if_ie.c revision 1.16 1 1.16 gwr /* $NetBSD: if_ie.c,v 1.16 1996/12/17 21:10:44 gwr Exp $ */
2 1.1 gwr
3 1.1 gwr /*-
4 1.3 gwr * Copyright (c) 1993, 1994, 1995 Charles Hannum.
5 1.1 gwr * Copyright (c) 1992, 1993, University of Vermont and State
6 1.1 gwr * Agricultural College.
7 1.1 gwr * Copyright (c) 1992, 1993, Garrett A. Wollman.
8 1.1 gwr *
9 1.1 gwr * Portions:
10 1.3 gwr * Copyright (c) 1994, 1995, Rafal K. Boni
11 1.1 gwr * Copyright (c) 1990, 1991, William F. Jolitz
12 1.1 gwr * Copyright (c) 1990, The Regents of the University of California
13 1.1 gwr *
14 1.1 gwr * All rights reserved.
15 1.1 gwr *
16 1.1 gwr * Redistribution and use in source and binary forms, with or without
17 1.1 gwr * modification, are permitted provided that the following conditions
18 1.1 gwr * are met:
19 1.1 gwr * 1. Redistributions of source code must retain the above copyright
20 1.1 gwr * notice, this list of conditions and the following disclaimer.
21 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 gwr * notice, this list of conditions and the following disclaimer in the
23 1.1 gwr * documentation and/or other materials provided with the distribution.
24 1.1 gwr * 3. All advertising materials mentioning features or use of this software
25 1.1 gwr * must display the following acknowledgement:
26 1.1 gwr * This product includes software developed by Charles Hannum, by the
27 1.1 gwr * University of Vermont and State Agricultural College and Garrett A.
28 1.1 gwr * Wollman, by William F. Jolitz, and by the University of California,
29 1.1 gwr * Berkeley, Lawrence Berkeley Laboratory, and its contributors.
30 1.1 gwr * 4. Neither the names of the Universities nor the names of the authors
31 1.1 gwr * may be used to endorse or promote products derived from this software
32 1.1 gwr * without specific prior written permission.
33 1.1 gwr *
34 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR AUTHORS BE LIABLE
38 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44 1.1 gwr * SUCH DAMAGE.
45 1.1 gwr */
46 1.1 gwr
47 1.1 gwr /*
48 1.1 gwr * Intel 82586 Ethernet chip
49 1.1 gwr * Register, bit, and structure definitions.
50 1.1 gwr *
51 1.1 gwr * Original StarLAN driver written by Garrett Wollman with reference to the
52 1.1 gwr * Clarkson Packet Driver code for this chip written by Russ Nelson and others.
53 1.1 gwr *
54 1.1 gwr * BPF support code taken from hpdev/if_le.c, supplied with tcpdump.
55 1.1 gwr *
56 1.1 gwr * 3C507 support is loosely based on code donated to NetBSD by Rafal Boni.
57 1.1 gwr *
58 1.1 gwr * Majorly cleaned up and 3C507 code merged by Charles Hannum.
59 1.1 gwr *
60 1.3 gwr * Converted to SUN ie driver by Charles D. Cranor,
61 1.3 gwr * October 1994, January 1995.
62 1.3 gwr * This sun version based on i386 version 1.30.
63 1.1 gwr */
64 1.1 gwr
65 1.1 gwr /*
66 1.1 gwr * The i82586 is a very painful chip, found in sun3's, sun-4/100's
67 1.1 gwr * sun-4/200's, and VME based suns. The byte order is all wrong for a
68 1.1 gwr * SUN, making life difficult. Programming this chip is mostly the same,
69 1.1 gwr * but certain details differ from system to system. This driver is
70 1.1 gwr * written so that different "ie" interfaces can be controled by the same
71 1.1 gwr * driver.
72 1.1 gwr */
73 1.1 gwr
74 1.1 gwr /*
75 1.1 gwr Mode of operation:
76 1.1 gwr
77 1.1 gwr We run the 82586 in a standard Ethernet mode. We keep NFRAMES
78 1.1 gwr received frame descriptors around for the receiver to use, and
79 1.1 gwr NRXBUF associated receive buffer descriptors, both in a circular
80 1.1 gwr list. Whenever a frame is received, we rotate both lists as
81 1.1 gwr necessary. (The 586 treats both lists as a simple queue.) We also
82 1.1 gwr keep a transmit command around so that packets can be sent off
83 1.1 gwr quickly.
84 1.3 gwr
85 1.1 gwr We configure the adapter in AL-LOC = 1 mode, which means that the
86 1.1 gwr Ethernet/802.3 MAC header is placed at the beginning of the receive
87 1.1 gwr buffer rather than being split off into various fields in the RFD.
88 1.1 gwr This also means that we must include this header in the transmit
89 1.1 gwr buffer as well.
90 1.3 gwr
91 1.1 gwr By convention, all transmit commands, and only transmit commands,
92 1.1 gwr shall have the I (IE_CMD_INTR) bit set in the command. This way,
93 1.1 gwr when an interrupt arrives at ieintr(), it is immediately possible
94 1.1 gwr to tell what precisely caused it. ANY OTHER command-sending
95 1.6 mycroft routines should run at splnet(), and should post an acknowledgement
96 1.1 gwr to every interrupt they generate.
97 1.1 gwr */
98 1.1 gwr
99 1.1 gwr #include "bpfilter.h"
100 1.1 gwr
101 1.1 gwr #include <sys/param.h>
102 1.1 gwr #include <sys/systm.h>
103 1.1 gwr #include <sys/mbuf.h>
104 1.1 gwr #include <sys/buf.h>
105 1.1 gwr #include <sys/protosw.h>
106 1.1 gwr #include <sys/socket.h>
107 1.1 gwr #include <sys/ioctl.h>
108 1.3 gwr #include <sys/errno.h>
109 1.1 gwr #include <sys/syslog.h>
110 1.3 gwr #include <sys/device.h>
111 1.1 gwr
112 1.1 gwr #include <net/if.h>
113 1.1 gwr #include <net/if_types.h>
114 1.1 gwr #include <net/if_dl.h>
115 1.1 gwr #include <net/netisr.h>
116 1.1 gwr #include <net/route.h>
117 1.1 gwr
118 1.1 gwr #if NBPFILTER > 0
119 1.1 gwr #include <net/bpf.h>
120 1.1 gwr #include <net/bpfdesc.h>
121 1.1 gwr #endif
122 1.1 gwr
123 1.1 gwr #ifdef INET
124 1.1 gwr #include <netinet/in.h>
125 1.1 gwr #include <netinet/in_systm.h>
126 1.1 gwr #include <netinet/in_var.h>
127 1.1 gwr #include <netinet/ip.h>
128 1.1 gwr #include <netinet/if_ether.h>
129 1.1 gwr #endif
130 1.1 gwr
131 1.1 gwr #ifdef NS
132 1.1 gwr #include <netns/ns.h>
133 1.1 gwr #include <netns/ns_if.h>
134 1.1 gwr #endif
135 1.1 gwr
136 1.1 gwr #include <vm/vm.h>
137 1.1 gwr
138 1.16 gwr #include <machine/autoconf.h>
139 1.16 gwr #include <machine/cpu.h>
140 1.16 gwr #include <machine/pmap.h>
141 1.16 gwr
142 1.1 gwr /*
143 1.1 gwr * ugly byte-order hack for SUNs
144 1.1 gwr */
145 1.1 gwr
146 1.16 gwr #define XSWAP(y) ( ((y) >> 8) | ((y) << 8) )
147 1.1 gwr #define SWAP(x) ((u_short)(XSWAP((u_short)(x))))
148 1.1 gwr
149 1.1 gwr #include "i82586.h"
150 1.10 gwr #include "if_iereg.h"
151 1.10 gwr #include "if_ievar.h"
152 1.1 gwr
153 1.1 gwr static struct mbuf *last_not_for_us;
154 1.1 gwr
155 1.1 gwr /*
156 1.1 gwr * IED: ie debug flags
157 1.1 gwr */
158 1.1 gwr
159 1.1 gwr #define IED_RINT 0x01
160 1.1 gwr #define IED_TINT 0x02
161 1.1 gwr #define IED_RNR 0x04
162 1.1 gwr #define IED_CNA 0x08
163 1.1 gwr #define IED_READFRAME 0x10
164 1.1 gwr #define IED_ALL 0x1f
165 1.1 gwr
166 1.1 gwr #define ETHER_MIN_LEN 64
167 1.1 gwr #define ETHER_MAX_LEN 1518
168 1.1 gwr #define ETHER_ADDR_LEN 6
169 1.1 gwr
170 1.11 thorpej void iewatchdog __P((struct ifnet *));
171 1.3 gwr int ieinit __P((struct ie_softc *));
172 1.3 gwr int ieioctl __P((struct ifnet *, u_long, caddr_t));
173 1.4 gwr void iestart __P((struct ifnet *));
174 1.1 gwr void iereset __P((struct ie_softc *));
175 1.16 gwr int ie_setupram __P((struct ie_softc *sc));
176 1.16 gwr
177 1.16 gwr static void chan_attn_timeout __P((void *arg));
178 1.16 gwr static int cmd_and_wait __P((struct ie_softc *, int, void *, int));
179 1.16 gwr
180 1.16 gwr static void ie_drop_packet_buffer __P((struct ie_softc *));
181 1.3 gwr static void ie_readframe __P((struct ie_softc *, int));
182 1.16 gwr static void ie_setup_config __P((struct ie_config_cmd *, int, int));
183 1.16 gwr
184 1.3 gwr static void ierint __P((struct ie_softc *));
185 1.16 gwr static void iestop __P((struct ie_softc *));
186 1.3 gwr static void ietint __P((struct ie_softc *));
187 1.16 gwr static void iexmit __P((struct ie_softc *));
188 1.16 gwr
189 1.3 gwr static int mc_setup __P((struct ie_softc *, void *));
190 1.3 gwr static void mc_reset __P((struct ie_softc *));
191 1.16 gwr static void run_tdr __P((struct ie_softc *, struct ie_tdr_cmd *));
192 1.16 gwr static void setup_bufs __P((struct ie_softc *));
193 1.16 gwr
194 1.16 gwr static inline caddr_t Align __P((caddr_t ptr));
195 1.16 gwr static inline void ie_ack __P((struct ie_softc *, u_int));
196 1.16 gwr static inline u_short ether_cmp __P((u_char *, u_char *));
197 1.16 gwr static inline int check_eh __P((struct ie_softc *,
198 1.16 gwr struct ether_header *eh, int *));
199 1.16 gwr static inline int ie_buflen __P((struct ie_softc *, int));
200 1.16 gwr static inline int ie_packet_len __P((struct ie_softc *));
201 1.16 gwr static inline int ieget __P((struct ie_softc *sc,
202 1.16 gwr struct mbuf **mp, struct ether_header *ehp, int *to_bpf));
203 1.16 gwr
204 1.1 gwr
205 1.1 gwr #ifdef IEDEBUG
206 1.3 gwr void print_rbd __P((volatile struct ie_recv_buf_desc *));
207 1.1 gwr int in_ierint = 0;
208 1.1 gwr int in_ietint = 0;
209 1.1 gwr #endif
210 1.1 gwr
211 1.8 thorpej
212 1.8 thorpej struct cfdriver ie_cd = {
213 1.8 thorpej NULL, "ie", DV_IFNET
214 1.1 gwr };
215 1.1 gwr
216 1.9 gwr
217 1.1 gwr /*
218 1.1 gwr * address generation macros
219 1.1 gwr * MK_24 = KVA -> 24 bit address in SUN byte order
220 1.1 gwr * MK_16 = KVA -> 16 bit address in INTEL byte order
221 1.1 gwr * ST_24 = store a 24 bit address in SUN byte order to INTEL byte order
222 1.1 gwr */
223 1.1 gwr #define MK_24(base, ptr) ((caddr_t)((u_long)ptr - (u_long)base))
224 1.1 gwr #define MK_16(base, ptr) SWAP((u_short)( ((u_long)(ptr)) - ((u_long)(base)) ))
225 1.1 gwr #define ST_24(to, from) { \
226 1.1 gwr u_long fval = (u_long)(from); \
227 1.1 gwr u_char *t = (u_char *)&(to), *f = (u_char *)&fval; \
228 1.1 gwr t[0] = f[3]; t[1] = f[2]; t[2] = f[1]; /*t[3] = f[0];*/ \
229 1.1 gwr }
230 1.1 gwr
231 1.1 gwr /*
232 1.1 gwr * Here are a few useful functions. We could have done these as macros,
233 1.1 gwr * but since we have the inline facility, it makes sense to use that
234 1.1 gwr * instead.
