zs.c revision 1.14 1 1.14 gwr /* $NetBSD: zs.c,v 1.14 1994/12/13 18:31:54 gwr Exp $ */
2 1.10 cgd
3 1.1 glass /*
4 1.9 gwr * Copyright (c) 1994 Gordon W. Ross
5 1.1 glass * Copyright (c) 1992, 1993
6 1.1 glass * The Regents of the University of California. All rights reserved.
7 1.1 glass *
8 1.1 glass * This software was developed by the Computer Systems Engineering group
9 1.1 glass * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 1.1 glass * contributed to Berkeley.
11 1.1 glass *
12 1.1 glass * All advertising materials mentioning features or use of this software
13 1.1 glass * must display the following acknowledgement:
14 1.1 glass * This product includes software developed by the University of
15 1.1 glass * California, Lawrence Berkeley Laboratory.
16 1.1 glass *
17 1.1 glass * Redistribution and use in source and binary forms, with or without
18 1.1 glass * modification, are permitted provided that the following conditions
19 1.1 glass * are met:
20 1.1 glass * 1. Redistributions of source code must retain the above copyright
21 1.1 glass * notice, this list of conditions and the following disclaimer.
22 1.1 glass * 2. Redistributions in binary form must reproduce the above copyright
23 1.1 glass * notice, this list of conditions and the following disclaimer in the
24 1.1 glass * documentation and/or other materials provided with the distribution.
25 1.1 glass * 3. All advertising materials mentioning features or use of this software
26 1.1 glass * must display the following acknowledgement:
27 1.1 glass * This product includes software developed by the University of
28 1.1 glass * California, Berkeley and its contributors.
29 1.1 glass * 4. Neither the name of the University nor the names of its contributors
30 1.1 glass * may be used to endorse or promote products derived from this software
31 1.1 glass * without specific prior written permission.
32 1.1 glass *
33 1.1 glass * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 1.1 glass * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 1.1 glass * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 1.1 glass * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 1.1 glass * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 1.1 glass * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 1.1 glass * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 1.1 glass * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 1.1 glass * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 1.1 glass * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 1.1 glass * SUCH DAMAGE.
44 1.1 glass *
45 1.1 glass * @(#)zs.c 8.1 (Berkeley) 7/19/93
46 1.1 glass */
47 1.1 glass
48 1.1 glass /*
49 1.1 glass * Zilog Z8530 (ZSCC) driver.
50 1.1 glass *
51 1.1 glass * Runs two tty ports (ttya and ttyb) on zs0,
52 1.1 glass * and runs a keyboard and mouse on zs1.
53 1.1 glass *
54 1.1 glass * This driver knows far too much about chip to usage mappings.
55 1.1 glass */
56 1.1 glass #define NZS 2 /* XXX */
57 1.1 glass
58 1.5 gwr #include <sys/param.h>
59 1.1 glass #include <sys/systm.h>
60 1.1 glass #include <sys/proc.h>
61 1.1 glass #include <sys/device.h>
62 1.1 glass #include <sys/conf.h>
63 1.1 glass #include <sys/file.h>
64 1.1 glass #include <sys/ioctl.h>
65 1.1 glass #include <sys/tty.h>
66 1.1 glass #include <sys/time.h>
67 1.1 glass #include <sys/kernel.h>
68 1.1 glass #include <sys/syslog.h>
69 1.1 glass
70 1.1 glass #include <machine/autoconf.h>
71 1.1 glass #include <machine/cpu.h>
72 1.1 glass #include <machine/obio.h>
73 1.3 gwr #include <machine/mon.h>
74 1.3 gwr #include <machine/eeprom.h>
75 1.12 gwr #include <machine/kbd.h>
76 1.3 gwr
77 1.3 gwr #include <dev/cons.h>
78 1.1 glass
79 1.1 glass #include "zsreg.h"
80 1.1 glass #include "zsvar.h"
81 1.1 glass
82 1.1 glass #ifdef KGDB
83 1.1 glass #include <machine/remote-sl.h>
84 1.1 glass #endif
85 1.1 glass
86 1.1 glass #define ZSMAJOR 12 /* XXX */
87 1.1 glass
88 1.1 glass #define ZS_KBD 2 /* XXX */
89 1.1 glass #define ZS_MOUSE 3 /* XXX */
90 1.1 glass
91 1.2 glass /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
92 1.2 glass #define PCLK (9600 * 512) /* PCLK pin input clock rate */
93 1.2 glass
94 1.2 glass /*
95 1.2 glass * Select software interrupt levels.
96 1.2 glass */
97 1.2 glass #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
98 1.2 glass #define ZSHARD_PRI 6 /* Wired on the CPU board... */
99 1.1 glass
100 1.1 glass /*
101 1.1 glass * Software state per found chip. This would be called `zs_softc',
102 1.1 glass * but the previous driver had a rather different zs_softc....
103 1.1 glass */
104 1.1 glass struct zsinfo {
105 1.1 glass struct device zi_dev; /* base device */
106 1.1 glass volatile struct zsdevice *zi_zs;/* chip registers */
107 1.1 glass struct zs_chanstate zi_cs[2]; /* channel A and B software state */
108 1.1 glass };
109 1.1 glass
110 1.1 glass struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
111 1.1 glass
112 1.1 glass /* Definition of the driver for autoconfig. */
113 1.13 gwr static int zs_match(struct device *, void *, void *);
114 1.13 gwr static void zs_attach(struct device *, struct device *, void *);
115 1.13 gwr
116 1.13 gwr struct cfdriver zscd = {
117 1.13 gwr NULL, "zs", zs_match, zs_attach,
118 1.13 gwr DV_TTY, sizeof(struct zsinfo) };
119 1.1 glass
120 1.1 glass /* Interrupt handlers. */
121 1.2 glass static int zshard(int);
122 1.2 glass static int zssoft(int);
123 1.1 glass
124 1.1 glass struct zs_chanstate *zslist;
125 1.1 glass
126 1.1 glass /* Routines called from other code. */
127 1.2 glass int zsopen(dev_t, int, int, struct proc *);
128 1.2 glass int zsclose(dev_t, int, int, struct proc *);
129 1.2 glass static void zsiopen(struct tty *);
130 1.2 glass static void zsiclose(struct tty *);
131 1.2 glass static void zsstart(struct tty *);
132 1.2 glass void zsstop(struct tty *, int);
133 1.2 glass static int zsparam(struct tty *, struct termios *);
134 1.1 glass
135 1.1 glass /* Routines purely local to this driver. */
136 1.2 glass static int zs_getspeed(volatile struct zschan *);
137 1.2 glass static void zs_reset(volatile struct zschan *, int, int);
138 1.2 glass static void zs_modem(struct zs_chanstate *, int);
139 1.2 glass static void zs_loadchannelregs(volatile struct zschan *, u_char *);
140 1.2 glass static u_char zs_read(volatile struct zschan *, u_char);
141 1.2 glass static u_char zs_write(volatile struct zschan *, u_char, u_char);
142 1.1 glass
143 1.1 glass /* Console stuff. */
144 1.1 glass static volatile struct zschan *zs_conschan;
145 1.1 glass
146 1.1 glass #ifdef KGDB
147 1.1 glass /* KGDB stuff. Must reboot to change zs_kgdbunit. */
148 1.1 glass extern int kgdb_dev, kgdb_rate;
149 1.1 glass static int zs_kgdb_savedspeed;
150 1.2 glass static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
151 1.1 glass #endif
152 1.1 glass
153 1.1 glass /*
154 1.1 glass * Console keyboard L1-A processing is done in the hardware interrupt code,
155 1.1 glass * so we need to duplicate some of the console keyboard decode state. (We
156 1.1 glass * must not use the regular state as the hardware code keeps ahead of the
157 1.1 glass * software state: the software state tracks the most recent ring input but
158 1.1 glass * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
159 1.1 glass */
160 1.1 glass static struct conk_state { /* console keyboard state */
161 1.1 glass char conk_id; /* true => ID coming up (console only) */
162 1.1 glass char conk_l1; /* true => L1 pressed (console only) */
163 1.1 glass } zsconk_state;
164 1.1 glass
165 1.1 glass int zshardscope;
166 1.1 glass int zsshortcuts; /* number of "shortcut" software interrupts */
167 1.1 glass
168 1.13 gwr int zssoftpending; /* We have done isr_soft_request() */
169 1.13 gwr
170 1.13 gwr static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
171 1.13 gwr
172 1.13 gwr /* Default OBIO addresses. */
173 1.13 gwr static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS };
174 1.13 gwr
175 1.9 gwr
176 1.9 gwr /* Find PROM mappings (for console support). */
177 1.9 gwr void zs_init()
178 1.9 gwr {
179 1.9 gwr if (zsaddr[0] == NULL)
180 1.9 gwr zsaddr[0] = (struct zsdevice *)
181 1.9 gwr obio_find_mapping(OBIO_ZS, OBIO_ZS_SIZE);
182 1.9 gwr if (zsaddr[1] == NULL)
183 1.9 gwr zsaddr[1] = (struct zsdevice *)
184 1.9 gwr obio_find_mapping(OBIO_KEYBD_MS, OBIO_ZS_SIZE);
185 1.9 gwr }
186 1.9 gwr
187 1.1 glass /*
188 1.1 glass * Match slave number to zs unit number, so that misconfiguration will
189 1.1 glass * not set up the keyboard as ttya, etc.
