zs.c revision 1.25 1 1.25 gwr /* $NetBSD: zs.c,v 1.25 1995/06/13 22:11:33 gwr Exp $ */
2 1.10 cgd
3 1.1 glass /*
4 1.9 gwr * Copyright (c) 1994 Gordon W. Ross
5 1.1 glass * Copyright (c) 1992, 1993
6 1.1 glass * The Regents of the University of California. All rights reserved.
7 1.1 glass *
8 1.1 glass * This software was developed by the Computer Systems Engineering group
9 1.1 glass * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 1.1 glass * contributed to Berkeley.
11 1.1 glass *
12 1.1 glass * All advertising materials mentioning features or use of this software
13 1.1 glass * must display the following acknowledgement:
14 1.1 glass * This product includes software developed by the University of
15 1.1 glass * California, Lawrence Berkeley Laboratory.
16 1.1 glass *
17 1.1 glass * Redistribution and use in source and binary forms, with or without
18 1.1 glass * modification, are permitted provided that the following conditions
19 1.1 glass * are met:
20 1.1 glass * 1. Redistributions of source code must retain the above copyright
21 1.1 glass * notice, this list of conditions and the following disclaimer.
22 1.1 glass * 2. Redistributions in binary form must reproduce the above copyright
23 1.1 glass * notice, this list of conditions and the following disclaimer in the
24 1.1 glass * documentation and/or other materials provided with the distribution.
25 1.1 glass * 3. All advertising materials mentioning features or use of this software
26 1.1 glass * must display the following acknowledgement:
27 1.1 glass * This product includes software developed by the University of
28 1.1 glass * California, Berkeley and its contributors.
29 1.1 glass * 4. Neither the name of the University nor the names of its contributors
30 1.1 glass * may be used to endorse or promote products derived from this software
31 1.1 glass * without specific prior written permission.
32 1.1 glass *
33 1.1 glass * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 1.1 glass * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 1.1 glass * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 1.1 glass * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 1.1 glass * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 1.1 glass * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 1.1 glass * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 1.1 glass * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 1.1 glass * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 1.1 glass * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 1.1 glass * SUCH DAMAGE.
44 1.1 glass *
45 1.1 glass * @(#)zs.c 8.1 (Berkeley) 7/19/93
46 1.1 glass */
47 1.1 glass
48 1.1 glass /*
49 1.1 glass * Zilog Z8530 (ZSCC) driver.
50 1.1 glass *
51 1.1 glass * Runs two tty ports (ttya and ttyb) on zs0,
52 1.1 glass * and runs a keyboard and mouse on zs1.
53 1.1 glass *
54 1.1 glass * This driver knows far too much about chip to usage mappings.
55 1.1 glass */
56 1.1 glass #define NZS 2 /* XXX */
57 1.1 glass
58 1.5 gwr #include <sys/param.h>
59 1.1 glass #include <sys/systm.h>
60 1.1 glass #include <sys/proc.h>
61 1.1 glass #include <sys/device.h>
62 1.1 glass #include <sys/conf.h>
63 1.1 glass #include <sys/file.h>
64 1.1 glass #include <sys/ioctl.h>
65 1.1 glass #include <sys/tty.h>
66 1.1 glass #include <sys/time.h>
67 1.1 glass #include <sys/kernel.h>
68 1.1 glass #include <sys/syslog.h>
69 1.1 glass
70 1.1 glass #include <machine/autoconf.h>
71 1.1 glass #include <machine/cpu.h>
72 1.18 gwr #include <machine/isr.h>
73 1.1 glass #include <machine/obio.h>
74 1.3 gwr #include <machine/mon.h>
75 1.3 gwr #include <machine/eeprom.h>
76 1.12 gwr #include <machine/kbd.h>
77 1.3 gwr
78 1.3 gwr #include <dev/cons.h>
79 1.1 glass
80 1.23 mycroft #include <dev/ic/z8530.h>
81 1.23 mycroft #include <sun3/dev/zsvar.h>
82 1.1 glass
83 1.16 gwr /*
84 1.16 gwr * The default parity REALLY needs to be the same as the PROM uses,
85 1.16 gwr * or you can not see messages done with printf during boot-up...
86 1.16 gwr */
87 1.16 gwr #undef TTYDEF_CFLAG
88 1.16 gwr #define TTYDEF_CFLAG (CREAD | CS8 | HUPCL)
89 1.16 gwr
90 1.1 glass #ifdef KGDB
91 1.1 glass #include <machine/remote-sl.h>
92 1.1 glass #endif
93 1.1 glass
94 1.1 glass #define ZSMAJOR 12 /* XXX */
95 1.1 glass
96 1.1 glass #define ZS_KBD 2 /* XXX */
97 1.1 glass #define ZS_MOUSE 3 /* XXX */
98 1.1 glass
99 1.2 glass /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
100 1.2 glass #define PCLK (9600 * 512) /* PCLK pin input clock rate */
101 1.2 glass
102 1.2 glass /*
103 1.22 gwr * Define interrupt levels.
104 1.2 glass */
105 1.2 glass #define ZSHARD_PRI 6 /* Wired on the CPU board... */
106 1.22 gwr #define ZSSOFT_PRI 3 /* Want tty pri (4) but this is OK. */
107 1.1 glass
108 1.1 glass /*
109 1.1 glass * Software state per found chip. This would be called `zs_softc',
110 1.1 glass * but the previous driver had a rather different zs_softc....
111 1.1 glass */
112 1.1 glass struct zsinfo {
113 1.1 glass struct device zi_dev; /* base device */
114 1.1 glass volatile struct zsdevice *zi_zs;/* chip registers */
115 1.1 glass struct zs_chanstate zi_cs[2]; /* channel A and B software state */
116 1.1 glass };
117 1.1 glass
118 1.24 gwr static struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
119 1.1 glass
120 1.1 glass /* Definition of the driver for autoconfig. */
121 1.13 gwr static int zs_match(struct device *, void *, void *);
122 1.13 gwr static void zs_attach(struct device *, struct device *, void *);
123 1.13 gwr
124 1.13 gwr struct cfdriver zscd = {
125 1.13 gwr NULL, "zs", zs_match, zs_attach,
126 1.13 gwr DV_TTY, sizeof(struct zsinfo) };
127 1.1 glass
128 1.1 glass /* Interrupt handlers. */
129 1.2 glass static int zshard(int);
130 1.2 glass static int zssoft(int);
131 1.1 glass
132 1.1 glass struct zs_chanstate *zslist;
133 1.1 glass
134 1.1 glass /* Routines called from other code. */
135 1.2 glass int zsopen(dev_t, int, int, struct proc *);
136 1.2 glass int zsclose(dev_t, int, int, struct proc *);
137 1.2 glass static void zsiopen(struct tty *);
138 1.2 glass static void zsiclose(struct tty *);
139 1.2 glass static void zsstart(struct tty *);
140 1.2 glass void zsstop(struct tty *, int);
141 1.2 glass static int zsparam(struct tty *, struct termios *);
142 1.1 glass
143 1.1 glass /* Routines purely local to this driver. */
144 1.2 glass static int zs_getspeed(volatile struct zschan *);
145 1.2 glass static void zs_reset(volatile struct zschan *, int, int);
146 1.2 glass static void zs_modem(struct zs_chanstate *, int);
147 1.2 glass static void zs_loadchannelregs(volatile struct zschan *, u_char *);
148 1.2 glass static u_char zs_read(volatile struct zschan *, u_char);
149 1.2 glass static u_char zs_write(volatile struct zschan *, u_char, u_char);
150 1.1 glass
151 1.1 glass /* Console stuff. */
152 1.1 glass static volatile struct zschan *zs_conschan;
153 1.1 glass
154 1.1 glass #ifdef KGDB
155 1.1 glass /* KGDB stuff. Must reboot to change zs_kgdbunit. */
156 1.1 glass extern int kgdb_dev, kgdb_rate;
157 1.1 glass static int zs_kgdb_savedspeed;
158 1.2 glass static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
159 1.1 glass #endif
160 1.1 glass
161 1.1 glass /*
162 1.1 glass * Console keyboard L1-A processing is done in the hardware interrupt code,
163 1.1 glass * so we need to duplicate some of the console keyboard decode state. (We
164 1.1 glass * must not use the regular state as the hardware code keeps ahead of the
165 1.1 glass * software state: the software state tracks the most recent ring input but
166 1.1 glass * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
167 1.1 glass */
168 1.1 glass static struct conk_state { /* console keyboard state */
169 1.1 glass char conk_id; /* true => ID coming up (console only) */
170 1.1 glass char conk_l1; /* true => L1 pressed (console only) */
171 1.1 glass } zsconk_state;
172 1.1 glass
173 1.1 glass int zshardscope;
174 1.1 glass int zsshortcuts; /* number of "shortcut" software interrupts */
175 1.1 glass
176 1.13 gwr int zssoftpending; /* We have done isr_soft_request() */
177 1.13 gwr
178 1.13 gwr static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
179 1.13 gwr
180 1.13 gwr /* Default OBIO addresses. */
181 1.13 gwr static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS };
182 1.18 gwr
183 1.18 gwr static u_char zs_init_reg[16] = {
184 1.18 gwr 0, /* 0: CMD (reset, etc.) */
185 1.18 gwr ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE,
186 1.18 gwr 0x18 + ZSHARD_PRI, /* IVECT */
187 1.18 gwr ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
188 1.18 gwr ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
189 1.18 gwr ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
190 1.18 gwr 0, /* 6: TXSYNC/SYNCLO */
191 1.18 gwr 0, /* 7: RXSYNC/SYNCHI */
192 1.18 gwr 0, /* 8: alias for data port */
193 1.18 gwr 0, /* 9: ZSWR9_MASTER_IE (later) */
194 1.18 gwr 0, /*10: Misc. TX/RX control bits */
195 1.18 gwr ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
196 1.18 gwr 0, /*12: BAUDLO (later) */
197 1.18 gwr 0, /*13: BAUDHI (later) */
198 1.18 gwr ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
199 1.18 gwr ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
200 1.18 gwr };
201 1.9 gwr
202 1.9 gwr /* Find PROM mappings (for console support). */
203 1.9 gwr void zs_init()
204 1.9 gwr {
205 1.21 gwr int i;
206 1.21 gwr
207 1.21 gwr for (i = 0; i < NZS; i++) {
208 1.21 gwr zsaddr[i] = (struct zsdevice *)
209 1.21 gwr obio_find_mapping(zs_physaddr[i], OBIO_ZS_SIZE);
210 1.21 gwr }
211 1.9 gwr }
212 1.9 gwr
213 1.1 glass /*
214 1.1 glass * Match slave number to zs unit number, so that misconfiguration will
215 1.1 glass * not set up the keyboard as ttya, etc.
