zs.c revision 1.12 1 /* $NetBSD: zs.c,v 1.12 1994/12/01 22:46:29 gwr Exp $ */
2
3 /*
4 * Copyright (c) 1994 Gordon W. Ross
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)zs.c 8.1 (Berkeley) 7/19/93
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/autoconf.h>
71 #include <machine/cpu.h>
72 #include <machine/obio.h>
73 #include <machine/mon.h>
74 #include <machine/eeprom.h>
75 #include <machine/kbd.h>
76
77 #include <dev/cons.h>
78
79 #include "zsreg.h"
80 #include "zsvar.h"
81
82 #ifdef KGDB
83 #include <machine/remote-sl.h>
84 #endif
85
86 #define ZSMAJOR 12 /* XXX */
87
88 #define ZS_KBD 2 /* XXX */
89 #define ZS_MOUSE 3 /* XXX */
90
91 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
92 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
93
94 /*
95 * Select software interrupt levels.
96 */
97 #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
98 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
99
100 /*
101 * Software state per found chip. This would be called `zs_softc',
102 * but the previous driver had a rather different zs_softc....
103 */
104 struct zsinfo {
105 struct device zi_dev; /* base device */
106 volatile struct zsdevice *zi_zs;/* chip registers */
107 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
108 };
109
110 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
111
112 /* Definition of the driver for autoconfig. */
113 static int zsmatch(struct device *, void *, void *);
114 static void zsattach(struct device *, struct device *, void *);
115 struct cfdriver zscd =
116 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
117
118 /* Interrupt handlers. */
119 static int zshard(int);
120 static int zssoft(int);
121
122 struct zs_chanstate *zslist;
123
124 /* Routines called from other code. */
125 int zsopen(dev_t, int, int, struct proc *);
126 int zsclose(dev_t, int, int, struct proc *);
127 static void zsiopen(struct tty *);
128 static void zsiclose(struct tty *);
129 static void zsstart(struct tty *);
130 void zsstop(struct tty *, int);
131 static int zsparam(struct tty *, struct termios *);
132
133 /* Routines purely local to this driver. */
134 static int zs_getspeed(volatile struct zschan *);
135 static void zs_reset(volatile struct zschan *, int, int);
136 static void zs_modem(struct zs_chanstate *, int);
137 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
138 static u_char zs_read(volatile struct zschan *, u_char);
139 static u_char zs_write(volatile struct zschan *, u_char, u_char);
140
141 /* Console stuff. */
142 static volatile struct zschan *zs_conschan;
143
144 #ifdef KGDB
145 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
146 extern int kgdb_dev, kgdb_rate;
147 static int zs_kgdb_savedspeed;
148 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
149 #endif
150
151 /*
152 * Console keyboard L1-A processing is done in the hardware interrupt code,
153 * so we need to duplicate some of the console keyboard decode state. (We
154 * must not use the regular state as the hardware code keeps ahead of the
155 * software state: the software state tracks the most recent ring input but
156 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
157 */
158 static struct conk_state { /* console keyboard state */
159 char conk_id; /* true => ID coming up (console only) */
160 char conk_l1; /* true => L1 pressed (console only) */
161 } zsconk_state;
162
163 int zshardscope;
164 int zsshortcuts; /* number of "shortcut" software interrupts */
165
166 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
167
168 /* Find PROM mappings (for console support). */
169 void zs_init()
170 {
171 if (zsaddr[0] == NULL)
172 zsaddr[0] = (struct zsdevice *)
173 obio_find_mapping(OBIO_ZS, OBIO_ZS_SIZE);
174 if (zsaddr[1] == NULL)
175 zsaddr[1] = (struct zsdevice *)
176 obio_find_mapping(OBIO_KEYBD_MS, OBIO_ZS_SIZE);
177 }
178
179 /*
180 * Match slave number to zs unit number, so that misconfiguration will
181 * not set up the keyboard as ttya, etc.
182 */
183 static int
184 zsmatch(struct device *parent, void *vcf, void *aux)
185 {
186 struct cfdata *cf = vcf;
187 struct obio_cf_loc *obio_loc;
188 caddr_t zs_addr;
189
190 obio_loc = (struct obio_cf_loc *) CFDATA_LOC(cf);
191 zs_addr = (caddr_t) obio_loc->obio_addr;
192 return !obio_probe_byte(zs_addr);
193 }
194
195 /*
196 * Attach a found zs.