190 1.1 glass */
191 1.1 glass static int
192 1.13 gwr zs_match(struct device *parent, void *vcf, void *args)
193 1.1 glass {
194 1.12 gwr struct cfdata *cf = vcf;
195 1.13 gwr struct confargs *ca = args;
196 1.13 gwr int unit, x;
197 1.13 gwr
198 1.13 gwr unit = cf->cf_unit;
199 1.13 gwr if (unit < 0 || unit >= NZS)
200 1.13 gwr return (0);
201 1.1 glass
202 1.13 gwr if (ca->ca_paddr == -1)
203 1.13 gwr ca->ca_paddr = zs_physaddr[unit];
204 1.13 gwr if (ca->ca_intpri == -1)
205 1.13 gwr ca->ca_intpri = ZSHARD_PRI;
206 1.13 gwr
207 1.13 gwr /* The peek returns non-zero on error. */
208 1.14 gwr x = bus_peek(ca->ca_bustype, ca->ca_paddr, 1);
209 1.14 gwr return (x != -1);
210 1.1 glass }
211 1.1 glass
212 1.1 glass /*
213 1.1 glass * Attach a found zs.
214 1.1 glass *
215 1.1 glass * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
216 1.1 glass * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
217 1.1 glass */
218 1.1 glass static void
219 1.13 gwr zs_attach(struct device *parent, struct device *self, void *args)
220 1.1 glass {
221 1.13 gwr struct cfdata *cf;
222 1.13 gwr struct confargs *ca;
223 1.13 gwr register int zs, unit;
224 1.1 glass register struct zsinfo *zi;
225 1.1 glass register struct zs_chanstate *cs;
226 1.1 glass register volatile struct zsdevice *addr;
227 1.1 glass register struct tty *tp, *ctp;
228 1.13 gwr int softcar;
229 1.2 glass static int didintr;
230 1.2 glass
231 1.13 gwr cf = self->dv_cfdata;
232 1.13 gwr zs = self->dv_unit;
233 1.13 gwr ca = args;
234 1.13 gwr
235 1.13 gwr printf(" softpri %d\n", ZSSOFT_PRI);
236 1.1 glass
237 1.9 gwr if (zsaddr[zs] == NULL) {
238 1.9 gwr zsaddr[zs] = (struct zsdevice *)
239 1.13 gwr obio_alloc(ca->ca_paddr, OBIO_ZS_SIZE);
240 1.3 gwr }
241 1.9 gwr addr = zsaddr[zs];
242 1.1 glass
243 1.1 glass if (!didintr) {
244 1.2 glass didintr = 1;
245 1.13 gwr isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
246 1.13 gwr isr_add_autovect(zshard, NULL, ZSHARD_PRI);
247 1.1 glass }
248 1.2 glass
249 1.13 gwr zi = (struct zsinfo *)self;
250 1.1 glass zi->zi_zs = addr;
251 1.1 glass unit = zs * 2;
252 1.1 glass cs = zi->zi_cs;
253 1.1 glass
254 1.1 glass if(!zs_tty[unit])
255 1.1 glass zs_tty[unit] = ttymalloc();
256 1.1 glass tp = zs_tty[unit];
257 1.1 glass if(!zs_tty[unit+1])
258 1.1 glass zs_tty[unit+1] = ttymalloc();
259 1.2 glass
260 1.1 glass if (unit == 0) {
261 1.1 glass softcar = 0;
262 1.1 glass } else
263 1.13 gwr softcar = cf->cf_flags;
264 1.1 glass
265 1.1 glass /* link into interrupt list with order (A,B) (B=A+1) */
266 1.1 glass cs[0].cs_next = &cs[1];
267 1.1 glass cs[1].cs_next = zslist;
268 1.1 glass zslist = cs;
269 1.1 glass
270 1.1 glass cs->cs_unit = unit;
271 1.6 gwr cs->cs_zc = &addr->zs_chan[CHAN_A];
272 1.2 glass cs->cs_speed = zs_getspeed(cs->cs_zc);
273 1.2 glass #ifdef DEBUG
274 1.3 gwr mon_printf("zs%da speed %d ", zs, cs->cs_speed);
275 1.2 glass #endif
276 1.1 glass cs->cs_softcar = softcar & 1;
277 1.2 glass #if 0
278 1.2 glass /* XXX - Drop carrier here? -gwr */
279 1.2 glass zs_modem(cs, cs->cs_softcar ? 1 : 0);
280 1.2 glass #endif
281 1.3 gwr cs->cs_ttyp = tp;
282 1.1 glass tp->t_dev = makedev(ZSMAJOR, unit);
283 1.1 glass tp->t_oproc = zsstart;
284 1.1 glass tp->t_param = zsparam;
285 1.3 gwr if (cs->cs_zc == zs_conschan) {
286 1.3 gwr /* This unit is the console. */
287 1.3 gwr cs->cs_consio = 1;
288 1.3 gwr cs->cs_brkabort = 1;
289 1.3 gwr cs->cs_softcar = 1;
290 1.3 gwr } else {
291 1.3 gwr /* Can not run kgdb on the console? */
292 1.1 glass #ifdef KGDB
293 1.1 glass zs_checkkgdb(unit, cs, tp);
294 1.1 glass #endif
295 1.3 gwr }
296 1.1 glass if (unit == ZS_KBD) {
297 1.1 glass /*
298 1.1 glass * Keyboard: tell /dev/kbd driver how to talk to us.
299 1.1 glass */
300 1.1 glass tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
301 1.1 glass tp->t_cflag = CS8;
302 1.1 glass kbd_serial(tp, zsiopen, zsiclose);
303 1.1 glass cs->cs_conk = 1; /* do L1-A processing */
304 1.1 glass }
305 1.1 glass unit++;
306 1.1 glass cs++;
307 1.1 glass tp = zs_tty[unit];
308 1.2 glass
309 1.1 glass cs->cs_unit = unit;
310 1.2 glass cs->cs_zc = &addr->zs_chan[CHAN_B];
311 1.2 glass cs->cs_speed = zs_getspeed(cs->cs_zc);
312 1.2 glass #ifdef DEBUG
313 1.3 gwr mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
314 1.2 glass #endif
315 1.1 glass cs->cs_softcar = softcar & 2;
316 1.2 glass #if 0
317 1.2 glass /* XXX - Drop carrier here? -gwr */
318 1.2 glass zs_modem(cs, cs->cs_softcar ? 1 : 0);
319 1.2 glass #endif
320 1.3 gwr cs->cs_ttyp = tp;
321 1.1 glass tp->t_dev = makedev(ZSMAJOR, unit);
322 1.1 glass tp->t_oproc = zsstart;
323 1.1 glass tp->t_param = zsparam;
324 1.3 gwr if (cs->cs_zc == zs_conschan) {
325 1.3 gwr /* This unit is the console. */
326 1.3 gwr cs->cs_consio = 1;
327 1.3 gwr cs->cs_brkabort = 1;
328 1.3 gwr cs->cs_softcar = 1;
329 1.3 gwr } else {
330 1.3 gwr /* Can not run kgdb on the console? */
331 1.1 glass #ifdef KGDB
332 1.1 glass zs_checkkgdb(unit, cs, tp);
333 1.1 glass #endif
334 1.3 gwr }
335 1.1 glass if (unit == ZS_MOUSE) {
336 1.1 glass /*
337 1.1 glass * Mouse: tell /dev/mouse driver how to talk to us.
