zs.c revision 1.13 1 /* $NetBSD: zs.c,v 1.13 1994/12/12 18:59:27 gwr Exp $ */
2
3 /*
4 * Copyright (c) 1994 Gordon W. Ross
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)zs.c 8.1 (Berkeley) 7/19/93
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/autoconf.h>
71 #include <machine/cpu.h>
72 #include <machine/obio.h>
73 #include <machine/mon.h>
74 #include <machine/eeprom.h>
75 #include <machine/kbd.h>
76
77 #include <dev/cons.h>
78
79 #include "zsreg.h"
80 #include "zsvar.h"
81
82 #ifdef KGDB
83 #include <machine/remote-sl.h>
84 #endif
85
86 #define ZSMAJOR 12 /* XXX */
87
88 #define ZS_KBD 2 /* XXX */
89 #define ZS_MOUSE 3 /* XXX */
90
91 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
92 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
93
94 /*
95 * Select software interrupt levels.
96 */
97 #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
98 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
99
100 /*
101 * Software state per found chip. This would be called `zs_softc',
102 * but the previous driver had a rather different zs_softc....
103 */
104 struct zsinfo {
105 struct device zi_dev; /* base device */
106 volatile struct zsdevice *zi_zs;/* chip registers */
107 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
108 };
109
110 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
111
112 /* Definition of the driver for autoconfig. */
113 static int zs_match(struct device *, void *, void *);
114 static void zs_attach(struct device *, struct device *, void *);
115
116 struct cfdriver zscd = {
117 NULL, "zs", zs_match, zs_attach,
118 DV_TTY, sizeof(struct zsinfo) };
119
120 /* Interrupt handlers. */
121 static int zshard(int);
122 static int zssoft(int);
123
124 struct zs_chanstate *zslist;
125
126 /* Routines called from other code. */
127 int zsopen(dev_t, int, int, struct proc *);
128 int zsclose(dev_t, int, int, struct proc *);
129 static void zsiopen(struct tty *);
130 static void zsiclose(struct tty *);
131 static void zsstart(struct tty *);
132 void zsstop(struct tty *, int);
133 static int zsparam(struct tty *, struct termios *);
134
135 /* Routines purely local to this driver. */
136 static int zs_getspeed(volatile struct zschan *);
137 static void zs_reset(volatile struct zschan *, int, int);
138 static void zs_modem(struct zs_chanstate *, int);
139 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
140 static u_char zs_read(volatile struct zschan *, u_char);
141 static u_char zs_write(volatile struct zschan *, u_char, u_char);
142
143 /* Console stuff. */
144 static volatile struct zschan *zs_conschan;
145
146 #ifdef KGDB
147 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
148 extern int kgdb_dev, kgdb_rate;
149 static int zs_kgdb_savedspeed;
150 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
151 #endif
152
153 /*
154 * Console keyboard L1-A processing is done in the hardware interrupt code,
155 * so we need to duplicate some of the console keyboard decode state. (We
156 * must not use the regular state as the hardware code keeps ahead of the
157 * software state: the software state tracks the most recent ring input but
158 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
159 */
160 static struct conk_state { /* console keyboard state */
161 char conk_id; /* true => ID coming up (console only) */
162 char conk_l1; /* true => L1 pressed (console only) */
163 } zsconk_state;
164
165 int zshardscope;
166 int zsshortcuts; /* number of "shortcut" software interrupts */
167
168 int zssoftpending; /* We have done isr_soft_request() */
169
170 static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
171
172 /* Default OBIO addresses. */
173 static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS };
174
175
176 /* Find PROM mappings (for console support). */
177 void zs_init()
178 {
179 if (zsaddr[0] == NULL)
180 zsaddr[0] = (struct zsdevice *)
181 obio_find_mapping(OBIO_ZS, OBIO_ZS_SIZE);
182 if (zsaddr[1] == NULL)
183 zsaddr[1] = (struct zsdevice *)
184 obio_find_mapping(OBIO_KEYBD_MS, OBIO_ZS_SIZE);
185 }
186
187 /*
188 * Match slave number to zs unit number, so that misconfiguration will
189 * not set up the keyboard as ttya, etc.