197 *
198 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
199 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
200 */
201 static void
202 zsattach(struct device *parent, struct device *dev, void *aux)
203 {
204 struct obio_cf_loc *obio_loc = OBIO_LOC(dev);
205 register int zs = dev->dv_unit, unit;
206 register struct zsinfo *zi;
207 register struct zs_chanstate *cs;
208 register volatile struct zsdevice *addr;
209 register struct tty *tp, *ctp;
210 int softcar, obio_addr;
211 static int didintr;
212
213 obio_addr = obio_loc->obio_addr;
214 obio_print(obio_addr, ZSSOFT_PRI);
215 printf(" hwpri %d\n", ZSHARD_PRI);
216
217 if (zsaddr[zs] == NULL) {
218 zsaddr[zs] = (struct zsdevice *)
219 obio_alloc(obio_addr, OBIO_ZS_SIZE);
220 }
221 addr = zsaddr[zs];
222
223 if (!didintr) {
224 didintr = 1;
225 isr_add(ZSSOFT_PRI, zssoft, 0);
226 isr_add(ZSHARD_PRI, zshard, 0);
227 }
228
229 zi = (struct zsinfo *)dev;
230 zi->zi_zs = addr;
231 unit = zs * 2;
232 cs = zi->zi_cs;
233
234 if(!zs_tty[unit])
235 zs_tty[unit] = ttymalloc();
236 tp = zs_tty[unit];
237 if(!zs_tty[unit+1])
238 zs_tty[unit+1] = ttymalloc();
239
240 if (unit == 0) {
241 softcar = 0;
242 } else
243 softcar = dev->dv_cfdata->cf_flags;
244
245 /* link into interrupt list with order (A,B) (B=A+1) */
246 cs[0].cs_next = &cs[1];
247 cs[1].cs_next = zslist;
248 zslist = cs;
249
250 cs->cs_unit = unit;
251 cs->cs_zc = &addr->zs_chan[CHAN_A];
252 cs->cs_speed = zs_getspeed(cs->cs_zc);
253 #ifdef DEBUG
254 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
255 #endif
256 cs->cs_softcar = softcar & 1;
257 #if 0
258 /* XXX - Drop carrier here? -gwr */
259 zs_modem(cs, cs->cs_softcar ? 1 : 0);
260 #endif
261 cs->cs_ttyp = tp;
262 tp->t_dev = makedev(ZSMAJOR, unit);
263 tp->t_oproc = zsstart;
264 tp->t_param = zsparam;
265 if (cs->cs_zc == zs_conschan) {
266 /* This unit is the console. */
267 cs->cs_consio = 1;
268 cs->cs_brkabort = 1;
269 cs->cs_softcar = 1;
270 } else {
271 /* Can not run kgdb on the console? */
272 #ifdef KGDB
273 zs_checkkgdb(unit, cs, tp);
274 #endif
275 }
276 if (unit == ZS_KBD) {
277 /*
278 * Keyboard: tell /dev/kbd driver how to talk to us.
279 */
280 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
281 tp->t_cflag = CS8;
282 kbd_serial(tp, zsiopen, zsiclose);
283 cs->cs_conk = 1; /* do L1-A processing */
284 }
285 unit++;
286 cs++;
287 tp = zs_tty[unit];
288
289 cs->cs_unit = unit;
290 cs->cs_zc = &addr->zs_chan[CHAN_B];
291 cs->cs_speed = zs_getspeed(cs->cs_zc);
292 #ifdef DEBUG
293 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
294 #endif
295 cs->cs_softcar = softcar & 2;
296 #if 0
297 /* XXX - Drop carrier here? -gwr */
298 zs_modem(cs, cs->cs_softcar ? 1 : 0);
299 #endif
300 cs->cs_ttyp = tp;
301 tp->t_dev = makedev(ZSMAJOR, unit);
302 tp->t_oproc = zsstart;
303 tp->t_param = zsparam;
304 if (cs->cs_zc == zs_conschan) {
305 /* This unit is the console. */
306 cs->cs_consio = 1;
307 cs->cs_brkabort = 1;
308 cs->cs_softcar = 1;
309 } else {
310 /* Can not run kgdb on the console? */
311 #ifdef KGDB
312 zs_checkkgdb(unit, cs, tp);
313 #endif
314 }
315 if (unit == ZS_MOUSE) {
316 /*
317 * Mouse: tell /dev/mouse driver how to talk to us.
318 */
319 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
320 tp->t_cflag = CS8;
321 ms_serial(tp, zsiopen, zsiclose);
322 }
323 }
324
325 /*
326 * Put a channel in a known state. Interrupts may be left disabled
327 * or enabled, as desired.
328 */
329 static void
330 zs_reset(zc, inten, speed)
331 volatile struct zschan *zc;
332 int inten, speed;
333 {
334 int tconst;
335 static u_char reg[16] = {
336 0,
337 0,
338 0,
339 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
340 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
341 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
342 0,
343 0,
344 0,
345 0,
346 ZSWR10_NRZ,
347 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
348 0,
349 0,
350 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
351 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
352 };
353
354 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
355 tconst = BPS_TO_TCONST(PCLK / 16, speed);
356 reg[12] = tconst;
357 reg[13] = tconst >> 8;
358 zs_loadchannelregs(zc, reg);
359 }
360
361 /*
362 * Console support
363 */
364
365 /*
366 * Used by the kd driver to find out if it can work.
367 */
368 int
369 zscnprobe_kbd()
370 {
371 if (zsaddr[1] == NULL) {
372 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
373 return CN_DEAD;
374 }
375 return CN_INTERNAL;
376 }
377
378 /*
379 * This is the console probe routine for ttya and ttyb.