216 1.1 glass */
217 1.1 glass static int
218 1.13 gwr zs_match(struct device *parent, void *vcf, void *args)
219 1.1 glass {
220 1.12 gwr struct cfdata *cf = vcf;
221 1.13 gwr struct confargs *ca = args;
222 1.13 gwr int unit, x;
223 1.21 gwr void *zsva;
224 1.13 gwr
225 1.13 gwr unit = cf->cf_unit;
226 1.13 gwr if (unit < 0 || unit >= NZS)
227 1.13 gwr return (0);
228 1.1 glass
229 1.21 gwr zsva = zsaddr[unit];
230 1.21 gwr if (zsva == NULL)
231 1.21 gwr return (0);
232 1.21 gwr
233 1.13 gwr if (ca->ca_paddr == -1)
234 1.13 gwr ca->ca_paddr = zs_physaddr[unit];
235 1.13 gwr if (ca->ca_intpri == -1)
236 1.13 gwr ca->ca_intpri = ZSHARD_PRI;
237 1.13 gwr
238 1.21 gwr /* This returns -1 on a fault (bus error). */
239 1.21 gwr x = peek_byte(zsva);
240 1.14 gwr return (x != -1);
241 1.1 glass }
242 1.1 glass
243 1.1 glass /*
244 1.1 glass * Attach a found zs.
245 1.1 glass *
246 1.1 glass * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
247 1.1 glass * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
248 1.1 glass */
249 1.1 glass static void
250 1.13 gwr zs_attach(struct device *parent, struct device *self, void *args)
251 1.1 glass {
252 1.13 gwr struct cfdata *cf;
253 1.13 gwr struct confargs *ca;
254 1.13 gwr register int zs, unit;
255 1.1 glass register struct zsinfo *zi;
256 1.1 glass register struct zs_chanstate *cs;
257 1.1 glass register volatile struct zsdevice *addr;
258 1.1 glass register struct tty *tp, *ctp;
259 1.13 gwr int softcar;
260 1.2 glass static int didintr;
261 1.2 glass
262 1.13 gwr cf = self->dv_cfdata;
263 1.13 gwr zs = self->dv_unit;
264 1.13 gwr ca = args;
265 1.13 gwr
266 1.13 gwr printf(" softpri %d\n", ZSSOFT_PRI);
267 1.1 glass
268 1.21 gwr if (zsaddr[zs] == NULL)
269 1.21 gwr panic("zs_attach: zs%d not mapped\n", zs);
270 1.9 gwr addr = zsaddr[zs];
271 1.1 glass
272 1.1 glass if (!didintr) {
273 1.2 glass didintr = 1;
274 1.13 gwr isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
275 1.13 gwr isr_add_autovect(zshard, NULL, ZSHARD_PRI);
276 1.1 glass }
277 1.2 glass
278 1.13 gwr zi = (struct zsinfo *)self;
279 1.1 glass zi->zi_zs = addr;
280 1.1 glass unit = zs * 2;
281 1.1 glass cs = zi->zi_cs;
282 1.15 gwr softcar = cf->cf_flags;
283 1.1 glass
284 1.1 glass if(!zs_tty[unit])
285 1.1 glass zs_tty[unit] = ttymalloc();
286 1.1 glass if(!zs_tty[unit+1])
287 1.1 glass zs_tty[unit+1] = ttymalloc();
288 1.2 glass
289 1.1 glass /* link into interrupt list with order (A,B) (B=A+1) */
290 1.1 glass cs[0].cs_next = &cs[1];
291 1.1 glass cs[1].cs_next = zslist;
292 1.1 glass zslist = cs;
293 1.1 glass
294 1.16 gwr tp = zs_tty[unit];
295 1.1 glass cs->cs_unit = unit;
296 1.23 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
297 1.2 glass cs->cs_speed = zs_getspeed(cs->cs_zc);
298 1.2 glass #ifdef DEBUG
299 1.3 gwr mon_printf("zs%da speed %d ", zs, cs->cs_speed);
300 1.2 glass #endif
301 1.1 glass cs->cs_softcar = softcar & 1;
302 1.3 gwr cs->cs_ttyp = tp;
303 1.1 glass tp->t_dev = makedev(ZSMAJOR, unit);
304 1.1 glass tp->t_oproc = zsstart;
305 1.1 glass tp->t_param = zsparam;
306 1.3 gwr if (cs->cs_zc == zs_conschan) {
307 1.3 gwr /* This unit is the console. */
308 1.3 gwr cs->cs_consio = 1;
309 1.3 gwr cs->cs_brkabort = 1;
310 1.3 gwr cs->cs_softcar = 1;
311 1.16 gwr /* Call zsparam so interrupts get enabled. */
312 1.16 gwr tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
313 1.16 gwr tp->t_cflag = TTYDEF_CFLAG;
314 1.16 gwr (void) zsparam(tp, &tp->t_termios);
315 1.3 gwr } else {
316 1.3 gwr /* Can not run kgdb on the console? */
317 1.1 glass #ifdef KGDB
318 1.1 glass zs_checkkgdb(unit, cs, tp);
319 1.1 glass #endif
320 1.3 gwr }
321 1.15 gwr #if 0
322 1.15 gwr /* XXX - Drop carrier here? -gwr */
323 1.15 gwr zs_modem(cs, cs->cs_softcar ? 1 : 0);
324 1.15 gwr #endif
325 1.15 gwr
326 1.1 glass if (unit == ZS_KBD) {
327 1.1 glass /*
328 1.1 glass * Keyboard: tell /dev/kbd driver how to talk to us.
329 1.1 glass */
330 1.1 glass tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
331 1.1 glass tp->t_cflag = CS8;
332 1.16 gwr /* zsparam called by zsiopen */
333 1.1 glass kbd_serial(tp, zsiopen, zsiclose);
334 1.1 glass cs->cs_conk = 1; /* do L1-A processing */
335 1.1 glass }
336 1.1 glass unit++;
337 1.1 glass cs++;
338 1.1 glass tp = zs_tty[unit];
339 1.2 glass
340 1.1 glass cs->cs_unit = unit;
341 1.23 mycroft cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
342 1.2 glass cs->cs_speed = zs_getspeed(cs->cs_zc);
343 1.2 glass #ifdef DEBUG
344 1.3 gwr mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
345 1.2 glass #endif
346 1.1 glass cs->cs_softcar = softcar & 2;
347 1.3 gwr cs->cs_ttyp = tp;
348 1.1 glass tp->t_dev = makedev(ZSMAJOR, unit);
349 1.1 glass tp->t_oproc = zsstart;
350 1.1 glass tp->t_param = zsparam;
351 1.3 gwr if (cs->cs_zc == zs_conschan) {
352 1.3 gwr /* This unit is the console. */
353 1.3 gwr cs->cs_consio = 1;
354 1.3 gwr cs->cs_brkabort = 1;
355 1.3 gwr cs->cs_softcar = 1;
356 1.16 gwr tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
357 1.16 gwr tp->t_cflag = TTYDEF_CFLAG;
358 1.16 gwr (void) zsparam(tp, &tp->t_termios);
359 1.3 gwr } else {
360 1.3 gwr /* Can not run kgdb on the console? */
361 1.1 glass #ifdef KGDB
362 1.1 glass zs_checkkgdb(unit, cs, tp);
363 1.1 glass #endif
364 1.3 gwr }
365 1.15 gwr #if 0
366 1.15 gwr /* XXX - Drop carrier here? -gwr */
367 1.15 gwr zs_modem(cs, cs->cs_softcar ? 1 : 0);
368 1.15 gwr #endif
369 1.15 gwr
370 1.1 glass if (unit == ZS_MOUSE) {
371 1.1 glass /*
372 1.1 glass * Mouse: tell /dev/mouse driver how to talk to us.
373 1.1 glass */
374 1.1 glass tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
375 1.1 glass tp->t_cflag = CS8;
376 1.16 gwr /* zsparam called by zsiopen */
377 1.1 glass ms_serial(tp, zsiopen, zsiclose);
378 1.1 glass }
379 1.1 glass }
380 1.1 glass
381 1.1 glass /*
382 1.24 gwr * XXX - Temporary hack...