235 1.1 gwr */
236 1.1 gwr static inline void
237 1.3 gwr ie_setup_config(cmd, promiscuous, manchester)
238 1.16 gwr struct ie_config_cmd *cmd;
239 1.3 gwr int promiscuous, manchester;
240 1.1 gwr {
241 1.1 gwr
242 1.1 gwr /*
243 1.3 gwr * these are all char's so no need to byte-swap
244 1.1 gwr */
245 1.1 gwr cmd->ie_config_count = 0x0c;
246 1.1 gwr cmd->ie_fifo = 8;
247 1.1 gwr cmd->ie_save_bad = 0x40;
248 1.1 gwr cmd->ie_addr_len = 0x2e;
249 1.1 gwr cmd->ie_priority = 0;
250 1.1 gwr cmd->ie_ifs = 0x60;
251 1.1 gwr cmd->ie_slot_low = 0;
252 1.1 gwr cmd->ie_slot_high = 0xf2;
253 1.3 gwr cmd->ie_promisc = !!promiscuous | manchester << 2;
254 1.1 gwr cmd->ie_crs_cdt = 0;
255 1.1 gwr cmd->ie_min_len = 64;
256 1.1 gwr cmd->ie_junk = 0xff;
257 1.1 gwr }
258 1.1 gwr
259 1.1 gwr static inline caddr_t
260 1.1 gwr Align(ptr)
261 1.1 gwr caddr_t ptr;
262 1.1 gwr {
263 1.1 gwr u_long l = (u_long)ptr;
264 1.1 gwr
265 1.1 gwr l = (l + 3) & ~3L;
266 1.1 gwr return (caddr_t)l;
267 1.1 gwr }
268 1.1 gwr
269 1.1 gwr static inline void
270 1.1 gwr ie_ack(sc, mask)
271 1.1 gwr struct ie_softc *sc;
272 1.1 gwr u_int mask;
273 1.1 gwr {
274 1.1 gwr volatile struct ie_sys_ctl_block *scb = sc->scb;
275 1.1 gwr
276 1.16 gwr cmd_and_wait(sc, scb->ie_status & mask, 0, 0);
277 1.1 gwr }
278 1.1 gwr
279 1.1 gwr
280 1.1 gwr /*
281 1.1 gwr * Taken almost exactly from Bill's if_is.c,
282 1.1 gwr * then modified beyond recognition...
283 1.1 gwr */
284 1.1 gwr void
285 1.9 gwr ie_attach(sc)
286 1.9 gwr struct ie_softc *sc;
287 1.1 gwr {
288 1.1 gwr struct ifnet *ifp = &sc->sc_if;
289 1.9 gwr int off;
290 1.1 gwr
291 1.9 gwr /* MD code has done its part before calling this. */
292 1.15 gwr printf(": hwaddr %s\n", ether_sprintf(sc->sc_addr));
293 1.1 gwr
294 1.9 gwr /* Allocate from end of buffer space for ISCP, SCB */
295 1.9 gwr off = sc->buf_area_sz;
296 1.9 gwr off &= ~3;
297 1.9 gwr
298 1.9 gwr /* Space for ISCP */
299 1.9 gwr off -= sizeof(*sc->iscp);
300 1.9 gwr sc->iscp = (volatile void *) (sc->buf_area + off);
301 1.9 gwr
302 1.9 gwr /* Space for SCB */
303 1.9 gwr off -= sizeof(*sc->scb);
304 1.9 gwr sc->scb = (volatile void *) (sc->buf_area + off);
305 1.9 gwr
306 1.9 gwr /* Remainder is for buffers, etc. */
307 1.9 gwr sc->buf_area_sz = off;
308 1.9 gwr
309 1.1 gwr /*
310 1.9 gwr * Setup RAM for transmit/receive
311 1.1 gwr */
312 1.1 gwr if (ie_setupram(sc) == 0) {
313 1.14 christos printf(": RAM CONFIG FAILED!\n");
314 1.1 gwr /* XXX should reclaim resources? */
315 1.1 gwr return;
316 1.1 gwr }
317 1.1 gwr
318 1.1 gwr /*
319 1.1 gwr * Initialize and attach S/W interface
320 1.1 gwr */
321 1.11 thorpej bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
322 1.11 thorpej ifp->if_softc = sc;
323 1.1 gwr ifp->if_start = iestart;
324 1.1 gwr ifp->if_ioctl = ieioctl;
325 1.1 gwr ifp->if_watchdog = iewatchdog;
326 1.5 mycroft ifp->if_flags =
327 1.5 mycroft IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
328 1.1 gwr
329 1.1 gwr /* Attach the interface. */
330 1.1 gwr if_attach(ifp);
331 1.1 gwr ether_ifattach(ifp);
332 1.1 gwr #if NBPFILTER > 0
333 1.5 mycroft bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
334 1.1 gwr #endif
335 1.1 gwr }
336 1.1 gwr
337 1.1 gwr /*
338 1.1 gwr * Device timeout/watchdog routine. Entered if the device neglects to
339 1.1 gwr * generate an interrupt after a transmit has been started on it.
340 1.1 gwr */
341 1.4 gwr void
342 1.11 thorpej iewatchdog(ifp)
343 1.11 thorpej struct ifnet *ifp;
344 1.1 gwr {
345 1.12 thorpej struct ie_softc *sc = ifp->if_softc;
346 1.1 gwr
347 1.1 gwr log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
348 1.1 gwr ++sc->sc_arpcom.ac_if.if_oerrors;
349 1.1 gwr
350 1.1 gwr iereset(sc);
351 1.1 gwr }
352 1.1 gwr
353 1.1 gwr /*
354 1.1 gwr * What to do upon receipt of an interrupt.
355 1.1 gwr */
356 1.1 gwr int
357 1.1 gwr ie_intr(v)
358 1.1 gwr void *v;
359 1.1 gwr {
360 1.1 gwr struct ie_softc *sc = v;
361 1.1 gwr register u_short status;
362 1.1 gwr
363 1.1 gwr status = sc->scb->ie_status;
364 1.1 gwr
365 1.1 gwr /*
366 1.1 gwr * check for parity error
367 1.1 gwr */
368 1.1 gwr if (sc->hard_type == IE_VME) {
369 1.1 gwr volatile struct ievme *iev = (volatile struct ievme *)sc->sc_reg;
370 1.1 gwr if (iev->status & IEVME_PERR) {
371 1.14 christos printf("%s: parity error (ctrl %x @ %02x%04x)\n",
372 1.16 gwr sc->sc_dev.dv_xname, iev->pectrl,
373 1.16 gwr iev->pectrl & IEVME_HADDR, iev->peaddr);
374 1.1 gwr iev->pectrl = iev->pectrl | IEVME_PARACK;
375 1.1 gwr }
376 1.1 gwr }
377 1.3 gwr
378 1.1 gwr loop:
379 1.3 gwr /* Ack interrupts FIRST in case we receive more during the ISR. */
380 1.3 gwr ie_ack(sc, IE_ST_WHENCE & status);
381 1.3 gwr
382 1.1 gwr if (status & (IE_ST_RECV | IE_ST_RNR)) {
383 1.1 gwr #ifdef IEDEBUG
384 1.1 gwr in_ierint++;
385 1.1 gwr if (sc->sc_debug & IED_RINT)
386 1.14 christos printf("%s: rint\n", sc->sc_dev.dv_xname);
387 1.1 gwr #endif
388 1.1 gwr ierint(sc);
389 1.1 gwr #ifdef IEDEBUG
390 1.1 gwr in_ierint--;
391 1.1 gwr #endif
392 1.1 gwr }
393 1.3 gwr
394 1.1 gwr if (status & IE_ST_DONE) {
395 1.1 gwr #ifdef IEDEBUG
396 1.1 gwr in_ietint++;
397 1.1 gwr if (sc->sc_debug & IED_TINT)
398 1.14 christos printf("%s: tint\n", sc->sc_dev.dv_xname);
399 1.1 gwr #endif
400 1.1 gwr ietint(sc);
401 1.1 gwr #ifdef IEDEBUG
402 1.1 gwr in_ietint--;
403 1.1 gwr #endif
404 1.1 gwr }
405 1.3 gwr
406 1.1 gwr if (status & IE_ST_RNR) {
407 1.14 christos printf("%s: receiver not ready\n", sc->sc_dev.dv_xname);
408 1.3 gwr sc->sc_arpcom.ac_if.if_ierrors++;
409 1.3 gwr iereset(sc);
410 1.1 gwr }
411 1.3 gwr
412 1.1 gwr #ifdef IEDEBUG
413 1.1 gwr if ((status & IE_ST_ALLDONE) && (sc->sc_debug & IED_CNA))
414 1.14 christos printf("%s: cna\n", sc->sc_dev.dv_xname);
415 1.1 gwr #endif
416 1.1 gwr
417 1.1 gwr if ((status = sc->scb->ie_status) & IE_ST_WHENCE)
418 1.1 gwr goto loop;
419 1.3 gwr
420 1.1 gwr return 1;
421 1.1 gwr }
422 1.1 gwr
423 1.1 gwr /*
424 1.1 gwr * Process a received-frame interrupt.
