zs.c revision 1.5 1 1.1 glass /*
2 1.1 glass * Copyright (c) 1992, 1993
3 1.1 glass * The Regents of the University of California. All rights reserved.
4 1.1 glass *
5 1.1 glass * This software was developed by the Computer Systems Engineering group
6 1.1 glass * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 1.1 glass * contributed to Berkeley.
8 1.1 glass *
9 1.1 glass * All advertising materials mentioning features or use of this software
10 1.1 glass * must display the following acknowledgement:
11 1.1 glass * This product includes software developed by the University of
12 1.1 glass * California, Lawrence Berkeley Laboratory.
13 1.1 glass *
14 1.1 glass * Redistribution and use in source and binary forms, with or without
15 1.1 glass * modification, are permitted provided that the following conditions
16 1.1 glass * are met:
17 1.1 glass * 1. Redistributions of source code must retain the above copyright
18 1.1 glass * notice, this list of conditions and the following disclaimer.
19 1.1 glass * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 glass * notice, this list of conditions and the following disclaimer in the
21 1.1 glass * documentation and/or other materials provided with the distribution.
22 1.1 glass * 3. All advertising materials mentioning features or use of this software
23 1.1 glass * must display the following acknowledgement:
24 1.1 glass * This product includes software developed by the University of
25 1.1 glass * California, Berkeley and its contributors.
26 1.1 glass * 4. Neither the name of the University nor the names of its contributors
27 1.1 glass * may be used to endorse or promote products derived from this software
28 1.1 glass * without specific prior written permission.
29 1.1 glass *
30 1.1 glass * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 1.1 glass * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 1.1 glass * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 1.1 glass * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 1.1 glass * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 1.1 glass * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 1.1 glass * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 1.1 glass * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 1.1 glass * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 1.1 glass * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 1.1 glass * SUCH DAMAGE.
41 1.1 glass *
42 1.1 glass * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 1.1 glass *
44 1.1 glass * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 1.3 gwr * from: sparc/dev/zs.c,v 1.3 1993/10/13 02:36:44 deraadt Exp
46 1.5 gwr * $Id: zs.c,v 1.5 1994/05/06 07:49:20 gwr Exp $
47 1.1 glass */
48 1.1 glass
49 1.1 glass /*
50 1.1 glass * Zilog Z8530 (ZSCC) driver.
51 1.1 glass *
52 1.1 glass * Runs two tty ports (ttya and ttyb) on zs0,
53 1.1 glass * and runs a keyboard and mouse on zs1.
54 1.1 glass *
55 1.1 glass * This driver knows far too much about chip to usage mappings.
56 1.1 glass */
57 1.1 glass #define NZS 2 /* XXX */
58 1.1 glass
59 1.5 gwr #include <sys/param.h>
60 1.1 glass #include <sys/systm.h>
61 1.1 glass #include <sys/proc.h>
62 1.1 glass #include <sys/device.h>
63 1.1 glass #include <sys/conf.h>
64 1.1 glass #include <sys/file.h>
65 1.1 glass #include <sys/ioctl.h>
66 1.1 glass #include <sys/tty.h>
67 1.1 glass #include <sys/time.h>
68 1.1 glass #include <sys/kernel.h>
69 1.1 glass #include <sys/syslog.h>
70 1.1 glass
71 1.1 glass #include <machine/autoconf.h>
72 1.1 glass #include <machine/cpu.h>
73 1.1 glass #include <machine/obio.h>
74 1.3 gwr #include <machine/mon.h>
75 1.3 gwr #include <machine/eeprom.h>
76 1.3 gwr
77 1.3 gwr #include <dev/cons.h>
78 1.1 glass
79 1.1 glass #include "kbd.h"
80 1.1 glass #include "zsreg.h"
81 1.1 glass #include "zsvar.h"
82 1.1 glass
83 1.1 glass #ifdef KGDB
84 1.1 glass #include <machine/remote-sl.h>
85 1.1 glass #endif
86 1.1 glass
87 1.1 glass #define ZSMAJOR 12 /* XXX */
88 1.1 glass
89 1.1 glass #define ZS_KBD 2 /* XXX */
90 1.1 glass #define ZS_MOUSE 3 /* XXX */
91 1.1 glass
92 1.2 glass /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
93 1.2 glass #define PCLK (9600 * 512) /* PCLK pin input clock rate */
94 1.2 glass
95 1.2 glass /*
96 1.2 glass * Select software interrupt levels.
97 1.2 glass */
98 1.2 glass #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
99 1.2 glass #define ZSHARD_PRI 6 /* Wired on the CPU board... */
100 1.1 glass
101 1.1 glass /*
102 1.1 glass * Software state per found chip. This would be called `zs_softc',
103 1.1 glass * but the previous driver had a rather different zs_softc....
104 1.1 glass */
105 1.1 glass struct zsinfo {
106 1.1 glass struct device zi_dev; /* base device */
107 1.1 glass volatile struct zsdevice *zi_zs;/* chip registers */
108 1.1 glass struct zs_chanstate zi_cs[2]; /* channel A and B software state */
109 1.1 glass };
110 1.1 glass
111 1.1 glass struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
112 1.1 glass
113 1.1 glass /* Definition of the driver for autoconfig. */
114 1.2 glass static int zsmatch(struct device *, struct cfdata *, void *);
115 1.2 glass static void zsattach(struct device *, struct device *, void *);
116 1.1 glass struct cfdriver zscd =
117 1.1 glass { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
118 1.1 glass
119 1.1 glass /* Interrupt handlers. */
120 1.2 glass static int zshard(int);
121 1.2 glass static int zssoft(int);
122 1.1 glass
123 1.1 glass struct zs_chanstate *zslist;
124 1.1 glass
125 1.1 glass /* Routines called from other code. */
126 1.2 glass int zsopen(dev_t, int, int, struct proc *);
127 1.2 glass int zsclose(dev_t, int, int, struct proc *);
128 1.2 glass static void zsiopen(struct tty *);
129 1.2 glass static void zsiclose(struct tty *);
130 1.2 glass static void zsstart(struct tty *);
131 1.2 glass void zsstop(struct tty *, int);
132 1.2 glass static int zsparam(struct tty *, struct termios *);
133 1.1 glass
134 1.1 glass /* Routines purely local to this driver. */
135 1.2 glass static int zs_getspeed(volatile struct zschan *);
136 1.2 glass static void zs_reset(volatile struct zschan *, int, int);
137 1.2 glass static void zs_modem(struct zs_chanstate *, int);
138 1.2 glass static void zs_loadchannelregs(volatile struct zschan *, u_char *);
139 1.2 glass static u_char zs_read(volatile struct zschan *, u_char);
140 1.2 glass static u_char zs_write(volatile struct zschan *, u_char, u_char);
141 1.1 glass
142 1.1 glass /* Console stuff. */
143 1.1 glass static volatile struct zschan *zs_conschan;
144 1.1 glass
145 1.1 glass #ifdef KGDB
146 1.1 glass /* KGDB stuff. Must reboot to change zs_kgdbunit. */
147 1.1 glass extern int kgdb_dev, kgdb_rate;
148 1.1 glass static int zs_kgdb_savedspeed;
149 1.2 glass static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
150 1.1 glass #endif
151 1.1 glass
152 1.3 gwr static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
153 1.1 glass
154 1.1 glass /*
155 1.1 glass * Console keyboard L1-A processing is done in the hardware interrupt code,
156 1.1 glass * so we need to duplicate some of the console keyboard decode state. (We
157 1.1 glass * must not use the regular state as the hardware code keeps ahead of the
158 1.1 glass * software state: the software state tracks the most recent ring input but
159 1.1 glass * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
160 1.1 glass */
161 1.1 glass static struct conk_state { /* console keyboard state */
162 1.1 glass char conk_id; /* true => ID coming up (console only) */
163 1.1 glass char conk_l1; /* true => L1 pressed (console only) */
164 1.1 glass } zsconk_state;
165 1.1 glass
166 1.1 glass int zshardscope;
167 1.1 glass int zsshortcuts; /* number of "shortcut" software interrupts */
168 1.1 glass
169 1.1 glass /*
170 1.1 glass * Match slave number to zs unit number, so that misconfiguration will
171 1.1 glass * not set up the keyboard as ttya, etc.