380 */
381 static int
382 zscnprobe(struct consdev *cn, int unit)
383 {
384 int maj, eeCons;
385
386 if (zsaddr[0] == NULL) {
387 mon_printf("zscnprobe: zs0 not mapped\n");
388 cn->cn_pri = CN_DEAD;
389 return 0;
390 }
391 /* XXX - Also try to make sure it exists? */
392
393 /* locate the major number */
394 for (maj = 0; maj < nchrdev; maj++)
395 if (cdevsw[maj].d_open == (void*)zsopen)
396 break;
397
398 cn->cn_dev = makedev(maj, unit);
399
400 /* Use EEPROM console setting to decide "remote" console. */
401 eeCons = ee_get_byte(EE_CONS_OFFSET, 0);
402
403 /* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
404 if (eeCons == (EE_CONS_TTYA + unit)) {
405 cn->cn_pri = CN_REMOTE;
406 } else {
407 cn->cn_pri = CN_NORMAL;
408 }
409 return (0);
410 }
411
412 /* This is the constab entry for TTYA. */
413 int
414 zscnprobe_a(struct consdev *cn)
415 {
416 return (zscnprobe(cn, 0));
417 }
418
419 /* This is the constab entry for TTYB. */
420 int
421 zscnprobe_b(struct consdev *cn)
422 {
423 return (zscnprobe(cn, 1));
424 }
425
426 /* Attach as console. Also set zs_conschan */
427 int
428 zscninit(struct consdev *cn)
429 {
430 int unit;
431 volatile struct zsdevice *addr;
432
433 unit = minor(cn->cn_dev) & 1;
434 addr = zsaddr[0];
435 zs_conschan = ((unit == 0) ?
436 &addr->zs_chan[CHAN_A] :
437 &addr->zs_chan[CHAN_B] );
438
439 mon_printf("console on zs0 (tty%c)\n", unit + 'a');
440 }
441
442
443 /*
444 * Polled console input putchar.
445 */
446 int
447 zscngetc(dev)
448 dev_t dev;
449 {
450 register volatile struct zschan *zc = zs_conschan;
451 register int s, c;
452
453 if (zc == NULL)
454 return (0);
455
456 s = splhigh();
457
458 /* Wait for a character to arrive. */
459 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
460 ZS_DELAY();
461 ZS_DELAY();
462
463 c = zc->zc_data;
464 ZS_DELAY();
465
466 splx(s);
467 return (c);
468 }
469
470 /*
471 * Polled console output putchar.
472 */
473 int
474 zscnputc(dev, c)
475 dev_t dev;
476 int c;
477 {
478 register volatile struct zschan *zc = zs_conschan;
479 register int s;
480
481 if (zc == NULL) {
482 s = splhigh();
483 mon_putchar(c);
484 splx(s);
485 return (0);
486 }
487 s = splhigh();
488
489 /* Wait for transmitter to become ready. */
490 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
491 ZS_DELAY();
492 ZS_DELAY();
493
494 zc->zc_data = c;
495 ZS_DELAY();
496 splx(s);
497 }
498
499 #ifdef KGDB
500 /*
501 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
502 * Pick up the current speed and character size and restore the original
503 * speed.
504 */
505 static void
506 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
507 {
508
509 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
510 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
511 tp->t_cflag = CS8;
512 cs->cs_kgdb = 1;
513 cs->cs_speed = zs_kgdb_savedspeed;
514 (void) zsparam(tp, &tp->t_termios);
515 }
516 }
517 #endif
518
519 /*
520 * Compute the current baud rate given a ZSCC channel.
521 */
522 static int
523 zs_getspeed(zc)
524 register volatile struct zschan *zc;
525 {
526 register int tconst;
527
528 tconst = ZS_READ(zc, 12);
529 tconst |= ZS_READ(zc, 13) << 8;
530 return (TCONST_TO_BPS(PCLK / 16, tconst));
531 }
532
533
534 /*
535 * Do an internal open.
536 */
537 static void
538 zsiopen(struct tty *tp)
539 {
540
541 (void) zsparam(tp, &tp->t_termios);
542 ttsetwater(tp);
543 tp->t_state = TS_ISOPEN | TS_CARR_ON;
544 }
545
546 /*
547 * Do an internal close. Eventually we should shut off the chip when both
548 * ports on it are closed.