190 */
191 static int
192 zs_match(struct device *parent, void *vcf, void *args)
193 {
194 struct cfdata *cf = vcf;
195 struct confargs *ca = args;
196 int unit, x;
197
198 unit = cf->cf_unit;
199 if (unit < 0 || unit >= NZS)
200 return (0);
201
202 if (ca->ca_paddr == -1)
203 ca->ca_paddr = zs_physaddr[unit];
204 if (ca->ca_intpri == -1)
205 ca->ca_intpri = ZSHARD_PRI;
206
207 /* The peek returns non-zero on error. */
208 return !bus_peek(ca, 0, 1, &x);
209 }
210
211 /*
212 * Attach a found zs.
213 *
214 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
215 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
216 */
217 static void
218 zs_attach(struct device *parent, struct device *self, void *args)
219 {
220 struct cfdata *cf;
221 struct confargs *ca;
222 register int zs, unit;
223 register struct zsinfo *zi;
224 register struct zs_chanstate *cs;
225 register volatile struct zsdevice *addr;
226 register struct tty *tp, *ctp;
227 int softcar;
228 static int didintr;
229
230 cf = self->dv_cfdata;
231 zs = self->dv_unit;
232 ca = args;
233
234 printf(" softpri %d\n", ZSSOFT_PRI);
235
236 if (zsaddr[zs] == NULL) {
237 zsaddr[zs] = (struct zsdevice *)
238 obio_alloc(ca->ca_paddr, OBIO_ZS_SIZE);
239 }
240 addr = zsaddr[zs];
241
242 if (!didintr) {
243 didintr = 1;
244 isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
245 isr_add_autovect(zshard, NULL, ZSHARD_PRI);
246 }
247
248 zi = (struct zsinfo *)self;
249 zi->zi_zs = addr;
250 unit = zs * 2;
251 cs = zi->zi_cs;
252
253 if(!zs_tty[unit])
254 zs_tty[unit] = ttymalloc();
255 tp = zs_tty[unit];
256 if(!zs_tty[unit+1])
257 zs_tty[unit+1] = ttymalloc();
258
259 if (unit == 0) {
260 softcar = 0;
261 } else
262 softcar = cf->cf_flags;
263
264 /* link into interrupt list with order (A,B) (B=A+1) */
265 cs[0].cs_next = &cs[1];
266 cs[1].cs_next = zslist;
267 zslist = cs;
268
269 cs->cs_unit = unit;
270 cs->cs_zc = &addr->zs_chan[CHAN_A];
271 cs->cs_speed = zs_getspeed(cs->cs_zc);
272 #ifdef DEBUG
273 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
274 #endif
275 cs->cs_softcar = softcar & 1;
276 #if 0
277 /* XXX - Drop carrier here? -gwr */
278 zs_modem(cs, cs->cs_softcar ? 1 : 0);
279 #endif
280 cs->cs_ttyp = tp;
281 tp->t_dev = makedev(ZSMAJOR, unit);
282 tp->t_oproc = zsstart;
283 tp->t_param = zsparam;
284 if (cs->cs_zc == zs_conschan) {
285 /* This unit is the console. */
286 cs->cs_consio = 1;
287 cs->cs_brkabort = 1;
288 cs->cs_softcar = 1;
289 } else {
290 /* Can not run kgdb on the console? */
291 #ifdef KGDB
292 zs_checkkgdb(unit, cs, tp);
293 #endif
294 }
295 if (unit == ZS_KBD) {
296 /*
297 * Keyboard: tell /dev/kbd driver how to talk to us.