172 1.1 glass */
173 1.1 glass static int
174 1.1 glass zsmatch(struct device *parent, struct cfdata *cf, void *aux)
175 1.1 glass {
176 1.2 glass struct obio_cf_loc *obio_loc;
177 1.2 glass caddr_t zs_addr;
178 1.1 glass
179 1.2 glass obio_loc = (struct obio_cf_loc *) CFDATA_LOC(cf);
180 1.2 glass zs_addr = (caddr_t) obio_loc->obio_addr;
181 1.2 glass return !obio_probe_byte(zs_addr);
182 1.1 glass }
183 1.1 glass
184 1.1 glass /*
185 1.1 glass * Attach a found zs.
186 1.1 glass *
187 1.1 glass * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
188 1.1 glass * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
189 1.1 glass */
190 1.1 glass static void
191 1.1 glass zsattach(struct device *parent, struct device *dev, void *aux)
192 1.1 glass {
193 1.2 glass struct obio_cf_loc *obio_loc = OBIO_LOC(dev);
194 1.1 glass register int zs = dev->dv_unit, unit;
195 1.1 glass register struct zsinfo *zi;
196 1.1 glass register struct zs_chanstate *cs;
197 1.1 glass register volatile struct zsdevice *addr;
198 1.1 glass register struct tty *tp, *ctp;
199 1.2 glass int softcar;
200 1.2 glass static int didintr;
201 1.2 glass caddr_t obio_addr;
202 1.2 glass
203 1.2 glass obio_addr = (caddr_t)obio_loc->obio_addr;
204 1.2 glass obio_print(obio_addr, ZSSOFT_PRI);
205 1.2 glass printf(" hwpri %d\n", ZSHARD_PRI);
206 1.1 glass
207 1.3 gwr if ((addr = zsaddr[zs]) == NULL) {
208 1.3 gwr zsaddr[zs] = addr = (struct zsdevice *)
209 1.3 gwr obio_alloc(obio_addr, OBIO_ZS_SIZE, OBIO_WRITE);
210 1.3 gwr }
211 1.1 glass
212 1.1 glass if (!didintr) {
213 1.2 glass didintr = 1;
214 1.2 glass isr_add(ZSSOFT_PRI, zssoft, 0);
215 1.2 glass isr_add(ZSHARD_PRI, zshard, 0);
216 1.1 glass }
217 1.2 glass
218 1.1 glass zi = (struct zsinfo *)dev;
219 1.1 glass zi->zi_zs = addr;
220 1.1 glass unit = zs * 2;
221 1.1 glass cs = zi->zi_cs;
222 1.1 glass
223 1.1 glass if(!zs_tty[unit])
224 1.1 glass zs_tty[unit] = ttymalloc();
225 1.1 glass tp = zs_tty[unit];
226 1.1 glass if(!zs_tty[unit+1])
227 1.1 glass zs_tty[unit+1] = ttymalloc();
228 1.2 glass
229 1.1 glass if (unit == 0) {
230 1.1 glass softcar = 0;
231 1.1 glass } else
232 1.1 glass softcar = dev->dv_cfdata->cf_flags;
233 1.1 glass
234 1.1 glass /* link into interrupt list with order (A,B) (B=A+1) */
235 1.1 glass cs[0].cs_next = &cs[1];
236 1.1 glass cs[1].cs_next = zslist;
237 1.1 glass zslist = cs;
238 1.1 glass
239 1.1 glass cs->cs_unit = unit;
240 1.2 glass cs->cs_zc = &addr->zs_chan[CHAN_A];
241 1.2 glass cs->cs_speed = zs_getspeed(cs->cs_zc);
242 1.2 glass #ifdef DEBUG
243 1.3 gwr mon_printf("zs%da speed %d ", zs, cs->cs_speed);
244 1.2 glass #endif
245 1.1 glass cs->cs_softcar = softcar & 1;
246 1.2 glass #if 0
247 1.2 glass /* XXX - Drop carrier here? -gwr */
248 1.2 glass zs_modem(cs, cs->cs_softcar ? 1 : 0);
249 1.2 glass #endif
250 1.3 gwr cs->cs_ttyp = tp;
251 1.1 glass tp->t_dev = makedev(ZSMAJOR, unit);
252 1.1 glass tp->t_oproc = zsstart;
253 1.1 glass tp->t_param = zsparam;
254 1.1 glass /*tp->t_stop = zsstop;*/
255 1.3 gwr if (cs->cs_zc == zs_conschan) {
256 1.3 gwr /* This unit is the console. */
257 1.3 gwr cs->cs_consio = 1;
258 1.3 gwr cs->cs_brkabort = 1;
259 1.3 gwr cs->cs_softcar = 1;
260 1.3 gwr } else {
261 1.3 gwr /* Can not run kgdb on the console? */
262 1.1 glass #ifdef KGDB
263 1.1 glass zs_checkkgdb(unit, cs, tp);
264 1.1 glass #endif
265 1.3 gwr }
266 1.1 glass if (unit == ZS_KBD) {
267 1.1 glass /*
268 1.1 glass * Keyboard: tell /dev/kbd driver how to talk to us.
269 1.1 glass */
270 1.1 glass tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
271 1.1 glass tp->t_cflag = CS8;
272 1.1 glass kbd_serial(tp, zsiopen, zsiclose);
273 1.1 glass cs->cs_conk = 1; /* do L1-A processing */
274 1.1 glass }
275 1.1 glass unit++;
276 1.1 glass cs++;
277 1.1 glass tp = zs_tty[unit];
278 1.2 glass
279 1.1 glass cs->cs_unit = unit;
280 1.2 glass cs->cs_zc = &addr->zs_chan[CHAN_B];
281 1.2 glass cs->cs_speed = zs_getspeed(cs->cs_zc);
282 1.2 glass #ifdef DEBUG
283 1.3 gwr mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
284 1.2 glass #endif
285 1.1 glass cs->cs_softcar = softcar & 2;
286 1.2 glass #if 0
287 1.2 glass /* XXX - Drop carrier here? -gwr */
288 1.2 glass zs_modem(cs, cs->cs_softcar ? 1 : 0);
289 1.2 glass #endif
290 1.3 gwr cs->cs_ttyp = tp;
291 1.1 glass tp->t_dev = makedev(ZSMAJOR, unit);
292 1.1 glass tp->t_oproc = zsstart;
293 1.1 glass tp->t_param = zsparam;
294 1.1 glass /*tp->t_stop = zsstop;*/
295 1.3 gwr if (cs->cs_zc == zs_conschan) {
296 1.3 gwr /* This unit is the console. */
297 1.3 gwr cs->cs_consio = 1;
298 1.3 gwr cs->cs_brkabort = 1;
299 1.3 gwr cs->cs_softcar = 1;
300 1.3 gwr } else {
301 1.3 gwr /* Can not run kgdb on the console? */
302 1.1 glass #ifdef KGDB
303 1.1 glass zs_checkkgdb(unit, cs, tp);
304 1.1 glass #endif
305 1.3 gwr }
306 1.1 glass if (unit == ZS_MOUSE) {
307 1.1 glass /*
308 1.1 glass * Mouse: tell /dev/mouse driver how to talk to us.
309 1.1 glass */
310 1.1 glass tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
311 1.1 glass tp->t_cflag = CS8;
312 1.1 glass ms_serial(tp, zsiopen, zsiclose);
313 1.1 glass }
314 1.1 glass }
315 1.1 glass
316 1.1 glass /*
317 1.1 glass * Put a channel in a known state. Interrupts may be left disabled
318 1.1 glass * or enabled, as desired.