549 */
550 static void
551 zsiclose(struct tty *tp)
552 {
553
554 ttylclose(tp, 0); /* ??? */
555 ttyclose(tp); /* ??? */
556 tp->t_state = 0;
557 }
558
559
560 /*
561 * Open a zs serial port. This interface may not be used to open
562 * the keyboard and mouse ports. (XXX)
563 */
564 int
565 zsopen(dev_t dev, int flags, int mode, struct proc *p)
566 {
567 register struct tty *tp;
568 register struct zs_chanstate *cs;
569 struct zsinfo *zi;
570 int unit = minor(dev), zs = unit >> 1, error, s;
571
572 #ifdef DEBUG
573 mon_printf("zs_open\n");
574 #endif
575 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
576 unit == ZS_KBD || unit == ZS_MOUSE)
577 return (ENXIO);
578 cs = &zi->zi_cs[unit & 1];
579 #if 0
580 /* The kd driver avoids the need for this hack. */
581 if (cs->cs_consio)
582 return (ENXIO); /* ??? */
583 #endif
584 tp = cs->cs_ttyp;
585 s = spltty();
586 if ((tp->t_state & TS_ISOPEN) == 0) {
587 ttychars(tp);
588 if (tp->t_ispeed == 0) {
589 tp->t_iflag = TTYDEF_IFLAG;
590 tp->t_oflag = TTYDEF_OFLAG;
591 #if 0
592 tp->t_cflag = TTYDEF_CFLAG;
593 #else
594 /* Make default same as PROM uses. */
595 tp->t_cflag = (CREAD | CS8 | HUPCL);
596 #endif
597 tp->t_lflag = TTYDEF_LFLAG;
598 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
599 }
600 (void) zsparam(tp, &tp->t_termios);
601 ttsetwater(tp);
602 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
603 splx(s);
604 return (EBUSY);
605 }
606 error = 0;
607 #ifdef DEBUG
608 mon_printf("wait for carrier...\n");
609 #endif
610 for (;;) {
611 /* loop, turning on the device, until carrier present */
612 zs_modem(cs, 1);
613 /* May never get status intr if carrier already on. -gwr */
614 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
615 tp->t_state |= TS_CARR_ON;
616 if (cs->cs_softcar)
617 tp->t_state |= TS_CARR_ON;
618 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
619 tp->t_state & TS_CARR_ON)
620 break;
621 tp->t_state |= TS_WOPEN;
622 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
623 ttopen, 0))
624 break;
625 }
626 #ifdef DEBUG
627 mon_printf("...carrier %s\n",
628 (tp->t_state & TS_CARR_ON) ? "on" : "off");
629 #endif
630 splx(s);
631 if (error == 0)
632 error = linesw[tp->t_line].l_open(dev, tp);
633 if (error)
634 zs_modem(cs, 0);
635 return (error);
636 }
637
638 /*
639 * Close a zs serial port.
640 */
641 int
642 zsclose(dev_t dev, int flags, int mode, struct proc *p)
643 {
644 register struct zs_chanstate *cs;
645 register struct tty *tp;
646 struct zsinfo *zi;
647 int unit = minor(dev), s;
648
649 #ifdef DEBUG
650 mon_printf("zs_close\n");
651 #endif
652 zi = zscd.cd_devs[unit >> 1];
653 cs = &zi->zi_cs[unit & 1];
654 tp = cs->cs_ttyp;
655 linesw[tp->t_line].l_close(tp, flags);
656 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
657 (tp->t_state & TS_ISOPEN) == 0) {
658 zs_modem(cs, 0);
659 /* hold low for 1 second */
660 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
661 }
662 if (cs->cs_creg[5] & ZSWR5_BREAK)
663 {
664 s = splzs();
665 cs->cs_preg[5] &= ~ZSWR5_BREAK;
666 cs->cs_creg[5] &= ~ZSWR5_BREAK;
667 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
668 splx(s);
669 }
670 ttyclose(tp);
671 #ifdef KGDB
672 /* Reset the speed if we're doing kgdb on this port */
673 if (cs->cs_kgdb) {
674 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
675 (void) zsparam(tp, &tp->t_termios);
676 }
677 #endif
678 return (0);
679 }
680
681 /*
682 * Read/write zs serial port.
683 */
684 int
685 zsread(dev_t dev, struct uio *uio, int flags)
686 {
687 register struct tty *tp = zs_tty[minor(dev)];
688
689 return (linesw[tp->t_line].l_read(tp, uio, flags));
690 }
691
692 int
693 zswrite(dev_t dev, struct uio *uio, int flags)
694 {
695 register struct tty *tp = zs_tty[minor(dev)];
696
697 return (linesw[tp->t_line].l_write(tp, uio, flags));
698 }
699
700 /*
701 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
702 * channels are kept in (A,B) pairs.
703 *
704 * Do just a little, then get out; set a software interrupt if more
705 * work is needed.
706 *
707 * We deliberately ignore the vectoring Zilog gives us, and match up
708 * only the number of `reset interrupt under service' operations, not
709 * the order.
710 */
711 /* ARGSUSED */
712 int
713 zshard(int intrarg)
714 {
715 register struct zs_chanstate *a;
716 #define b (a + 1)
717 register volatile struct zschan *zc;
718 register int rr3, intflags = 0, v, i;
719 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
720 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
721 static int zssint(struct zs_chanstate *, volatile struct zschan *);
722
723 for (a = zslist; a != NULL; a = b->cs_next) {
724 rr3 = ZS_READ(a->cs_zc, 3);
725
726 /* XXX - This should loop to empty the on-chip fifo. */
727 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
728 intflags |= 2;
729 zc = a->cs_zc;
730 i = a->cs_rbput;
731 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
732 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
733 intflags |= 1;
734 }
735 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
736 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
737 intflags |= 1;
738 }
739 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
740 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
741 intflags |= 1;
742 }
743 a->cs_rbput = i;
744 }
745
746 /* XXX - This should loop to empty the on-chip fifo. */
747 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
748 intflags |= 2;
749 zc = b->cs_zc;
750 i = b->cs_rbput;
751 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
752 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
753 intflags |= 1;
754 }
755 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
756 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
757 intflags |= 1;
758 }
759 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
760 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
761 intflags |= 1;
762 }
763 b->cs_rbput = i;
764 }
765 }
766 #undef b
767 if (intflags & 1) {
768 isr_soft_request(ZSSOFT_PRI);
769 }
770 return (intflags & 2);
771 }
772
773 static int
774 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
775 {
776 register int c = zc->zc_data;
777
778 if (cs->cs_conk) {
779 register struct conk_state *conk = &zsconk_state;
780
781 /*
782 * Check here for console abort function, so that we
783 * can abort even when interrupts are locking up the
784 * machine.