425 1.1 gwr */
426 1.1 gwr void
427 1.1 gwr ierint(sc)
428 1.1 gwr struct ie_softc *sc;
429 1.1 gwr {
430 1.1 gwr volatile struct ie_sys_ctl_block *scb = sc->scb;
431 1.1 gwr int i, status;
432 1.1 gwr static int timesthru = 1024;
433 1.1 gwr
434 1.1 gwr i = sc->rfhead;
435 1.1 gwr for (;;) {
436 1.1 gwr status = sc->rframes[i]->ie_fd_status;
437 1.1 gwr
438 1.1 gwr if ((status & IE_FD_COMPLETE) && (status & IE_FD_OK)) {
439 1.1 gwr sc->sc_arpcom.ac_if.if_ipackets++;
440 1.1 gwr if (!--timesthru) {
441 1.1 gwr sc->sc_arpcom.ac_if.if_ierrors +=
442 1.1 gwr SWAP(scb->ie_err_crc) +
443 1.1 gwr SWAP(scb->ie_err_align) +
444 1.1 gwr SWAP(scb->ie_err_resource) +
445 1.1 gwr SWAP(scb->ie_err_overrun);
446 1.3 gwr scb->ie_err_crc = 0;
447 1.3 gwr scb->ie_err_align = 0;
448 1.1 gwr scb->ie_err_resource = 0;
449 1.1 gwr scb->ie_err_overrun = 0;
450 1.1 gwr timesthru = 1024;
451 1.1 gwr }
452 1.1 gwr ie_readframe(sc, i);
453 1.1 gwr } else {
454 1.1 gwr if ((status & IE_FD_RNR) != 0 &&
455 1.1 gwr (scb->ie_status & IE_RU_READY) == 0) {
456 1.3 gwr sc->rframes[0]->ie_fd_buf_desc =
457 1.3 gwr MK_16(sc->sc_maddr, sc->rbuffs[0]);
458 1.2 gwr scb->ie_recv_list =
459 1.3 gwr MK_16(sc->sc_maddr, sc->rframes[0]);
460 1.16 gwr cmd_and_wait(sc, IE_RU_START, 0, 0);
461 1.1 gwr }
462 1.1 gwr break;
463 1.1 gwr }
464 1.1 gwr i = (i + 1) % sc->nframes;
465 1.1 gwr }
466 1.1 gwr }
467 1.1 gwr
468 1.1 gwr /*
469 1.1 gwr * Process a command-complete interrupt. These are only generated by
470 1.1 gwr * the transmission of frames. This routine is deceptively simple, since
471 1.1 gwr * most of the real work is done by iestart().
472 1.1 gwr */
473 1.1 gwr void
474 1.1 gwr ietint(sc)
475 1.1 gwr struct ie_softc *sc;
476 1.1 gwr {
477 1.1 gwr int status;
478 1.1 gwr
479 1.1 gwr sc->sc_arpcom.ac_if.if_timer = 0;
480 1.1 gwr sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
481 1.1 gwr
482 1.3 gwr status = sc->xmit_cmds[sc->xctail]->ie_xmit_status;
483 1.1 gwr
484 1.3 gwr if (!(status & IE_STAT_COMPL) || (status & IE_STAT_BUSY))
485 1.14 christos printf("ietint: command still busy!\n");
486 1.3 gwr
487 1.3 gwr if (status & IE_STAT_OK) {
488 1.3 gwr sc->sc_arpcom.ac_if.if_opackets++;
489 1.3 gwr sc->sc_arpcom.ac_if.if_collisions +=
490 1.3 gwr SWAP(status & IE_XS_MAXCOLL);
491 1.3 gwr } else if (status & IE_STAT_ABORT) {
492 1.14 christos printf("%s: send aborted\n", sc->sc_dev.dv_xname);
493 1.3 gwr sc->sc_arpcom.ac_if.if_oerrors++;
494 1.3 gwr } else if (status & IE_XS_NOCARRIER) {
495 1.14 christos printf("%s: no carrier\n", sc->sc_dev.dv_xname);
496 1.3 gwr sc->sc_arpcom.ac_if.if_oerrors++;
497 1.3 gwr } else if (status & IE_XS_LOSTCTS) {
498 1.14 christos printf("%s: lost CTS\n", sc->sc_dev.dv_xname);
499 1.3 gwr sc->sc_arpcom.ac_if.if_oerrors++;
500 1.3 gwr } else if (status & IE_XS_UNDERRUN) {
501 1.14 christos printf("%s: DMA underrun\n", sc->sc_dev.dv_xname);
502 1.3 gwr sc->sc_arpcom.ac_if.if_oerrors++;
503 1.3 gwr } else if (status & IE_XS_EXCMAX) {
504 1.14 christos printf("%s: too many collisions\n", sc->sc_dev.dv_xname);
505 1.3 gwr sc->sc_arpcom.ac_if.if_collisions += 16;
506 1.3 gwr sc->sc_arpcom.ac_if.if_oerrors++;
507 1.1 gwr }
508 1.1 gwr
509 1.1 gwr /*
510 1.1 gwr * If multicast addresses were added or deleted while we
511 1.1 gwr * were transmitting, mc_reset() set the want_mcsetup flag
512 1.1 gwr * indicating that we should do it.
513 1.1 gwr */
514 1.1 gwr if (sc->want_mcsetup) {
515 1.3 gwr mc_setup(sc, (caddr_t)sc->xmit_cbuffs[sc->xctail]);
516 1.1 gwr sc->want_mcsetup = 0;
517 1.1 gwr }
518 1.3 gwr
519 1.3 gwr /* Done with the buffer. */
520 1.3 gwr sc->xmit_free++;
521 1.3 gwr sc->xmit_busy = 0;
522 1.3 gwr sc->xctail = (sc->xctail + 1) % NTXBUF;
523 1.1 gwr
524 1.1 gwr iestart(&sc->sc_arpcom.ac_if);
525 1.1 gwr }
526 1.1 gwr
527 1.1 gwr /*
528 1.1 gwr * Compare two Ether/802 addresses for equality, inlined and
529 1.1 gwr * unrolled for speed. I'd love to have an inline assembler
530 1.9 gwr * version of this... XXX: Who wanted that? mycroft?
531 1.9 gwr * I wrote one, but the following is just as efficient.
532 1.9 gwr * This expands to 10 short m68k instructions! -gwr
533 1.9 gwr * Note: use this like bcmp()
534 1.1 gwr */
535 1.9 gwr static inline u_short
536 1.9 gwr ether_cmp(one, two)
537 1.1 gwr u_char *one, *two;
538 1.1 gwr {
539 1.9 gwr register u_short *a = (u_short *) one;
540 1.9 gwr register u_short *b = (u_short *) two;
541 1.9 gwr register u_short diff;
542 1.9 gwr
543 1.9 gwr diff = *a++ - *b++;
544 1.9 gwr diff |= *a++ - *b++;
545 1.9 gwr diff |= *a++ - *b++;
546 1.1 gwr
547 1.9 gwr return (diff);
548 1.1 gwr }
549 1.9 gwr #define ether_equal !ether_cmp
550 1.1 gwr
551 1.1 gwr /*
552 1.1 gwr * Check for a valid address. to_bpf is filled in with one of the following:
553 1.1 gwr * 0 -> BPF doesn't get this packet
554 1.1 gwr * 1 -> BPF does get this packet
555 1.1 gwr * 2 -> BPF does get this packet, but we don't
556 1.1 gwr * Return value is true if the packet is for us, and false otherwise.
557 1.1 gwr *
558 1.1 gwr * This routine is a mess, but it's also critical that it be as fast
559 1.1 gwr * as possible. It could be made cleaner if we can assume that the
560 1.1 gwr * only client which will fiddle with IFF_PROMISC is BPF. This is
561 1.1 gwr * probably a good assumption, but we do not make it here. (Yet.)
562 1.1 gwr */
563 1.1 gwr static inline int
564 1.1 gwr check_eh(sc, eh, to_bpf)
565 1.1 gwr struct ie_softc *sc;
566 1.1 gwr struct ether_header *eh;
567 1.1 gwr int *to_bpf;
568 1.1 gwr {
569 1.1 gwr int i;
570 1.1 gwr
571 1.1 gwr switch (sc->promisc) {
572 1.1 gwr case IFF_ALLMULTI:
573 1.1 gwr /*
574 1.1 gwr * Receiving all multicasts, but no unicasts except those
575 1.1 gwr * destined for us.
576 1.1 gwr */
577 1.1 gwr #if NBPFILTER > 0
578 1.3 gwr /* BPF gets this packet if anybody cares */
579 1.1 gwr *to_bpf = (sc->sc_arpcom.ac_if.if_bpf != 0);
580 1.1 gwr #endif
581 1.1 gwr if (eh->ether_dhost[0] & 1)
582 1.1 gwr return 1;
583 1.1 gwr if (ether_equal(eh->ether_dhost, sc->sc_arpcom.ac_enaddr))
584 1.1 gwr return 1;
585 1.1 gwr return 0;
586 1.1 gwr
587 1.1 gwr case IFF_PROMISC:
588 1.1 gwr /*
589 1.1 gwr * Receiving all packets. These need to be passed on to BPF.
590 1.1 gwr */
591 1.1 gwr #if NBPFILTER > 0
592 1.1 gwr *to_bpf = (sc->sc_arpcom.ac_if.if_bpf != 0);
593 1.1 gwr #endif
594 1.1 gwr /* If for us, accept and hand up to BPF */
595 1.1 gwr if (ether_equal(eh->ether_dhost, sc->sc_arpcom.ac_enaddr))
596 1.1 gwr return 1;
597 1.1 gwr
598 1.1 gwr #if NBPFILTER > 0
599 1.1 gwr if (*to_bpf)
600 1.1 gwr *to_bpf = 2; /* we don't need to see it */
601 1.1 gwr #endif
602 1.1 gwr
603 1.1 gwr /*
604 1.1 gwr * Not a multicast, so BPF wants to see it but we don't.
605 1.1 gwr */
606 1.1 gwr if (!(eh->ether_dhost[0] & 1))
607 1.1 gwr return 1;
608 1.1 gwr
609 1.1 gwr /*
610 1.1 gwr * If it's one of our multicast groups, accept it and pass it
611 1.1 gwr * up.
612 1.1 gwr */
613 1.1 gwr for (i = 0; i < sc->mcast_count; i++) {
614 1.1 gwr if (ether_equal(eh->ether_dhost,
615 1.1 gwr (u_char *)&sc->mcast_addrs[i])) {
616 1.1 gwr #if NBPFILTER > 0
617 1.1 gwr if (*to_bpf)
618 1.1 gwr *to_bpf = 1;
619 1.1 gwr #endif
620 1.1 gwr return 1;
621 1.1 gwr }
622 1.1 gwr }
623 1.1 gwr return 1;
624 1.1 gwr
625 1.1 gwr case IFF_ALLMULTI | IFF_PROMISC:
626 1.1 gwr /*
627 1.1 gwr * Acting as a multicast router, and BPF running at the same
628 1.1 gwr * time. Whew! (Hope this is a fast machine...)
629 1.1 gwr */
630 1.1 gwr #if NBPFILTER > 0
631 1.1 gwr *to_bpf = (sc->sc_arpcom.ac_if.if_bpf != 0);
632 1.1 gwr #endif
633 1.1 gwr /* We want to see multicasts. */
634 1.1 gwr if (eh->ether_dhost[0] & 1)
635 1.1 gwr return 1;
636 1.1 gwr
637 1.1 gwr /* We want to see our own packets */
638 1.1 gwr if (ether_equal(eh->ether_dhost, sc->sc_arpcom.ac_enaddr))
639 1.1 gwr return 1;
640 1.1 gwr
641 1.1 gwr /* Anything else goes to BPF but nothing else. */
642 1.1 gwr #if NBPFILTER > 0
643 1.1 gwr if (*to_bpf)
644 1.1 gwr *to_bpf = 2;
645 1.1 gwr #endif
646 1.1 gwr return 1;
647 1.1 gwr
648 1.1 gwr default:
649 1.1 gwr /*
650 1.1 gwr * Only accept unicast packets destined for us, or multicasts
651 1.1 gwr * for groups that we belong to. For now, we assume that the
652 1.1 gwr * '586 will only return packets that we asked it for. This
653 1.1 gwr * isn't strictly true (it uses hashing for the multicast filter),
654 1.1 gwr * but it will do in this case, and we want to get out of here
655 1.1 gwr * as quickly as possible.
