interrupt handlers aren't used. Note, we only do this
294 * once since both SCCs interrupt at the same level and vector.
295 */
296 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0, zshard, zsc);
297 if (!(zsc->zsc_softintr = softintr_establish(softpri, zssoft, zsc)))
298 panic("zsattach: could not establish soft interrupt");
299
300 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
301 zsc->zsc_dev.dv_xname, "intr");
302
303
304 /*
305 * Set the master interrupt enable and interrupt vector.
306 * (common to both channels, do it on A)
307 */
308 cs = zsc->zsc_cs[0];
309 s = splhigh();
310 /* interrupt vector */
311 zs_write_reg(cs, 2, zs_init_reg[2]);
312 /* master interrupt control (enable) */
313 zs_write_reg(cs, 9, zs_init_reg[9]);
314 splx(s);
315
316 }
317
318 static int
319 zs_print(aux, name)
320 void *aux;
321 const char *name;
322 {
323 struct zsc_attach_args *args = aux;
324
325 if (name != NULL)
326 aprint_normal("%s: ", name);
327
328 if (args->channel != -1)
329 aprint_normal(" channel %d", args->channel);
330
331 return (UNCONF);
332 }
333
334 static int
335 zshard(arg)
336 void *arg;
337 {
338 struct zsc_softc *zsc = (struct zsc_softc *)arg;
339 int rr3, rval;
340
341 rval = 0;
342 while ((rr3 = zsc_intr_hard(zsc))) {
343 /* Count up the interrupts. */
344 rval |= rr3;
345 zsc->zsc_intrcnt.ev_count++;
346 }
347 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
348 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
349 zsc->zsc_softintr) {
350 softintr_schedule(zsc->zsc_softintr);
351 }
352 return (rval);
353 }
354
355 int
356 zscheckintr(arg)
357 void *arg;
358 {
359 struct zsc_softc *zsc;
360 int unit, rval;
361
362 rval = 0;
363 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
364
365 zsc = zs_cd.cd_devs[unit];
366 if (zsc == NULL)
367 continue;
368 rval = (zshard((void *)zsc) || rval);
369 }
370 return (rval);
371 }
372
373
374 /*
375 * We need this only for TTY_DEBUG purposes.
376 */
377 static void
378 zssoft(arg)
379 void *arg;
380 {
381 struct zsc_softc *zsc = (struct zsc_softc *)arg;
382 int s;
383
384 /* Make sure we call the tty layer at spltty. */
385 s = spltty();
386 (void)zsc_intr_soft(zsc);
387 #ifdef TTY_DEBUG
388 {
389 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
390 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
391 if (zst0->zst_overflows || zst1->zst_overflows ) {
392 struct trapframe *frame = (struct trapframe *)arg;
393
394 printf("zs silo overflow from %p\n",
395 (long)frame->tf_pc);
396 }
397 }
398 #endif
399 splx(s);
400 }
401
402
403 /*
404 * Compute the current baud rate given a ZS channel.
405 */
406 static int
407 zs_get_speed(cs)
408 struct zs_chanstate *cs;
409 {
410 int tconst;
411
412 tconst = zs_read_reg(cs, 12);
413 tconst |= zs_read_reg(cs, 13) << 8;
414 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
415 }
416
417 /*
418 * MD functions for setting the baud rate and control modes.
419 */
420 int
421 zs_set_speed(cs, bps)
422 struct zs_chanstate *cs;
423 int bps; /* bits per second */
424 {
425 int tconst, real_bps;
426
427 if (bps == 0)
428 return (0);
429
430 #ifdef DIAGNOSTIC
431 if (cs->cs_brg_clk == 0)
432 panic("zs_set_speed");
433 #endif
434
435 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
436 if (tconst < 0)
437 return (EINVAL);
438
439 /* Convert back to make sure we can do it. */
440 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
441
442 /* XXX - Allow some tolerance here? */
443 if (real_bps != bps)
444 return (EINVAL);
445
446 cs->cs_preg[12] = tconst;
447 cs->cs_preg[13] = tconst >> 8;
448
449 /* Caller will stuff the pending registers. */
450 return (0);
451 }
452
453 int
454 zs_set_modes(cs, cflag)
455 struct zs_chanstate *cs;
456 int cflag; /* bits per second */
457 {
458 int s;
459
460 /*
461 * Output hardware flow control on the chip is horrendous:
462 * if carrier detect drops, the receiver is disabled, and if
463 * CTS drops, the transmitter is stoped IN MID CHARACTER!
464 * Therefore, NEVER set the HFC bit, and instead use the
465 * status interrupt to detect CTS changes.
466 */
467 s = splzs();
468 cs->cs_rr0_pps = 0;
469 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
470 cs->cs_rr0_dcd = 0;
471 if ((cflag & MDMBUF) == 0)
472 cs->cs_rr0_pps = ZSRR0_DCD;
473 } else
474 cs->cs_rr0_dcd = ZSRR0_DCD;
475 if ((cflag & CRTSCTS) != 0) {
476 cs->cs_wr5_dtr = ZSWR5_DTR;
477 cs->cs_wr5_rts = ZSWR5_RTS;
478 cs->cs_rr0_cts = ZSRR0_CTS;
479 } else if ((cflag & CDTRCTS) != 0) {
480 cs->cs_wr5_dtr = 0;
481 cs->cs_wr5_rts = ZSWR5_DTR;
482 cs->cs_rr0_cts = ZSRR0_CTS;
483 } else if ((cflag & MDMBUF) != 0) {
484 cs->cs_wr5_dtr = 0;
485 cs->cs_wr5_rts = ZSWR5_DTR;
486 cs->cs_rr0_cts = ZSRR0_DCD;
487 } else {
488 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
489 cs->cs_wr5_rts = 0;
490 cs->cs_rr0_cts = 0;
491 }
492 splx(s);
493
494 /* Caller will stuff the pending registers. */
495 return (0);
496 }
497
498
499 /*
500 * Read or write the chip with suitable delays.