785 */
786 if (c == KBD_RESET) {
787 conk->conk_id = 1; /* ignore next byte */
788 conk->conk_l1 = 0;
789 } else if (conk->conk_id)
790 conk->conk_id = 0; /* stop ignoring bytes */
791 else if (c == KBD_L1)
792 conk->conk_l1 = 1; /* L1 went down */
793 else if (c == (KBD_L1|KBD_UP))
794 conk->conk_l1 = 0; /* L1 went up */
795 else if (c == KBD_A && conk->conk_l1) {
796 zsabort();
797 conk->conk_l1 = 0; /* we never see the up */
798 goto clearit; /* eat the A after L1-A */
799 }
800 }
801 #ifdef KGDB
802 if (c == FRAME_START && cs->cs_kgdb &&
803 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
804 zskgdb(cs->cs_unit);
805 goto clearit;
806 }
807 #endif
808 /* compose receive character and status */
809 c <<= 8;
810 c |= ZS_READ(zc, 1);
811
812 /* clear receive error & interrupt condition */
813 zc->zc_csr = ZSWR0_RESET_ERRORS;
814 zc->zc_csr = ZSWR0_CLR_INTR;
815
816 return (ZRING_MAKE(ZRING_RINT, c));
817
818 clearit:
819 zc->zc_csr = ZSWR0_RESET_ERRORS;
820 zc->zc_csr = ZSWR0_CLR_INTR;
821 return (0);
822 }
823
824 static int
825 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
826 {
827 register int i = cs->cs_tbc;
828
829 if (i == 0) {
830 zc->zc_csr = ZSWR0_RESET_TXINT;
831 zc->zc_csr = ZSWR0_CLR_INTR;
832 return (ZRING_MAKE(ZRING_XINT, 0));
833 }
834 cs->cs_tbc = i - 1;
835 zc->zc_data = *cs->cs_tba++;
836 zc->zc_csr = ZSWR0_CLR_INTR;
837 return (0);
838 }
839
840 static int
841 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
842 {
843 register int rr0;
844
845 rr0 = zc->zc_csr;
846 zc->zc_csr = ZSWR0_RESET_STATUS;
847 zc->zc_csr = ZSWR0_CLR_INTR;
848 /*
849 * The chip's hardware flow control is, as noted in zsreg.h,
850 * busted---if the DCD line goes low the chip shuts off the
851 * receiver (!). If we want hardware CTS flow control but do
852 * not have it, and carrier is now on, turn HFC on; if we have
853 * HFC now but carrier has gone low, turn it off.
854 */
855 if (rr0 & ZSRR0_DCD) {
856 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
857 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
858 cs->cs_creg[3] |= ZSWR3_HFC;
859 ZS_WRITE(zc, 3, cs->cs_creg[3]);
860 }
861 } else {
862 if (cs->cs_creg[3] & ZSWR3_HFC) {
863 cs->cs_creg[3] &= ~ZSWR3_HFC;
864 ZS_WRITE(zc, 3, cs->cs_creg[3]);
865 }
866 }
867 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
868 /* Wait for end of break to avoid PROM abort. */
869 while (zc->zc_csr & ZSRR0_BREAK)
870 ZS_DELAY();
871 zsabort();
872 return (0);
873 }
874 return (ZRING_MAKE(ZRING_SINT, rr0));
875 }
876
877 zsabort()
878 {
879 #ifdef DDB
880 Debugger();
881 #else
882 printf("stopping on keyboard abort\n");
883 sun3_rom_abort();
884 #endif
885 }
886
887 #ifdef KGDB
888 /*
889 * KGDB framing character received: enter kernel debugger. This probably
890 * should time out after a few seconds to avoid hanging on spurious input.
891 */
892 zskgdb(int unit)
893 {
894
895 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
896 kgdb_connect(1);
897 }
898 #endif
899
900 /*
901 * Print out a ring or fifo overrun error message.
902 */
903 static void
904 zsoverrun(int unit, long *ptime, char *what)
905 {
906
907 if (*ptime != time.tv_sec) {
908 *ptime = time.tv_sec;
909 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
910 (unit & 1) + 'a', what);
911 }
912 }
913
914 /*
915 * ZS software interrupt. Scan all channels for deferred interrupts.