383 1.24 gwr */
384 1.24 gwr struct tty *
385 1.24 gwr zstty(dev)
386 1.24 gwr dev_t dev;
387 1.24 gwr {
388 1.24 gwr int unit = minor(dev);
389 1.24 gwr
390 1.24 gwr return (zs_tty[unit]);
391 1.24 gwr }
392 1.24 gwr
393 1.24 gwr /*
394 1.1 glass * Put a channel in a known state. Interrupts may be left disabled
395 1.18 gwr * or enabled, as desired. (Used only by kgdb)
396 1.1 glass */
397 1.1 glass static void
398 1.1 glass zs_reset(zc, inten, speed)
399 1.1 glass volatile struct zschan *zc;
400 1.1 glass int inten, speed;
401 1.1 glass {
402 1.1 glass int tconst;
403 1.18 gwr u_char reg[16];
404 1.18 gwr
405 1.18 gwr bcopy(zs_init_reg, reg, 16);
406 1.18 gwr if (inten)
407 1.18 gwr reg[9] |= ZSWR9_MASTER_IE;
408 1.1 glass
409 1.1 glass tconst = BPS_TO_TCONST(PCLK / 16, speed);
410 1.1 glass reg[12] = tconst;
411 1.1 glass reg[13] = tconst >> 8;
412 1.1 glass zs_loadchannelregs(zc, reg);
413 1.1 glass }
414 1.1 glass
415 1.3 gwr /*
416 1.3 gwr * Console support
417 1.3 gwr */
418 1.2 glass
419 1.3 gwr /*
420 1.3 gwr * Used by the kd driver to find out if it can work.
421 1.3 gwr */
422 1.2 glass int
423 1.3 gwr zscnprobe_kbd()
424 1.2 glass {
425 1.9 gwr if (zsaddr[1] == NULL) {
426 1.3 gwr mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
427 1.3 gwr return CN_DEAD;
428 1.3 gwr }
429 1.3 gwr return CN_INTERNAL;
430 1.3 gwr }
431 1.3 gwr
432 1.3 gwr /*
433 1.3 gwr * This is the console probe routine for ttya and ttyb.
434 1.3 gwr */
435 1.3 gwr static int
436 1.3 gwr zscnprobe(struct consdev *cn, int unit)
437 1.3 gwr {
438 1.21 gwr int maj;
439 1.3 gwr
440 1.9 gwr if (zsaddr[0] == NULL) {
441 1.9 gwr mon_printf("zscnprobe: zs0 not mapped\n");
442 1.3 gwr cn->cn_pri = CN_DEAD;
443 1.3 gwr return 0;
444 1.3 gwr }
445 1.3 gwr /* XXX - Also try to make sure it exists? */
446 1.2 glass
447 1.2 glass /* locate the major number */
448 1.2 glass for (maj = 0; maj < nchrdev; maj++)
449 1.12 gwr if (cdevsw[maj].d_open == (void*)zsopen)
450 1.2 glass break;
451 1.3 gwr
452 1.3 gwr cn->cn_dev = makedev(maj, unit);
453 1.3 gwr
454 1.3 gwr /* Use EEPROM console setting to decide "remote" console. */
455 1.21 gwr /* Note: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
456 1.21 gwr if (ee_console == (EE_CONS_TTYA + unit)) {
457 1.3 gwr cn->cn_pri = CN_REMOTE;
458 1.3 gwr } else {
459 1.3 gwr cn->cn_pri = CN_NORMAL;
460 1.3 gwr }
461 1.2 glass return (0);
462 1.2 glass }
463 1.2 glass
464 1.3 gwr /* This is the constab entry for TTYA. */
465 1.2 glass int
466 1.3 gwr zscnprobe_a(struct consdev *cn)
467 1.2 glass {
468 1.3 gwr return (zscnprobe(cn, 0));
469 1.3 gwr }
470 1.2 glass
471 1.3 gwr /* This is the constab entry for TTYB. */
472 1.3 gwr int
473 1.3 gwr zscnprobe_b(struct consdev *cn)
474 1.3 gwr {
475 1.3 gwr return (zscnprobe(cn, 1));
476 1.2 glass }
477 1.2 glass
478 1.17 gwr /* Called by kdcninit() or below. */
479 1.17 gwr void
480 1.17 gwr zs_set_conschan(unit, ab)
481 1.17 gwr int unit, ab;
482 1.1 glass {
483 1.1 glass volatile struct zsdevice *addr;
484 1.1 glass
485 1.17 gwr addr = zsaddr[unit];
486 1.17 gwr zs_conschan = ((ab == 0) ?
487 1.23 mycroft &addr->zs_chan[ZS_CHAN_A] :
488 1.23 mycroft &addr->zs_chan[ZS_CHAN_B] );
489 1.17 gwr }
490 1.3 gwr
491 1.17 gwr /* Attach as console. Also set zs_conschan */
492 1.17 gwr int
493 1.17 gwr zscninit(struct consdev *cn)
494 1.17 gwr {
495 1.17 gwr int ab = minor(cn->cn_dev) & 1;
496 1.17 gwr zs_set_conschan(0, ab);
497 1.17 gwr mon_printf("console on zs0 (tty%c)\n", 'a' + ab);
498 1.1 glass }
499 1.3 gwr
500 1.1 glass
501 1.2 glass /*
502 1.2 glass * Polled console input putchar.
503 1.2 glass */
504 1.2 glass int
505 1.4 gwr zscngetc(dev)
506 1.4 gwr dev_t dev;
507 1.2 glass {
508 1.2 glass register volatile struct zschan *zc = zs_conschan;
509 1.25 gwr register int s, c, rr0;
510 1.2 glass
511 1.2 glass if (zc == NULL)
512 1.2 glass return (0);
513 1.2 glass
514 1.2 glass s = splhigh();
515 1.9 gwr
516 1.9 gwr /* Wait for a character to arrive. */
517 1.25 gwr do {
518 1.25 gwr rr0 = zc->zc_csr;
519 1.3 gwr ZS_DELAY();
520 1.25 gwr } while ((rr0 & ZSRR0_RX_READY) == 0);
521 1.9 gwr
522 1.2 glass c = zc->zc_data;
523 1.9 gwr ZS_DELAY();
524 1.9 gwr
525 1.2 glass splx(s);
526 1.17 gwr
527 1.17 gwr /*
528 1.17 gwr * This is used by the kd driver to read scan codes,
529 1.17 gwr * so don't translate '\r' ==> '\n' here...
530 1.17 gwr */
531 1.2 glass return (c);
532 1.2 glass }
533 1.1 glass
534 1.1 glass /*
535 1.1 glass * Polled console output putchar.
536 1.1 glass */
537 1.2 glass int
538 1.4 gwr zscnputc(dev, c)
539 1.4 gwr dev_t dev;
540 1.1 glass int c;
541 1.1 glass {
542 1.1 glass register volatile struct zschan *zc = zs_conschan;
543 1.25 gwr register int s, rr0;
544 1.1 glass
545 1.4 gwr if (zc == NULL) {
546 1.4 gwr s = splhigh();
547 1.4 gwr mon_putchar(c);
548 1.4 gwr splx(s);
549 1.2 glass return (0);
550 1.4 gwr }
551 1.9 gwr s = splhigh();
552 1.2 glass
553 1.9 gwr /* Wait for transmitter to become ready. */
554 1.25 gwr do {
555 1.25 gwr rr0 = zc->zc_csr;
556 1.3 gwr ZS_DELAY();
557 1.25 gwr } while ((rr0 & ZSRR0_TX_READY) == 0);
558 1.9 gwr
559 1.1 glass zc->zc_data = c;
560 1.3 gwr ZS_DELAY();
561 1.1 glass splx(s);
562 1.1 glass }
563 1.2 glass
564 1.1 glass #ifdef KGDB
565 1.1 glass /*
566 1.1 glass * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
567 1.1 glass * Pick up the current speed and character size and restore the original
568 1.1 glass * speed.
569 1.1 glass */
570 1.1 glass static void
571 1.1 glass zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
572 1.1 glass {
573 1.1 glass
574 1.1 glass if (kgdb_dev == makedev(ZSMAJOR, unit)) {
575 1.1 glass tp->t_ispeed = tp->t_ospeed = kgdb_rate;
576 1.1 glass tp->t_cflag = CS8;
577 1.1 glass cs->cs_kgdb = 1;
578 1.1 glass cs->cs_speed = zs_kgdb_savedspeed;
579 1.1 glass (void) zsparam(tp, &tp->t_termios);
580 1.1 glass }
581 1.1 glass }
582 1.1 glass #endif
583 1.1 glass
584 1.1 glass /*
585 1.1 glass * Compute the current baud rate given a ZSCC channel.
586 1.1 glass */
587 1.1 glass static int
588 1.1 glass zs_getspeed(zc)
589 1.1 glass register volatile struct zschan *zc;
590 1.1 glass {
591 1.1 glass register int tconst;
592 1.1 glass
593 1.1 glass tconst = ZS_READ(zc, 12);
594 1.1 glass tconst |= ZS_READ(zc, 13) << 8;
595 1.1 glass return (TCONST_TO_BPS(PCLK / 16, tconst));
596 1.1 glass }
597 1.1 glass
598 1.1 glass
599 1.1 glass /*
600 1.1 glass * Do an internal open.