319 1.1 glass */
320 1.1 glass static void
321 1.1 glass zs_reset(zc, inten, speed)
322 1.1 glass volatile struct zschan *zc;
323 1.1 glass int inten, speed;
324 1.1 glass {
325 1.1 glass int tconst;
326 1.1 glass static u_char reg[16] = {
327 1.1 glass 0,
328 1.1 glass 0,
329 1.1 glass 0,
330 1.1 glass ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
331 1.1 glass ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
332 1.1 glass ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
333 1.1 glass 0,
334 1.1 glass 0,
335 1.1 glass 0,
336 1.1 glass 0,
337 1.1 glass ZSWR10_NRZ,
338 1.1 glass ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
339 1.1 glass 0,
340 1.1 glass 0,
341 1.1 glass ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
342 1.1 glass ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
343 1.1 glass };
344 1.1 glass
345 1.1 glass reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
346 1.1 glass tconst = BPS_TO_TCONST(PCLK / 16, speed);
347 1.1 glass reg[12] = tconst;
348 1.1 glass reg[13] = tconst >> 8;
349 1.1 glass zs_loadchannelregs(zc, reg);
350 1.1 glass }
351 1.1 glass
352 1.3 gwr /*
353 1.3 gwr * Console support
354 1.3 gwr */
355 1.2 glass
356 1.3 gwr /*
357 1.3 gwr * Used by the kd driver to find out if it can work.
358 1.3 gwr */
359 1.2 glass int
360 1.3 gwr zscnprobe_kbd()
361 1.2 glass {
362 1.3 gwr if (zs1_va == NULL) {
363 1.3 gwr mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
364 1.3 gwr return CN_DEAD;
365 1.3 gwr }
366 1.4 gwr zsaddr[1] = (struct zsdevice *)zs1_va;
367 1.3 gwr return CN_INTERNAL;
368 1.3 gwr }
369 1.3 gwr
370 1.3 gwr /*
371 1.3 gwr * This is the console probe routine for ttya and ttyb.
372 1.3 gwr */
373 1.3 gwr static int
374 1.3 gwr zscnprobe(struct consdev *cn, int unit)
375 1.3 gwr {
376 1.3 gwr int maj, eeCons;
377 1.3 gwr
378 1.3 gwr if (zs0_va == NULL) {
379 1.3 gwr mon_printf("zscnprobe: zs0 not yet mapped\n");
380 1.3 gwr cn->cn_pri = CN_DEAD;
381 1.3 gwr return 0;
382 1.3 gwr }
383 1.3 gwr zsaddr[0] = (struct zsdevice *)zs0_va;
384 1.3 gwr /* XXX - Also try to make sure it exists? */
385 1.2 glass
386 1.2 glass /* locate the major number */
387 1.2 glass for (maj = 0; maj < nchrdev; maj++)
388 1.2 glass if (cdevsw[maj].d_open == zsopen)
389 1.2 glass break;
390 1.3 gwr
391 1.3 gwr cn->cn_dev = makedev(maj, unit);
392 1.3 gwr
393 1.3 gwr /* Use EEPROM console setting to decide "remote" console. */
394 1.3 gwr if (eeprom_va == NULL) {
395 1.3 gwr mon_printf("zscnprobe: eeprom not yet mapped\n");
396 1.3 gwr eeCons = -1;
397 1.3 gwr } else {
398 1.3 gwr eeCons = ((struct eeprom *)eeprom_va)->eeConsole;
399 1.2 glass }
400 1.2 glass
401 1.3 gwr /* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
402 1.3 gwr if (eeCons == (EE_CONS_TTYA + unit)) {
403 1.3 gwr cn->cn_pri = CN_REMOTE;
404 1.3 gwr } else {
405 1.3 gwr cn->cn_pri = CN_NORMAL;
406 1.3 gwr }
407 1.2 glass return (0);
408 1.2 glass }
409 1.2 glass
410 1.3 gwr /* This is the constab entry for TTYA. */
411 1.2 glass int
412 1.3 gwr zscnprobe_a(struct consdev *cn)
413 1.2 glass {
414 1.3 gwr return (zscnprobe(cn, 0));
415 1.3 gwr }
416 1.2 glass
417 1.3 gwr /* This is the constab entry for TTYB. */
418 1.3 gwr int
419 1.3 gwr zscnprobe_b(struct consdev *cn)
420 1.3 gwr {
421 1.3 gwr return (zscnprobe(cn, 1));
422 1.2 glass }
423 1.2 glass
424 1.3 gwr /* Attach as console. Also set zs_conschan */
425 1.3 gwr int
426 1.3 gwr zscninit(struct consdev *cn)
427 1.1 glass {
428 1.3 gwr int unit;
429 1.1 glass volatile struct zsdevice *addr;
430 1.1 glass
431 1.3 gwr unit = minor(cn->cn_dev) & 1;
432 1.3 gwr addr = (struct zsdevice *)zs0_va;
433 1.3 gwr zs_conschan = ((unit == 0) ?
434 1.3 gwr &addr->zs_chan[CHAN_A] :
435 1.3 gwr &addr->zs_chan[CHAN_B] );
436 1.3 gwr
437 1.3 gwr mon_printf("console on zs0 (tty%c)\n", unit + 'a');
438 1.1 glass }
439 1.3 gwr
440 1.1 glass
441 1.2 glass /*
442 1.2 glass * Polled console input putchar.
443 1.2 glass */
444 1.2 glass int
445 1.4 gwr zscngetc(dev)
446 1.4 gwr dev_t dev;
447 1.2 glass {
448 1.2 glass register volatile struct zschan *zc = zs_conschan;
449 1.2 glass register int s, c;
450 1.2 glass
451 1.2 glass if (zc == NULL)
452 1.2 glass return (0);
453 1.2 glass
454 1.2 glass s = splhigh();
455 1.2 glass while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
456 1.3 gwr ZS_DELAY();
457 1.3 gwr ZS_DELAY();
458 1.2 glass c = zc->zc_data;
459 1.2 glass splx(s);
460 1.2 glass return (c);
461 1.2 glass }
462 1.1 glass
463 1.1 glass /*
464 1.1 glass * Polled console output putchar.
465 1.1 glass */
466 1.2 glass int
467 1.4 gwr zscnputc(dev, c)
468 1.4 gwr dev_t dev;
469 1.1 glass int c;
470 1.1 glass {
471 1.1 glass register volatile struct zschan *zc = zs_conschan;
472 1.1 glass register int s;
473 1.1 glass
474 1.4 gwr if (zc == NULL) {
475 1.4 gwr s = splhigh();
476 1.4 gwr mon_putchar(c);
477 1.4 gwr splx(s);
478 1.2 glass return (0);
479 1.4 gwr }
480 1.2 glass
481 1.1 glass s = splhigh();
482 1.1 glass while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
483 1.3 gwr ZS_DELAY();
484 1.3 gwr ZS_DELAY();
485 1.1 glass zc->zc_data = c;
486 1.3 gwr ZS_DELAY();
487 1.1 glass splx(s);
488 1.1 glass }
489 1.2 glass
490 1.1 glass #ifdef KGDB
491 1.1 glass /*
492 1.1 glass * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
493 1.1 glass * Pick up the current speed and character size and restore the original
494 1.1 glass * speed.
495 1.1 glass */
496 1.1 glass static void
497 1.1 glass zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
498 1.1 glass {
499 1.1 glass
500 1.1 glass if (kgdb_dev == makedev(ZSMAJOR, unit)) {
501 1.1 glass tp->t_ispeed = tp->t_ospeed = kgdb_rate;
502 1.1 glass tp->t_cflag = CS8;
503 1.1 glass cs->cs_kgdb = 1;
504 1.1 glass cs->cs_speed = zs_kgdb_savedspeed;
505 1.1 glass (void) zsparam(tp, &tp->t_termios);
506 1.1 glass }
507 1.1 glass }
508 1.1 glass #endif
509 1.1 glass
510 1.1 glass /*
511 1.1 glass * Compute the current baud rate given a ZSCC channel.