338 1.1 glass */
339 1.1 glass tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
340 1.1 glass tp->t_cflag = CS8;
341 1.1 glass ms_serial(tp, zsiopen, zsiclose);
342 1.1 glass }
343 1.1 glass }
344 1.1 glass
345 1.1 glass /*
346 1.1 glass * Put a channel in a known state. Interrupts may be left disabled
347 1.1 glass * or enabled, as desired.
348 1.1 glass */
349 1.1 glass static void
350 1.1 glass zs_reset(zc, inten, speed)
351 1.1 glass volatile struct zschan *zc;
352 1.1 glass int inten, speed;
353 1.1 glass {
354 1.1 glass int tconst;
355 1.1 glass static u_char reg[16] = {
356 1.1 glass 0,
357 1.1 glass 0,
358 1.1 glass 0,
359 1.1 glass ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
360 1.1 glass ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
361 1.1 glass ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
362 1.1 glass 0,
363 1.1 glass 0,
364 1.1 glass 0,
365 1.1 glass 0,
366 1.1 glass ZSWR10_NRZ,
367 1.1 glass ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
368 1.1 glass 0,
369 1.1 glass 0,
370 1.1 glass ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
371 1.1 glass ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
372 1.1 glass };
373 1.1 glass
374 1.1 glass reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
375 1.1 glass tconst = BPS_TO_TCONST(PCLK / 16, speed);
376 1.1 glass reg[12] = tconst;
377 1.1 glass reg[13] = tconst >> 8;
378 1.1 glass zs_loadchannelregs(zc, reg);
379 1.1 glass }
380 1.1 glass
381 1.3 gwr /*
382 1.3 gwr * Console support
383 1.3 gwr */
384 1.2 glass
385 1.3 gwr /*
386 1.3 gwr * Used by the kd driver to find out if it can work.
387 1.3 gwr */
388 1.2 glass int
389 1.3 gwr zscnprobe_kbd()
390 1.2 glass {
391 1.9 gwr if (zsaddr[1] == NULL) {
392 1.3 gwr mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
393 1.3 gwr return CN_DEAD;
394 1.3 gwr }
395 1.3 gwr return CN_INTERNAL;
396 1.3 gwr }
397 1.3 gwr
398 1.3 gwr /*
399 1.3 gwr * This is the console probe routine for ttya and ttyb.
400 1.3 gwr */
401 1.3 gwr static int
402 1.3 gwr zscnprobe(struct consdev *cn, int unit)
403 1.3 gwr {
404 1.3 gwr int maj, eeCons;
405 1.3 gwr
406 1.9 gwr if (zsaddr[0] == NULL) {
407 1.9 gwr mon_printf("zscnprobe: zs0 not mapped\n");
408 1.3 gwr cn->cn_pri = CN_DEAD;
409 1.3 gwr return 0;
410 1.3 gwr }
411 1.3 gwr /* XXX - Also try to make sure it exists? */
412 1.2 glass
413 1.2 glass /* locate the major number */
414 1.2 glass for (maj = 0; maj < nchrdev; maj++)
415 1.12 gwr if (cdevsw[maj].d_open == (void*)zsopen)
416 1.2 glass break;
417 1.3 gwr
418 1.3 gwr cn->cn_dev = makedev(maj, unit);
419 1.3 gwr
420 1.3 gwr /* Use EEPROM console setting to decide "remote" console. */
421 1.9 gwr eeCons = ee_get_byte(EE_CONS_OFFSET, 0);
422 1.2 glass
423 1.3 gwr /* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
424 1.3 gwr if (eeCons == (EE_CONS_TTYA + unit)) {
425 1.3 gwr cn->cn_pri = CN_REMOTE;
426 1.3 gwr } else {
427 1.3 gwr cn->cn_pri = CN_NORMAL;
428 1.3 gwr }
429 1.2 glass return (0);
430 1.2 glass }
431 1.2 glass
432 1.3 gwr /* This is the constab entry for TTYA. */
433 1.2 glass int
434 1.3 gwr zscnprobe_a(struct consdev *cn)
435 1.2 glass {
436 1.3 gwr return (zscnprobe(cn, 0));
437 1.3 gwr }
438 1.2 glass
439 1.3 gwr /* This is the constab entry for TTYB. */
440 1.3 gwr int
441 1.3 gwr zscnprobe_b(struct consdev *cn)
442 1.3 gwr {
443 1.3 gwr return (zscnprobe(cn, 1));
444 1.2 glass }
445 1.2 glass
446 1.3 gwr /* Attach as console. Also set zs_conschan */
447 1.3 gwr int
448 1.3 gwr zscninit(struct consdev *cn)
449 1.1 glass {
450 1.3 gwr int unit;
451 1.1 glass volatile struct zsdevice *addr;
452 1.1 glass
453 1.3 gwr unit = minor(cn->cn_dev) & 1;
454 1.9 gwr addr = zsaddr[0];
455 1.3 gwr zs_conschan = ((unit == 0) ?
456 1.3 gwr &addr->zs_chan[CHAN_A] :
457 1.3 gwr &addr->zs_chan[CHAN_B] );
458 1.3 gwr
459 1.3 gwr mon_printf("console on zs0 (tty%c)\n", unit + 'a');
460 1.1 glass }
461 1.3 gwr
462 1.1 glass
463 1.2 glass /*
464 1.2 glass * Polled console input putchar.
465 1.2 glass */
466 1.2 glass int
467 1.4 gwr zscngetc(dev)
468 1.4 gwr dev_t dev;
469 1.2 glass {
470 1.2 glass register volatile struct zschan *zc = zs_conschan;
471 1.2 glass register int s, c;
472 1.2 glass
473 1.2 glass if (zc == NULL)
474 1.2 glass return (0);
475 1.2 glass
476 1.2 glass s = splhigh();
477 1.9 gwr
478 1.9 gwr /* Wait for a character to arrive. */
479 1.2 glass while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
480 1.3 gwr ZS_DELAY();
481 1.3 gwr ZS_DELAY();
482 1.9 gwr
483 1.2 glass c = zc->zc_data;
484 1.9 gwr ZS_DELAY();
485 1.9 gwr
486 1.2 glass splx(s);
487 1.2 glass return (c);
488 1.2 glass }
489 1.1 glass
490 1.1 glass /*
491 1.1 glass * Polled console output putchar.
492 1.1 glass */
493 1.2 glass int
494 1.4 gwr zscnputc(dev, c)
495 1.4 gwr dev_t dev;
496 1.1 glass int c;
497 1.1 glass {
498 1.1 glass register volatile struct zschan *zc = zs_conschan;
499 1.1 glass register int s;
500 1.1 glass
501 1.4 gwr if (zc == NULL) {
502 1.4 gwr s = splhigh();
503 1.4 gwr mon_putchar(c);
504 1.4 gwr splx(s);
505 1.2 glass return (0);
506 1.4 gwr }
507 1.9 gwr s = splhigh();
508 1.2 glass
509 1.9 gwr /* Wait for transmitter to become ready. */
510 1.1 glass while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
511 1.3 gwr ZS_DELAY();
512 1.3 gwr ZS_DELAY();
513 1.9 gwr
514 1.1 glass zc->zc_data = c;
515 1.3 gwr ZS_DELAY();
516 1.1 glass splx(s);
517 1.1 glass }
518 1.2 glass
519 1.1 glass #ifdef KGDB
520 1.1 glass /*
521 1.1 glass * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
522 1.1 glass * Pick up the current speed and character size and restore the original
523 1.1 glass * speed.
524 1.1 glass */
525 1.1 glass static void
526 1.1 glass zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
527 1.1 glass {
528 1.1 glass
529 1.1 glass if (kgdb_dev == makedev(ZSMAJOR, unit)) {
530 1.1 glass tp->t_ispeed = tp->t_ospeed = kgdb_rate;
531 1.1 glass tp->t_cflag = CS8;
532 1.1 glass cs->cs_kgdb = 1;
533 1.1 glass cs->cs_speed = zs_kgdb_savedspeed;
534 1.1 glass (void) zsparam(tp, &tp->t_termios);
535 1.1 glass }
536 1.1 glass }
537 1.1 glass #endif
538 1.1 glass
539 1.1 glass /*
540 1.1 glass * Compute the current baud rate given a ZSCC channel.