656 1.1 gwr */
657 1.1 gwr #if NBPFILTER > 0
658 1.1 gwr *to_bpf = (sc->sc_arpcom.ac_if.if_bpf != 0);
659 1.1 gwr #endif
660 1.1 gwr return 1;
661 1.1 gwr }
662 1.1 gwr return 0;
663 1.1 gwr }
664 1.1 gwr
665 1.1 gwr /*
666 1.1 gwr * We want to isolate the bits that have meaning... This assumes that
667 1.1 gwr * IE_RBUF_SIZE is an even power of two. If somehow the act_len exceeds
668 1.1 gwr * the size of the buffer, then we are screwed anyway.
669 1.1 gwr */
670 1.1 gwr static inline int
671 1.1 gwr ie_buflen(sc, head)
672 1.1 gwr struct ie_softc *sc;
673 1.1 gwr int head;
674 1.1 gwr {
675 1.1 gwr
676 1.1 gwr return (SWAP(sc->rbuffs[head]->ie_rbd_actual)
677 1.1 gwr & (IE_RBUF_SIZE | (IE_RBUF_SIZE - 1)));
678 1.1 gwr }
679 1.1 gwr
680 1.1 gwr static inline int
681 1.1 gwr ie_packet_len(sc)
682 1.1 gwr struct ie_softc *sc;
683 1.1 gwr {
684 1.1 gwr int i;
685 1.1 gwr int head = sc->rbhead;
686 1.1 gwr int acc = 0;
687 1.1 gwr
688 1.1 gwr do {
689 1.1 gwr if (!(sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
690 1.1 gwr #ifdef IEDEBUG
691 1.1 gwr print_rbd(sc->rbuffs[sc->rbhead]);
692 1.1 gwr #endif
693 1.1 gwr log(LOG_ERR, "%s: receive descriptors out of sync at %d\n",
694 1.1 gwr sc->sc_dev.dv_xname, sc->rbhead);
695 1.1 gwr iereset(sc);
696 1.1 gwr return -1;
697 1.1 gwr }
698 1.3 gwr
699 1.1 gwr i = sc->rbuffs[head]->ie_rbd_actual & IE_RBD_LAST;
700 1.1 gwr
701 1.1 gwr acc += ie_buflen(sc, head);
702 1.1 gwr head = (head + 1) % sc->nrxbuf;
703 1.1 gwr } while (!i);
704 1.1 gwr
705 1.1 gwr return acc;
706 1.1 gwr }
707 1.1 gwr
708 1.1 gwr /*
709 1.3 gwr * Setup all necessary artifacts for an XMIT command, and then pass the XMIT
710 1.3 gwr * command to the chip to be executed. On the way, if we have a BPF listener
711 1.3 gwr * also give him a copy.
712 1.3 gwr */
713 1.16 gwr static void
714 1.3 gwr iexmit(sc)
715 1.3 gwr struct ie_softc *sc;
716 1.3 gwr {
717 1.3 gwr
718 1.3 gwr #if NBPFILTER > 0
719 1.3 gwr /*
720 1.3 gwr * If BPF is listening on this interface, let it see the packet before
721 1.3 gwr * we push it on the wire.
722 1.3 gwr */
723 1.3 gwr if (sc->sc_arpcom.ac_if.if_bpf)
724 1.3 gwr bpf_tap(sc->sc_arpcom.ac_if.if_bpf,
725 1.3 gwr sc->xmit_cbuffs[sc->xctail],
726 1.3 gwr SWAP(sc->xmit_buffs[sc->xctail]->ie_xmit_flags));
727 1.3 gwr #endif
728 1.3 gwr
729 1.3 gwr sc->xmit_buffs[sc->xctail]->ie_xmit_flags |= IE_XMIT_LAST;
730 1.3 gwr sc->xmit_buffs[sc->xctail]->ie_xmit_next = SWAP(0xffff);
731 1.3 gwr ST_24(sc->xmit_buffs[sc->xctail]->ie_xmit_buf,
732 1.3 gwr MK_24(sc->sc_iobase, sc->xmit_cbuffs[sc->xctail]));
733 1.3 gwr
734 1.3 gwr sc->xmit_cmds[sc->xctail]->com.ie_cmd_link = SWAP(0xffff);
735 1.3 gwr sc->xmit_cmds[sc->xctail]->com.ie_cmd_cmd =
736 1.3 gwr IE_CMD_XMIT | IE_CMD_INTR | IE_CMD_LAST;
737 1.3 gwr
738 1.3 gwr sc->xmit_cmds[sc->xctail]->ie_xmit_status = SWAP(0);
739 1.3 gwr sc->xmit_cmds[sc->xctail]->ie_xmit_desc =
740 1.3 gwr MK_16(sc->sc_maddr, sc->xmit_buffs[sc->xctail]);
741 1.3 gwr
742 1.3 gwr sc->scb->ie_command_list =
743 1.3 gwr MK_16(sc->sc_maddr, sc->xmit_cmds[sc->xctail]);
744 1.16 gwr cmd_and_wait(sc, IE_CU_START, 0, 0);
745 1.3 gwr
746 1.3 gwr sc->xmit_busy = 1;
747 1.3 gwr sc->sc_arpcom.ac_if.if_timer = 5;
748 1.3 gwr }
749 1.3 gwr
750 1.3 gwr /*
751 1.1 gwr * Read data off the interface, and turn it into an mbuf chain.
752 1.1 gwr *
753 1.1 gwr * This code is DRAMATICALLY different from the previous version; this
754 1.1 gwr * version tries to allocate the entire mbuf chain up front, given the
755 1.1 gwr * length of the data available. This enables us to allocate mbuf
756 1.1 gwr * clusters in many situations where before we would have had a long
757 1.1 gwr * chain of partially-full mbufs. This should help to speed up the
758 1.1 gwr * operation considerably. (Provided that it works, of course.)
759 1.1 gwr */
760 1.1 gwr static inline int
761 1.1 gwr ieget(sc, mp, ehp, to_bpf)
762 1.1 gwr struct ie_softc *sc;
763 1.1 gwr struct mbuf **mp;
764 1.1 gwr struct ether_header *ehp;
765 1.1 gwr int *to_bpf;
766 1.1 gwr {
767 1.1 gwr struct mbuf *m, *top, **mymp;
768 1.1 gwr int i;
769 1.1 gwr int offset;
770 1.1 gwr int totlen, resid;
771 1.1 gwr int thismboff;
772 1.1 gwr int head;
773 1.1 gwr
774 1.1 gwr totlen = ie_packet_len(sc);
775 1.1 gwr if (totlen <= 0)
776 1.1 gwr return -1;
777 1.1 gwr
778 1.1 gwr i = sc->rbhead;
779 1.1 gwr
780 1.1 gwr /*
781 1.1 gwr * Snarf the Ethernet header.
782 1.1 gwr */
783 1.3 gwr (sc->sc_bcopy)((caddr_t)sc->cbuffs[i], (caddr_t)ehp, sizeof *ehp);
784 1.1 gwr
785 1.1 gwr /*
786 1.1 gwr * As quickly as possible, check if this packet is for us.
787 1.1 gwr * If not, don't waste a single cycle copying the rest of the
788 1.1 gwr * packet in.
789 1.1 gwr * This is only a consideration when FILTER is defined; i.e., when
790 1.1 gwr * we are either running BPF or doing multicasting.
791 1.1 gwr */
792 1.1 gwr if (!check_eh(sc, ehp, to_bpf)) {
793 1.1 gwr ie_drop_packet_buffer(sc);
794 1.3 gwr /* just this case, it's not an error */
795 1.3 gwr sc->sc_arpcom.ac_if.if_ierrors--;
796 1.1 gwr return -1;
797 1.1 gwr }
798 1.1 gwr totlen -= (offset = sizeof *ehp);
799 1.1 gwr
800 1.1 gwr MGETHDR(*mp, M_DONTWAIT, MT_DATA);
801 1.1 gwr if (!*mp) {
802 1.1 gwr ie_drop_packet_buffer(sc);
803 1.1 gwr return -1;
804 1.1 gwr }
805 1.3 gwr
806 1.1 gwr m = *mp;
807 1.1 gwr m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
808 1.1 gwr m->m_len = MHLEN;
809 1.1 gwr resid = m->m_pkthdr.len = totlen;
810 1.1 gwr top = 0;
811 1.1 gwr mymp = ⊤
812 1.1 gwr
813 1.1 gwr /*
814 1.1 gwr * This loop goes through and allocates mbufs for all the data we will
815 1.1 gwr * be copying in. It does not actually do the copying yet.
816 1.1 gwr */
817 1.1 gwr do { /* while (resid > 0) */
818 1.1 gwr /*
819 1.1 gwr * Try to allocate an mbuf to hold the data that we have. If
820 1.1 gwr * we already allocated one, just get another one and stick it
821 1.1 gwr * on the end (eventually). If we don't already have one, try
822 1.1 gwr * to allocate an mbuf cluster big enough to hold the whole
823 1.1 gwr * packet, if we think it's reasonable, or a single mbuf which
824 1.1 gwr * may or may not be big enough. Got that?
825 1.1 gwr */
826 1.1 gwr if (top) {
827 1.1 gwr MGET(m, M_DONTWAIT, MT_DATA);
828 1.1 gwr if (!m) {
829 1.1 gwr m_freem(top);
830 1.1 gwr ie_drop_packet_buffer(sc);
831 1.1 gwr return -1;
832 1.1 gwr }
833 1.1 gwr m->m_len = MLEN;
834 1.1 gwr }
835 1.3 gwr
836 1.1 gwr if (resid >= MINCLSIZE) {
837 1.1 gwr MCLGET(m, M_DONTWAIT);
838 1.1 gwr if (m->m_flags & M_EXT)
839 1.1 gwr m->m_len = min(resid, MCLBYTES);
840 1.1 gwr } else {
841 1.1 gwr if (resid < m->m_len) {
842 1.1 gwr if (!top && resid + max_linkhdr <= m->m_len)
843 1.1 gwr m->m_data += max_linkhdr;
844 1.1 gwr m->m_len = resid;
845 1.1 gwr }
846 1.1 gwr }
847 1.1 gwr resid -= m->m_len;
848 1.1 gwr *mymp = m;
849 1.1 gwr mymp = &m->m_next;
850 1.1 gwr } while (resid > 0);
851 1.1 gwr
852 1.1 gwr resid = totlen;
853 1.1 gwr m = top;
854 1.1 gwr thismboff = 0;
855 1.1 gwr head = sc->rbhead;
856 1.1 gwr
857 1.1 gwr /*
858 1.1 gwr * Now we take the mbuf chain (hopefully only one mbuf most of the
859 1.1 gwr * time) and stuff the data into it. There are no possible failures
860 1.1 gwr * at or after this point.
861 1.1 gwr */
862 1.1 gwr while (resid > 0) { /* while there's stuff left */
863 1.1 gwr int thislen = ie_buflen(sc, head) - offset;
864 1.1 gwr
865 1.1 gwr /*
866 1.1 gwr * If too much data for the current mbuf, then fill the current one
867 1.1 gwr * up, go to the next one, and try again.
868 1.1 gwr */
869 1.1 gwr if (thislen > m->m_len - thismboff) {
870 1.1 gwr int newlen = m->m_len - thismboff;
871 1.3 gwr (sc->sc_bcopy)((caddr_t)(sc->cbuffs[head] + offset),
872 1.1 gwr mtod(m, caddr_t) + thismboff, (u_int)newlen);
873 1.1 gwr m = m->m_next;
874 1.1 gwr thismboff = 0; /* new mbuf, so no offset */
875 1.1 gwr offset += newlen; /* we are now this far into
876 1.1 gwr * the packet */
877 1.1 gwr resid -= newlen; /* so there is this much left
878 1.1 gwr * to get */
879 1.1 gwr continue;
880 1.1 gwr }
881 1.3 gwr
882 1.1 gwr /*
883 1.1 gwr * If there is more than enough space in the mbuf to hold the
884 1.1 gwr * contents of this buffer, copy everything in, advance pointers,
885 1.1 gwr * and so on.