512 1.1 glass */
513 1.1 glass static int
514 1.1 glass zs_getspeed(zc)
515 1.1 glass register volatile struct zschan *zc;
516 1.1 glass {
517 1.1 glass register int tconst;
518 1.1 glass
519 1.1 glass tconst = ZS_READ(zc, 12);
520 1.1 glass tconst |= ZS_READ(zc, 13) << 8;
521 1.1 glass return (TCONST_TO_BPS(PCLK / 16, tconst));
522 1.1 glass }
523 1.1 glass
524 1.1 glass
525 1.1 glass /*
526 1.1 glass * Do an internal open.
527 1.1 glass */
528 1.1 glass static void
529 1.1 glass zsiopen(struct tty *tp)
530 1.1 glass {
531 1.1 glass
532 1.1 glass (void) zsparam(tp, &tp->t_termios);
533 1.1 glass ttsetwater(tp);
534 1.1 glass tp->t_state = TS_ISOPEN | TS_CARR_ON;
535 1.1 glass }
536 1.1 glass
537 1.1 glass /*
538 1.1 glass * Do an internal close. Eventually we should shut off the chip when both
539 1.1 glass * ports on it are closed.
540 1.1 glass */
541 1.1 glass static void
542 1.1 glass zsiclose(struct tty *tp)
543 1.1 glass {
544 1.1 glass
545 1.1 glass ttylclose(tp, 0); /* ??? */
546 1.1 glass ttyclose(tp); /* ??? */
547 1.1 glass tp->t_state = 0;
548 1.1 glass }
549 1.1 glass
550 1.1 glass
551 1.1 glass /*
552 1.1 glass * Open a zs serial port. This interface may not be used to open
553 1.1 glass * the keyboard and mouse ports. (XXX)
554 1.1 glass */
555 1.1 glass int
556 1.1 glass zsopen(dev_t dev, int flags, int mode, struct proc *p)
557 1.1 glass {
558 1.1 glass register struct tty *tp;
559 1.1 glass register struct zs_chanstate *cs;
560 1.1 glass struct zsinfo *zi;
561 1.1 glass int unit = minor(dev), zs = unit >> 1, error, s;
562 1.1 glass
563 1.2 glass #ifdef DEBUG
564 1.3 gwr mon_printf("zs_open\n");
565 1.2 glass #endif
566 1.1 glass if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
567 1.1 glass unit == ZS_KBD || unit == ZS_MOUSE)
568 1.1 glass return (ENXIO);
569 1.1 glass cs = &zi->zi_cs[unit & 1];
570 1.3 gwr #if 0
571 1.3 gwr /* The kd driver avoids the need for this hack. */
572 1.1 glass if (cs->cs_consio)
573 1.1 glass return (ENXIO); /* ??? */
574 1.3 gwr #endif
575 1.1 glass tp = cs->cs_ttyp;
576 1.1 glass s = spltty();
577 1.1 glass if ((tp->t_state & TS_ISOPEN) == 0) {
578 1.1 glass ttychars(tp);
579 1.1 glass if (tp->t_ispeed == 0) {
580 1.1 glass tp->t_iflag = TTYDEF_IFLAG;
581 1.1 glass tp->t_oflag = TTYDEF_OFLAG;
582 1.1 glass tp->t_cflag = TTYDEF_CFLAG;
583 1.1 glass tp->t_lflag = TTYDEF_LFLAG;
584 1.1 glass tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
585 1.1 glass }
586 1.1 glass (void) zsparam(tp, &tp->t_termios);
587 1.1 glass ttsetwater(tp);
588 1.1 glass } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
589 1.1 glass splx(s);
590 1.1 glass return (EBUSY);
591 1.1 glass }
592 1.1 glass error = 0;
593 1.3 gwr #ifdef DEBUG
594 1.3 gwr mon_printf("wait for carrier...\n");
595 1.3 gwr #endif
596 1.1 glass for (;;) {
597 1.1 glass /* loop, turning on the device, until carrier present */
598 1.1 glass zs_modem(cs, 1);
599 1.2 glass /* May never get status intr if carrier already on. -gwr */
600 1.2 glass if (cs->cs_zc->zc_csr & ZSRR0_DCD)
601 1.2 glass tp->t_state |= TS_CARR_ON;
602 1.1 glass if (cs->cs_softcar)
603 1.1 glass tp->t_state |= TS_CARR_ON;
604 1.1 glass if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
605 1.1 glass tp->t_state & TS_CARR_ON)
606 1.1 glass break;
607 1.1 glass tp->t_state |= TS_WOPEN;
608 1.1 glass if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
609 1.1 glass ttopen, 0))
610 1.1 glass break;
611 1.1 glass }
612 1.3 gwr #ifdef DEBUG
613 1.3 gwr mon_printf("...carrier %s\n",
614 1.3 gwr (tp->t_state & TS_CARR_ON) ? "on" : "off");
615 1.3 gwr #endif
616 1.1 glass splx(s);
617 1.1 glass if (error == 0)
618 1.1 glass error = linesw[tp->t_line].l_open(dev, tp);
619 1.1 glass if (error)
620 1.1 glass zs_modem(cs, 0);
621 1.1 glass return (error);
622 1.1 glass }
623 1.1 glass
624 1.1 glass /*
625 1.1 glass * Close a zs serial port.
626 1.1 glass */
627 1.1 glass int
628 1.1 glass zsclose(dev_t dev, int flags, int mode, struct proc *p)
629 1.1 glass {
630 1.1 glass register struct zs_chanstate *cs;
631 1.1 glass register struct tty *tp;
632 1.1 glass struct zsinfo *zi;
633 1.1 glass int unit = minor(dev), s;
634 1.1 glass
635 1.3 gwr #ifdef DEBUG
636 1.3 gwr mon_printf("zs_close\n");
637 1.3 gwr #endif
638 1.1 glass zi = zscd.cd_devs[unit >> 1];
639 1.1 glass cs = &zi->zi_cs[unit & 1];
640 1.1 glass tp = cs->cs_ttyp;
641 1.1 glass linesw[tp->t_line].l_close(tp, flags);
642 1.1 glass if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
643 1.1 glass (tp->t_state & TS_ISOPEN) == 0) {
644 1.1 glass zs_modem(cs, 0);
645 1.1 glass /* hold low for 1 second */
646 1.1 glass (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
647 1.1 glass }
648 1.1 glass ttyclose(tp);
649 1.1 glass #ifdef KGDB
650 1.1 glass /* Reset the speed if we're doing kgdb on this port */
651 1.1 glass if (cs->cs_kgdb) {
652 1.1 glass tp->t_ispeed = tp->t_ospeed = kgdb_rate;
653 1.1 glass (void) zsparam(tp, &tp->t_termios);
654 1.1 glass }
655 1.1 glass #endif
656 1.1 glass return (0);
657 1.1 glass }
658 1.1 glass
659 1.1 glass /*
660 1.1 glass * Read/write zs serial port.
661 1.1 glass */
662 1.1 glass int
663 1.1 glass zsread(dev_t dev, struct uio *uio, int flags)
664 1.1 glass {
665 1.1 glass register struct tty *tp = zs_tty[minor(dev)];
666 1.1 glass
667 1.1 glass return (linesw[tp->t_line].l_read(tp, uio, flags));
668 1.1 glass }
669 1.1 glass
670 1.1 glass int
671 1.1 glass zswrite(dev_t dev, struct uio *uio, int flags)
672 1.1 glass {
673 1.1 glass register struct tty *tp = zs_tty[minor(dev)];
674 1.1 glass
675 1.1 glass return (linesw[tp->t_line].l_write(tp, uio, flags));
676 1.1 glass }
677 1.1 glass
678 1.1 glass /*
679 1.1 glass * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
680 1.1 glass * channels are kept in (A,B) pairs.
681 1.1 glass *
682 1.1 glass * Do just a little, then get out; set a software interrupt if more
683 1.1 glass * work is needed.
684 1.1 glass *
685 1.1 glass * We deliberately ignore the vectoring Zilog gives us, and match up
686 1.1 glass * only the number of `reset interrupt under service' operations, not
687 1.1 glass * the order.