916 */
917 int
918 zssoft(int arg)
919 {
920 register struct zs_chanstate *cs;
921 register volatile struct zschan *zc;
922 register struct linesw *line;
923 register struct tty *tp;
924 register int get, n, c, cc, unit, s;
925
926 isr_soft_clear(ZSSOFT_PRI);
927
928 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
929 get = cs->cs_rbget;
930 again:
931 n = cs->cs_rbput; /* atomic */
932 if (get == n) /* nothing more on this line */
933 continue;
934 unit = cs->cs_unit; /* set up to handle interrupts */
935 zc = cs->cs_zc;
936 tp = cs->cs_ttyp;
937 line = &linesw[tp->t_line];
938 /*
939 * Compute the number of interrupts in the receive ring.
940 * If the count is overlarge, we lost some events, and
941 * must advance to the first valid one. It may get
942 * overwritten if more data are arriving, but this is
943 * too expensive to check and gains nothing (we already
944 * lost out; all we can do at this point is trade one
945 * kind of loss for another).
946 */
947 n -= get;
948 if (n > ZLRB_RING_SIZE) {
949 zsoverrun(unit, &cs->cs_rotime, "ring");
950 get += n - ZLRB_RING_SIZE;
951 n = ZLRB_RING_SIZE;
952 }
953 while (--n >= 0) {
954 /* race to keep ahead of incoming interrupts */
955 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
956 switch (ZRING_TYPE(c)) {
957
958 case ZRING_RINT:
959 c = ZRING_VALUE(c);
960 if (c & ZSRR1_DO)
961 zsoverrun(unit, &cs->cs_fotime, "fifo");
962 cc = c >> 8;
963 if (c & ZSRR1_FE)
964 cc |= TTY_FE;
965 if (c & ZSRR1_PE)
966 cc |= TTY_PE;
967 /*
968 * this should be done through
969 * bstreams XXX gag choke
970 */
971 if (unit == ZS_KBD)
972 kbd_rint(cc);
973 else if (unit == ZS_MOUSE)
974 ms_rint(cc);
975 else
976 line->l_rint(cc, tp);
977 break;
978
979 case ZRING_XINT:
980 /*
981 * Transmit done: change registers and resume,
982 * or clear BUSY.
983 */
984 if (cs->cs_heldchange) {
985 s = splzs();
986 c = zc->zc_csr;
987 if ((c & ZSRR0_DCD) == 0)
988 cs->cs_preg[3] &= ~ZSWR3_HFC;
989 bcopy((caddr_t)cs->cs_preg,
990 (caddr_t)cs->cs_creg, 16);
991 zs_loadchannelregs(zc, cs->cs_creg);
992 splx(s);
993 cs->cs_heldchange = 0;
994 if (cs->cs_heldtbc &&
995 (tp->t_state & TS_TTSTOP) == 0) {
996 cs->cs_tbc = cs->cs_heldtbc - 1;
997 zc->zc_data = *cs->cs_tba++;
998 goto again;
999 }
1000 }
1001 tp->t_state &= ~TS_BUSY;
1002 if (tp->t_state & TS_FLUSH)
1003 tp->t_state &= ~TS_FLUSH;
1004 else
1005 ndflush(&tp->t_outq, cs->cs_tba -
1006 (caddr_t) tp->t_outq.c_cf);
1007 line->l_start(tp);
1008 break;
1009
1010 case ZRING_SINT:
1011 /*
1012 * Status line change. HFC bit is run in
1013 * hardware interrupt, to avoid locking
1014 * at splzs here.
1015 */
1016 c = ZRING_VALUE(c);
1017 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1018 cc = (c & ZSRR0_DCD) != 0;
1019 if (line->l_modem(tp, cc) == 0)
1020 zs_modem(cs, cc);
1021 }
1022 cs->cs_rr0 = c;
1023 break;
1024
1025 default:
1026 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1027 unit >> 1, (unit & 1) + 'a', c);
1028 break;
1029 }
1030 }
1031 cs->cs_rbget = get;
1032 goto again;
1033 }
1034 return (1);
1035 }
1036
1037 int
1038 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1039 {
1040 int unit = minor(dev);
1041 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1042 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1043 register struct tty *tp = cs->cs_ttyp;
1044 register int error, s;
1045
1046 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1047 if (error >= 0)
1048 return (error);
1049 error = ttioctl(tp, cmd, data, flag, p);
1050 if (error >= 0)
1051 return (error);
1052
1053 switch (cmd) {
1054
1055 case TIOCSBRK:
1056 {
1057 s = splzs();
1058 cs->cs_preg[5] |= ZSWR5_BREAK;
1059 cs->cs_creg[5] |= ZSWR5_BREAK;
1060 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1061 splx(s);
1062 break;
1063 }
1064
1065 case TIOCCBRK:
1066 {
1067 s = splzs();
1068 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1069 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1070 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1071 splx(s);
1072 break;
1073 }
1074
1075 case TIOCSDTR:
1076
1077 case TIOCCDTR:
1078
1079 case TIOCMSET:
1080
1081 case TIOCMBIS:
1082
1083 case TIOCMBIC:
1084
1085 case TIOCMGET:
1086
1087 default:
1088 return (ENOTTY);
1089 }
1090 return (0);
1091 }
1092
1093 /*
1094 * Start or restart transmission.