298 */
299 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
300 tp->t_cflag = CS8;
301 kbd_serial(tp, zsiopen, zsiclose);
302 cs->cs_conk = 1; /* do L1-A processing */
303 }
304 unit++;
305 cs++;
306 tp = zs_tty[unit];
307
308 cs->cs_unit = unit;
309 cs->cs_zc = &addr->zs_chan[CHAN_B];
310 cs->cs_speed = zs_getspeed(cs->cs_zc);
311 #ifdef DEBUG
312 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
313 #endif
314 cs->cs_softcar = softcar & 2;
315 #if 0
316 /* XXX - Drop carrier here? -gwr */
317 zs_modem(cs, cs->cs_softcar ? 1 : 0);
318 #endif
319 cs->cs_ttyp = tp;
320 tp->t_dev = makedev(ZSMAJOR, unit);
321 tp->t_oproc = zsstart;
322 tp->t_param = zsparam;
323 if (cs->cs_zc == zs_conschan) {
324 /* This unit is the console. */
325 cs->cs_consio = 1;
326 cs->cs_brkabort = 1;
327 cs->cs_softcar = 1;
328 } else {
329 /* Can not run kgdb on the console? */
330 #ifdef KGDB
331 zs_checkkgdb(unit, cs, tp);
332 #endif
333 }
334 if (unit == ZS_MOUSE) {
335 /*
336 * Mouse: tell /dev/mouse driver how to talk to us.
337 */
338 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
339 tp->t_cflag = CS8;
340 ms_serial(tp, zsiopen, zsiclose);
341 }
342 }
343
344 /*
345 * Put a channel in a known state. Interrupts may be left disabled
346 * or enabled, as desired.
347 */
348 static void
349 zs_reset(zc, inten, speed)
350 volatile struct zschan *zc;
351 int inten, speed;
352 {
353 int tconst;
354 static u_char reg[16] = {
355 0,
356 0,
357 0,
358 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
359 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
360 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
361 0,
362 0,
363 0,
364 0,
365 ZSWR10_NRZ,
366 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
367 0,
368 0,
369 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
370 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
371 };
372
373 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
374 tconst = BPS_TO_TCONST(PCLK / 16, speed);
375 reg[12] = tconst;
376 reg[13] = tconst >> 8;
377 zs_loadchannelregs(zc, reg);
378 }
379
380 /*
381 * Console support
382 */
383
384 /*
385 * Used by the kd driver to find out if it can work.
386 */
387 int
388 zscnprobe_kbd()
389 {
390 if (zsaddr[1] == NULL) {
391 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
392 return CN_DEAD;
393 }
394 return CN_INTERNAL;
395 }
396
397 /*
398 * This is the console probe routine for ttya and ttyb.
399 */
400 static int
401 zscnprobe(struct consdev *cn, int unit)
402 {
403 int maj, eeCons;
404
405 if (zsaddr[0] == NULL) {
406 mon_printf("zscnprobe: zs0 not mapped\n");
407 cn->cn_pri = CN_DEAD;
408 return 0;
409 }
410 /* XXX - Also try to make sure it exists? */
411
412 /* locate the major number */
413 for (maj = 0; maj < nchrdev; maj++)
414 if (cdevsw[maj].d_open == (void*)zsopen)
415 break;
416
417 cn->cn_dev = makedev(maj, unit);
418
419 /* Use EEPROM console setting to decide "remote" console. */
420 eeCons = ee_get_byte(EE_CONS_OFFSET, 0);
421
422 /* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
423 if (eeCons == (EE_CONS_TTYA + unit)) {
424 cn->cn_pri = CN_REMOTE;
425 } else {
426 cn->cn_pri = CN_NORMAL;
427 }
428 return (0);
429 }
430
431 /* This is the constab entry for TTYA. */
432 int
433 zscnprobe_a(struct consdev *cn)
434 {
435 return (zscnprobe(cn, 0));
436 }
437
438 /* This is the constab entry for TTYB. */
439 int
440 zscnprobe_b(struct consdev *cn)
441 {
442 return (zscnprobe(cn, 1));
443 }
444
445 /* Attach as console. Also set zs_conschan */
446 int
447 zscninit(struct consdev *cn)
448 {
449 int unit;
450 volatile struct zsdevice *addr;
451
452 unit = minor(cn->cn_dev) & 1;
453 addr = zsaddr[0];
454 zs_conschan = ((unit == 0) ?
455 &addr->zs_chan[CHAN_A] :
456 &addr->zs_chan[CHAN_B] );
457
458 mon_printf("console on zs0 (tty%c)\n", unit + 'a');
459 }
460
461
462 /*
463 * Polled console input putchar.