688 1.1 glass */
689 1.1 glass /* ARGSUSED */
690 1.1 glass int
691 1.1 glass zshard(int intrarg)
692 1.1 glass {
693 1.1 glass register struct zs_chanstate *a;
694 1.1 glass #define b (a + 1)
695 1.1 glass register volatile struct zschan *zc;
696 1.1 glass register int rr3, intflags = 0, v, i;
697 1.1 glass static int zsrint(struct zs_chanstate *, volatile struct zschan *);
698 1.1 glass static int zsxint(struct zs_chanstate *, volatile struct zschan *);
699 1.1 glass static int zssint(struct zs_chanstate *, volatile struct zschan *);
700 1.1 glass
701 1.1 glass for (a = zslist; a != NULL; a = b->cs_next) {
702 1.1 glass rr3 = ZS_READ(a->cs_zc, 3);
703 1.3 gwr
704 1.3 gwr /* XXX - This should loop to empty the on-chip fifo. */
705 1.1 glass if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
706 1.1 glass intflags |= 2;
707 1.1 glass zc = a->cs_zc;
708 1.1 glass i = a->cs_rbput;
709 1.1 glass if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
710 1.1 glass a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
711 1.1 glass intflags |= 1;
712 1.1 glass }
713 1.1 glass if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
714 1.1 glass a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
715 1.1 glass intflags |= 1;
716 1.1 glass }
717 1.1 glass if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
718 1.1 glass a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
719 1.1 glass intflags |= 1;
720 1.1 glass }
721 1.1 glass a->cs_rbput = i;
722 1.1 glass }
723 1.3 gwr
724 1.3 gwr /* XXX - This should loop to empty the on-chip fifo. */
725 1.1 glass if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
726 1.1 glass intflags |= 2;
727 1.1 glass zc = b->cs_zc;
728 1.1 glass i = b->cs_rbput;
729 1.1 glass if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
730 1.1 glass b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
731 1.1 glass intflags |= 1;
732 1.1 glass }
733 1.1 glass if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
734 1.1 glass b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
735 1.1 glass intflags |= 1;
736 1.1 glass }
737 1.1 glass if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
738 1.1 glass b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
739 1.1 glass intflags |= 1;
740 1.1 glass }
741 1.1 glass b->cs_rbput = i;
742 1.1 glass }
743 1.1 glass }
744 1.1 glass #undef b
745 1.1 glass if (intflags & 1) {
746 1.2 glass isr_soft_request(ZSSOFT_PRI);
747 1.1 glass }
748 1.1 glass return (intflags & 2);
749 1.1 glass }
750 1.1 glass
751 1.1 glass static int
752 1.1 glass zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
753 1.1 glass {
754 1.1 glass register int c = zc->zc_data;
755 1.1 glass
756 1.1 glass if (cs->cs_conk) {
757 1.1 glass register struct conk_state *conk = &zsconk_state;
758 1.1 glass
759 1.1 glass /*
760 1.1 glass * Check here for console abort function, so that we
761 1.1 glass * can abort even when interrupts are locking up the
762 1.1 glass * machine.
763 1.1 glass */
764 1.1 glass if (c == KBD_RESET) {
765 1.1 glass conk->conk_id = 1; /* ignore next byte */
766 1.1 glass conk->conk_l1 = 0;
767 1.1 glass } else if (conk->conk_id)
768 1.1 glass conk->conk_id = 0; /* stop ignoring bytes */
769 1.1 glass else if (c == KBD_L1)
770 1.1 glass conk->conk_l1 = 1; /* L1 went down */
771 1.1 glass else if (c == (KBD_L1|KBD_UP))
772 1.1 glass conk->conk_l1 = 0; /* L1 went up */
773 1.1 glass else if (c == KBD_A && conk->conk_l1) {
774 1.1 glass zsabort();
775 1.1 glass conk->conk_l1 = 0; /* we never see the up */
776 1.1 glass goto clearit; /* eat the A after L1-A */
777 1.1 glass }
778 1.1 glass }
779 1.1 glass #ifdef KGDB
780 1.1 glass if (c == FRAME_START && cs->cs_kgdb &&
781 1.1 glass (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
782 1.1 glass zskgdb(cs->cs_unit);
783 1.1 glass goto clearit;
784 1.1 glass }
785 1.1 glass #endif
786 1.1 glass /* compose receive character and status */
787 1.1 glass c <<= 8;
788 1.1 glass c |= ZS_READ(zc, 1);
789 1.1 glass
790 1.1 glass /* clear receive error & interrupt condition */
791 1.1 glass zc->zc_csr = ZSWR0_RESET_ERRORS;
792 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
793 1.1 glass
794 1.1 glass return (ZRING_MAKE(ZRING_RINT, c));
795 1.1 glass
796 1.1 glass clearit:
797 1.1 glass zc->zc_csr = ZSWR0_RESET_ERRORS;
798 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
799 1.1 glass return (0);
800 1.1 glass }
801 1.1 glass
802 1.1 glass static int
803 1.1 glass zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
804 1.1 glass {
805 1.1 glass register int i = cs->cs_tbc;
806 1.1 glass
807 1.1 glass if (i == 0) {
808 1.1 glass zc->zc_csr = ZSWR0_RESET_TXINT;
809 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
810 1.1 glass return (ZRING_MAKE(ZRING_XINT, 0));
811 1.1 glass }
812 1.1 glass cs->cs_tbc = i - 1;
813 1.1 glass zc->zc_data = *cs->cs_tba++;
814 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
815 1.1 glass return (0);
816 1.1 glass }
817 1.1 glass
818 1.1 glass static int
819 1.1 glass zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
820 1.1 glass {
821 1.1 glass register int rr0;
822 1.1 glass
823 1.1 glass rr0 = zc->zc_csr;
824 1.1 glass zc->zc_csr = ZSWR0_RESET_STATUS;
825 1.1 glass zc->zc_csr = ZSWR0_CLR_INTR;
826 1.1 glass /*
827 1.1 glass * The chip's hardware flow control is, as noted in zsreg.h,
828 1.1 glass * busted---if the DCD line goes low the chip shuts off the
829 1.1 glass * receiver (!). If we want hardware CTS flow control but do
830 1.1 glass * not have it, and carrier is now on, turn HFC on; if we have
831 1.1 glass * HFC now but carrier has gone low, turn it off.
832 1.1 glass */
833 1.1 glass if (rr0 & ZSRR0_DCD) {
834 1.1 glass if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
835 1.1 glass (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
836 1.1 glass cs->cs_creg[3] |= ZSWR3_HFC;
837 1.1 glass ZS_WRITE(zc, 3, cs->cs_creg[3]);
838 1.1 glass }
839 1.1 glass } else {
840 1.1 glass if (cs->cs_creg[3] & ZSWR3_HFC) {
841 1.1 glass cs->cs_creg[3] &= ~ZSWR3_HFC;
842 1.1 glass ZS_WRITE(zc, 3, cs->cs_creg[3]);
843 1.1 glass }
844 1.1 glass }
845 1.1 glass if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
846 1.3 gwr /* Wait for end of break to avoid PROM abort. */
847 1.3 gwr while (zc->zc_csr & ZSRR0_BREAK)
848 1.3 gwr ZS_DELAY();
849 1.1 glass zsabort();
850 1.1 glass return (0);
851 1.1 glass }
852 1.1 glass return (ZRING_MAKE(ZRING_SINT, rr0));
853 1.1 glass }
854 1.1 glass
855 1.1 glass zsabort()
856 1.1 glass {
857 1.3 gwr #ifdef DDB
858 1.3 gwr Debugger();
859 1.3 gwr #else
860 1.1 glass printf("stopping on keyboard abort\n");
861 1.3 gwr sun3_rom_abort();
862 1.3 gwr #endif
863 1.1 glass }
864 1.1 glass
865 1.1 glass #ifdef KGDB
866 1.1 glass /*
867 1.1 glass * KGDB framing character received: enter kernel debugger. This probably
868 1.1 glass * should time out after a few seconds to avoid hanging on spurious input.