886 1.1 gwr */
887 1.1 gwr if (thislen < m->m_len - thismboff) {
888 1.3 gwr (sc->sc_bcopy)((caddr_t)(sc->cbuffs[head] + offset),
889 1.1 gwr mtod(m, caddr_t) + thismboff, (u_int)thislen);
890 1.1 gwr thismboff += thislen; /* we are this far into the
891 1.1 gwr * mbuf */
892 1.1 gwr resid -= thislen; /* and this much is left */
893 1.1 gwr goto nextbuf;
894 1.1 gwr }
895 1.3 gwr
896 1.1 gwr /*
897 1.1 gwr * Otherwise, there is exactly enough space to put this buffer's
898 1.1 gwr * contents into the current mbuf. Do the combination of the above
899 1.1 gwr * actions.
900 1.1 gwr */
901 1.3 gwr (sc->sc_bcopy)((caddr_t)(sc->cbuffs[head] + offset),
902 1.1 gwr mtod(m, caddr_t) + thismboff, (u_int)thislen);
903 1.1 gwr m = m->m_next;
904 1.1 gwr thismboff = 0; /* new mbuf, start at the beginning */
905 1.1 gwr resid -= thislen; /* and we are this far through */
906 1.1 gwr
907 1.1 gwr /*
908 1.1 gwr * Advance all the pointers. We can get here from either of the
909 1.1 gwr * last two cases, but never the first.
910 1.1 gwr */
911 1.3 gwr nextbuf:
912 1.1 gwr offset = 0;
913 1.1 gwr sc->rbuffs[head]->ie_rbd_actual = SWAP(0);
914 1.1 gwr sc->rbuffs[head]->ie_rbd_length |= IE_RBD_LAST;
915 1.1 gwr sc->rbhead = head = (head + 1) % sc->nrxbuf;
916 1.1 gwr sc->rbuffs[sc->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
917 1.1 gwr sc->rbtail = (sc->rbtail + 1) % sc->nrxbuf;
918 1.1 gwr }
919 1.1 gwr
920 1.1 gwr /*
921 1.1 gwr * Unless something changed strangely while we were doing the copy,
922 1.1 gwr * we have now copied everything in from the shared memory.
923 1.1 gwr * This means that we are done.
924 1.1 gwr */
925 1.1 gwr return 0;
926 1.1 gwr }
927 1.1 gwr
928 1.1 gwr /*
929 1.1 gwr * Read frame NUM from unit UNIT (pre-cached as IE).
930 1.1 gwr *
931 1.1 gwr * This routine reads the RFD at NUM, and copies in the buffers from
932 1.1 gwr * the list of RBD, then rotates the RBD and RFD lists so that the receiver
933 1.1 gwr * doesn't start complaining. Trailers are DROPPED---there's no point
934 1.1 gwr * in wasting time on confusing code to deal with them. Hopefully,
935 1.1 gwr * this machine will never ARP for trailers anyway.
936 1.1 gwr */
937 1.1 gwr static void
938 1.1 gwr ie_readframe(sc, num)
939 1.1 gwr struct ie_softc *sc;
940 1.1 gwr int num; /* frame number to read */
941 1.1 gwr {
942 1.3 gwr int status;
943 1.1 gwr struct mbuf *m = 0;
944 1.1 gwr struct ether_header eh;
945 1.1 gwr #if NBPFILTER > 0
946 1.1 gwr int bpf_gets_it = 0;
947 1.1 gwr #endif
948 1.1 gwr
949 1.3 gwr status = sc->rframes[num]->ie_fd_status;
950 1.1 gwr
951 1.1 gwr /* Immediately advance the RFD list, since we have copied ours now. */
952 1.1 gwr sc->rframes[num]->ie_fd_status = SWAP(0);
953 1.1 gwr sc->rframes[num]->ie_fd_last |= IE_FD_LAST;
954 1.1 gwr sc->rframes[sc->rftail]->ie_fd_last &= ~IE_FD_LAST;
955 1.1 gwr sc->rftail = (sc->rftail + 1) % sc->nframes;
956 1.1 gwr sc->rfhead = (sc->rfhead + 1) % sc->nframes;
957 1.1 gwr
958 1.3 gwr if (status & IE_FD_OK) {
959 1.1 gwr #if NBPFILTER > 0
960 1.1 gwr if (ieget(sc, &m, &eh, &bpf_gets_it)) {
961 1.1 gwr #else
962 1.1 gwr if (ieget(sc, &m, &eh, 0)) {
963 1.1 gwr #endif
964 1.1 gwr sc->sc_arpcom.ac_if.if_ierrors++;
965 1.1 gwr return;
966 1.1 gwr }
967 1.1 gwr }
968 1.3 gwr
969 1.1 gwr #ifdef IEDEBUG
970 1.1 gwr if (sc->sc_debug & IED_READFRAME)
971 1.14 christos printf("%s: frame from ether %s type %x\n", sc->sc_dev.dv_xname,
972 1.1 gwr ether_sprintf(eh.ether_shost), (u_int)eh.ether_type);
973 1.1 gwr #endif
974 1.1 gwr
975 1.1 gwr if (!m)
976 1.1 gwr return;
977 1.1 gwr
978 1.1 gwr if (last_not_for_us) {
979 1.1 gwr m_freem(last_not_for_us);
980 1.1 gwr last_not_for_us = 0;
981 1.1 gwr }
982 1.3 gwr
983 1.1 gwr #if NBPFILTER > 0
984 1.1 gwr /*
985 1.1 gwr * Check for a BPF filter; if so, hand it up.
986 1.1 gwr * Note that we have to stick an extra mbuf up front, because
987 1.1 gwr * bpf_mtap expects to have the ether header at the front.
988 1.1 gwr * It doesn't matter that this results in an ill-formatted mbuf chain,
989 1.1 gwr * since BPF just looks at the data. (It doesn't try to free the mbuf,
990 1.1 gwr * tho' it will make a copy for tcpdump.)
991 1.1 gwr */
992 1.1 gwr if (bpf_gets_it) {
993 1.1 gwr struct mbuf m0;
994 1.1 gwr m0.m_len = sizeof eh;
995 1.1 gwr m0.m_data = (caddr_t)&eh;
996 1.1 gwr m0.m_next = m;
997 1.1 gwr
998 1.1 gwr /* Pass it up */
999 1.1 gwr bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, &m0);
1000 1.1 gwr }
1001 1.1 gwr /*
1002 1.1 gwr * A signal passed up from the filtering code indicating that the
1003 1.1 gwr * packet is intended for BPF but not for the protocol machinery.
1004 1.1 gwr * We can save a few cycles by not handing it off to them.
1005 1.1 gwr */
1006 1.1 gwr if (bpf_gets_it == 2) {
1007 1.1 gwr last_not_for_us = m;
1008 1.1 gwr return;
1009 1.1 gwr }
1010 1.3 gwr #endif /* NBPFILTER > 0 */
1011 1.1 gwr
1012 1.1 gwr /*
1013 1.1 gwr * In here there used to be code to check destination addresses upon
1014 1.1 gwr * receipt of a packet. We have deleted that code, and replaced it
1015 1.1 gwr * with code to check the address much earlier in the cycle, before
1016 1.1 gwr * copying the data in; this saves us valuable cycles when operating
1017 1.1 gwr * as a multicast router or when using BPF.
1018 1.1 gwr */
1019 1.1 gwr
1020 1.1 gwr /*
1021 1.1 gwr * Finally pass this packet up to higher layers.
1022 1.1 gwr */
1023 1.1 gwr ether_input(&sc->sc_arpcom.ac_if, &eh, m);
1024 1.1 gwr }
1025 1.1 gwr
1026 1.1 gwr static void
1027 1.1 gwr ie_drop_packet_buffer(sc)
1028 1.1 gwr struct ie_softc *sc;
1029 1.1 gwr {
1030 1.3 gwr int i;
1031 1.1 gwr
1032 1.1 gwr do {
1033 1.1 gwr /*
1034 1.1 gwr * This means we are somehow out of sync. So, we reset the
1035 1.1 gwr * adapter.
1036 1.1 gwr */
1037 1.1 gwr if (!(sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
1038 1.1 gwr #ifdef IEDEBUG
1039 1.1 gwr print_rbd(sc->rbuffs[sc->rbhead]);
1040 1.1 gwr #endif
1041 1.1 gwr log(LOG_ERR, "%s: receive descriptors out of sync at %d\n",
1042 1.1 gwr sc->sc_dev.dv_xname, sc->rbhead);
1043 1.1 gwr iereset(sc);
1044 1.1 gwr return;
1045 1.1 gwr }
1046 1.3 gwr
1047 1.1 gwr i = sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_LAST;
1048 1.1 gwr
1049 1.1 gwr sc->rbuffs[sc->rbhead]->ie_rbd_length |= IE_RBD_LAST;
1050 1.1 gwr sc->rbuffs[sc->rbhead]->ie_rbd_actual = SWAP(0);
1051 1.1 gwr sc->rbhead = (sc->rbhead + 1) % sc->nrxbuf;
1052 1.1 gwr sc->rbuffs[sc->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
1053 1.1 gwr sc->rbtail = (sc->rbtail + 1) % sc->nrxbuf;
1054 1.1 gwr } while (!i);
1055 1.1 gwr }
1056 1.1 gwr
1057 1.1 gwr /*
1058 1.1 gwr * Start transmission on an interface.