601 1.1 glass */
602 1.1 glass static void
603 1.1 glass zsiopen(struct tty *tp)
604 1.1 glass {
605 1.1 glass
606 1.1 glass (void) zsparam(tp, &tp->t_termios);
607 1.1 glass ttsetwater(tp);
608 1.1 glass tp->t_state = TS_ISOPEN | TS_CARR_ON;
609 1.1 glass }
610 1.1 glass
611 1.1 glass /*
612 1.1 glass * Do an internal close. Eventually we should shut off the chip when both
613 1.1 glass * ports on it are closed.
614 1.1 glass */
615 1.1 glass static void
616 1.1 glass zsiclose(struct tty *tp)
617 1.1 glass {
618 1.1 glass
619 1.1 glass ttylclose(tp, 0); /* ??? */
620 1.1 glass ttyclose(tp); /* ??? */
621 1.1 glass tp->t_state = 0;
622 1.1 glass }
623 1.1 glass
624 1.1 glass
625 1.1 glass /*
626 1.1 glass * Open a zs serial port. This interface may not be used to open
627 1.1 glass * the keyboard and mouse ports. (XXX)
628 1.1 glass */
629 1.1 glass int
630 1.1 glass zsopen(dev_t dev, int flags, int mode, struct proc *p)
631 1.1 glass {
632 1.1 glass register struct tty *tp;
633 1.1 glass register struct zs_chanstate *cs;
634 1.1 glass struct zsinfo *zi;
635 1.1 glass int unit = minor(dev), zs = unit >> 1, error, s;
636 1.1 glass
637 1.2 glass #ifdef DEBUG
638 1.3 gwr mon_printf("zs_open\n");
639 1.2 glass #endif
640 1.1 glass if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
641 1.1 glass unit == ZS_KBD || unit == ZS_MOUSE)
642 1.1 glass return (ENXIO);
643 1.1 glass cs = &zi->zi_cs[unit & 1];
644 1.1 glass tp = cs->cs_ttyp;
645 1.1 glass s = spltty();
646 1.1 glass if ((tp->t_state & TS_ISOPEN) == 0) {
647 1.1 glass ttychars(tp);
648 1.16 gwr tp->t_iflag = TTYDEF_IFLAG;
649 1.16 gwr tp->t_oflag = TTYDEF_OFLAG;
650 1.16 gwr tp->t_cflag = TTYDEF_CFLAG;
651 1.16 gwr tp->t_lflag = TTYDEF_LFLAG;
652 1.16 gwr tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
653 1.1 glass (void) zsparam(tp, &tp->t_termios);
654 1.1 glass ttsetwater(tp);
655 1.1 glass } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
656 1.1 glass splx(s);
657 1.1 glass return (EBUSY);
658 1.1 glass }
659 1.1 glass error = 0;
660 1.3 gwr #ifdef DEBUG
661 1.3 gwr mon_printf("wait for carrier...\n");
662 1.3 gwr #endif
663 1.1 glass for (;;) {
664 1.25 gwr register int rr0;
665 1.25 gwr
666 1.1 glass /* loop, turning on the device, until carrier present */
667 1.1 glass zs_modem(cs, 1);
668 1.2 glass /* May never get status intr if carrier already on. -gwr */
669 1.25 gwr rr0 = cs->cs_zc->zc_csr;
670 1.25 gwr ZS_DELAY();
671 1.25 gwr if (rr0 & ZSRR0_DCD)
672 1.2 glass tp->t_state |= TS_CARR_ON;
673 1.1 glass if (cs->cs_softcar)
674 1.1 glass tp->t_state |= TS_CARR_ON;
675 1.1 glass if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
676 1.1 glass tp->t_state & TS_CARR_ON)
677 1.1 glass break;
678 1.1 glass tp->t_state |= TS_WOPEN;
679 1.1 glass if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
680 1.1 glass ttopen, 0))
681 1.1 glass break;
682 1.1 glass }
683 1.3 gwr #ifdef DEBUG
684 1.3 gwr mon_printf("...carrier %s\n",
685 1.3 gwr (tp->t_state & TS_CARR_ON) ? "on" : "off");
686 1.3 gwr #endif
687 1.1 glass splx(s);
688 1.1 glass if (error == 0)
689 1.1 glass error = linesw[tp->t_line].l_open(dev, tp);
690 1.1 glass if (error)
691 1.1 glass zs_modem(cs, 0);
692 1.1 glass return (error);
693 1.1 glass }
694 1.1 glass
695 1.1 glass /*
696 1.1 glass * Close a zs serial port.
697 1.1 glass */
698 1.1 glass int
699 1.1 glass zsclose(dev_t dev, int flags, int mode, struct proc *p)
700 1.1 glass {
701 1.1 glass register struct zs_chanstate *cs;
702 1.1 glass register struct tty *tp;
703 1.1 glass struct zsinfo *zi;
704 1.1 glass int unit = minor(dev), s;
705 1.1 glass
706 1.3 gwr #ifdef DEBUG
707 1.3 gwr mon_printf("zs_close\n");
708 1.3 gwr #endif
709 1.1 glass zi = zscd.cd_devs[unit >> 1];
710 1.1 glass cs = &zi->zi_cs[unit & 1];
711 1.1 glass tp = cs->cs_ttyp;
712 1.1 glass linesw[tp->t_line].l_close(tp, flags);
713 1.1 glass if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
714 1.1 glass (tp->t_state & TS_ISOPEN) == 0) {
715 1.1 glass zs_modem(cs, 0);
716 1.1 glass /* hold low for 1 second */
717 1.1 glass (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
718 1.1 glass }
719 1.6 gwr if (cs->cs_creg[5] & ZSWR5_BREAK)
720 1.6 gwr {
721 1.6 gwr s = splzs();
722 1.6 gwr cs->cs_preg[5] &= ~ZSWR5_BREAK;
723 1.6 gwr cs->cs_creg[5] &= ~ZSWR5_BREAK;
724 1.6 gwr ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
725 1.6 gwr splx(s);
726 1.6 gwr }
727 1.1 glass ttyclose(tp);
728 1.1 glass #ifdef KGDB
729 1.1 glass /* Reset the speed if we're doing kgdb on this port */
730 1.1 glass if (cs->cs_kgdb) {
731 1.1 glass tp->t_ispeed = tp->t_ospeed = kgdb_rate;
732 1.1 glass (void) zsparam(tp, &tp->t_termios);
733 1.1 glass }
734 1.1 glass #endif
735 1.1 glass return (0);
736 1.1 glass }
737 1.1 glass
738 1.1 glass /*
739 1.1 glass * Read/write zs serial port.
740 1.1 glass */
741 1.1 glass int
742 1.1 glass zsread(dev_t dev, struct uio *uio, int flags)
743 1.1 glass {
744 1.1 glass register struct tty *tp = zs_tty[minor(dev)];
745 1.1 glass
746 1.1 glass return (linesw[tp->t_line].l_read(tp, uio, flags));
747 1.1 glass }
748 1.1 glass
749 1.1 glass int
750 1.1 glass zswrite(dev_t dev, struct uio *uio, int flags)
751 1.1 glass {
752 1.1 glass register struct tty *tp = zs_tty[minor(dev)];
753 1.1 glass
754 1.1 glass return (linesw[tp->t_line].l_write(tp, uio, flags));
755 1.1 glass }
756 1.1 glass
757 1.1 glass /*
758 1.1 glass * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
759 1.1 glass * channels are kept in (A,B) pairs.
760 1.1 glass *
761 1.1 glass * Do just a little, then get out; set a software interrupt if more
762 1.1 glass * work is needed.
763 1.1 glass *
764 1.1 glass * We deliberately ignore the vectoring Zilog gives us, and match up
765 1.1 glass * only the number of `reset interrupt under service' operations, not
766 1.1 glass * the order.
767 1.1 glass */
768 1.1 glass /* ARGSUSED */
769 1.1 glass int
770 1.1 glass zshard(int intrarg)
771 1.1 glass {
772 1.1 glass register struct zs_chanstate *a;
773 1.1 glass #define b (a + 1)
774 1.1 glass register volatile struct zschan *zc;
775 1.1 glass register int rr3, intflags = 0, v, i;
776 1.1 glass static int zsrint(struct zs_chanstate *, volatile struct zschan *);
777 1.1 glass static int zsxint(struct zs_chanstate *, volatile struct zschan *);
778 1.1 glass static int zssint(struct zs_chanstate *, volatile struct zschan *);
779 1.1 glass
780 1.1 glass for (a = zslist; a != NULL; a = b->cs_next) {
781 1.1 glass rr3 = ZS_READ(a->cs_zc, 3);
782 1.3 gwr
783 1.3 gwr /* XXX - This should loop to empty the on-chip fifo. */
784 1.1 glass if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
785 1.1 glass intflags |= 2;
786 1.1 glass zc = a->cs_zc;
787 1.1 glass i = a->cs_rbput;
788 1.1 glass if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
789 1.1 glass a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
790 1.1 glass intflags |= 1;
791 1.1 glass }
792 1.1 glass if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
793 1.1 glass a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
794 1.1 glass intflags |= 1;
795 1.1 glass }
796 1.1 glass if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
797 1.1 glass a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
798 1.1 glass intflags |= 1;
799 1.1 glass }
800 1.1 glass a->cs_rbput = i;
801 1.1 glass }
802 1.3 gwr
803 1.3 gwr /* XXX - This should loop to empty the on-chip fifo. */
804 1.1 glass if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
805 1.1 glass intflags |= 2;
806 1.1 glass zc = b->cs_zc;
807 1.1 glass i = b->cs_rbput;
808 1.1 glass if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
809 1.1 glass b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
810 1.1 glass intflags |= 1;
811 1.1 glass }
812 1.1 glass if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
813 1.1 glass b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
814 1.1 glass intflags |= 1;
815 1.1 glass }
816 1.1 glass if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
817 1.1 glass b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
818 1.1 glass intflags |= 1;
819 1.1 glass }
820 1.1 glass b->cs_rbput = i;
821 1.1 glass }
822 1.1 glass }
823 1.1 glass #undef b
824 1.1 glass if (intflags & 1) {
825 1.13 gwr if (zssoftpending == 0) {
826 1.21 gwr /* We are at splzs here, so no need to lock. */
827 1.13 gwr zssoftpending = ZSSOFT_PRI;
828 1.13 gwr isr_soft_request(ZSSOFT_PRI);
829 1.13 gwr }
830 1.1 glass }
831 1.1 glass return (intflags & 2);
832 1.1 glass }
833 1.1 glass
834 1.1 glass static int
835 1.1 glass zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
836 1.1 glass {
837 1.25 gwr register int c;
838 1.25 gwr
839 1.25 gwr c = zc->zc_data;
840 1.25 gwr ZS_DELAY();
841 1.1 glass
842 1.1 glass if (cs->cs_conk) {
843 1.1 glass register struct conk_state *conk = &zsconk_state;
844 1.1 glass
845 1.1 glass /*
846 1.1 glass * Check here for console abort function, so that we
847 1.1 glass * can abort even when interrupts are locking up the
848 1.1 glass * machine.