541 1.1 glass */
542 1.1 glass static int
543 1.1 glass zs_getspeed(zc)
544 1.1 glass register volatile struct zschan *zc;
545 1.1 glass {
546 1.1 glass register int tconst;
547 1.1 glass
548 1.1 glass tconst = ZS_READ(zc, 12);
549 1.1 glass tconst |= ZS_READ(zc, 13) << 8;
550 1.1 glass return (TCONST_TO_BPS(PCLK / 16, tconst));
551 1.1 glass }
552 1.1 glass
553 1.1 glass
554 1.1 glass /*
555 1.1 glass * Do an internal open.
556 1.1 glass */
557 1.1 glass static void
558 1.1 glass zsiopen(struct tty *tp)
559 1.1 glass {
560 1.1 glass
561 1.1 glass (void) zsparam(tp, &tp->t_termios);
562 1.1 glass ttsetwater(tp);
563 1.1 glass tp->t_state = TS_ISOPEN | TS_CARR_ON;
564 1.1 glass }
565 1.1 glass
566 1.1 glass /*
567 1.1 glass * Do an internal close. Eventually we should shut off the chip when both
568 1.1 glass * ports on it are closed.
569 1.1 glass */
570 1.1 glass static void
571 1.1 glass zsiclose(struct tty *tp)
572 1.1 glass {
573 1.1 glass
574 1.1 glass ttylclose(tp, 0); /* ??? */
575 1.1 glass ttyclose(tp); /* ??? */
576 1.1 glass tp->t_state = 0;
577 1.1 glass }
578 1.1 glass
579 1.1 glass
580 1.1 glass /*
581 1.1 glass * Open a zs serial port. This interface may not be used to open
582 1.1 glass * the keyboard and mouse ports. (XXX)
583 1.1 glass */
584 1.1 glass int
585 1.1 glass zsopen(dev_t dev, int flags, int mode, struct proc *p)
586 1.1 glass {
587 1.1 glass register struct tty *tp;
588 1.1 glass register struct zs_chanstate *cs;
589 1.1 glass struct zsinfo *zi;
590 1.1 glass int unit = minor(dev), zs = unit >> 1, error, s;
591 1.1 glass
592 1.2 glass #ifdef DEBUG
593 1.3 gwr mon_printf("zs_open\n");
594 1.2 glass #endif
595 1.1 glass if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
596 1.1 glass unit == ZS_KBD || unit == ZS_MOUSE)
597 1.1 glass return (ENXIO);
598 1.1 glass cs = &zi->zi_cs[unit & 1];
599 1.3 gwr #if 0
600 1.3 gwr /* The kd driver avoids the need for this hack. */
601 1.1 glass if (cs->cs_consio)
602 1.1 glass return (ENXIO); /* ??? */
603 1.3 gwr #endif
604 1.1 glass tp = cs->cs_ttyp;
605 1.1 glass s = spltty();
606 1.1 glass if ((tp->t_state & TS_ISOPEN) == 0) {
607 1.1 glass ttychars(tp);
608 1.1 glass if (tp->t_ispeed == 0) {
609 1.1 glass tp->t_iflag = TTYDEF_IFLAG;
610 1.1 glass tp->t_oflag = TTYDEF_OFLAG;
611 1.8 gwr #if 0
612 1.1 glass tp->t_cflag = TTYDEF_CFLAG;
613 1.8 gwr #else
614 1.8 gwr /* Make default same as PROM uses. */
615 1.8 gwr tp->t_cflag = (CREAD | CS8 | HUPCL);
616 1.8 gwr #endif
617 1.1 glass tp->t_lflag = TTYDEF_LFLAG;
618 1.1 glass tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
619 1.1 glass }
620 1.1 glass (void) zsparam(tp, &tp->t_termios);
621 1.1 glass ttsetwater(tp);
622 1.1 glass } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
623 1.1 glass splx(s);
624 1.1 glass return (EBUSY);
625 1.1 glass }
626 1.1 glass error = 0;
627 1.3 gwr #ifdef DEBUG
628 1.3 gwr mon_printf("wait for carrier...\n");
629 1.3 gwr #endif
630 1.1 glass for (;;) {
631 1.1 glass /* loop, turning on the device, until carrier present */
632 1.1 glass zs_modem(cs, 1);
633 1.2 glass /* May never get status intr if carrier already on. -gwr */
634 1.2 glass if (cs->cs_zc->zc_csr & ZSRR0_DCD)
635 1.2 glass tp->t_state |= TS_CARR_ON;
636 1.1 glass if (cs->cs_softcar)
637 1.1 glass tp->t_state |= TS_CARR_ON;
638 1.1 glass if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
639 1.1 glass tp->t_state & TS_CARR_ON)
640 1.1 glass break;
641 1.1 glass tp->t_state |= TS_WOPEN;
642 1.1 glass if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
643 1.1 glass ttopen, 0))
644 1.1 glass break;
645 1.1 glass }
646 1.3 gwr #ifdef DEBUG
647 1.3 gwr mon_printf("...carrier %s\n",
648 1.3 gwr (tp->t_state & TS_CARR_ON) ? "on" : "off");
649 1.3 gwr #endif
650 1.1 glass splx(s);
651 1.1 glass if (error == 0)
652 1.1 glass error = linesw[tp->t_line].l_open(dev, tp);
653 1.1 glass if (error)
654 1.1 glass zs_modem(cs, 0);
655 1.1 glass return (error);
656 1.1 glass }
657 1.1 glass
658 1.1 glass /*
659 1.1 glass * Close a zs serial port.
660 1.1 glass */
661 1.1 glass int
662 1.1 glass zsclose(dev_t dev, int flags, int mode, struct proc *p)
663 1.1 glass {
664 1.1 glass register struct zs_chanstate *cs;
665 1.1 glass register struct tty *tp;
666 1.1 glass struct zsinfo *zi;
667 1.1 glass int unit = minor(dev), s;
668 1.1 glass
669 1.3 gwr #ifdef DEBUG
670 1.3 gwr mon_printf("zs_close\n");
671 1.3 gwr #endif
672 1.1 glass zi = zscd.cd_devs[unit >> 1];
673 1.1 glass cs = &zi->zi_cs[unit & 1];
674 1.1 glass tp = cs->cs_ttyp;
675 1.1 glass linesw[tp->t_line].l_close(tp, flags);
676 1.1 glass if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
677 1.1 glass (tp->t_state & TS_ISOPEN) == 0) {
678 1.1 glass zs_modem(cs, 0);
679 1.1 glass /* hold low for 1 second */
680 1.1 glass (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
681 1.1 glass }
682 1.6 gwr if (cs->cs_creg[5] & ZSWR5_BREAK)
683 1.6 gwr {
684 1.6 gwr s = splzs();
685 1.6 gwr cs->cs_preg[5] &= ~ZSWR5_BREAK;
686 1.6 gwr cs->cs_creg[5] &= ~ZSWR5_BREAK;
687 1.6 gwr ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
688 1.6 gwr splx(s);
689 1.6 gwr }
690 1.1 glass ttyclose(tp);
691 1.1 glass #ifdef KGDB
692 1.1 glass /* Reset the speed if we're doing kgdb on this port */
693 1.1 glass if (cs->cs_kgdb) {
694 1.1 glass tp->t_ispeed = tp->t_ospeed = kgdb_rate;
695 1.1 glass (void) zsparam(tp, &tp->t_termios);
696 1.1 glass }
697 1.1 glass #endif
698 1.1 glass return (0);
699 1.1 glass }
700 1.1 glass
701 1.1 glass /*
702 1.1 glass * Read/write zs serial port.
703 1.1 glass */
704 1.1 glass int
705 1.1 glass zsread(dev_t dev, struct uio *uio, int flags)
706 1.1 glass {
707 1.1 glass register struct tty *tp = zs_tty[minor(dev)];
708 1.1 glass
709 1.1 glass return (linesw[tp->t_line].l_read(tp, uio, flags));
710 1.1 glass }
711 1.1 glass
712 1.1 glass int
713 1.1 glass zswrite(dev_t dev, struct uio *uio, int flags)
714 1.1 glass {
715 1.1 glass register struct tty *tp = zs_tty[minor(dev)];
716 1.1 glass
717 1.1 glass return (linesw[tp->t_line].l_write(tp, uio, flags));
718 1.1 glass }
719 1.1 glass
720 1.1 glass /*
721 1.1 glass * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
722 1.1 glass * channels are kept in (A,B) pairs.