501 */
502
503 u_char
504 zs_read_reg(cs, reg)
505 struct zs_chanstate *cs;
506 u_char reg;
507 {
508 u_char val;
509
510 *cs->cs_reg_csr = reg;
511 ZS_DELAY();
512 val = *cs->cs_reg_csr;
513 ZS_DELAY();
514 return (val);
515 }
516
517 void
518 zs_write_reg(cs, reg, val)
519 struct zs_chanstate *cs;
520 u_char reg, val;
521 {
522 *cs->cs_reg_csr = reg;
523 ZS_DELAY();
524 *cs->cs_reg_csr = val;
525 ZS_DELAY();
526 }
527
528 u_char
529 zs_read_csr(cs)
530 struct zs_chanstate *cs;
531 {
532 u_char val;
533
534 val = *cs->cs_reg_csr;
535 ZS_DELAY();
536 return (val);
537 }
538
539 void zs_write_csr(cs, val)
540 struct zs_chanstate *cs;
541 u_char val;
542 {
543 *cs->cs_reg_csr = val;
544 ZS_DELAY();
545 }
546
547 u_char zs_read_data(cs)
548 struct zs_chanstate *cs;
549 {
550 u_char val;
551
552 val = *cs->cs_reg_data;
553 ZS_DELAY();
554 return (val);
555 }
556
557 void zs_write_data(cs, val)
558 struct zs_chanstate *cs;
559 u_char val;
560 {
561 *cs->cs_reg_data = val;
562 ZS_DELAY();
563 }
564
565 /****************************************************************
566 * Console support functions (Sun specific!)
567 * Note: this code is allowed to know about the layout of
568 * the chip registers, and uses that to keep things simple.
569 * XXX - I think I like the mvme167 code better. -gwr
570 ****************************************************************/
571
572 extern void Debugger __P((void));
573
574 /*
575 * Handle user request to enter kernel debugger.
576 */
577 void
578 zs_abort(cs)
579 struct zs_chanstate *cs;
580 {
581 volatile struct zschan *zc = zs_conschan_get;
582 int rr0;
583
584 /* Wait for end of break to avoid PROM abort. */
585 /* XXX - Limit the wait? */
586 do {
587 rr0 = zc->zc_csr;
588 ZS_DELAY();
589 } while (rr0 & ZSRR0_BREAK);
590
591 #if defined(KGDB)
592 zskgdb(cs);
593 #elif defined(DDB)
594 {
595 extern int db_active;
596
597 if (!db_active)
598 Debugger();
599 else
600 /* Debugger is probably hozed */
601 callrom();
602 }
603 #else
604 printf("stopping on keyboard abort\n");
605 callrom();
606 #endif
607 }
608
609
610 /*
611 * Polled input char.
612 */
613 int
614 zs_getc(arg)
615 void *arg;
616 {
617 volatile struct zschan *zc = arg;
618 int s, c, rr0;
619
620 s = splhigh();
621 /* Wait for a character to arrive. */
622 do {
623 rr0 = zc->zc_csr;
624 ZS_DELAY();
625 } while ((rr0 & ZSRR0_RX_READY) == 0);
626
627 c = zc->zc_data;
628 ZS_DELAY();
629 splx(s);
630
631 /*
632 * This is used by the kd driver to read scan codes,
633 * so don't translate '\r' ==> '\n' here...
634 */
635 return (c);
636 }
637
638 /*
639 * Polled output char.
640 */
641 void
642 zs_putc(arg, c)
643 void *arg;
644 int c;
645 {
646 volatile struct zschan *zc = arg;
647 int s, rr0;
648
649 s = splhigh();
650
651 /* Wait for transmitter to become ready. */
652 do {
653 rr0 = zc->zc_csr;
654 ZS_DELAY();
655 } while ((rr0 & ZSRR0_TX_READY) == 0);
656
657 /*
658 * Send the next character.
659 * Now you'd think that this could be followed by a ZS_DELAY()
660 * just like all the other chip accesses, but it turns out that
661 * the `transmit-ready' interrupt isn't de-asserted until
662 * some period of time after the register write completes
663 * (more than a couple instructions). So to avoid stray
664 * interrupts we put in the 2us delay regardless of cpu model.
665 */
666 zc->zc_data = c;
667 delay(2);
668
669 splx(s);
670 }
671
672 /*****************************************************************/
673
674
675
676
677 /*
678 * Polled console input putchar.
679 */
680 static int
681 zscngetc(dev)
682 dev_t dev;
683 {
684 return (zs_getc(zs_conschan_get));
685 }
686
687 /*
688 * Polled console output putchar.
689 */
690 static void
691 zscnputc(dev, c)
692 dev_t dev;
693 int c;
694 {
695 zs_putc(zs_conschan_put, c);
696 }
697
698 int swallow_zsintrs;
699
700 static void
701 zscnpollc(dev, on)
702 dev_t dev;
703 int on;
704 {
705 /*
706 * Need to tell zs driver to acknowledge all interrupts or we get
707 * annoying spurious interrupt messages. This is because mucking
708 * with spl() levels during polling does not prevent interrupts from
709 * being generated.
710 */
711
712 if (on) swallow_zsintrs++;
713 else swallow_zsintrs--;
714 }
715
716