1059 1.1 gwr */
1060 1.4 gwr void
1061 1.1 gwr iestart(ifp)
1062 1.1 gwr struct ifnet *ifp;
1063 1.1 gwr {
1064 1.11 thorpej struct ie_softc *sc = ifp->if_softc;
1065 1.1 gwr struct mbuf *m0, *m;
1066 1.1 gwr u_char *buffer;
1067 1.1 gwr u_short len;
1068 1.1 gwr
1069 1.3 gwr if ((ifp->if_flags & IFF_RUNNING) == 0)
1070 1.4 gwr return;
1071 1.1 gwr
1072 1.3 gwr if (sc->xmit_free == 0) {
1073 1.3 gwr ifp->if_flags |= IFF_OACTIVE;
1074 1.3 gwr if (!sc->xmit_busy)
1075 1.3 gwr iexmit(sc);
1076 1.4 gwr return;
1077 1.3 gwr }
1078 1.3 gwr
1079 1.1 gwr do {
1080 1.1 gwr IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m);
1081 1.1 gwr if (!m)
1082 1.1 gwr break;
1083 1.1 gwr
1084 1.1 gwr len = 0;
1085 1.3 gwr buffer = sc->xmit_cbuffs[sc->xchead];
1086 1.1 gwr
1087 1.3 gwr for (m0 = m; m && (len + m->m_len) < IE_TBUF_SIZE; m = m->m_next) {
1088 1.3 gwr (sc->sc_bcopy)(mtod(m, caddr_t), buffer, m->m_len);
1089 1.1 gwr buffer += m->m_len;
1090 1.1 gwr len += m->m_len;
1091 1.1 gwr }
1092 1.3 gwr if (m)
1093 1.14 christos printf("%s: tbuf overflow\n", sc->sc_dev.dv_xname);
1094 1.1 gwr
1095 1.1 gwr m_freem(m0);
1096 1.1 gwr len = max(len, ETHER_MIN_LEN);
1097 1.3 gwr sc->xmit_buffs[sc->xchead]->ie_xmit_flags = SWAP(len);
1098 1.1 gwr
1099 1.3 gwr sc->xmit_free--;
1100 1.3 gwr sc->xchead = (sc->xchead + 1) % NTXBUF;
1101 1.3 gwr } while (sc->xmit_free > 0);
1102 1.3 gwr
1103 1.3 gwr /* If we stuffed any packets into the card's memory, send now. */
1104 1.3 gwr if ((sc->xmit_free < NTXBUF) && (!sc->xmit_busy))
1105 1.3 gwr iexmit(sc);
1106 1.1 gwr
1107 1.4 gwr return;
1108 1.1 gwr }
1109 1.1 gwr
1110 1.1 gwr /*
1111 1.1 gwr * set up IE's ram space
1112 1.1 gwr */
1113 1.1 gwr int
1114 1.1 gwr ie_setupram(sc)
1115 1.1 gwr struct ie_softc *sc;
1116 1.1 gwr {
1117 1.1 gwr volatile struct ie_sys_conf_ptr *scp;
1118 1.1 gwr volatile struct ie_int_sys_conf_ptr *iscp;
1119 1.1 gwr volatile struct ie_sys_ctl_block *scb;
1120 1.1 gwr int s;
1121 1.1 gwr
1122 1.6 mycroft s = splnet();
1123 1.1 gwr
1124 1.1 gwr scp = sc->scp;
1125 1.3 gwr (sc->sc_bzero)((char *) scp, sizeof *scp);
1126 1.1 gwr
1127 1.1 gwr iscp = sc->iscp;
1128 1.3 gwr (sc->sc_bzero)((char *) iscp, sizeof *iscp);
1129 1.1 gwr
1130 1.1 gwr scb = sc->scb;
1131 1.3 gwr (sc->sc_bzero)((char *) scb, sizeof *scb);
1132 1.1 gwr
1133 1.1 gwr scp->ie_bus_use = 0; /* 16-bit */
1134 1.1 gwr ST_24(scp->ie_iscp_ptr, MK_24(sc->sc_iobase, iscp));
1135 1.1 gwr
1136 1.1 gwr iscp->ie_busy = 1; /* ie_busy == char */
1137 1.1 gwr iscp->ie_scb_offset = MK_16(sc->sc_maddr, scb);
1138 1.1 gwr ST_24(iscp->ie_base, MK_24(sc->sc_iobase, sc->sc_maddr));
1139 1.1 gwr
1140 1.1 gwr (sc->reset_586) (sc);
1141 1.1 gwr (sc->chan_attn) (sc);
1142 1.1 gwr
1143 1.1 gwr delay(100); /* wait a while... */
1144 1.1 gwr
1145 1.1 gwr if (iscp->ie_busy) {
1146 1.1 gwr splx(s);
1147 1.1 gwr return 0;
1148 1.1 gwr }
1149 1.1 gwr /*
1150 1.1 gwr * Acknowledge any interrupts we may have caused...
1151 1.1 gwr */
1152 1.1 gwr ie_ack(sc, IE_ST_WHENCE);
1153 1.1 gwr splx(s);
1154 1.1 gwr
1155 1.1 gwr return 1;
1156 1.1 gwr }
1157 1.1 gwr
1158 1.1 gwr void
1159 1.1 gwr iereset(sc)
1160 1.1 gwr struct ie_softc *sc;
1161 1.1 gwr {
1162 1.6 mycroft int s = splnet();
1163 1.1 gwr
1164 1.14 christos printf("%s: reset\n", sc->sc_dev.dv_xname);
1165 1.3 gwr
1166 1.3 gwr /* Clear OACTIVE in case we're called from watchdog (frozen xmit). */
1167 1.3 gwr sc->sc_arpcom.ac_if.if_flags &= ~(IFF_UP | IFF_OACTIVE);
1168 1.1 gwr ieioctl(&sc->sc_arpcom.ac_if, SIOCSIFFLAGS, 0);
1169 1.1 gwr
1170 1.1 gwr /*
1171 1.1 gwr * Stop i82586 dead in its tracks.
1172 1.1 gwr */
1173 1.16 gwr if (cmd_and_wait(sc, IE_RU_ABORT | IE_CU_ABORT, 0, 0))
1174 1.14 christos printf("%s: abort commands timed out\n", sc->sc_dev.dv_xname);
1175 1.1 gwr
1176 1.16 gwr if (cmd_and_wait(sc, IE_RU_DISABLE | IE_CU_STOP, 0, 0))
1177 1.14 christos printf("%s: disable commands timed out\n", sc->sc_dev.dv_xname);
1178 1.1 gwr
1179 1.3 gwr #ifdef notdef
1180 1.3 gwr if (!check_ie_present(sc, sc->sc_maddr, sc->sc_msize))
1181 1.3 gwr panic("ie disappeared!\n");
1182 1.3 gwr #endif
1183 1.3 gwr
1184 1.1 gwr sc->sc_arpcom.ac_if.if_flags |= IFF_UP;
1185 1.1 gwr ieioctl(&sc->sc_arpcom.ac_if, SIOCSIFFLAGS, 0);
1186 1.1 gwr
1187 1.1 gwr splx(s);
1188 1.1 gwr }
1189 1.1 gwr
1190 1.1 gwr /*
1191 1.1 gwr * This is called if we time out.
1192 1.1 gwr */
1193 1.1 gwr static void
1194 1.16 gwr chan_attn_timeout(arg)
1195 1.16 gwr void *arg;
1196 1.1 gwr {
1197 1.16 gwr *((int *)arg) = 1;
1198 1.1 gwr }
1199 1.1 gwr
1200 1.1 gwr /*
1201 1.1 gwr * Send a command to the controller and wait for it to either
1202 1.1 gwr * complete or be accepted, depending on the command. If the
1203 1.1 gwr * command pointer is null, then pretend that the command is
1204 1.1 gwr * not an action command. If the command pointer is not null,
1205 1.1 gwr * and the command is an action command, wait for
1206 1.1 gwr * ((volatile struct ie_cmd_common *)pcmd)->ie_cmd_status & MASK
1207 1.1 gwr * to become true.
1208 1.1 gwr */
1209 1.1 gwr static int
1210 1.16 gwr cmd_and_wait(sc, cmd, pcmd, mask)
1211 1.1 gwr struct ie_softc *sc;
1212 1.1 gwr int cmd;
1213 1.16 gwr void * pcmd;
1214 1.1 gwr int mask;
1215 1.1 gwr {
1216 1.1 gwr volatile struct ie_cmd_common *cc = pcmd;
1217 1.1 gwr volatile struct ie_sys_ctl_block *scb = sc->scb;
1218 1.1 gwr volatile int timedout = 0;
1219 1.1 gwr extern int hz;
1220 1.1 gwr
1221 1.1 gwr scb->ie_command = (u_short)cmd;
1222 1.1 gwr
1223 1.1 gwr if (IE_ACTION_COMMAND(cmd) && pcmd) {
1224 1.3 gwr (sc->chan_attn)(sc);
1225 1.1 gwr
1226 1.1 gwr /*
1227 1.1 gwr * XXX
1228 1.1 gwr * I don't think this timeout works on suns.
1229 1.6 mycroft * we are at splnet() in the loop, and the timeout
1230 1.1 gwr * stuff runs at software spl (so it is masked off?).
1231 1.1 gwr */
1232 1.1 gwr
1233 1.1 gwr /*
1234 1.1 gwr * According to the packet driver, the minimum timeout should be
1235 1.1 gwr * .369 seconds, which we round up to .4.
1236 1.1 gwr */
1237 1.1 gwr
1238 1.16 gwr timeout(chan_attn_timeout, (void *)&timedout, 2 * hz / 5);
1239 1.1 gwr
1240 1.1 gwr /*
1241 1.1 gwr * Now spin-lock waiting for status. This is not a very nice
1242 1.1 gwr * thing to do, but I haven't figured out how, or indeed if, we
1243 1.1 gwr * can put the process waiting for action to sleep. (We may
1244 1.1 gwr * be getting called through some other timeout running in the
1245 1.1 gwr * kernel.)
1246 1.1 gwr */
1247 1.1 gwr for (;;)
1248 1.1 gwr if ((cc->ie_cmd_status & mask) || timedout)
1249 1.1 gwr break;
1250 1.1 gwr
1251 1.16 gwr untimeout(chan_attn_timeout, (void *)&timedout);
1252 1.1 gwr
1253 1.1 gwr return timedout;
1254 1.1 gwr } else {
1255 1.1 gwr /*
1256 1.1 gwr * Otherwise, just wait for the command to be accepted.
1257 1.1 gwr */
1258 1.3 gwr (sc->chan_attn)(sc);
1259 1.1 gwr
1260 1.3 gwr while (scb->ie_command)
1261 1.3 gwr ; /* spin lock */
1262 1.1 gwr
1263 1.1 gwr return 0;
1264 1.1 gwr }
1265 1.1 gwr }
1266 1.1 gwr
1267 1.1 gwr /*
1268 1.1 gwr * Run the time-domain reflectometer...
1269 1.1 gwr */
1270 1.3 gwr static void
1271 1.1 gwr run_tdr(sc, cmd)
1272 1.1 gwr struct ie_softc *sc;
1273 1.1 gwr struct ie_tdr_cmd *cmd;
1274 1.1 gwr {
1275 1.3 gwr int result;
1276 1.1 gwr
1277 1.1 gwr cmd->com.ie_cmd_status = SWAP(0);
1278 1.1 gwr cmd->com.ie_cmd_cmd = IE_CMD_TDR | IE_CMD_LAST;
1279 1.1 gwr cmd->com.ie_cmd_link = SWAP(0xffff);
1280 1.1 gwr
1281 1.2 gwr sc->scb->ie_command_list = MK_16(sc->sc_maddr, cmd);
1282 1.1 gwr cmd->ie_tdr_time = SWAP(0);
1283 1.1 gwr
1284 1.16 gwr if (cmd_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL) ||
1285 1.1 gwr !(cmd->com.ie_cmd_status & IE_STAT_OK))
1286 1.1 gwr result = 0x10000; /* XXX */
1287 1.1 gwr else
1288 1.1 gwr result = cmd->ie_tdr_time;
1289 1.1 gwr
1290 1.1 gwr ie_ack(sc, IE_ST_WHENCE);
1291 1.1 gwr
1292 1.1 gwr if (result & IE_TDR_SUCCESS)
1293 1.1 gwr return;
1294 1.1 gwr
1295 1.1 gwr if (result & 0x10000) {
1296 1.14 christos printf("%s: TDR command failed\n", sc->sc_dev.dv_xname);
1297 1.1 gwr } else if (result & IE_TDR_XCVR) {
1298 1.14 christos printf("%s: transceiver problem\n", sc->sc_dev.dv_xname);
1299 1.1 gwr } else if (result & IE_TDR_OPEN) {
1300 1.14 christos printf("%s: TDR detected an open %d clocks away\n",
1301 1.1 gwr sc->sc_dev.dv_xname, SWAP(result & IE_TDR_TIME));
1302 1.1 gwr } else if (result & IE_TDR_SHORT) {
1303 1.14 christos printf("%s: TDR detected a short %d clocks away\n",
1304 1.1 gwr sc->sc_dev.dv_xname, SWAP(result & IE_TDR_TIME));
1305 1.1 gwr } else {
1306 1.14 christos printf("%s: TDR returned unknown status %x\n",
1307 1.1 gwr sc->sc_dev.dv_xname, result);
1308 1.1 gwr }
1309 1.1 gwr }
1310 1.1 gwr
1311 1.1 gwr /*
1312 1.1 gwr * setup_bufs: set up the buffers
1313 1.1 gwr *
1314 1.1 gwr * we have a block of KVA at sc->buf_area which is of size sc->buf_area_sz.