723 1.1 glass *
724 1.1 glass * Do just a little, then get out; set a software interrupt if more
725 1.1 glass * work is needed.
726 1.1 glass *
727 1.1 glass * We deliberately ignore the vectoring Zilog gives us, and match up
728 1.1 glass * only the number of `reset interrupt under service' operations, not
729 1.1 glass * the order.
730 1.1 glass */
731 1.1 glass /* ARGSUSED */
732 1.1 glass int
733 1.1 glass zshard(int intrarg)
734 1.1 glass {
735 1.1 glass register struct zs_chanstate *a;
736 1.1 glass #define b (a + 1)
737 1.1 glass register volatile struct zschan *zc;
738 1.1 glass register int rr3, intflags = 0, v, i;
739 1.1 glass static int zsrint(struct zs_chanstate *, volatile struct zschan *);
740 1.1 glass static int zsxint(struct zs_chanstate *, volatile struct zschan *);
741 1.1 glass static int zssint(struct zs_chanstate *, volatile struct zschan *);
742 1.1 glass
743 1.1 glass for (a = zslist; a != NULL; a = b->cs_next) {
744 1.1 glass rr3 = ZS_READ(a->cs_zc, 3);
745 1.3 gwr
746 1.3 gwr /* XXX - This should loop to empty the on-chip fifo. */
747 1.1 glass if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
748 1.1 glass intflags |= 2;
749 1.1 glass zc = a->cs_zc;
750 1.1 glass i = a->cs_rbput;
751 1.1 glass if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
752 1.1 glass a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
753 1.1 glass intflags |= 1;
754 1.1 glass }
755 1.1 glass if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
756 1.1 glass a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
757 1.1 glass intflags |= 1;
758 1.1 glass }
759 1.1 glass if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
760 1.1 glass a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
761 1.1 glass intflags |= 1;
762 1.1 glass }
763 1.1 glass a->cs_rbput = i;
764 1.1 glass }
765 1.3 gwr
766 1.3 gwr /* XXX - This should loop to empty the on-chip fifo. */
767 1.1 glass if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
768 1.1 glass intflags |= 2;
769 1.1 glass zc = b->cs_zc;
770 1.1 glass i = b->cs_rbput;
771 1.1 glass if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
772 1.1 glass b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
773 1.1 glass intflags |= 1;
774 1.1 glass }
775 1.1 glass if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
776 1.1 glass b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
777 1.1 glass intflags |= 1;
778 1.1 glass }
779 1.1 glass if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
780 1.1 glass b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
781 1.1 glass intflags |= 1;
782 1.1 glass }
783 1.1 glass b->cs_rbput = i;
784 1.1 glass }
785 1.1 glass }
786 1.1 glass #undef b
787 1.1 glass if (intflags & 1) {
788 1.13 gwr if (zssoftpending == 0) {
789 1.13 gwr zssoftpending = ZSSOFT_PRI;
790 1.13 gwr isr_soft_request(ZSSOFT_PRI);
791 1.13 gwr }
792 1.1 glass }
793 1.1 glass return (intflags & 2);
794 1.1 glass }
795 1.1 glass
796 1.1 glass static int
797 1.1 glass zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
798 1.1 glass {
799 1.1 glass register int c = zc->zc_data;
800 1.1 glass
801 1.1 glass if (cs->cs_conk) {
802 1.1 glass register struct conk_state *conk = &zsconk_state;
803 1.1 glass
804 1.1 glass /*
805 1.1 glass * Check here for console abort function, so that we
806 1.1 glass * can abort even when interrupts are locking up the
807 1.1 glass * machine.
808 1.1 glass */
809 1.1 glass if (c == KBD_RESET) {
810 1.1 glass conk->conk_id = 1; /* ignore next byte */
811 1.1 glass conk->conk_l1 = 0;
812 1.1 glass } else if (conk->conk_id)
813 1.1 glass conk->conk_id = 0; /* stop ignoring bytes */
814 1.1 glass else if (c == KBD_L1)
815 1.1 glass conk->conk_l1 = 1; /* L1 went down */
816 1.1 glass else if (c == (KBD_L1|KBD_UP))
817 1.1 glass conk->conk_l1 = 0; /* L1 went up */
818 1.1 glass else if (c == KBD_A && conk->conk_l1) {
819 1.1 glass zsabort();
820 1.1 glass conk->conk_l1 = 0; /* we never see the up */
821 1.1 glass goto clearit; /* eat the A after L1-A */
822 1.1 glass }
823 1.1 glass }
824 1.1 glass #ifdef KGDB
825 1.1 glass if (c == FRAME_START && cs->cs_kgdb &&
826 1.1 glass (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
827 1.1 glass zskgdb(cs->cs_unit);
828 1.1 glass goto clearit;
829 1.1 glass }
830 1.1 glass #endif
831 1.1 glass /* compose receive character and status */
832 1.1 glass c <<= 8;
833 1.1 glass c |= ZS_READ(zc, 1);
834 1.1 glass
835 1.1 glass /* clear receive error & interrupt condition */
836 1.1 glass zc->zc_csr = ZSWR0_RESET_ERRORS;
837 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
838 1.1 glass
839 1.1 glass return (ZRING_MAKE(ZRING_RINT, c));
840 1.1 glass
841 1.1 glass clearit:
842 1.1 glass zc->zc_csr = ZSWR0_RESET_ERRORS;
843 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
844 1.1 glass return (0);
845 1.1 glass }
846 1.1 glass
847 1.1 glass static int
848 1.1 glass zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
849 1.1 glass {
850 1.1 glass register int i = cs->cs_tbc;
851 1.1 glass
852 1.1 glass if (i == 0) {
853 1.1 glass zc->zc_csr = ZSWR0_RESET_TXINT;
854 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
855 1.1 glass return (ZRING_MAKE(ZRING_XINT, 0));
856 1.1 glass }
857 1.1 glass cs->cs_tbc = i - 1;
858 1.1 glass zc->zc_data = *cs->cs_tba++;
859 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
860 1.1 glass return (0);
861 1.1 glass }
862 1.1 glass
863 1.1 glass static int
864 1.1 glass zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
865 1.1 glass {
866 1.1 glass register int rr0;
867 1.1 glass
868 1.1 glass rr0 = zc->zc_csr;
869 1.1 glass zc->zc_csr = ZSWR0_RESET_STATUS;
870 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
871 1.1 glass /*
872 1.1 glass * The chip's hardware flow control is, as noted in zsreg.h,
873 1.1 glass * busted---if the DCD line goes low the chip shuts off the
874 1.1 glass * receiver (!). If we want hardware CTS flow control but do
875 1.1 glass * not have it, and carrier is now on, turn HFC on; if we have
876 1.1 glass * HFC now but carrier has gone low, turn it off.
877 1.1 glass */
878 1.1 glass if (rr0 & ZSRR0_DCD) {
879 1.1 glass if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
880 1.1 glass (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
881 1.1 glass cs->cs_creg[3] |= ZSWR3_HFC;
882 1.1 glass ZS_WRITE(zc, 3, cs->cs_creg[3]);
883 1.1 glass }
884 1.1 glass } else {
885 1.1 glass if (cs->cs_creg[3] & ZSWR3_HFC) {
886 1.1 glass cs->cs_creg[3] &= ~ZSWR3_HFC;
887 1.1 glass ZS_WRITE(zc, 3, cs->cs_creg[3]);
888 1.1 glass }
889 1.1 glass }
890 1.1 glass if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
891 1.3 gwr /* Wait for end of break to avoid PROM abort. */
892 1.3 gwr while (zc->zc_csr & ZSRR0_BREAK)
893 1.3 gwr ZS_DELAY();
894 1.1 glass zsabort();
895 1.1 glass return (0);
896 1.1 glass }
897 1.1 glass return (ZRING_MAKE(ZRING_SINT, rr0));
898 1.1 glass }
899 1.1 glass
900 1.1 glass zsabort()
901 1.1 glass {
902 1.3 gwr #ifdef DDB
903 1.3 gwr Debugger();
904 1.3 gwr #else
905 1.1 glass printf("stopping on keyboard abort\n");
906 1.3 gwr sun3_rom_abort();
907 1.3 gwr #endif
908 1.1 glass }
909 1.1 glass
910 1.1 glass #ifdef KGDB
911 1.1 glass /*
912 1.1 glass * KGDB framing character received: enter kernel debugger. This probably
913 1.1 glass * should time out after a few seconds to avoid hanging on spurious input.