1095 */
1096 static void
1097 zsstart(register struct tty *tp)
1098 {
1099 register struct zs_chanstate *cs;
1100 register int s, nch;
1101 int unit = minor(tp->t_dev);
1102 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1103
1104 cs = &zi->zi_cs[unit & 1];
1105 s = spltty();
1106
1107 /*
1108 * If currently active or delaying, no need to do anything.
1109 */
1110 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1111 goto out;
1112
1113 /*
1114 * If there are sleepers, and output has drained below low
1115 * water mark, awaken.
1116 */
1117 if (tp->t_outq.c_cc <= tp->t_lowat) {
1118 if (tp->t_state & TS_ASLEEP) {
1119 tp->t_state &= ~TS_ASLEEP;
1120 wakeup((caddr_t)&tp->t_outq);
1121 }
1122 selwakeup(&tp->t_wsel);
1123 }
1124
1125 nch = ndqb(&tp->t_outq, 0); /* XXX */
1126 if (nch) {
1127 register char *p = tp->t_outq.c_cf;
1128
1129 /* mark busy, enable tx done interrupts, & send first byte */
1130 tp->t_state |= TS_BUSY;
1131 (void) splzs();
1132 cs->cs_preg[1] |= ZSWR1_TIE;
1133 cs->cs_creg[1] |= ZSWR1_TIE;
1134 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1135 cs->cs_zc->zc_data = *p;
1136 cs->cs_tba = p + 1;
1137 cs->cs_tbc = nch - 1;
1138 } else {
1139 /*
1140 * Nothing to send, turn off transmit done interrupts.
1141 * This is useful if something is doing polled output.
1142 */
1143 (void) splzs();
1144 cs->cs_preg[1] &= ~ZSWR1_TIE;
1145 cs->cs_creg[1] &= ~ZSWR1_TIE;
1146 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1147 }
1148 out:
1149 splx(s);
1150 }
1151
1152 /*
1153 * Stop output, e.g., for ^S or output flush.
1154 */
1155 void
1156 zsstop(register struct tty *tp, int flag)
1157 {
1158 register struct zs_chanstate *cs;
1159 register int s, unit = minor(tp->t_dev);
1160 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1161
1162 cs = &zi->zi_cs[unit & 1];
1163 s = splzs();
1164 if (tp->t_state & TS_BUSY) {
1165 /*
1166 * Device is transmitting; must stop it.
1167 */
1168 cs->cs_tbc = 0;
1169 if ((tp->t_state & TS_TTSTOP) == 0)
1170 tp->t_state |= TS_FLUSH;
1171 }
1172 splx(s);
1173 }
1174
1175 /*
1176 * Set ZS tty parameters from termios.
1177 *
1178 * This routine makes use of the fact that only registers
1179 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1180 */
1181 static int
1182 zsparam(register struct tty *tp, register struct termios *t)
1183 {
1184 int unit = minor(tp->t_dev);
1185 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1186 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1187 register int tmp, tmp5, cflag, s;
1188
1189 /*
1190 * Because PCLK is only run at 4.9 MHz, the fastest we
1191 * can go is 51200 baud (this corresponds to TC=1).
1192 * This is somewhat unfortunate as there is no real
1193 * reason we should not be able to handle higher rates.
1194 */
1195 tmp = t->c_ospeed;
1196 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1197 return (EINVAL);
1198 if (tmp == 0) {
1199 /* stty 0 => drop DTR and RTS */
1200 zs_modem(cs, 0);
1201 return (0);
1202 }
1203 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1204 if (tmp < 2)
1205 return (EINVAL);
1206
1207 cflag = t->c_cflag;
1208 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1209 tp->t_cflag = cflag;
1210
1211 /*
1212 * Block interrupts so that state will not
1213 * be altered until we are done setting it up.
1214 */
1215 s = splzs();
1216 cs->cs_preg[12] = tmp;
1217 cs->cs_preg[13] = tmp >> 8;
1218 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1219 switch (cflag & CSIZE) {
1220 case CS5:
1221 tmp = ZSWR3_RX_5;
1222 tmp5 = ZSWR5_TX_5;
1223 break;
1224 case CS6:
1225 tmp = ZSWR3_RX_6;
1226 tmp5 = ZSWR5_TX_6;
1227 break;
1228 case CS7:
1229 tmp = ZSWR3_RX_7;
1230 tmp5 = ZSWR5_TX_7;
1231 break;
1232 case CS8:
1233 default:
1234 tmp = ZSWR3_RX_8;
1235 tmp5 = ZSWR5_TX_8;
1236 break;
1237 }
1238
1239 /*
1240 * Output hardware flow control on the chip is horrendous: if
1241 * carrier detect drops, the receiver is disabled. Hence we
1242 * can only do this when the carrier is on.
1243 */
1244 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1245 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1246 else
1247 tmp |= ZSWR3_RX_ENABLE;
1248 cs->cs_preg[3] = tmp;
1249 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1250
1251 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1252 if ((cflag & PARODD) == 0)
1253 tmp |= ZSWR4_EVENP;
1254 if (cflag & PARENB)
1255 tmp |= ZSWR4_PARENB;
1256 cs->cs_preg[4] = tmp;
1257 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1258 cs->cs_preg[10] = ZSWR10_NRZ;
1259 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1260 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1261 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1262
1263 /*
1264 * If nothing is being transmitted, set up new current values,
1265 * else mark them as pending.