1315 1.1 gwr * this is to be used for the buffers. the chip indexs its control data
1316 1.1 gwr * structures with 16 bit offsets, and it indexes actual buffers with
1317 1.1 gwr * 24 bit addresses. so we should allocate control buffers first so that
1318 1.1 gwr * we don't overflow the 16 bit offset field. The number of transmit
1319 1.1 gwr * buffers is fixed at compile time.
1320 1.1 gwr *
1321 1.1 gwr * note: this function was written to be easy to understand, rather than
1322 1.1 gwr * highly efficient (it isn't in the critical path).
1323 1.1 gwr */
1324 1.1 gwr static void
1325 1.1 gwr setup_bufs(sc)
1326 1.1 gwr struct ie_softc *sc;
1327 1.1 gwr {
1328 1.1 gwr caddr_t ptr = sc->buf_area; /* memory pool */
1329 1.16 gwr u_int n, r;
1330 1.1 gwr
1331 1.1 gwr /*
1332 1.1 gwr * step 0: zero memory and figure out how many recv buffers and
1333 1.1 gwr * frames we can have. XXX CURRENTLY HARDWIRED AT MAX
1334 1.1 gwr */
1335 1.3 gwr (sc->sc_bzero)(ptr, sc->buf_area_sz);
1336 1.1 gwr ptr = Align(ptr); /* set alignment and stick with it */
1337 1.1 gwr
1338 1.16 gwr n = ALIGN(sizeof(struct ie_xmit_cmd)) +
1339 1.16 gwr ALIGN(sizeof(struct ie_xmit_buf)) +
1340 1.16 gwr IE_TBUF_SIZE;
1341 1.1 gwr n *= NTXBUF; /* n = total size of xmit area */
1342 1.1 gwr
1343 1.1 gwr n = sc->buf_area_sz - n;/* n = free space for recv stuff */
1344 1.1 gwr
1345 1.16 gwr r = ALIGN(sizeof(struct ie_recv_frame_desc)) +
1346 1.16 gwr ((ALIGN(sizeof(struct ie_recv_buf_desc)) +
1347 1.16 gwr IE_RBUF_SIZE) * B_PER_F);
1348 1.1 gwr
1349 1.1 gwr /* r = size of one R frame */
1350 1.1 gwr
1351 1.1 gwr sc->nframes = n / r;
1352 1.1 gwr if (sc->nframes <= 0)
1353 1.1 gwr panic("ie: bogus buffer calc\n");
1354 1.1 gwr if (sc->nframes > MXFRAMES)
1355 1.1 gwr sc->nframes = MXFRAMES;
1356 1.1 gwr
1357 1.1 gwr sc->nrxbuf = sc->nframes * B_PER_F;
1358 1.1 gwr
1359 1.1 gwr #ifdef IEDEBUG
1360 1.14 christos printf("IEDEBUG: %d frames %d bufs\n", sc->nframes, sc->nrxbuf);
1361 1.1 gwr #endif
1362 1.1 gwr
1363 1.1 gwr /*
1364 1.1 gwr * step 1a: lay out and zero frame data structures for transmit and recv
1365 1.1 gwr */
1366 1.1 gwr for (n = 0; n < NTXBUF; n++) {
1367 1.1 gwr sc->xmit_cmds[n] = (volatile struct ie_xmit_cmd *) ptr;
1368 1.1 gwr ptr = Align(ptr + sizeof(struct ie_xmit_cmd));
1369 1.1 gwr }
1370 1.1 gwr
1371 1.1 gwr for (n = 0; n < sc->nframes; n++) {
1372 1.1 gwr sc->rframes[n] = (volatile struct ie_recv_frame_desc *) ptr;
1373 1.1 gwr ptr = Align(ptr + sizeof(struct ie_recv_frame_desc));
1374 1.1 gwr }
1375 1.1 gwr
1376 1.1 gwr /*
1377 1.1 gwr * step 1b: link together the recv frames and set EOL on last one
1378 1.1 gwr */
1379 1.1 gwr for (n = 0; n < sc->nframes; n++) {
1380 1.1 gwr sc->rframes[n]->ie_fd_next =
1381 1.2 gwr MK_16(sc->sc_maddr, sc->rframes[(n + 1) % sc->nframes]);
1382 1.1 gwr }
1383 1.1 gwr sc->rframes[sc->nframes - 1]->ie_fd_last |= IE_FD_LAST;
1384 1.1 gwr
1385 1.1 gwr /*
1386 1.1 gwr * step 2a: lay out and zero frame buffer structures for xmit and recv
1387 1.1 gwr */
1388 1.1 gwr for (n = 0; n < NTXBUF; n++) {
1389 1.1 gwr sc->xmit_buffs[n] = (volatile struct ie_xmit_buf *) ptr;
1390 1.1 gwr ptr = Align(ptr + sizeof(struct ie_xmit_buf));
1391 1.1 gwr }
1392 1.1 gwr
1393 1.1 gwr for (n = 0; n < sc->nrxbuf; n++) {
1394 1.1 gwr sc->rbuffs[n] = (volatile struct ie_recv_buf_desc *) ptr;
1395 1.1 gwr ptr = Align(ptr + sizeof(struct ie_recv_buf_desc));
1396 1.1 gwr }
1397 1.1 gwr
1398 1.1 gwr /*
1399 1.1 gwr * step 2b: link together recv bufs and set EOL on last one
1400 1.1 gwr */
1401 1.1 gwr for (n = 0; n < sc->nrxbuf; n++) {
1402 1.1 gwr sc->rbuffs[n]->ie_rbd_next =
1403 1.2 gwr MK_16(sc->sc_maddr, sc->rbuffs[(n + 1) % sc->nrxbuf]);
1404 1.1 gwr }
1405 1.1 gwr sc->rbuffs[sc->nrxbuf - 1]->ie_rbd_length |= IE_RBD_LAST;
1406 1.1 gwr
1407 1.1 gwr /*
1408 1.1 gwr * step 3: allocate the actual data buffers for xmit and recv
1409 1.1 gwr * recv buffer gets linked into recv_buf_desc list here
1410 1.1 gwr */
1411 1.1 gwr for (n = 0; n < NTXBUF; n++) {
1412 1.1 gwr sc->xmit_cbuffs[n] = (u_char *) ptr;
1413 1.1 gwr ptr = Align(ptr + IE_TBUF_SIZE);
1414 1.1 gwr }
1415 1.1 gwr
1416 1.3 gwr /* Pointers to last packet sent and next available transmit buffer. */
1417 1.3 gwr sc->xchead = sc->xctail = 0;
1418 1.3 gwr
1419 1.3 gwr /* Clear transmit-busy flag and set number of free transmit buffers. */
1420 1.3 gwr sc->xmit_busy = 0;
1421 1.3 gwr sc->xmit_free = NTXBUF;
1422 1.3 gwr
1423 1.1 gwr for (n = 0; n < sc->nrxbuf; n++) {
1424 1.1 gwr sc->cbuffs[n] = (char *) ptr; /* XXX why char vs uchar? */
1425 1.1 gwr sc->rbuffs[n]->ie_rbd_length = SWAP(IE_RBUF_SIZE);
1426 1.2 gwr ST_24(sc->rbuffs[n]->ie_rbd_buffer, MK_24(sc->sc_iobase, ptr));
1427 1.1 gwr ptr = Align(ptr + IE_RBUF_SIZE);
1428 1.1 gwr }
1429 1.1 gwr
1430 1.1 gwr /*
1431 1.1 gwr * step 4: set the head and tail pointers on receive to keep track of
1432 1.1 gwr * the order in which RFDs and RBDs are used. link in recv frames
1433 1.1 gwr * and buffer into the scb.
1434 1.1 gwr */
1435 1.1 gwr
1436 1.1 gwr sc->rfhead = 0;
1437 1.1 gwr sc->rftail = sc->nframes - 1;
1438 1.1 gwr sc->rbhead = 0;
1439 1.1 gwr sc->rbtail = sc->nrxbuf - 1;
1440 1.1 gwr
1441 1.2 gwr sc->scb->ie_recv_list = MK_16(sc->sc_maddr, sc->rframes[0]);
1442 1.2 gwr sc->rframes[0]->ie_fd_buf_desc = MK_16(sc->sc_maddr, sc->rbuffs[0]);
1443 1.1 gwr
1444 1.1 gwr #ifdef IEDEBUG
1445 1.14 christos printf("IE_DEBUG: reserved %d bytes\n", ptr - sc->buf_area);
1446 1.1 gwr #endif
1447 1.1 gwr }
1448 1.1 gwr
1449 1.1 gwr /*
1450 1.1 gwr * Run the multicast setup command.
1451 1.6 mycroft * Called at splnet().
1452 1.1 gwr */
1453 1.1 gwr static int
1454 1.1 gwr mc_setup(sc, ptr)
1455 1.1 gwr struct ie_softc *sc;
1456 1.3 gwr void *ptr;
1457 1.1 gwr {
1458 1.16 gwr struct ie_mcast_cmd *cmd = ptr;
1459 1.1 gwr
1460 1.1 gwr cmd->com.ie_cmd_status = SWAP(0);
1461 1.1 gwr cmd->com.ie_cmd_cmd = IE_CMD_MCAST | IE_CMD_LAST;
1462 1.1 gwr cmd->com.ie_cmd_link = SWAP(0xffff);
1463 1.1 gwr
1464 1.3 gwr (sc->sc_bcopy)((caddr_t)sc->mcast_addrs, (caddr_t)cmd->ie_mcast_addrs,
1465 1.1 gwr sc->mcast_count * sizeof *sc->mcast_addrs);
1466 1.1 gwr
1467 1.1 gwr cmd->ie_mcast_bytes =
1468 1.3 gwr SWAP(sc->mcast_count * ETHER_ADDR_LEN); /* grrr... */
1469 1.1 gwr
1470 1.2 gwr sc->scb->ie_command_list = MK_16(sc->sc_maddr, cmd);
1471 1.16 gwr if (cmd_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL) ||
1472 1.1 gwr !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
1473 1.14 christos printf("%s: multicast address setup command failed\n",
1474 1.1 gwr sc->sc_dev.dv_xname);
1475 1.1 gwr return 0;
1476 1.1 gwr }
1477 1.1 gwr return 1;
1478 1.1 gwr }
1479 1.1 gwr
1480 1.1 gwr /*
1481 1.1 gwr * This routine inits the ie.
1482 1.1 gwr * This includes executing the CONFIGURE, IA-SETUP, and MC-SETUP commands,
1483 1.1 gwr * starting the receiver unit, and clearing interrupts.
1484 1.1 gwr *
1485 1.6 mycroft * THIS ROUTINE MUST BE CALLED AT splnet() OR HIGHER.
1486 1.1 gwr */
1487 1.3 gwr int
1488 1.1 gwr ieinit(sc)
1489 1.1 gwr struct ie_softc *sc;
1490 1.1 gwr {
1491 1.1 gwr volatile struct ie_sys_ctl_block *scb = sc->scb;
1492 1.3 gwr void *ptr;
1493 1.1 gwr
1494 1.1 gwr ptr = sc->buf_area;
1495 1.1 gwr
1496 1.1 gwr /*
1497 1.1 gwr * Send the configure command first.