464 */
465 int
466 zscngetc(dev)
467 dev_t dev;
468 {
469 register volatile struct zschan *zc = zs_conschan;
470 register int s, c;
471
472 if (zc == NULL)
473 return (0);
474
475 s = splhigh();
476
477 /* Wait for a character to arrive. */
478 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
479 ZS_DELAY();
480 ZS_DELAY();
481
482 c = zc->zc_data;
483 ZS_DELAY();
484
485 splx(s);
486 return (c);
487 }
488
489 /*
490 * Polled console output putchar.
491 */
492 int
493 zscnputc(dev, c)
494 dev_t dev;
495 int c;
496 {
497 register volatile struct zschan *zc = zs_conschan;
498 register int s;
499
500 if (zc == NULL) {
501 s = splhigh();
502 mon_putchar(c);
503 splx(s);
504 return (0);
505 }
506 s = splhigh();
507
508 /* Wait for transmitter to become ready. */
509 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
510 ZS_DELAY();
511 ZS_DELAY();
512
513 zc->zc_data = c;
514 ZS_DELAY();
515 splx(s);
516 }
517
518 #ifdef KGDB
519 /*
520 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
521 * Pick up the current speed and character size and restore the original
522 * speed.
523 */
524 static void
525 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
526 {
527
528 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
529 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
530 tp->t_cflag = CS8;
531 cs->cs_kgdb = 1;
532 cs->cs_speed = zs_kgdb_savedspeed;
533 (void) zsparam(tp, &tp->t_termios);
534 }
535 }
536 #endif
537
538 /*
539 * Compute the current baud rate given a ZSCC channel.
540 */
541 static int
542 zs_getspeed(zc)
543 register volatile struct zschan *zc;
544 {
545 register int tconst;
546
547 tconst = ZS_READ(zc, 12);
548 tconst |= ZS_READ(zc, 13) << 8;
549 return (TCONST_TO_BPS(PCLK / 16, tconst));
550 }
551
552
553 /*
554 * Do an internal open.
555 */
556 static void
557 zsiopen(struct tty *tp)
558 {
559
560 (void) zsparam(tp, &tp->t_termios);
561 ttsetwater(tp);
562 tp->t_state = TS_ISOPEN | TS_CARR_ON;
563 }
564
565 /*
566 * Do an internal close. Eventually we should shut off the chip when both
567 * ports on it are closed.
568 */
569 static void
570 zsiclose(struct tty *tp)
571 {
572
573 ttylclose(tp, 0); /* ??? */
574 ttyclose(tp); /* ??? */
575 tp->t_state = 0;
576 }
577
578
579 /*
580 * Open a zs serial port. This interface may not be used to open
581 * the keyboard and mouse ports. (XXX)
582 */
583 int
584 zsopen(dev_t dev, int flags, int mode, struct proc *p)
585 {
586 register struct tty *tp;
587 register struct zs_chanstate *cs;
588 struct zsinfo *zi;
589 int unit = minor(dev), zs = unit >> 1, error, s;
590
591 #ifdef DEBUG
592 mon_printf("zs_open\n");
593 #endif
594 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
595 unit == ZS_KBD || unit == ZS_MOUSE)
596 return (ENXIO);
597 cs = &zi->zi_cs[unit & 1];
598 #if 0
599 /* The kd driver avoids the need for this hack. */
600 if (cs->cs_consio)
601 return (ENXIO); /* ??? */
602 #endif
603 tp = cs->cs_ttyp;
604 s = spltty();
605 if ((tp->t_state & TS_ISOPEN) == 0) {
606 ttychars(tp);
607 if (tp->t_ispeed == 0) {
608 tp->t_iflag = TTYDEF_IFLAG;
609 tp->t_oflag = TTYDEF_OFLAG;
610 #if 0