869 1.1 glass */
870 1.1 glass zskgdb(int unit)
871 1.1 glass {
872 1.1 glass
873 1.1 glass printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
874 1.1 glass kgdb_connect(1);
875 1.1 glass }
876 1.1 glass #endif
877 1.1 glass
878 1.1 glass /*
879 1.1 glass * Print out a ring or fifo overrun error message.
880 1.1 glass */
881 1.1 glass static void
882 1.1 glass zsoverrun(int unit, long *ptime, char *what)
883 1.1 glass {
884 1.1 glass
885 1.1 glass if (*ptime != time.tv_sec) {
886 1.1 glass *ptime = time.tv_sec;
887 1.1 glass log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
888 1.1 glass (unit & 1) + 'a', what);
889 1.1 glass }
890 1.1 glass }
891 1.1 glass
892 1.1 glass /*
893 1.1 glass * ZS software interrupt. Scan all channels for deferred interrupts.
894 1.1 glass */
895 1.1 glass int
896 1.1 glass zssoft(int arg)
897 1.1 glass {
898 1.1 glass register struct zs_chanstate *cs;
899 1.1 glass register volatile struct zschan *zc;
900 1.1 glass register struct linesw *line;
901 1.1 glass register struct tty *tp;
902 1.1 glass register int get, n, c, cc, unit, s;
903 1.1 glass
904 1.2 glass isr_soft_clear(ZSSOFT_PRI);
905 1.2 glass
906 1.1 glass for (cs = zslist; cs != NULL; cs = cs->cs_next) {
907 1.1 glass get = cs->cs_rbget;
908 1.1 glass again:
909 1.1 glass n = cs->cs_rbput; /* atomic */
910 1.1 glass if (get == n) /* nothing more on this line */
911 1.1 glass continue;
912 1.1 glass unit = cs->cs_unit; /* set up to handle interrupts */
913 1.1 glass zc = cs->cs_zc;
914 1.1 glass tp = cs->cs_ttyp;
915 1.1 glass line = &linesw[tp->t_line];
916 1.1 glass /*
917 1.1 glass * Compute the number of interrupts in the receive ring.
918 1.1 glass * If the count is overlarge, we lost some events, and
919 1.1 glass * must advance to the first valid one. It may get
920 1.1 glass * overwritten if more data are arriving, but this is
921 1.1 glass * too expensive to check and gains nothing (we already
922 1.1 glass * lost out; all we can do at this point is trade one
923 1.1 glass * kind of loss for another).
924 1.1 glass */
925 1.1 glass n -= get;
926 1.1 glass if (n > ZLRB_RING_SIZE) {
927 1.1 glass zsoverrun(unit, &cs->cs_rotime, "ring");
928 1.1 glass get += n - ZLRB_RING_SIZE;
929 1.1 glass n = ZLRB_RING_SIZE;
930 1.1 glass }
931 1.1 glass while (--n >= 0) {
932 1.1 glass /* race to keep ahead of incoming interrupts */
933 1.1 glass c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
934 1.1 glass switch (ZRING_TYPE(c)) {
935 1.1 glass
936 1.1 glass case ZRING_RINT:
937 1.1 glass c = ZRING_VALUE(c);
938 1.1 glass if (c & ZSRR1_DO)
939 1.1 glass zsoverrun(unit, &cs->cs_fotime, "fifo");
940 1.1 glass cc = c >> 8;
941 1.1 glass if (c & ZSRR1_FE)
942 1.1 glass cc |= TTY_FE;
943 1.1 glass if (c & ZSRR1_PE)
944 1.1 glass cc |= TTY_PE;
945 1.1 glass /*
946 1.1 glass * this should be done through
947 1.1 glass * bstreams XXX gag choke
948 1.1 glass */
949 1.1 glass if (unit == ZS_KBD)
950 1.1 glass kbd_rint(cc);
951 1.1 glass else if (unit == ZS_MOUSE)
952 1.1 glass ms_rint(cc);
953 1.1 glass else
954 1.1 glass line->l_rint(cc, tp);
955 1.1 glass break;
956 1.1 glass
957 1.1 glass case ZRING_XINT:
958 1.1 glass /*
959 1.1 glass * Transmit done: change registers and resume,
960 1.1 glass * or clear BUSY.
961 1.1 glass */
962 1.1 glass if (cs->cs_heldchange) {
963 1.1 glass s = splzs();
964 1.1 glass c = zc->zc_csr;
965 1.1 glass if ((c & ZSRR0_DCD) == 0)
966 1.1 glass cs->cs_preg[3] &= ~ZSWR3_HFC;
967 1.1 glass bcopy((caddr_t)cs->cs_preg,
968 1.1 glass (caddr_t)cs->cs_creg, 16);
969 1.1 glass zs_loadchannelregs(zc, cs->cs_creg);
970 1.1 glass splx(s);
971 1.1 glass cs->cs_heldchange = 0;
972 1.1 glass if (cs->cs_heldtbc &&
973 1.1 glass (tp->t_state & TS_TTSTOP) == 0) {
974 1.1 glass cs->cs_tbc = cs->cs_heldtbc - 1;
975 1.1 glass zc->zc_data = *cs->cs_tba++;
976 1.1 glass goto again;
977 1.1 glass }
978 1.1 glass }
979 1.1 glass tp->t_state &= ~TS_BUSY;
980 1.1 glass if (tp->t_state & TS_FLUSH)
981 1.1 glass tp->t_state &= ~TS_FLUSH;
982 1.1 glass else
983 1.1 glass ndflush(&tp->t_outq,
984 1.5 gwr (char *)cs->cs_tba - tp->t_outq.c_cf);
985 1.1 glass line->l_start(tp);
986 1.1 glass break;
987 1.1 glass
988 1.1 glass case ZRING_SINT:
989 1.1 glass /*
990 1.1 glass * Status line change. HFC bit is run in
991 1.1 glass * hardware interrupt, to avoid locking
992 1.1 glass * at splzs here.
993 1.1 glass */
994 1.1 glass c = ZRING_VALUE(c);
995 1.1 glass if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
996 1.1 glass cc = (c & ZSRR0_DCD) != 0;
997 1.1 glass if (line->l_modem(tp, cc) == 0)
998 1.1 glass zs_modem(cs, cc);
999 1.1 glass }
1000 1.1 glass cs->cs_rr0 = c;
1001 1.1 glass break;
1002 1.1 glass
1003 1.1 glass default:
1004 1.1 glass log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1005 1.1 glass unit >> 1, (unit & 1) + 'a', c);
1006 1.1 glass break;
1007 1.1 glass }
1008 1.1 glass }
1009 1.1 glass cs->cs_rbget = get;
1010 1.1 glass goto again;
1011 1.1 glass }
1012 1.1 glass return (1);
1013 1.1 glass }
1014 1.1 glass
1015 1.1 glass int
1016 1.1 glass zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1017 1.1 glass {
1018 1.1 glass int unit = minor(dev);
1019 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1020 1.1 glass register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1021 1.1 glass register int error;
1022 1.1 glass
1023 1.2 glass error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1024 1.1 glass if (error >= 0)
1025 1.1 glass return (error);
1026 1.2 glass error = ttioctl(tp, cmd, data, flag, p);
1027 1.1 glass if (error >= 0)
1028 1.1 glass return (error);
1029 1.1 glass
1030 1.1 glass switch (cmd) {
1031 1.1 glass
1032 1.1 glass case TIOCSBRK:
1033 1.1 glass /* FINISH ME ... need implicit TIOCCBRK in zsclose as well */
1034 1.1 glass
1035 1.1 glass case TIOCCBRK:
1036 1.1 glass
1037 1.1 glass case TIOCSDTR:
1038 1.1 glass
1039 1.1 glass case TIOCCDTR:
1040 1.1 glass
1041 1.1 glass case TIOCMSET:
1042 1.1 glass
1043 1.1 glass case TIOCMBIS:
1044 1.1 glass
1045 1.1 glass case TIOCMBIC:
1046 1.1 glass
1047 1.1 glass case TIOCMGET:
1048 1.1 glass
1049 1.1 glass default:
1050 1.1 glass return (ENOTTY);
1051 1.1 glass }
1052 1.1 glass return (0);
1053 1.1 glass }
1054 1.1 glass
1055 1.1 glass /*
1056 1.1 glass * Start or restart transmission.