849 1.1 glass */
850 1.1 glass if (c == KBD_RESET) {
851 1.1 glass conk->conk_id = 1; /* ignore next byte */
852 1.1 glass conk->conk_l1 = 0;
853 1.1 glass } else if (conk->conk_id)
854 1.1 glass conk->conk_id = 0; /* stop ignoring bytes */
855 1.1 glass else if (c == KBD_L1)
856 1.1 glass conk->conk_l1 = 1; /* L1 went down */
857 1.1 glass else if (c == (KBD_L1|KBD_UP))
858 1.1 glass conk->conk_l1 = 0; /* L1 went up */
859 1.1 glass else if (c == KBD_A && conk->conk_l1) {
860 1.1 glass zsabort();
861 1.21 gwr /* Debugger done. Send L1-up in case X is running. */
862 1.21 gwr conk->conk_l1 = 0;
863 1.21 gwr c = (KBD_L1|KBD_UP);
864 1.1 glass }
865 1.1 glass }
866 1.1 glass #ifdef KGDB
867 1.1 glass if (c == FRAME_START && cs->cs_kgdb &&
868 1.1 glass (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
869 1.1 glass zskgdb(cs->cs_unit);
870 1.25 gwr c = 0;
871 1.1 glass goto clearit;
872 1.1 glass }
873 1.1 glass #endif
874 1.1 glass /* compose receive character and status */
875 1.1 glass c <<= 8;
876 1.1 glass c |= ZS_READ(zc, 1);
877 1.25 gwr c = ZRING_MAKE(ZRING_RINT, c);
878 1.1 glass
879 1.25 gwr clearit:
880 1.1 glass /* clear receive error & interrupt condition */
881 1.1 glass zc->zc_csr = ZSWR0_RESET_ERRORS;
882 1.25 gwr ZS_DELAY();
883 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
884 1.25 gwr ZS_DELAY();
885 1.25 gwr return (c);
886 1.1 glass }
887 1.1 glass
888 1.1 glass static int
889 1.1 glass zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
890 1.1 glass {
891 1.1 glass register int i = cs->cs_tbc;
892 1.1 glass
893 1.1 glass if (i == 0) {
894 1.1 glass zc->zc_csr = ZSWR0_RESET_TXINT;
895 1.25 gwr ZS_DELAY();
896 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
897 1.25 gwr ZS_DELAY();
898 1.1 glass return (ZRING_MAKE(ZRING_XINT, 0));
899 1.1 glass }
900 1.1 glass cs->cs_tbc = i - 1;
901 1.1 glass zc->zc_data = *cs->cs_tba++;
902 1.25 gwr ZS_DELAY();
903 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
904 1.25 gwr ZS_DELAY();
905 1.1 glass return (0);
906 1.1 glass }
907 1.1 glass
908 1.1 glass static int
909 1.1 glass zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
910 1.1 glass {
911 1.1 glass register int rr0;
912 1.1 glass
913 1.1 glass rr0 = zc->zc_csr;
914 1.25 gwr ZS_DELAY();
915 1.1 glass zc->zc_csr = ZSWR0_RESET_STATUS;
916 1.25 gwr ZS_DELAY();
917 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
918 1.25 gwr ZS_DELAY();
919 1.1 glass /*
920 1.1 glass * The chip's hardware flow control is, as noted in zsreg.h,
921 1.1 glass * busted---if the DCD line goes low the chip shuts off the
922 1.1 glass * receiver (!). If we want hardware CTS flow control but do
923 1.1 glass * not have it, and carrier is now on, turn HFC on; if we have
924 1.1 glass * HFC now but carrier has gone low, turn it off.
925 1.1 glass */
926 1.1 glass if (rr0 & ZSRR0_DCD) {
927 1.1 glass if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
928 1.1 glass (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
929 1.1 glass cs->cs_creg[3] |= ZSWR3_HFC;
930 1.1 glass ZS_WRITE(zc, 3, cs->cs_creg[3]);
931 1.1 glass }
932 1.1 glass } else {
933 1.1 glass if (cs->cs_creg[3] & ZSWR3_HFC) {
934 1.1 glass cs->cs_creg[3] &= ~ZSWR3_HFC;
935 1.1 glass ZS_WRITE(zc, 3, cs->cs_creg[3]);
936 1.1 glass }
937 1.1 glass }
938 1.1 glass if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
939 1.3 gwr /* Wait for end of break to avoid PROM abort. */
940 1.25 gwr do {
941 1.25 gwr rr0 = zc->zc_csr;
942 1.3 gwr ZS_DELAY();
943 1.25 gwr } while (rr0 & ZSRR0_BREAK);
944 1.1 glass zsabort();
945 1.1 glass return (0);
946 1.1 glass }
947 1.1 glass return (ZRING_MAKE(ZRING_SINT, rr0));
948 1.1 glass }
949 1.1 glass
950 1.1 glass zsabort()
951 1.1 glass {
952 1.3 gwr #ifdef DDB
953 1.3 gwr Debugger();
954 1.3 gwr #else
955 1.1 glass printf("stopping on keyboard abort\n");
956 1.3 gwr sun3_rom_abort();
957 1.3 gwr #endif
958 1.1 glass }
959 1.1 glass
960 1.1 glass #ifdef KGDB
961 1.1 glass /*
962 1.1 glass * KGDB framing character received: enter kernel debugger. This probably
963 1.1 glass * should time out after a few seconds to avoid hanging on spurious input.
964 1.1 glass */
965 1.1 glass zskgdb(int unit)
966 1.1 glass {
967 1.1 glass
968 1.1 glass printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
969 1.1 glass kgdb_connect(1);
970 1.1 glass }
971 1.1 glass #endif
972 1.1 glass
973 1.1 glass /*
974 1.1 glass * Print out a ring or fifo overrun error message.
975 1.1 glass */
976 1.1 glass static void
977 1.1 glass zsoverrun(int unit, long *ptime, char *what)
978 1.1 glass {
979 1.1 glass
980 1.1 glass if (*ptime != time.tv_sec) {
981 1.1 glass *ptime = time.tv_sec;
982 1.1 glass log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
983 1.1 glass (unit & 1) + 'a', what);
984 1.1 glass }
985 1.1 glass }
986 1.1 glass
987 1.1 glass /*
988 1.1 glass * ZS software interrupt. Scan all channels for deferred interrupts.
989 1.1 glass */
990 1.1 glass int
991 1.1 glass zssoft(int arg)
992 1.1 glass {
993 1.1 glass register struct zs_chanstate *cs;
994 1.1 glass register volatile struct zschan *zc;
995 1.1 glass register struct linesw *line;
996 1.1 glass register struct tty *tp;
997 1.1 glass register int get, n, c, cc, unit, s;
998 1.1 glass
999 1.21 gwr /* This is not the only ISR on this IPL. */
1000 1.13 gwr if (zssoftpending == 0)
1001 1.13 gwr return (0);
1002 1.13 gwr
1003 1.21 gwr /*
1004 1.21 gwr * The soft intr. bit will be set by zshard only if
1005 1.21 gwr * the variable zssoftpending is zero. The order of
1006 1.21 gwr * these next two statements prevents our clearing
1007 1.21 gwr * the soft intr bit just after zshard has set it.
1008 1.21 gwr */
1009 1.2 glass isr_soft_clear(ZSSOFT_PRI);
1010 1.21 gwr zssoftpending = 0; /* Now zshard may set it again. */
1011 1.2 glass
1012 1.1 glass for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1013 1.1 glass get = cs->cs_rbget;
1014 1.1 glass again:
1015 1.1 glass n = cs->cs_rbput; /* atomic */
1016 1.1 glass if (get == n) /* nothing more on this line */
1017 1.1 glass continue;
1018 1.1 glass unit = cs->cs_unit; /* set up to handle interrupts */
1019 1.1 glass zc = cs->cs_zc;
1020 1.1 glass tp = cs->cs_ttyp;
1021 1.1 glass line = &linesw[tp->t_line];
1022 1.1 glass /*
1023 1.1 glass * Compute the number of interrupts in the receive ring.