914 1.1 glass */
915 1.1 glass zskgdb(int unit)
916 1.1 glass {
917 1.1 glass
918 1.1 glass printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
919 1.1 glass kgdb_connect(1);
920 1.1 glass }
921 1.1 glass #endif
922 1.1 glass
923 1.1 glass /*
924 1.1 glass * Print out a ring or fifo overrun error message.
925 1.1 glass */
926 1.1 glass static void
927 1.1 glass zsoverrun(int unit, long *ptime, char *what)
928 1.1 glass {
929 1.1 glass
930 1.1 glass if (*ptime != time.tv_sec) {
931 1.1 glass *ptime = time.tv_sec;
932 1.1 glass log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
933 1.1 glass (unit & 1) + 'a', what);
934 1.1 glass }
935 1.1 glass }
936 1.1 glass
937 1.1 glass /*
938 1.1 glass * ZS software interrupt. Scan all channels for deferred interrupts.
939 1.1 glass */
940 1.1 glass int
941 1.1 glass zssoft(int arg)
942 1.1 glass {
943 1.1 glass register struct zs_chanstate *cs;
944 1.1 glass register volatile struct zschan *zc;
945 1.1 glass register struct linesw *line;
946 1.1 glass register struct tty *tp;
947 1.1 glass register int get, n, c, cc, unit, s;
948 1.1 glass
949 1.13 gwr if (zssoftpending == 0)
950 1.13 gwr return (0);
951 1.13 gwr
952 1.13 gwr zssoftpending = 0;
953 1.2 glass isr_soft_clear(ZSSOFT_PRI);
954 1.2 glass
955 1.1 glass for (cs = zslist; cs != NULL; cs = cs->cs_next) {
956 1.1 glass get = cs->cs_rbget;
957 1.1 glass again:
958 1.1 glass n = cs->cs_rbput; /* atomic */
959 1.1 glass if (get == n) /* nothing more on this line */
960 1.1 glass continue;
961 1.1 glass unit = cs->cs_unit; /* set up to handle interrupts */
962 1.1 glass zc = cs->cs_zc;
963 1.1 glass tp = cs->cs_ttyp;
964 1.1 glass line = &linesw[tp->t_line];
965 1.1 glass /*
966 1.1 glass * Compute the number of interrupts in the receive ring.
967 1.1 glass * If the count is overlarge, we lost some events, and
968 1.1 glass * must advance to the first valid one. It may get
969 1.1 glass * overwritten if more data are arriving, but this is
970 1.1 glass * too expensive to check and gains nothing (we already
971 1.1 glass * lost out; all we can do at this point is trade one
972 1.1 glass * kind of loss for another).
973 1.1 glass */
974 1.1 glass n -= get;
975 1.1 glass if (n > ZLRB_RING_SIZE) {
976 1.1 glass zsoverrun(unit, &cs->cs_rotime, "ring");
977 1.1 glass get += n - ZLRB_RING_SIZE;
978 1.1 glass n = ZLRB_RING_SIZE;
979 1.1 glass }
980 1.1 glass while (--n >= 0) {
981 1.1 glass /* race to keep ahead of incoming interrupts */
982 1.1 glass c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
983 1.1 glass switch (ZRING_TYPE(c)) {
984 1.1 glass
985 1.1 glass case ZRING_RINT:
986 1.1 glass c = ZRING_VALUE(c);
987 1.1 glass if (c & ZSRR1_DO)
988 1.1 glass zsoverrun(unit, &cs->cs_fotime, "fifo");
989 1.1 glass cc = c >> 8;
990 1.1 glass if (c & ZSRR1_FE)
991 1.1 glass cc |= TTY_FE;
992 1.1 glass if (c & ZSRR1_PE)
993 1.1 glass cc |= TTY_PE;
994 1.1 glass /*
995 1.1 glass * this should be done through
996 1.1 glass * bstreams XXX gag choke
997 1.1 glass */
998 1.1 glass if (unit == ZS_KBD)
999 1.1 glass kbd_rint(cc);
1000 1.1 glass else if (unit == ZS_MOUSE)
1001 1.1 glass ms_rint(cc);
1002 1.1 glass else
1003 1.1 glass line->l_rint(cc, tp);
1004 1.1 glass break;
1005 1.1 glass
1006 1.1 glass case ZRING_XINT:
1007 1.1 glass /*
1008 1.1 glass * Transmit done: change registers and resume,
1009 1.1 glass * or clear BUSY.
1010 1.1 glass */
1011 1.1 glass if (cs->cs_heldchange) {
1012 1.1 glass s = splzs();
1013 1.1 glass c = zc->zc_csr;
1014 1.1 glass if ((c & ZSRR0_DCD) == 0)
1015 1.1 glass cs->cs_preg[3] &= ~ZSWR3_HFC;
1016 1.1 glass bcopy((caddr_t)cs->cs_preg,
1017 1.1 glass (caddr_t)cs->cs_creg, 16);
1018 1.1 glass zs_loadchannelregs(zc, cs->cs_creg);
1019 1.1 glass splx(s);
1020 1.1 glass cs->cs_heldchange = 0;
1021 1.1 glass if (cs->cs_heldtbc &&
1022 1.1 glass (tp->t_state & TS_TTSTOP) == 0) {
1023 1.1 glass cs->cs_tbc = cs->cs_heldtbc - 1;
1024 1.1 glass zc->zc_data = *cs->cs_tba++;
1025 1.1 glass goto again;
1026 1.1 glass }
1027 1.1 glass }
1028 1.1 glass tp->t_state &= ~TS_BUSY;
1029 1.1 glass if (tp->t_state & TS_FLUSH)
1030 1.1 glass tp->t_state &= ~TS_FLUSH;
1031 1.1 glass else
1032 1.7 glass ndflush(&tp->t_outq, cs->cs_tba -
1033 1.7 glass (caddr_t) tp->t_outq.c_cf);
1034 1.1 glass line->l_start(tp);
1035 1.1 glass break;
1036 1.1 glass
1037 1.1 glass case ZRING_SINT:
1038 1.1 glass /*
1039 1.1 glass * Status line change. HFC bit is run in
1040 1.1 glass * hardware interrupt, to avoid locking
1041 1.1 glass * at splzs here.
1042 1.1 glass */
1043 1.1 glass c = ZRING_VALUE(c);
1044 1.1 glass if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1045 1.1 glass cc = (c & ZSRR0_DCD) != 0;
1046 1.1 glass if (line->l_modem(tp, cc) == 0)
1047 1.1 glass zs_modem(cs, cc);
1048 1.1 glass }
1049 1.1 glass cs->cs_rr0 = c;
1050 1.1 glass break;
1051 1.1 glass
1052 1.1 glass default:
1053 1.1 glass log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1054 1.1 glass unit >> 1, (unit & 1) + 'a', c);
1055 1.1 glass break;
1056 1.1 glass }
1057 1.1 glass }
1058 1.1 glass cs->cs_rbget = get;
1059 1.1 glass goto again;
1060 1.1 glass }
1061 1.1 glass return (1);
1062 1.1 glass }
1063 1.1 glass
1064 1.1 glass int
1065 1.1 glass zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1066 1.1 glass {
1067 1.1 glass int unit = minor(dev);
1068 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1069 1.6 gwr register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1070 1.6 gwr register struct tty *tp = cs->cs_ttyp;
1071 1.6 gwr register int error, s;
1072 1.1 glass
1073 1.2 glass error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1074 1.1 glass if (error >= 0)
1075 1.1 glass return (error);
1076 1.2 glass error = ttioctl(tp, cmd, data, flag, p);
1077 1.1 glass if (error >= 0)
1078 1.1 glass return (error);
1079 1.1 glass
1080 1.1 glass switch (cmd) {
1081 1.1 glass
1082 1.1 glass case TIOCSBRK:
1083 1.6 gwr {
1084 1.6 gwr s = splzs();
1085 1.6 gwr cs->cs_preg[5] |= ZSWR5_BREAK;
1086 1.6 gwr cs->cs_creg[5] |= ZSWR5_BREAK;
1087 1.6 gwr ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1088 1.6 gwr splx(s);
1089 1.6 gwr break;
1090 1.6 gwr }
1091 1.1 glass
1092 1.1 glass case TIOCCBRK:
1093 1.6 gwr {
1094 1.6 gwr s = splzs();
1095 1.6 gwr cs->cs_preg[5] &= ~ZSWR5_BREAK;
1096 1.6 gwr cs->cs_creg[5] &= ~ZSWR5_BREAK;
1097 1.6 gwr ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1098 1.6 gwr splx(s);
1099 1.6 gwr break;
1100 1.6 gwr }
1101 1.1 glass
1102 1.1 glass case TIOCSDTR:
1103 1.1 glass
1104 1.1 glass case TIOCCDTR:
1105 1.1 glass
1106 1.1 glass case TIOCMSET:
1107 1.1 glass
1108 1.1 glass case TIOCMBIS:
1109 1.1 glass
1110 1.1 glass case TIOCMBIC:
1111 1.1 glass
1112 1.1 glass case TIOCMGET:
1113 1.1 glass
1114 1.1 glass default:
1115 1.1 glass return (ENOTTY);
1116 1.1 glass }
1117 1.1 glass return (0);
1118 1.1 glass }
1119 1.1 glass
1120 1.1 glass /*
1121 1.1 glass * Start or restart transmission.