1057 1.1 glass */
1058 1.1 glass static void
1059 1.1 glass zsstart(register struct tty *tp)
1060 1.1 glass {
1061 1.1 glass register struct zs_chanstate *cs;
1062 1.1 glass register int s, nch;
1063 1.1 glass int unit = minor(tp->t_dev);
1064 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1065 1.1 glass
1066 1.1 glass cs = &zi->zi_cs[unit & 1];
1067 1.1 glass s = spltty();
1068 1.1 glass
1069 1.1 glass /*
1070 1.1 glass * If currently active or delaying, no need to do anything.
1071 1.1 glass */
1072 1.1 glass if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1073 1.1 glass goto out;
1074 1.1 glass
1075 1.1 glass /*
1076 1.1 glass * If there are sleepers, and output has drained below low
1077 1.1 glass * water mark, awaken.
1078 1.1 glass */
1079 1.1 glass if (tp->t_outq.c_cc <= tp->t_lowat) {
1080 1.1 glass if (tp->t_state & TS_ASLEEP) {
1081 1.1 glass tp->t_state &= ~TS_ASLEEP;
1082 1.1 glass wakeup((caddr_t)&tp->t_outq);
1083 1.1 glass }
1084 1.1 glass selwakeup(&tp->t_wsel);
1085 1.1 glass }
1086 1.1 glass
1087 1.1 glass nch = ndqb(&tp->t_outq, 0); /* XXX */
1088 1.1 glass if (nch) {
1089 1.1 glass register char *p = tp->t_outq.c_cf;
1090 1.1 glass
1091 1.1 glass /* mark busy, enable tx done interrupts, & send first byte */
1092 1.1 glass tp->t_state |= TS_BUSY;
1093 1.1 glass (void) splzs();
1094 1.1 glass cs->cs_preg[1] |= ZSWR1_TIE;
1095 1.1 glass cs->cs_creg[1] |= ZSWR1_TIE;
1096 1.1 glass ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1097 1.1 glass cs->cs_zc->zc_data = *p;
1098 1.1 glass cs->cs_tba = p + 1;
1099 1.1 glass cs->cs_tbc = nch - 1;
1100 1.1 glass } else {
1101 1.1 glass /*
1102 1.1 glass * Nothing to send, turn off transmit done interrupts.
1103 1.1 glass * This is useful if something is doing polled output.
1104 1.1 glass */
1105 1.1 glass (void) splzs();
1106 1.1 glass cs->cs_preg[1] &= ~ZSWR1_TIE;
1107 1.1 glass cs->cs_creg[1] &= ~ZSWR1_TIE;
1108 1.1 glass ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1109 1.1 glass }
1110 1.1 glass out:
1111 1.1 glass splx(s);
1112 1.1 glass }
1113 1.1 glass
1114 1.1 glass /*
1115 1.1 glass * Stop output, e.g., for ^S or output flush.
1116 1.1 glass */
1117 1.1 glass void
1118 1.1 glass zsstop(register struct tty *tp, int flag)
1119 1.1 glass {
1120 1.1 glass register struct zs_chanstate *cs;
1121 1.1 glass register int s, unit = minor(tp->t_dev);
1122 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1123 1.1 glass
1124 1.1 glass cs = &zi->zi_cs[unit & 1];
1125 1.1 glass s = splzs();
1126 1.1 glass if (tp->t_state & TS_BUSY) {
1127 1.1 glass /*
1128 1.1 glass * Device is transmitting; must stop it.
1129 1.1 glass */
1130 1.1 glass cs->cs_tbc = 0;
1131 1.1 glass if ((tp->t_state & TS_TTSTOP) == 0)
1132 1.1 glass tp->t_state |= TS_FLUSH;
1133 1.1 glass }
1134 1.1 glass splx(s);
1135 1.1 glass }
1136 1.1 glass
1137 1.1 glass /*
1138 1.1 glass * Set ZS tty parameters from termios.
1139 1.1 glass *
1140 1.1 glass * This routine makes use of the fact that only registers
1141 1.1 glass * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1142 1.1 glass */
1143 1.1 glass static int
1144 1.1 glass zsparam(register struct tty *tp, register struct termios *t)
1145 1.1 glass {
1146 1.1 glass int unit = minor(tp->t_dev);
1147 1.1 glass struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1148 1.1 glass register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1149 1.1 glass register int tmp, tmp5, cflag, s;
1150 1.1 glass
1151 1.1 glass /*
1152 1.1 glass * Because PCLK is only run at 4.9 MHz, the fastest we
1153 1.1 glass * can go is 51200 baud (this corresponds to TC=1).
1154 1.1 glass * This is somewhat unfortunate as there is no real
1155 1.1 glass * reason we should not be able to handle higher rates.
1156 1.1 glass */
1157 1.1 glass tmp = t->c_ospeed;
1158 1.1 glass if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1159 1.1 glass return (EINVAL);
1160 1.1 glass if (tmp == 0) {
1161 1.1 glass /* stty 0 => drop DTR and RTS */
1162 1.1 glass zs_modem(cs, 0);
1163 1.1 glass return (0);
1164 1.1 glass }
1165 1.1 glass tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1166 1.1 glass if (tmp < 2)
1167 1.1 glass return (EINVAL);
1168 1.1 glass
1169 1.1 glass cflag = t->c_cflag;
1170 1.1 glass tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1171 1.1 glass tp->t_cflag = cflag;
1172 1.1 glass
1173 1.1 glass /*
1174 1.1 glass * Block interrupts so that state will not
1175 1.1 glass * be altered until we are done setting it up.
1176 1.1 glass */
1177 1.1 glass s = splzs();
1178 1.1 glass cs->cs_preg[12] = tmp;
1179 1.1 glass cs->cs_preg[13] = tmp >> 8;
1180 1.1 glass cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1181 1.1 glass switch (cflag & CSIZE) {
1182 1.1 glass case CS5:
1183 1.1 glass tmp = ZSWR3_RX_5;
1184 1.1 glass tmp5 = ZSWR5_TX_5;
1185 1.1 glass break;
1186 1.1 glass case CS6:
1187 1.1 glass tmp = ZSWR3_RX_6;
1188 1.1 glass tmp5 = ZSWR5_TX_6;
1189 1.1 glass break;
1190 1.1 glass case CS7:
1191 1.1 glass tmp = ZSWR3_RX_7;
1192 1.1 glass tmp5 = ZSWR5_TX_7;
1193 1.1 glass break;
1194 1.1 glass case CS8:
1195 1.1 glass default:
1196 1.1 glass tmp = ZSWR3_RX_8;
1197 1.1 glass tmp5 = ZSWR5_TX_8;
1198 1.1 glass break;
1199 1.1 glass }
1200 1.1 glass
1201 1.1 glass /*
1202 1.1 glass * Output hardware flow control on the chip is horrendous: if
1203 1.1 glass * carrier detect drops, the receiver is disabled. Hence we
1204 1.1 glass * can only do this when the carrier is on.
1205 1.1 glass */
1206 1.1 glass if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1207 1.1 glass tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1208 1.1 glass else
1209 1.1 glass tmp |= ZSWR3_RX_ENABLE;
1210 1.1 glass cs->cs_preg[3] = tmp;
1211 1.1 glass cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1212 1.1 glass
1213 1.1 glass tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1214 1.1 glass if ((cflag & PARODD) == 0)
1215 1.1 glass tmp |= ZSWR4_EVENP;
1216 1.1 glass if (cflag & PARENB)
1217 1.1 glass tmp |= ZSWR4_PARENB;
1218 1.1 glass cs->cs_preg[4] = tmp;
1219 1.1 glass cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1220 1.1 glass cs->cs_preg[10] = ZSWR10_NRZ;
1221 1.1 glass cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1222 1.1 glass cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1223 1.1 glass cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1224 1.1 glass
1225 1.1 glass /*
1226 1.1 glass * If nothing is being transmitted, set up new current values,
1227 1.1 glass * else mark them as pending.