1498 1.1 gwr */
1499 1.1 gwr {
1500 1.16 gwr struct ie_config_cmd *cmd = ptr;
1501 1.1 gwr
1502 1.3 gwr scb->ie_command_list = MK_16(sc->sc_maddr, cmd);
1503 1.1 gwr cmd->com.ie_cmd_status = SWAP(0);
1504 1.1 gwr cmd->com.ie_cmd_cmd = IE_CMD_CONFIG | IE_CMD_LAST;
1505 1.1 gwr cmd->com.ie_cmd_link = SWAP(0xffff);
1506 1.1 gwr
1507 1.3 gwr ie_setup_config(cmd, sc->promisc, 0);
1508 1.1 gwr
1509 1.16 gwr if (cmd_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL) ||
1510 1.1 gwr !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
1511 1.14 christos printf("%s: configure command failed\n",
1512 1.1 gwr sc->sc_dev.dv_xname);
1513 1.1 gwr return 0;
1514 1.1 gwr }
1515 1.1 gwr }
1516 1.3 gwr
1517 1.1 gwr /*
1518 1.1 gwr * Now send the Individual Address Setup command.
1519 1.1 gwr */
1520 1.1 gwr {
1521 1.16 gwr struct ie_iasetup_cmd *cmd = ptr;
1522 1.1 gwr
1523 1.3 gwr scb->ie_command_list = MK_16(sc->sc_maddr, cmd);
1524 1.1 gwr cmd->com.ie_cmd_status = SWAP(0);
1525 1.1 gwr cmd->com.ie_cmd_cmd = IE_CMD_IASETUP | IE_CMD_LAST;
1526 1.1 gwr cmd->com.ie_cmd_link = SWAP(0xffff);
1527 1.1 gwr
1528 1.3 gwr (sc->sc_bcopy)(sc->sc_arpcom.ac_enaddr,
1529 1.1 gwr (caddr_t)&cmd->ie_address, sizeof cmd->ie_address);
1530 1.1 gwr
1531 1.16 gwr if (cmd_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL) ||
1532 1.1 gwr !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
1533 1.14 christos printf("%s: individual address setup command failed\n",
1534 1.1 gwr sc->sc_dev.dv_xname);
1535 1.1 gwr return 0;
1536 1.1 gwr }
1537 1.1 gwr }
1538 1.1 gwr
1539 1.1 gwr /*
1540 1.1 gwr * Now run the time-domain reflectometer.
1541 1.1 gwr */
1542 1.3 gwr run_tdr(sc, ptr);
1543 1.1 gwr
1544 1.1 gwr /*
1545 1.1 gwr * Acknowledge any interrupts we have generated thus far.
1546 1.1 gwr */
1547 1.1 gwr ie_ack(sc, IE_ST_WHENCE);
1548 1.1 gwr
1549 1.1 gwr /*
1550 1.1 gwr * Set up the transmit and recv buffers.
1551 1.1 gwr */
1552 1.1 gwr setup_bufs(sc);
1553 1.1 gwr
1554 1.3 gwr /* tell higher levels that we are here */
1555 1.3 gwr sc->sc_arpcom.ac_if.if_flags |= IFF_RUNNING;
1556 1.3 gwr
1557 1.3 gwr sc->scb->ie_recv_list = MK_16(sc->sc_maddr, sc->rframes[0]);
1558 1.16 gwr cmd_and_wait(sc, IE_RU_START, 0, 0);
1559 1.1 gwr
1560 1.3 gwr ie_ack(sc, IE_ST_WHENCE);
1561 1.1 gwr
1562 1.1 gwr if (sc->run_586)
1563 1.3 gwr (sc->run_586)(sc);
1564 1.1 gwr
1565 1.1 gwr return 0;
1566 1.1 gwr }
1567 1.1 gwr
1568 1.1 gwr static void
1569 1.1 gwr iestop(sc)
1570 1.1 gwr struct ie_softc *sc;
1571 1.1 gwr {
1572 1.1 gwr
1573 1.16 gwr cmd_and_wait(sc, IE_RU_DISABLE, 0, 0);
1574 1.1 gwr }
1575 1.1 gwr
1576 1.1 gwr int
1577 1.1 gwr ieioctl(ifp, cmd, data)
1578 1.1 gwr register struct ifnet *ifp;
1579 1.1 gwr u_long cmd;
1580 1.1 gwr caddr_t data;
1581 1.1 gwr {
1582 1.11 thorpej struct ie_softc *sc = ifp->if_softc;
1583 1.1 gwr struct ifaddr *ifa = (struct ifaddr *) data;
1584 1.1 gwr struct ifreq *ifr = (struct ifreq *) data;
1585 1.1 gwr int s, error = 0;
1586 1.1 gwr
1587 1.6 mycroft s = splnet();
1588 1.1 gwr
1589 1.1 gwr switch (cmd) {
1590 1.1 gwr
1591 1.1 gwr case SIOCSIFADDR:
1592 1.1 gwr ifp->if_flags |= IFF_UP;
1593 1.1 gwr
1594 1.1 gwr switch (ifa->ifa_addr->sa_family) {
1595 1.1 gwr #ifdef INET
1596 1.1 gwr case AF_INET:
1597 1.1 gwr ieinit(sc);
1598 1.5 mycroft arp_ifinit(&sc->sc_arpcom, ifa);
1599 1.1 gwr break;
1600 1.1 gwr #endif
1601 1.1 gwr #ifdef NS
1602 1.1 gwr /* XXX - This code is probably wrong. */
1603 1.1 gwr case AF_NS:
1604 1.1 gwr {
1605 1.1 gwr struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1606 1.1 gwr
1607 1.1 gwr if (ns_nullhost(*ina))
1608 1.1 gwr ina->x_host =
1609 1.3 gwr *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1610 1.1 gwr else
1611 1.1 gwr bcopy(ina->x_host.c_host,
1612 1.1 gwr sc->sc_arpcom.ac_enaddr,
1613 1.1 gwr sizeof(sc->sc_arpcom.ac_enaddr));
1614 1.1 gwr /* Set new address. */
1615 1.1 gwr ieinit(sc);
1616 1.1 gwr break;
1617 1.1 gwr }
1618 1.1 gwr #endif /* NS */
1619 1.1 gwr default:
1620 1.1 gwr ieinit(sc);
1621 1.1 gwr break;
1622 1.1 gwr }
1623 1.1 gwr break;
1624 1.1 gwr
1625 1.1 gwr case SIOCSIFFLAGS:
1626 1.1 gwr sc->promisc = ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
1627 1.1 gwr
1628 1.1 gwr if ((ifp->if_flags & IFF_UP) == 0 &&
1629 1.1 gwr (ifp->if_flags & IFF_RUNNING) != 0) {
1630 1.1 gwr /*
1631 1.1 gwr * If interface is marked down and it is running, then
1632 1.1 gwr * stop it.
1633 1.1 gwr */
1634 1.1 gwr iestop(sc);
1635 1.1 gwr ifp->if_flags &= ~IFF_RUNNING;
1636 1.1 gwr } else if ((ifp->if_flags & IFF_UP) != 0 &&
1637 1.3 gwr (ifp->if_flags & IFF_RUNNING) == 0) {
1638 1.1 gwr /*
1639 1.1 gwr * If interface is marked up and it is stopped, then
1640 1.1 gwr * start it.
1641 1.1 gwr */
1642 1.1 gwr ieinit(sc);
1643 1.1 gwr } else {
1644 1.1 gwr /*
1645 1.1 gwr * Reset the interface to pick up changes in any other
1646 1.1 gwr * flags that affect hardware registers.
1647 1.1 gwr */
1648 1.1 gwr iestop(sc);
1649 1.1 gwr ieinit(sc);
1650 1.1 gwr }
1651 1.1 gwr #ifdef IEDEBUG
1652 1.1 gwr if (ifp->if_flags & IFF_DEBUG)
1653 1.1 gwr sc->sc_debug = IED_ALL;
1654 1.1 gwr else
1655 1.1 gwr sc->sc_debug = 0;
1656 1.1 gwr #endif
1657 1.1 gwr break;
1658 1.1 gwr
1659 1.1 gwr case SIOCADDMULTI:
1660 1.1 gwr case SIOCDELMULTI:
1661 1.1 gwr error = (cmd == SIOCADDMULTI) ?
1662 1.1 gwr ether_addmulti(ifr, &sc->sc_arpcom) :
1663 1.1 gwr ether_delmulti(ifr, &sc->sc_arpcom);
1664 1.1 gwr
1665 1.1 gwr if (error == ENETRESET) {
1666 1.1 gwr /*
1667 1.1 gwr * Multicast list has changed; set the hardware filter
1668 1.1 gwr * accordingly.
1669 1.1 gwr */
1670 1.1 gwr mc_reset(sc);
1671 1.1 gwr error = 0;
1672 1.1 gwr }
1673 1.1 gwr break;
1674 1.1 gwr
1675 1.1 gwr default:
1676 1.1 gwr error = EINVAL;
1677 1.1 gwr }
1678 1.1 gwr splx(s);
1679 1.1 gwr return error;
1680 1.1 gwr }
1681 1.1 gwr
1682 1.1 gwr static void
1683 1.1 gwr mc_reset(sc)
1684 1.1 gwr struct ie_softc *sc;
1685 1.1 gwr {
1686 1.1 gwr struct ether_multi *enm;
1687 1.1 gwr struct ether_multistep step;
1688 1.1 gwr
1689 1.1 gwr /*
1690 1.1 gwr * Step through the list of addresses.
1691 1.1 gwr */
1692 1.1 gwr sc->mcast_count = 0;
1693 1.1 gwr ETHER_FIRST_MULTI(step, &sc->sc_arpcom, enm);
1694 1.1 gwr while (enm) {
1695 1.1 gwr if (sc->mcast_count >= MAXMCAST ||
1696 1.1 gwr bcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
1697 1.1 gwr sc->sc_arpcom.ac_if.if_flags |= IFF_ALLMULTI;
1698 1.1 gwr ieioctl(&sc->sc_arpcom.ac_if, SIOCSIFFLAGS, (void *)0);
1699 1.1 gwr goto setflag;
1700 1.1 gwr }
1701 1.1 gwr bcopy(enm->enm_addrlo, &sc->mcast_addrs[sc->mcast_count], 6);
1702 1.1 gwr sc->mcast_count++;
1703 1.1 gwr ETHER_NEXT_MULTI(step, enm);
1704 1.1 gwr }
1705 1.1 gwr setflag:
1706 1.1 gwr sc->want_mcsetup = 1;
1707 1.1 gwr }
1708 1.1 gwr
1709 1.1 gwr #ifdef IEDEBUG
1710 1.1 gwr void
1711 1.1 gwr print_rbd(rbd)
1712 1.1 gwr volatile struct ie_recv_buf_desc *rbd;
1713 1.1 gwr {
1714 1.1 gwr
1715 1.14 christos printf("RBD at %08lx:\nactual %04x, next %04x, buffer %08x\n"
1716 1.1 gwr "length %04x, mbz %04x\n", (u_long)rbd, rbd->ie_rbd_actual,
1717 1.1 gwr rbd->ie_rbd_next, rbd->ie_rbd_buffer, rbd->ie_rbd_length,
1718 1.1 gwr rbd->mbz);
1719 1.1 gwr }
1720 1.1 gwr #endif
1721