1024 1.1 glass * If the count is overlarge, we lost some events, and
1025 1.1 glass * must advance to the first valid one. It may get
1026 1.1 glass * overwritten if more data are arriving, but this is
1027 1.1 glass * too expensive to check and gains nothing (we already
1028 1.1 glass * lost out; all we can do at this point is trade one
1029 1.1 glass * kind of loss for another).
1030 1.1 glass */
1031 1.1 glass n -= get;
1032 1.1 glass if (n > ZLRB_RING_SIZE) {
1033 1.1 glass zsoverrun(unit, &cs->cs_rotime, "ring");
1034 1.1 glass get += n - ZLRB_RING_SIZE;
1035 1.1 glass n = ZLRB_RING_SIZE;
1036 1.1 glass }
1037 1.1 glass while (--n >= 0) {
1038 1.1 glass /* race to keep ahead of incoming interrupts */
1039 1.1 glass c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
1040 1.1 glass switch (ZRING_TYPE(c)) {
1041 1.1 glass
1042 1.1 glass case ZRING_RINT:
1043 1.1 glass c = ZRING_VALUE(c);
1044 1.1 glass if (c & ZSRR1_DO)
1045 1.1 glass zsoverrun(unit, &cs->cs_fotime, "fifo");
1046 1.1 glass cc = c >> 8;
1047 1.1 glass if (c & ZSRR1_FE)
1048 1.1 glass cc |= TTY_FE;
1049 1.1 glass if (c & ZSRR1_PE)
1050 1.1 glass cc |= TTY_PE;
1051 1.1 glass /*
1052 1.1 glass * this should be done through
1053 1.1 glass * bstreams XXX gag choke
1054 1.1 glass */
1055 1.1 glass if (unit == ZS_KBD)
1056 1.1 glass kbd_rint(cc);
1057 1.1 glass else if (unit == ZS_MOUSE)
1058 1.1 glass ms_rint(cc);
1059 1.1 glass else
1060 1.1 glass line->l_rint(cc, tp);
1061 1.1 glass break;
1062 1.1 glass
1063 1.1 glass case ZRING_XINT:
1064 1.1 glass /*
1065 1.1 glass * Transmit done: change registers and resume,
1066 1.1 glass * or clear BUSY.
1067 1.1 glass */
1068 1.1 glass if (cs->cs_heldchange) {
1069 1.1 glass s = splzs();
1070 1.1 glass c = zc->zc_csr;
1071 1.25 gwr ZS_DELAY();
1072 1.1 glass if ((c & ZSRR0_DCD) == 0)
1073 1.1 glass cs->cs_preg[3] &= ~ZSWR3_HFC;
1074 1.1 glass bcopy((caddr_t)cs->cs_preg,
1075 1.1 glass (caddr_t)cs->cs_creg, 16);
1076 1.1 glass zs_loadchannelregs(zc, cs->cs_creg);
1077 1.1 glass splx(s);
1078 1.1 glass cs->cs_heldchange = 0;
1079 1.1 glass if (cs->cs_heldtbc &&
1080 1.1 glass (tp->t_state & TS_TTSTOP) == 0) {
1081 1.1 glass cs->cs_tbc = cs->cs_heldtbc - 1;
1082 1.1 glass zc->zc_data = *cs->cs_tba++;
1083 1.25 gwr ZS_DELAY();
1084 1.1 glass goto again;
1085 1.1 glass }
1086 1.1 glass }
1087 1.1 glass tp->t_state &= ~TS_BUSY;
1088 1.1 glass if (tp->t_state & TS_FLUSH)
1089 1.1 glass tp->t_state &= ~TS_FLUSH;
1090 1.1 glass else
1091 1.7 glass ndflush(&tp->t_outq, cs->cs_tba -
1092 1.7 glass (caddr_t) tp->t_outq.c_cf);
1093 1.1 glass line->l_start(tp);
1094 1.1 glass break;
1095 1.1 glass
1096 1.1 glass case ZRING_SINT:
1097 1.1 glass /*
1098 1.1 glass * Status line change. HFC bit is run in
1099 1.1 glass * hardware interrupt, to avoid locking
1100 1.1 glass * at splzs here.
1101 1.1 glass */
1102 1.1 glass c = ZRING_VALUE(c);
1103 1.1 glass if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1104 1.1 glass cc = (c & ZSRR0_DCD) != 0;
1105 1.1 glass if (line->l_modem(tp, cc) == 0)
1106 1.1 glass zs_modem(cs, cc);
1107 1.1 glass }
1108 1.1 glass cs->cs_rr0 = c;
1109 1.1 glass break;
1110 1.1 glass
1111 1.1 glass default:
1112 1.1 glass log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1113 1.1 glass unit >> 1, (unit & 1) + 'a', c);
1114 1.1 glass break;
1115 1.1 glass }
1116 1.1 glass }
1117 1.1 glass cs->cs_rbget = get;
1118 1.1 glass goto again;
1119 1.1 glass }
1120 1.1 glass return (1);
1121 1.1 glass }
1122 1.1 glass
1123 1.1 glass int
1124 1.1 glass zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1125 1.1 glass {
1126 1.1 glass int unit = minor(dev);
1127 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1128 1.6 gwr register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1129 1.6 gwr register struct tty *tp = cs->cs_ttyp;
1130 1.6 gwr register int error, s;
1131 1.1 glass
1132 1.2 glass error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1133 1.1 glass if (error >= 0)
1134 1.1 glass return (error);
1135 1.2 glass error = ttioctl(tp, cmd, data, flag, p);
1136 1.1 glass if (error >= 0)
1137 1.1 glass return (error);
1138 1.1 glass
1139 1.1 glass switch (cmd) {
1140 1.1 glass
1141 1.1 glass case TIOCSBRK:
1142 1.15 gwr s = splzs();
1143 1.15 gwr cs->cs_preg[5] |= ZSWR5_BREAK;
1144 1.15 gwr cs->cs_creg[5] |= ZSWR5_BREAK;
1145 1.15 gwr ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1146 1.15 gwr splx(s);
1147 1.15 gwr break;
1148 1.1 glass
1149 1.1 glass case TIOCCBRK:
1150 1.15 gwr s = splzs();
1151 1.15 gwr cs->cs_preg[5] &= ~ZSWR5_BREAK;
1152 1.15 gwr cs->cs_creg[5] &= ~ZSWR5_BREAK;
1153 1.15 gwr ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1154 1.15 gwr splx(s);
1155 1.15 gwr break;
1156 1.15 gwr
1157 1.15 gwr case TIOCGFLAGS: {
1158 1.15 gwr int bits = 0;
1159 1.15 gwr
1160 1.15 gwr if (cs->cs_softcar)
1161 1.15 gwr bits |= TIOCFLAG_SOFTCAR;
1162 1.15 gwr if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1163 1.15 gwr bits |= TIOCFLAG_CLOCAL;
1164 1.15 gwr if (cs->cs_creg[3] & ZSWR3_HFC)
1165 1.15 gwr bits |= TIOCFLAG_CRTSCTS;
1166 1.15 gwr *(int *)data = bits;
1167 1.15 gwr break;
1168 1.15 gwr }
1169 1.15 gwr
1170 1.15 gwr case TIOCSFLAGS: {
1171 1.15 gwr int userbits, driverbits = 0;
1172 1.15 gwr
1173 1.15 gwr error = suser(p->p_ucred, &p->p_acflag);
1174 1.15 gwr if (error != 0)
1175 1.15 gwr return (EPERM);
1176 1.15 gwr
1177 1.15 gwr userbits = *(int *)data;
1178 1.15 gwr
1179 1.15 gwr /*
1180 1.15 gwr * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1181 1.15 gwr * defaulting to software flow control.
1182 1.15 gwr */
1183 1.15 gwr if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1184 1.15 gwr return(EINVAL);
1185 1.15 gwr if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1186 1.15 gwr return(ENXIO);
1187 1.15 gwr
1188 1.15 gwr s = splzs();
1189 1.15 gwr if ((userbits & TIOCFLAG_SOFTCAR) ||
1190 1.15 gwr (cs->cs_zc == zs_conschan))
1191 1.6 gwr {
1192 1.15 gwr cs->cs_softcar = 1; /* turn on softcar */
1193 1.15 gwr cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1194 1.15 gwr cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1195 1.15 gwr ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1196 1.15 gwr } else if (userbits & TIOCFLAG_CLOCAL) {
1197 1.15 gwr cs->cs_softcar = 0; /* turn off softcar */
1198 1.15 gwr cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1199 1.15 gwr cs->cs_creg[15] |= ZSWR15_DCD_IE;
1200 1.15 gwr ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1201 1.15 gwr tp->t_termios.c_cflag |= CLOCAL;
1202 1.15 gwr }
1203 1.15 gwr if (userbits & TIOCFLAG_CRTSCTS) {
1204 1.15 gwr cs->cs_preg[15] |= ZSWR15_CTS_IE;
1205 1.15 gwr cs->cs_creg[15] |= ZSWR15_CTS_IE;
1206 1.15 gwr ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1207 1.15 gwr cs->cs_preg[3] |= ZSWR3_HFC;
1208 1.15 gwr cs->cs_creg[3] |= ZSWR3_HFC;
1209 1.15 gwr ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1210 1.15 gwr tp->t_termios.c_cflag |= CRTSCTS;
1211 1.15 gwr } else {
1212 1.15 gwr /* no mdmbuf, so we must want software flow control */
1213 1.15 gwr cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1214 1.15 gwr cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1215 1.15 gwr ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1216 1.15 gwr cs->cs_preg[3] &= ~ZSWR3_HFC;
1217 1.15 gwr cs->cs_creg[3] &= ~ZSWR3_HFC;
1218 1.15 gwr ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1219 1.15 gwr tp->t_termios.c_cflag &= ~CRTSCTS;
1220 1.6 gwr }
1221 1.15 gwr splx(s);
1222 1.15 gwr break;
1223 1.15 gwr }
1224 1.1 glass
1225 1.1 glass case TIOCSDTR:
1226 1.1 glass case TIOCCDTR:
1227 1.1 glass case TIOCMSET:
1228 1.1 glass case TIOCMBIS:
1229 1.1 glass case TIOCMBIC:
1230 1.1 glass case TIOCMGET:
1231 1.1 glass default:
1232 1.1 glass return (ENOTTY);
1233 1.1 glass }
1234 1.1 glass return (0);
1235 1.1 glass }
1236 1.1 glass
1237 1.1 glass /*
1238 1.1 glass * Start or restart transmission.