1266 */
1267 if (cs->cs_heldchange == 0) {
1268 if (cs->cs_ttyp->t_state & TS_BUSY) {
1269 cs->cs_heldtbc = cs->cs_tbc;
1270 cs->cs_tbc = 0;
1271 cs->cs_heldchange = 1;
1272 } else {
1273 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1274 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1275 }
1276 }
1277 splx(s);
1278 return (0);
1279 }
1280
1281 /*
1282 * Raise or lower modem control (DTR/RTS) signals. If a character is
1283 * in transmission, the change is deferred.
1284 */
1285 static void
1286 zs_modem(struct zs_chanstate *cs, int onoff)
1287 {
1288 int s, bis, and;
1289
1290 if (onoff) {
1291 bis = ZSWR5_DTR | ZSWR5_RTS;
1292 and = ~0;
1293 } else {
1294 bis = 0;
1295 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1296 }
1297 s = splzs();
1298 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1299 if (cs->cs_heldchange == 0) {
1300 if (cs->cs_ttyp->t_state & TS_BUSY) {
1301 cs->cs_heldtbc = cs->cs_tbc;
1302 cs->cs_tbc = 0;
1303 cs->cs_heldchange = 1;
1304 } else {
1305 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1306 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1307 }
1308 }
1309 splx(s);
1310 }
1311
1312 /*
1313 * Write the given register set to the given zs channel in the proper order.
1314 * The channel must not be transmitting at the time. The receiver will
1315 * be disabled for the time it takes to write all the registers.
1316 */
1317 static void
1318 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1319 {
1320 int i;
1321
1322 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1323 i = zc->zc_data; /* drain fifo */
1324 i = zc->zc_data;
1325 i = zc->zc_data;
1326 ZS_WRITE(zc, 4, reg[4]);
1327 ZS_WRITE(zc, 10, reg[10]);
1328 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1329 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1330 ZS_WRITE(zc, 1, reg[1]);
1331 ZS_WRITE(zc, 9, reg[9]);
1332 ZS_WRITE(zc, 11, reg[11]);
1333 ZS_WRITE(zc, 12, reg[12]);
1334 ZS_WRITE(zc, 13, reg[13]);
1335 ZS_WRITE(zc, 14, reg[14]);
1336 ZS_WRITE(zc, 15, reg[15]);
1337 ZS_WRITE(zc, 3, reg[3]);
1338 ZS_WRITE(zc, 5, reg[5]);
1339 }
1340
1341 static u_char
1342 zs_read(zc, reg)
1343 volatile struct zschan *zc;
1344 u_char reg;
1345 {
1346 u_char val;
1347
1348 zc->zc_csr = reg;
1349 ZS_DELAY();
1350 val = zc->zc_csr;
1351 ZS_DELAY();
1352 return val;
1353 }
1354
1355 static u_char
1356 zs_write(zc, reg, val)
1357 volatile struct zschan *zc;
1358 u_char reg, val;
1359 {
1360 zc->zc_csr = reg;
1361 ZS_DELAY();
1362 zc->zc_csr = val;
1363 ZS_DELAY();
1364 return val;
1365 }
1366
1367 #ifdef KGDB
1368 /*
1369 * Get a character from the given kgdb channel. Called at splhigh().
1370 * XXX - Add delays, or combine with zscngetc()...
1371 */
1372 static int
1373 zs_kgdb_getc(void *arg)
1374 {
1375 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1376
1377 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1378 continue;
1379 return (zc->zc_data);
1380 }
1381
1382 /*
1383 * Put a character to the given kgdb channel. Called at splhigh().
1384 */
1385 static void
1386 zs_kgdb_putc(void *arg, int c)
1387 {
1388 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1389
1390 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1391 continue;
1392 zc->zc_data = c;
1393 }
1394
1395 /*
1396 * Set up for kgdb; called at boot time before configuration.
1397 * KGDB interrupts will be enabled later when zs0 is configured.
1398 */
1399 void
1400 zs_kgdb_init()
1401 {
1402 volatile struct zsdevice *addr;
1403 volatile struct zschan *zc;
1404 int unit, zs;
1405
1406 if (major(kgdb_dev) != ZSMAJOR)
1407 return;
1408 unit = minor(kgdb_dev);
1409 /*
1410 * Unit must be 0 or 1 (zs0).
1411 */
1412 if ((unsigned)unit >= ZS_KBD) {
1413 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1414 return;
1415 }
1416 zs = unit >> 1;
1417 unit &= 1;
1418
1419 if (zsaddr[0] == NULL)
1420 panic("kbdb_attach: zs0 not yet mapped");
1421 addr = zsaddr[0];
1422
1423 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1424 zs_kgdb_savedspeed = zs_getspeed(zc);
1425 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1426 zs, unit + 'a', kgdb_rate);
1427 zs_reset(zc, 1, kgdb_rate);
1428 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1429 }
1430 #endif /* KGDB */
1431