611 tp->t_cflag = TTYDEF_CFLAG;
612 #else
613 /* Make default same as PROM uses. */
614 tp->t_cflag = (CREAD | CS8 | HUPCL);
615 #endif
616 tp->t_lflag = TTYDEF_LFLAG;
617 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
618 }
619 (void) zsparam(tp, &tp->t_termios);
620 ttsetwater(tp);
621 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
622 splx(s);
623 return (EBUSY);
624 }
625 error = 0;
626 #ifdef DEBUG
627 mon_printf("wait for carrier...\n");
628 #endif
629 for (;;) {
630 /* loop, turning on the device, until carrier present */
631 zs_modem(cs, 1);
632 /* May never get status intr if carrier already on. -gwr */
633 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
634 tp->t_state |= TS_CARR_ON;
635 if (cs->cs_softcar)
636 tp->t_state |= TS_CARR_ON;
637 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
638 tp->t_state & TS_CARR_ON)
639 break;
640 tp->t_state |= TS_WOPEN;
641 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
642 ttopen, 0))
643 break;
644 }
645 #ifdef DEBUG
646 mon_printf("...carrier %s\n",
647 (tp->t_state & TS_CARR_ON) ? "on" : "off");
648 #endif
649 splx(s);
650 if (error == 0)
651 error = linesw[tp->t_line].l_open(dev, tp);
652 if (error)
653 zs_modem(cs, 0);
654 return (error);
655 }
656
657 /*
658 * Close a zs serial port.
659 */
660 int
661 zsclose(dev_t dev, int flags, int mode, struct proc *p)
662 {
663 register struct zs_chanstate *cs;
664 register struct tty *tp;
665 struct zsinfo *zi;
666 int unit = minor(dev), s;
667
668 #ifdef DEBUG
669 mon_printf("zs_close\n");
670 #endif
671 zi = zscd.cd_devs[unit >> 1];
672 cs = &zi->zi_cs[unit & 1];
673 tp = cs->cs_ttyp;
674 linesw[tp->t_line].l_close(tp, flags);
675 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
676 (tp->t_state & TS_ISOPEN) == 0) {
677 zs_modem(cs, 0);
678 /* hold low for 1 second */
679 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
680 }
681 if (cs->cs_creg[5] & ZSWR5_BREAK)
682 {
683 s = splzs();
684 cs->cs_preg[5] &= ~ZSWR5_BREAK;
685 cs->cs_creg[5] &= ~ZSWR5_BREAK;
686 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
687 splx(s);
688 }
689 ttyclose(tp);
690 #ifdef KGDB
691 /* Reset the speed if we're doing kgdb on this port */
692 if (cs->cs_kgdb) {
693 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
694 (void) zsparam(tp, &tp->t_termios);
695 }
696 #endif
697 return (0);
698 }
699
700 /*
701 * Read/write zs serial port.
702 */
703 int
704 zsread(dev_t dev, struct uio *uio, int flags)
705 {
706 register struct tty *tp = zs_tty[minor(dev)];
707
708 return (linesw[tp->t_line].l_read(tp, uio, flags));
709 }
710
711 int
712 zswrite(dev_t dev, struct uio *uio, int flags)
713 {
714 register struct tty *tp = zs_tty[minor(dev)];
715
716 return (linesw[tp->t_line].l_write(tp, uio, flags));
717 }
718
719 /*
720 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
721 * channels are kept in (A,B) pairs.
722 *
723 * Do just a little, then get out; set a software interrupt if more
724 * work is needed.
725 *
726 * We deliberately ignore the vectoring Zilog gives us, and match up
727 * only the number of `reset interrupt under service' operations, not
728 * the order.