1239 1.1 glass */
1240 1.1 glass static void
1241 1.1 glass zsstart(register struct tty *tp)
1242 1.1 glass {
1243 1.1 glass register struct zs_chanstate *cs;
1244 1.1 glass register int s, nch;
1245 1.1 glass int unit = minor(tp->t_dev);
1246 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1247 1.1 glass
1248 1.1 glass cs = &zi->zi_cs[unit & 1];
1249 1.1 glass s = spltty();
1250 1.1 glass
1251 1.1 glass /*
1252 1.1 glass * If currently active or delaying, no need to do anything.
1253 1.1 glass */
1254 1.1 glass if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1255 1.1 glass goto out;
1256 1.1 glass
1257 1.1 glass /*
1258 1.1 glass * If there are sleepers, and output has drained below low
1259 1.1 glass * water mark, awaken.
1260 1.1 glass */
1261 1.1 glass if (tp->t_outq.c_cc <= tp->t_lowat) {
1262 1.1 glass if (tp->t_state & TS_ASLEEP) {
1263 1.1 glass tp->t_state &= ~TS_ASLEEP;
1264 1.1 glass wakeup((caddr_t)&tp->t_outq);
1265 1.1 glass }
1266 1.1 glass selwakeup(&tp->t_wsel);
1267 1.1 glass }
1268 1.1 glass
1269 1.1 glass nch = ndqb(&tp->t_outq, 0); /* XXX */
1270 1.1 glass if (nch) {
1271 1.1 glass register char *p = tp->t_outq.c_cf;
1272 1.1 glass
1273 1.1 glass /* mark busy, enable tx done interrupts, & send first byte */
1274 1.1 glass tp->t_state |= TS_BUSY;
1275 1.1 glass (void) splzs();
1276 1.1 glass cs->cs_preg[1] |= ZSWR1_TIE;
1277 1.1 glass cs->cs_creg[1] |= ZSWR1_TIE;
1278 1.1 glass ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1279 1.1 glass cs->cs_zc->zc_data = *p;
1280 1.25 gwr ZS_DELAY();
1281 1.1 glass cs->cs_tba = p + 1;
1282 1.1 glass cs->cs_tbc = nch - 1;
1283 1.1 glass } else {
1284 1.1 glass /*
1285 1.1 glass * Nothing to send, turn off transmit done interrupts.
1286 1.1 glass * This is useful if something is doing polled output.
1287 1.1 glass */
1288 1.1 glass (void) splzs();
1289 1.1 glass cs->cs_preg[1] &= ~ZSWR1_TIE;
1290 1.1 glass cs->cs_creg[1] &= ~ZSWR1_TIE;
1291 1.1 glass ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1292 1.1 glass }
1293 1.1 glass out:
1294 1.1 glass splx(s);
1295 1.1 glass }
1296 1.1 glass
1297 1.1 glass /*
1298 1.1 glass * Stop output, e.g., for ^S or output flush.
1299 1.1 glass */
1300 1.1 glass void
1301 1.1 glass zsstop(register struct tty *tp, int flag)
1302 1.1 glass {
1303 1.1 glass register struct zs_chanstate *cs;
1304 1.1 glass register int s, unit = minor(tp->t_dev);
1305 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1306 1.1 glass
1307 1.1 glass cs = &zi->zi_cs[unit & 1];
1308 1.1 glass s = splzs();
1309 1.1 glass if (tp->t_state & TS_BUSY) {
1310 1.1 glass /*
1311 1.1 glass * Device is transmitting; must stop it.
1312 1.1 glass */
1313 1.1 glass cs->cs_tbc = 0;
1314 1.1 glass if ((tp->t_state & TS_TTSTOP) == 0)
1315 1.1 glass tp->t_state |= TS_FLUSH;
1316 1.1 glass }
1317 1.1 glass splx(s);
1318 1.1 glass }
1319 1.1 glass
1320 1.1 glass /*
1321 1.1 glass * Set ZS tty parameters from termios.
1322 1.1 glass */
1323 1.1 glass static int
1324 1.1 glass zsparam(register struct tty *tp, register struct termios *t)
1325 1.1 glass {
1326 1.1 glass int unit = minor(tp->t_dev);
1327 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1328 1.1 glass register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1329 1.1 glass register int tmp, tmp5, cflag, s;
1330 1.1 glass
1331 1.1 glass /*
1332 1.1 glass * Because PCLK is only run at 4.9 MHz, the fastest we
1333 1.1 glass * can go is 51200 baud (this corresponds to TC=1).
1334 1.1 glass * This is somewhat unfortunate as there is no real
1335 1.1 glass * reason we should not be able to handle higher rates.
1336 1.1 glass */
1337 1.1 glass tmp = t->c_ospeed;
1338 1.1 glass if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1339 1.1 glass return (EINVAL);
1340 1.1 glass if (tmp == 0) {
1341 1.1 glass /* stty 0 => drop DTR and RTS */
1342 1.1 glass zs_modem(cs, 0);
1343 1.1 glass return (0);
1344 1.1 glass }
1345 1.1 glass tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1346 1.1 glass if (tmp < 2)
1347 1.1 glass return (EINVAL);
1348 1.1 glass
1349 1.1 glass cflag = t->c_cflag;
1350 1.1 glass tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1351 1.1 glass tp->t_cflag = cflag;
1352 1.1 glass
1353 1.1 glass /*
1354 1.1 glass * Block interrupts so that state will not
1355 1.1 glass * be altered until we are done setting it up.
1356 1.1 glass */
1357 1.1 glass s = splzs();
1358 1.18 gwr bcopy(zs_init_reg, cs->cs_preg, 16);
1359 1.1 glass cs->cs_preg[12] = tmp;
1360 1.1 glass cs->cs_preg[13] = tmp >> 8;
1361 1.18 gwr cs->cs_preg[9] |= ZSWR9_MASTER_IE;
1362 1.1 glass switch (cflag & CSIZE) {
1363 1.1 glass case CS5:
1364 1.1 glass tmp = ZSWR3_RX_5;
1365 1.1 glass tmp5 = ZSWR5_TX_5;
1366 1.1 glass break;
1367 1.1 glass case CS6:
1368 1.1 glass tmp = ZSWR3_RX_6;
1369 1.1 glass tmp5 = ZSWR5_TX_6;
1370 1.1 glass break;
1371 1.1 glass case CS7:
1372 1.1 glass tmp = ZSWR3_RX_7;
1373 1.1 glass tmp5 = ZSWR5_TX_7;
1374 1.1 glass break;
1375 1.1 glass case CS8:
1376 1.1 glass default:
1377 1.1 glass tmp = ZSWR3_RX_8;
1378 1.1 glass tmp5 = ZSWR5_TX_8;
1379 1.1 glass break;
1380 1.1 glass }
1381 1.1 glass
1382 1.1 glass /*
1383 1.1 glass * Output hardware flow control on the chip is horrendous: if
1384 1.1 glass * carrier detect drops, the receiver is disabled. Hence we
1385 1.1 glass * can only do this when the carrier is on.
1386 1.1 glass */
1387 1.25 gwr tmp |= ZSWR3_RX_ENABLE;
1388 1.25 gwr if (cflag & CCTS_OFLOW) {
1389 1.25 gwr if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1390 1.25 gwr tmp |= ZSWR3_HFC;
1391 1.25 gwr ZS_DELAY();
1392 1.25 gwr }
1393 1.25 gwr
1394 1.1 glass cs->cs_preg[3] = tmp;
1395 1.1 glass cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1396 1.1 glass
1397 1.1 glass tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1398 1.1 glass if ((cflag & PARODD) == 0)
1399 1.1 glass tmp |= ZSWR4_EVENP;
1400 1.1 glass if (cflag & PARENB)
1401 1.1 glass tmp |= ZSWR4_PARENB;
1402 1.1 glass cs->cs_preg[4] = tmp;
1403 1.1 glass
1404 1.1 glass /*
1405 1.1 glass * If nothing is being transmitted, set up new current values,
1406 1.1 glass * else mark them as pending.