1228 1.1 glass */
1229 1.1 glass if (cs->cs_heldchange == 0) {
1230 1.1 glass if (cs->cs_ttyp->t_state & TS_BUSY) {
1231 1.1 glass cs->cs_heldtbc = cs->cs_tbc;
1232 1.1 glass cs->cs_tbc = 0;
1233 1.1 glass cs->cs_heldchange = 1;
1234 1.1 glass } else {
1235 1.1 glass bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1236 1.1 glass zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1237 1.1 glass }
1238 1.1 glass }
1239 1.1 glass splx(s);
1240 1.1 glass return (0);
1241 1.1 glass }
1242 1.1 glass
1243 1.1 glass /*
1244 1.1 glass * Raise or lower modem control (DTR/RTS) signals. If a character is
1245 1.1 glass * in transmission, the change is deferred.
1246 1.1 glass */
1247 1.1 glass static void
1248 1.1 glass zs_modem(struct zs_chanstate *cs, int onoff)
1249 1.1 glass {
1250 1.1 glass int s, bis, and;
1251 1.1 glass
1252 1.1 glass if (onoff) {
1253 1.1 glass bis = ZSWR5_DTR | ZSWR5_RTS;
1254 1.1 glass and = ~0;
1255 1.1 glass } else {
1256 1.1 glass bis = 0;
1257 1.1 glass and = ~(ZSWR5_DTR | ZSWR5_RTS);
1258 1.1 glass }
1259 1.1 glass s = splzs();
1260 1.1 glass cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1261 1.1 glass if (cs->cs_heldchange == 0) {
1262 1.1 glass if (cs->cs_ttyp->t_state & TS_BUSY) {
1263 1.1 glass cs->cs_heldtbc = cs->cs_tbc;
1264 1.1 glass cs->cs_tbc = 0;
1265 1.1 glass cs->cs_heldchange = 1;
1266 1.1 glass } else {
1267 1.1 glass cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1268 1.1 glass ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1269 1.1 glass }
1270 1.1 glass }
1271 1.1 glass splx(s);
1272 1.1 glass }
1273 1.1 glass
1274 1.1 glass /*
1275 1.1 glass * Write the given register set to the given zs channel in the proper order.
1276 1.1 glass * The channel must not be transmitting at the time. The receiver will
1277 1.1 glass * be disabled for the time it takes to write all the registers.
1278 1.1 glass */
1279 1.1 glass static void
1280 1.1 glass zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1281 1.1 glass {
1282 1.1 glass int i;
1283 1.1 glass
1284 1.1 glass zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1285 1.1 glass i = zc->zc_data; /* drain fifo */
1286 1.1 glass i = zc->zc_data;
1287 1.1 glass i = zc->zc_data;
1288 1.1 glass ZS_WRITE(zc, 4, reg[4]);
1289 1.1 glass ZS_WRITE(zc, 10, reg[10]);
1290 1.1 glass ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1291 1.1 glass ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1292 1.1 glass ZS_WRITE(zc, 1, reg[1]);
1293 1.1 glass ZS_WRITE(zc, 9, reg[9]);
1294 1.1 glass ZS_WRITE(zc, 11, reg[11]);
1295 1.1 glass ZS_WRITE(zc, 12, reg[12]);
1296 1.1 glass ZS_WRITE(zc, 13, reg[13]);
1297 1.1 glass ZS_WRITE(zc, 14, reg[14]);
1298 1.1 glass ZS_WRITE(zc, 15, reg[15]);
1299 1.1 glass ZS_WRITE(zc, 3, reg[3]);
1300 1.1 glass ZS_WRITE(zc, 5, reg[5]);
1301 1.1 glass }
1302 1.1 glass
1303 1.2 glass static u_char
1304 1.2 glass zs_read(zc, reg)
1305 1.2 glass volatile struct zschan *zc;
1306 1.2 glass u_char reg;
1307 1.2 glass {
1308 1.2 glass u_char val;
1309 1.2 glass
1310 1.2 glass zc->zc_csr = reg;
1311 1.3 gwr ZS_DELAY();
1312 1.2 glass val = zc->zc_csr;
1313 1.3 gwr ZS_DELAY();
1314 1.2 glass return val;
1315 1.2 glass }
1316 1.2 glass
1317 1.2 glass static u_char
1318 1.2 glass zs_write(zc, reg, val)
1319 1.2 glass volatile struct zschan *zc;
1320 1.2 glass u_char reg, val;
1321 1.2 glass {
1322 1.2 glass zc->zc_csr = reg;
1323 1.3 gwr ZS_DELAY();
1324 1.2 glass zc->zc_csr = val;
1325 1.3 gwr ZS_DELAY();
1326 1.2 glass return val;
1327 1.2 glass }
1328 1.2 glass
1329 1.1 glass #ifdef KGDB
1330 1.1 glass /*
1331 1.1 glass * Get a character from the given kgdb channel. Called at splhigh().
1332 1.1 glass */
1333 1.1 glass static int
1334 1.1 glass zs_kgdb_getc(void *arg)
1335 1.1 glass {
1336 1.1 glass register volatile struct zschan *zc = (volatile struct zschan *)arg;
1337 1.1 glass
1338 1.1 glass while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1339 1.1 glass continue;
1340 1.1 glass return (zc->zc_data);
1341 1.1 glass }
1342 1.1 glass
1343 1.1 glass /*
1344 1.1 glass * Put a character to the given kgdb channel. Called at splhigh().
1345 1.1 glass */
1346 1.1 glass static void
1347 1.1 glass zs_kgdb_putc(void *arg, int c)
1348 1.1 glass {
1349 1.1 glass register volatile struct zschan *zc = (volatile struct zschan *)arg;
1350 1.1 glass
1351 1.1 glass while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1352 1.1 glass continue;
1353 1.1 glass zc->zc_data = c;
1354 1.1 glass }
1355 1.1 glass
1356 1.1 glass /*
1357 1.1 glass * Set up for kgdb; called at boot time before configuration.
1358 1.1 glass * KGDB interrupts will be enabled later when zs0 is configured.
1359 1.1 glass */
1360 1.1 glass void
1361 1.1 glass zs_kgdb_init()
1362 1.1 glass {
1363 1.1 glass volatile struct zsdevice *addr;
1364 1.1 glass volatile struct zschan *zc;
1365 1.1 glass int unit, zs;
1366 1.1 glass
1367 1.1 glass if (major(kgdb_dev) != ZSMAJOR)
1368 1.1 glass return;
1369 1.1 glass unit = minor(kgdb_dev);
1370 1.1 glass /*
1371 1.1 glass * Unit must be 0 or 1 (zs0).
1372 1.1 glass */
1373 1.1 glass if ((unsigned)unit >= ZS_KBD) {
1374 1.1 glass printf("zs_kgdb_init: bad minor dev %d\n", unit);
1375 1.1 glass return;
1376 1.1 glass }
1377 1.1 glass zs = unit >> 1;
1378 1.1 glass unit &= 1;
1379 1.3 gwr
1380 1.3 gwr if ((addr = zs0_va) == NULL)
1381 1.3 gwr panic("kbdb_attach: zs0 not yet mapped");
1382 1.3 gwr
1383 1.1 glass zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1384 1.1 glass zs_kgdb_savedspeed = zs_getspeed(zc);
1385 1.1 glass printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1386 1.1 glass zs, unit + 'a', kgdb_rate);
1387 1.1 glass zs_reset(zc, 1, kgdb_rate);
1388 1.1 glass kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1389 1.1 glass }
1390 1.1 glass #endif /* KGDB */
1391