1122 1.1 glass */
1123 1.1 glass static void
1124 1.1 glass zsstart(register struct tty *tp)
1125 1.1 glass {
1126 1.1 glass register struct zs_chanstate *cs;
1127 1.1 glass register int s, nch;
1128 1.1 glass int unit = minor(tp->t_dev);
1129 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1130 1.1 glass
1131 1.1 glass cs = &zi->zi_cs[unit & 1];
1132 1.1 glass s = spltty();
1133 1.1 glass
1134 1.1 glass /*
1135 1.1 glass * If currently active or delaying, no need to do anything.
1136 1.1 glass */
1137 1.1 glass if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1138 1.1 glass goto out;
1139 1.1 glass
1140 1.1 glass /*
1141 1.1 glass * If there are sleepers, and output has drained below low
1142 1.1 glass * water mark, awaken.
1143 1.1 glass */
1144 1.1 glass if (tp->t_outq.c_cc <= tp->t_lowat) {
1145 1.1 glass if (tp->t_state & TS_ASLEEP) {
1146 1.1 glass tp->t_state &= ~TS_ASLEEP;
1147 1.1 glass wakeup((caddr_t)&tp->t_outq);
1148 1.1 glass }
1149 1.1 glass selwakeup(&tp->t_wsel);
1150 1.1 glass }
1151 1.1 glass
1152 1.1 glass nch = ndqb(&tp->t_outq, 0); /* XXX */
1153 1.1 glass if (nch) {
1154 1.1 glass register char *p = tp->t_outq.c_cf;
1155 1.1 glass
1156 1.1 glass /* mark busy, enable tx done interrupts, & send first byte */
1157 1.1 glass tp->t_state |= TS_BUSY;
1158 1.1 glass (void) splzs();
1159 1.1 glass cs->cs_preg[1] |= ZSWR1_TIE;
1160 1.1 glass cs->cs_creg[1] |= ZSWR1_TIE;
1161 1.1 glass ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1162 1.1 glass cs->cs_zc->zc_data = *p;
1163 1.1 glass cs->cs_tba = p + 1;
1164 1.1 glass cs->cs_tbc = nch - 1;
1165 1.1 glass } else {
1166 1.1 glass /*
1167 1.1 glass * Nothing to send, turn off transmit done interrupts.
1168 1.1 glass * This is useful if something is doing polled output.
1169 1.1 glass */
1170 1.1 glass (void) splzs();
1171 1.1 glass cs->cs_preg[1] &= ~ZSWR1_TIE;
1172 1.1 glass cs->cs_creg[1] &= ~ZSWR1_TIE;
1173 1.1 glass ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1174 1.1 glass }
1175 1.1 glass out:
1176 1.1 glass splx(s);
1177 1.1 glass }
1178 1.1 glass
1179 1.1 glass /*
1180 1.1 glass * Stop output, e.g., for ^S or output flush.
1181 1.1 glass */
1182 1.1 glass void
1183 1.1 glass zsstop(register struct tty *tp, int flag)
1184 1.1 glass {
1185 1.1 glass register struct zs_chanstate *cs;
1186 1.1 glass register int s, unit = minor(tp->t_dev);
1187 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1188 1.1 glass
1189 1.1 glass cs = &zi->zi_cs[unit & 1];
1190 1.1 glass s = splzs();
1191 1.1 glass if (tp->t_state & TS_BUSY) {
1192 1.1 glass /*
1193 1.1 glass * Device is transmitting; must stop it.
1194 1.1 glass */
1195 1.1 glass cs->cs_tbc = 0;
1196 1.1 glass if ((tp->t_state & TS_TTSTOP) == 0)
1197 1.1 glass tp->t_state |= TS_FLUSH;
1198 1.1 glass }
1199 1.1 glass splx(s);
1200 1.1 glass }
1201 1.1 glass
1202 1.1 glass /*
1203 1.1 glass * Set ZS tty parameters from termios.
1204 1.1 glass *
1205 1.1 glass * This routine makes use of the fact that only registers
1206 1.1 glass * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1207 1.1 glass */
1208 1.1 glass static int
1209 1.1 glass zsparam(register struct tty *tp, register struct termios *t)
1210 1.1 glass {
1211 1.1 glass int unit = minor(tp->t_dev);
1212 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1213 1.1 glass register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1214 1.1 glass register int tmp, tmp5, cflag, s;
1215 1.1 glass
1216 1.1 glass /*
1217 1.1 glass * Because PCLK is only run at 4.9 MHz, the fastest we
1218 1.1 glass * can go is 51200 baud (this corresponds to TC=1).
1219 1.1 glass * This is somewhat unfortunate as there is no real
1220 1.1 glass * reason we should not be able to handle higher rates.
1221 1.1 glass */
1222 1.1 glass tmp = t->c_ospeed;
1223 1.1 glass if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1224 1.1 glass return (EINVAL);
1225 1.1 glass if (tmp == 0) {
1226 1.1 glass /* stty 0 => drop DTR and RTS */
1227 1.1 glass zs_modem(cs, 0);
1228 1.1 glass return (0);
1229 1.1 glass }
1230 1.1 glass tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1231 1.1 glass if (tmp < 2)
1232 1.1 glass return (EINVAL);
1233 1.1 glass
1234 1.1 glass cflag = t->c_cflag;
1235 1.1 glass tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1236 1.1 glass tp->t_cflag = cflag;
1237 1.1 glass
1238 1.1 glass /*
1239 1.1 glass * Block interrupts so that state will not
1240 1.1 glass * be altered until we are done setting it up.
1241 1.1 glass */
1242 1.1 glass s = splzs();
1243 1.1 glass cs->cs_preg[12] = tmp;
1244 1.1 glass cs->cs_preg[13] = tmp >> 8;
1245 1.1 glass cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1246 1.1 glass switch (cflag & CSIZE) {
1247 1.1 glass case CS5:
1248 1.1 glass tmp = ZSWR3_RX_5;
1249 1.1 glass tmp5 = ZSWR5_TX_5;
1250 1.1 glass break;
1251 1.1 glass case CS6:
1252 1.1 glass tmp = ZSWR3_RX_6;
1253 1.1 glass tmp5 = ZSWR5_TX_6;
1254 1.1 glass break;
1255 1.1 glass case CS7:
1256 1.1 glass tmp = ZSWR3_RX_7;
1257 1.1 glass tmp5 = ZSWR5_TX_7;
1258 1.1 glass break;
1259 1.1 glass case CS8:
1260 1.1 glass default:
1261 1.1 glass tmp = ZSWR3_RX_8;
1262 1.1 glass tmp5 = ZSWR5_TX_8;
1263 1.1 glass break;
1264 1.1 glass }
1265 1.1 glass
1266 1.1 glass /*
1267 1.1 glass * Output hardware flow control on the chip is horrendous: if
1268 1.1 glass * carrier detect drops, the receiver is disabled. Hence we
1269 1.1 glass * can only do this when the carrier is on.