1407 1.1 glass */
1408 1.1 glass if (cs->cs_heldchange == 0) {
1409 1.1 glass if (cs->cs_ttyp->t_state & TS_BUSY) {
1410 1.1 glass cs->cs_heldtbc = cs->cs_tbc;
1411 1.1 glass cs->cs_tbc = 0;
1412 1.1 glass cs->cs_heldchange = 1;
1413 1.1 glass } else {
1414 1.1 glass bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1415 1.1 glass zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1416 1.1 glass }
1417 1.1 glass }
1418 1.1 glass splx(s);
1419 1.1 glass return (0);
1420 1.1 glass }
1421 1.1 glass
1422 1.1 glass /*
1423 1.1 glass * Raise or lower modem control (DTR/RTS) signals. If a character is
1424 1.1 glass * in transmission, the change is deferred.
1425 1.1 glass */
1426 1.1 glass static void
1427 1.1 glass zs_modem(struct zs_chanstate *cs, int onoff)
1428 1.1 glass {
1429 1.1 glass int s, bis, and;
1430 1.1 glass
1431 1.1 glass if (onoff) {
1432 1.1 glass bis = ZSWR5_DTR | ZSWR5_RTS;
1433 1.1 glass and = ~0;
1434 1.1 glass } else {
1435 1.1 glass bis = 0;
1436 1.1 glass and = ~(ZSWR5_DTR | ZSWR5_RTS);
1437 1.1 glass }
1438 1.1 glass s = splzs();
1439 1.1 glass cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1440 1.1 glass if (cs->cs_heldchange == 0) {
1441 1.1 glass if (cs->cs_ttyp->t_state & TS_BUSY) {
1442 1.1 glass cs->cs_heldtbc = cs->cs_tbc;
1443 1.1 glass cs->cs_tbc = 0;
1444 1.1 glass cs->cs_heldchange = 1;
1445 1.1 glass } else {
1446 1.1 glass cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1447 1.1 glass ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1448 1.1 glass }
1449 1.1 glass }
1450 1.1 glass splx(s);
1451 1.1 glass }
1452 1.1 glass
1453 1.1 glass /*
1454 1.1 glass * Write the given register set to the given zs channel in the proper order.
1455 1.1 glass * The channel must not be transmitting at the time. The receiver will
1456 1.1 glass * be disabled for the time it takes to write all the registers.
1457 1.1 glass */
1458 1.1 glass static void
1459 1.1 glass zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1460 1.1 glass {
1461 1.1 glass int i;
1462 1.1 glass
1463 1.1 glass zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1464 1.18 gwr ZS_DELAY();
1465 1.18 gwr
1466 1.18 gwr #if 1 /* XXX - Is this really a good idea? -gwr */
1467 1.1 glass i = zc->zc_data; /* drain fifo */
1468 1.18 gwr ZS_DELAY();
1469 1.1 glass i = zc->zc_data;
1470 1.18 gwr ZS_DELAY();
1471 1.1 glass i = zc->zc_data;
1472 1.18 gwr ZS_DELAY();
1473 1.18 gwr #endif
1474 1.18 gwr
1475 1.18 gwr /* baud clock divisor, stop bits, parity */
1476 1.1 glass ZS_WRITE(zc, 4, reg[4]);
1477 1.18 gwr
1478 1.18 gwr /* misc. TX/RX control bits */
1479 1.1 glass ZS_WRITE(zc, 10, reg[10]);
1480 1.18 gwr
1481 1.18 gwr /* char size, enable (RX/TX) */
1482 1.1 glass ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1483 1.1 glass ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1484 1.18 gwr
1485 1.18 gwr /* interrupt enables: TX, TX, STATUS */
1486 1.1 glass ZS_WRITE(zc, 1, reg[1]);
1487 1.18 gwr
1488 1.18 gwr /* interrupt vector */
1489 1.18 gwr ZS_WRITE(zc, 2, reg[2]);
1490 1.18 gwr
1491 1.18 gwr /* master interrupt control */
1492 1.1 glass ZS_WRITE(zc, 9, reg[9]);
1493 1.18 gwr
1494 1.18 gwr /* clock mode control */
1495 1.1 glass ZS_WRITE(zc, 11, reg[11]);
1496 1.18 gwr
1497 1.18 gwr /* baud rate (lo/hi) */
1498 1.1 glass ZS_WRITE(zc, 12, reg[12]);
1499 1.1 glass ZS_WRITE(zc, 13, reg[13]);
1500 1.18 gwr
1501 1.18 gwr /* Misc. control bits */
1502 1.1 glass ZS_WRITE(zc, 14, reg[14]);
1503 1.18 gwr
1504 1.18 gwr /* which lines cause status interrupts */
1505 1.1 glass ZS_WRITE(zc, 15, reg[15]);
1506 1.18 gwr
1507 1.18 gwr /* char size, enable (RX/TX)*/
1508 1.1 glass ZS_WRITE(zc, 3, reg[3]);
1509 1.1 glass ZS_WRITE(zc, 5, reg[5]);
1510 1.1 glass }
1511 1.1 glass
1512 1.2 glass static u_char
1513 1.2 glass zs_read(zc, reg)
1514 1.2 glass volatile struct zschan *zc;
1515 1.2 glass u_char reg;
1516 1.2 glass {
1517 1.2 glass u_char val;
1518 1.2 glass
1519 1.2 glass zc->zc_csr = reg;
1520 1.3 gwr ZS_DELAY();
1521 1.2 glass val = zc->zc_csr;
1522 1.3 gwr ZS_DELAY();
1523 1.2 glass return val;
1524 1.2 glass }
1525 1.2 glass
1526 1.2 glass static u_char
1527 1.2 glass zs_write(zc, reg, val)
1528 1.2 glass volatile struct zschan *zc;
1529 1.2 glass u_char reg, val;
1530 1.2 glass {
1531 1.2 glass zc->zc_csr = reg;
1532 1.3 gwr ZS_DELAY();
1533 1.2 glass zc->zc_csr = val;
1534 1.3 gwr ZS_DELAY();
1535 1.2 glass return val;
1536 1.2 glass }
1537 1.2 glass
1538 1.1 glass #ifdef KGDB
1539 1.1 glass /*
1540 1.1 glass * Get a character from the given kgdb channel. Called at splhigh().
1541 1.9 gwr * XXX - Add delays, or combine with zscngetc()...
1542 1.1 glass */
1543 1.1 glass static int
1544 1.1 glass zs_kgdb_getc(void *arg)
1545 1.1 glass {
1546 1.1 glass register volatile struct zschan *zc = (volatile struct zschan *)arg;
1547 1.25 gwr register int c, rr0;
1548 1.1 glass
1549 1.25 gwr do {
1550 1.25 gwr rr0 = zc->zc_csr;
1551 1.25 gwr ZS_DELAY();
1552 1.25 gwr } while ((rr0 & ZSRR0_RX_READY) == 0);
1553 1.25 gwr c = zc->zc_data;
1554 1.25 gwr ZS_DELAY();
1555 1.25 gwr return (c);
1556 1.1 glass }
1557 1.1 glass
1558 1.1 glass /*
1559 1.1 glass * Put a character to the given kgdb channel. Called at splhigh().
1560 1.1 glass */
1561 1.1 glass static void
1562 1.1 glass zs_kgdb_putc(void *arg, int c)
1563 1.1 glass {
1564 1.1 glass register volatile struct zschan *zc = (volatile struct zschan *)arg;
1565 1.25 gwr register int c, rr0;
1566 1.1 glass
1567 1.25 gwr do {
1568 1.25 gwr rr0 = zc->zc_csr;
1569 1.25 gwr ZS_DELAY();
1570 1.25 gwr } while ((rr0 & ZSRR0_TX_READY) == 0);
1571 1.1 glass zc->zc_data = c;
1572 1.25 gwr ZS_DELAY();
1573 1.1 glass }
1574 1.1 glass
1575 1.1 glass /*
1576 1.1 glass * Set up for kgdb; called at boot time before configuration.
1577 1.1 glass * KGDB interrupts will be enabled later when zs0 is configured.
1578 1.1 glass */
1579 1.1 glass void
1580 1.1 glass zs_kgdb_init()
1581 1.1 glass {
1582 1.1 glass volatile struct zsdevice *addr;
1583 1.1 glass volatile struct zschan *zc;
1584 1.1 glass int unit, zs;
1585 1.1 glass
1586 1.1 glass if (major(kgdb_dev) != ZSMAJOR)
1587 1.1 glass return;
1588 1.1 glass unit = minor(kgdb_dev);
1589 1.1 glass /*
1590 1.1 glass * Unit must be 0 or 1 (zs0).
1591 1.1 glass */
1592 1.1 glass if ((unsigned)unit >= ZS_KBD) {
1593 1.1 glass printf("zs_kgdb_init: bad minor dev %d\n", unit);
1594 1.1 glass return;
1595 1.1 glass }
1596 1.1 glass zs = unit >> 1;
1597 1.1 glass unit &= 1;
1598 1.9 gwr
1599 1.9 gwr if (zsaddr[0] == NULL)
1600 1.3 gwr panic("kbdb_attach: zs0 not yet mapped");
1601 1.9 gwr addr = zsaddr[0];
1602 1.3 gwr
1603 1.24 gwr zc = (unit == 0) ?
1604 1.24 gwr &addr->zs_chan[ZS_CHAN_A] :
1605 1.24 gwr &addr->zs_chan[ZS_CHAN_B];
1606 1.1 glass zs_kgdb_savedspeed = zs_getspeed(zc);
1607 1.1 glass printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1608 1.1 glass zs, unit + 'a', kgdb_rate);
1609 1.1 glass zs_reset(zc, 1, kgdb_rate);
1610 1.1 glass kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1611 1.1 glass }
1612 1.1 glass #endif /* KGDB */
1613