1270 1.1 glass */
1271 1.1 glass if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1272 1.1 glass tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1273 1.1 glass else
1274 1.1 glass tmp |= ZSWR3_RX_ENABLE;
1275 1.1 glass cs->cs_preg[3] = tmp;
1276 1.1 glass cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1277 1.1 glass
1278 1.1 glass tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1279 1.1 glass if ((cflag & PARODD) == 0)
1280 1.1 glass tmp |= ZSWR4_EVENP;
1281 1.1 glass if (cflag & PARENB)
1282 1.1 glass tmp |= ZSWR4_PARENB;
1283 1.1 glass cs->cs_preg[4] = tmp;
1284 1.1 glass cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1285 1.1 glass cs->cs_preg[10] = ZSWR10_NRZ;
1286 1.1 glass cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1287 1.1 glass cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1288 1.1 glass cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1289 1.1 glass
1290 1.1 glass /*
1291 1.1 glass * If nothing is being transmitted, set up new current values,
1292 1.1 glass * else mark them as pending.
1293 1.1 glass */
1294 1.1 glass if (cs->cs_heldchange == 0) {
1295 1.1 glass if (cs->cs_ttyp->t_state & TS_BUSY) {
1296 1.1 glass cs->cs_heldtbc = cs->cs_tbc;
1297 1.1 glass cs->cs_tbc = 0;
1298 1.1 glass cs->cs_heldchange = 1;
1299 1.1 glass } else {
1300 1.1 glass bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1301 1.1 glass zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1302 1.1 glass }
1303 1.1 glass }
1304 1.1 glass splx(s);
1305 1.1 glass return (0);
1306 1.1 glass }
1307 1.1 glass
1308 1.1 glass /*
1309 1.1 glass * Raise or lower modem control (DTR/RTS) signals. If a character is
1310 1.1 glass * in transmission, the change is deferred.
1311 1.1 glass */
1312 1.1 glass static void
1313 1.1 glass zs_modem(struct zs_chanstate *cs, int onoff)
1314 1.1 glass {
1315 1.1 glass int s, bis, and;
1316 1.1 glass
1317 1.1 glass if (onoff) {
1318 1.1 glass bis = ZSWR5_DTR | ZSWR5_RTS;
1319 1.1 glass and = ~0;
1320 1.1 glass } else {
1321 1.1 glass bis = 0;
1322 1.1 glass and = ~(ZSWR5_DTR | ZSWR5_RTS);
1323 1.1 glass }
1324 1.1 glass s = splzs();
1325 1.1 glass cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1326 1.1 glass if (cs->cs_heldchange == 0) {
1327 1.1 glass if (cs->cs_ttyp->t_state & TS_BUSY) {
1328 1.1 glass cs->cs_heldtbc = cs->cs_tbc;
1329 1.1 glass cs->cs_tbc = 0;
1330 1.1 glass cs->cs_heldchange = 1;
1331 1.1 glass } else {
1332 1.1 glass cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1333 1.1 glass ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1334 1.1 glass }
1335 1.1 glass }
1336 1.1 glass splx(s);
1337 1.1 glass }
1338 1.1 glass
1339 1.1 glass /*
1340 1.1 glass * Write the given register set to the given zs channel in the proper order.
1341 1.1 glass * The channel must not be transmitting at the time. The receiver will
1342 1.1 glass * be disabled for the time it takes to write all the registers.
1343 1.1 glass */
1344 1.1 glass static void
1345 1.1 glass zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1346 1.1 glass {
1347 1.1 glass int i;
1348 1.1 glass
1349 1.1 glass zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1350 1.1 glass i = zc->zc_data; /* drain fifo */
1351 1.1 glass i = zc->zc_data;
1352 1.1 glass i = zc->zc_data;
1353 1.1 glass ZS_WRITE(zc, 4, reg[4]);
1354 1.1 glass ZS_WRITE(zc, 10, reg[10]);
1355 1.1 glass ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1356 1.1 glass ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1357 1.1 glass ZS_WRITE(zc, 1, reg[1]);
1358 1.1 glass ZS_WRITE(zc, 9, reg[9]);
1359 1.1 glass ZS_WRITE(zc, 11, reg[11]);
1360 1.1 glass ZS_WRITE(zc, 12, reg[12]);
1361 1.1 glass ZS_WRITE(zc, 13, reg[13]);
1362 1.1 glass ZS_WRITE(zc, 14, reg[14]);
1363 1.1 glass ZS_WRITE(zc, 15, reg[15]);
1364 1.1 glass ZS_WRITE(zc, 3, reg[3]);
1365 1.1 glass ZS_WRITE(zc, 5, reg[5]);
1366 1.1 glass }
1367 1.1 glass
1368 1.2 glass static u_char
1369 1.2 glass zs_read(zc, reg)
1370 1.2 glass volatile struct zschan *zc;
1371 1.2 glass u_char reg;
1372 1.2 glass {
1373 1.2 glass u_char val;
1374 1.2 glass
1375 1.2 glass zc->zc_csr = reg;
1376 1.3 gwr ZS_DELAY();
1377 1.2 glass val = zc->zc_csr;
1378 1.3 gwr ZS_DELAY();
1379 1.2 glass return val;
1380 1.2 glass }
1381 1.2 glass
1382 1.2 glass static u_char
1383 1.2 glass zs_write(zc, reg, val)
1384 1.2 glass volatile struct zschan *zc;
1385 1.2 glass u_char reg, val;
1386 1.2 glass {
1387 1.2 glass zc->zc_csr = reg;
1388 1.3 gwr ZS_DELAY();
1389 1.2 glass zc->zc_csr = val;
1390 1.3 gwr ZS_DELAY();
1391 1.2 glass return val;
1392 1.2 glass }
1393 1.2 glass
1394 1.1 glass #ifdef KGDB
1395 1.1 glass /*
1396 1.1 glass * Get a character from the given kgdb channel. Called at splhigh().
1397 1.9 gwr * XXX - Add delays, or combine with zscngetc()...
1398 1.1 glass */
1399 1.1 glass static int
1400 1.1 glass zs_kgdb_getc(void *arg)
1401 1.1 glass {
1402 1.1 glass register volatile struct zschan *zc = (volatile struct zschan *)arg;
1403 1.1 glass
1404 1.1 glass while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1405 1.1 glass continue;
1406 1.1 glass return (zc->zc_data);
1407 1.1 glass }
1408 1.1 glass
1409 1.1 glass /*
1410 1.1 glass * Put a character to the given kgdb channel. Called at splhigh().
1411 1.1 glass */
1412 1.1 glass static void
1413 1.1 glass zs_kgdb_putc(void *arg, int c)
1414 1.1 glass {
1415 1.1 glass register volatile struct zschan *zc = (volatile struct zschan *)arg;
1416 1.1 glass
1417 1.1 glass while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1418 1.1 glass continue;
1419 1.1 glass zc->zc_data = c;
1420 1.1 glass }
1421 1.1 glass
1422 1.1 glass /*
1423 1.1 glass * Set up for kgdb; called at boot time before configuration.
1424 1.1 glass * KGDB interrupts will be enabled later when zs0 is configured.
1425 1.1 glass */
1426 1.1 glass void
1427 1.1 glass zs_kgdb_init()
1428 1.1 glass {
1429 1.1 glass volatile struct zsdevice *addr;
1430 1.1 glass volatile struct zschan *zc;
1431 1.1 glass int unit, zs;
1432 1.1 glass
1433 1.1 glass if (major(kgdb_dev) != ZSMAJOR)
1434 1.1 glass return;
1435 1.1 glass unit = minor(kgdb_dev);
1436 1.1 glass /*
1437 1.1 glass * Unit must be 0 or 1 (zs0).
1438 1.1 glass */
1439 1.1 glass if ((unsigned)unit >= ZS_KBD) {
1440 1.1 glass printf("zs_kgdb_init: bad minor dev %d\n", unit);
1441 1.1 glass return;
1442 1.1 glass }
1443 1.1 glass zs = unit >> 1;
1444 1.1 glass unit &= 1;
1445 1.9 gwr
1446 1.9 gwr if (zsaddr[0] == NULL)
1447 1.3 gwr panic("kbdb_attach: zs0 not yet mapped");
1448 1.9 gwr addr = zsaddr[0];
1449 1.3 gwr
1450 1.1 glass zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1451 1.1 glass zs_kgdb_savedspeed = zs_getspeed(zc);
1452 1.1 glass printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1453 1.1 glass zs, unit + 'a', kgdb_rate);
1454 1.1 glass zs_reset(zc, 1, kgdb_rate);
1455 1.1 glass kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1456 1.1 glass }
1457 1.1 glass #endif /* KGDB */
1458