729 */
730 /* ARGSUSED */
731 int
732 zshard(int intrarg)
733 {
734 register struct zs_chanstate *a;
735 #define b (a + 1)
736 register volatile struct zschan *zc;
737 register int rr3, intflags = 0, v, i;
738 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
739 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
740 static int zssint(struct zs_chanstate *, volatile struct zschan *);
741
742 for (a = zslist; a != NULL; a = b->cs_next) {
743 rr3 = ZS_READ(a->cs_zc, 3);
744
745 /* XXX - This should loop to empty the on-chip fifo. */
746 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
747 intflags |= 2;
748 zc = a->cs_zc;
749 i = a->cs_rbput;
750 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
751 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
752 intflags |= 1;
753 }
754 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
755 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
756 intflags |= 1;
757 }
758 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
759 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
760 intflags |= 1;
761 }
762 a->cs_rbput = i;
763 }
764
765 /* XXX - This should loop to empty the on-chip fifo. */
766 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
767 intflags |= 2;
768 zc = b->cs_zc;
769 i = b->cs_rbput;
770 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
771 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
772 intflags |= 1;
773 }
774 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
775 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
776 intflags |= 1;
777 }
778 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
779 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
780 intflags |= 1;
781 }
782 b->cs_rbput = i;
783 }
784 }
785 #undef b
786 if (intflags & 1) {
787 if (zssoftpending == 0) {
788 zssoftpending = ZSSOFT_PRI;
789 isr_soft_request(ZSSOFT_PRI);
790 }
791 }
792 return (intflags & 2);
793 }
794
795 static int
796 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
797 {
798 register int c = zc->zc_data;
799
800 if (cs->cs_conk) {
801 register struct conk_state *conk = &zsconk_state;
802
803 /*
804 * Check here for console abort function, so that we
805 * can abort even when interrupts are locking up the
806 * machine.
807 */
808 if (c == KBD_RESET) {
809 conk->conk_id = 1; /* ignore next byte */
810 conk->conk_l1 = 0;
811 } else if (conk->conk_id)
812 conk->conk_id = 0; /* stop ignoring bytes */
813 else if (c == KBD_L1)
814 conk->conk_l1 = 1; /* L1 went down */
815 else if (c == (KBD_L1|KBD_UP))
816 conk->conk_l1 = 0; /* L1 went up */
817 else if (c == KBD_A && conk->conk_l1) {
818 zsabort();
819 conk->conk_l1 = 0; /* we never see the up */
820 goto clearit; /* eat the A after L1-A */
821 }
822 }
823 #ifdef KGDB
824 if (c == FRAME_START && cs->cs_kgdb &&
825 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
826 zskgdb(cs->cs_unit);
827 goto clearit;
828 }
829 #endif
830 /* compose receive character and status */
831 c <<= 8;
832 c |= ZS_READ(zc, 1);
833
834 /* clear receive error & interrupt condition */
835 zc->zc_csr = ZSWR0_RESET_ERRORS;
836 zc->zc_csr = ZSWR0_CLR_INTR;
837
838 return (ZRING_MAKE(ZRING_RINT, c));
839
840 clearit:
841 zc->zc_csr = ZSWR0_RESET_ERRORS;
842 zc->zc_csr = ZSWR0_CLR_INTR;
843 return (0);
844 }
845
846 static int
847 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
848 {
849 register int i = cs->cs_tbc;
850
851 if (i == 0) {
852 zc->zc_csr = ZSWR0_RESET_TXINT;
853 zc->zc_csr = ZSWR0_CLR_INTR;
854 return (ZRING_MAKE(ZRING_XINT, 0));
855 }
856 cs->cs_tbc = i - 1;
857 zc->zc_data = *cs->cs_tba++;
858 zc->zc_csr = ZSWR0_CLR_INTR;
859 return (0);
860 }
861
862 static int
863 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
864 {
865 register int rr0;
866
867 rr0 = zc->zc_csr;
868 zc->zc_csr = ZSWR0_RESET_STATUS;
869 zc->zc_csr = ZSWR0_CLR_INTR;
870 /*
871 * The chip's hardware flow control is, as noted in zsreg.h,
872 * busted---if the DCD line goes low the chip shuts off the
873 * receiver (!). If we want hardware CTS flow control but do
874 * not have it, and carrier is now on, turn HFC on; if we have
875 * HFC now but carrier has gone low, turn it off.
876 */
877 if (rr0 & ZSRR0_DCD) {
878 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
879 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
880 cs->cs_creg[3] |= ZSWR3_HFC;
881 ZS_WRITE(zc, 3, cs->cs_creg[3]);
882 }
883 } else {
884 if (cs->cs_creg[3] & ZSWR3_HFC) {
885 cs->cs_creg[3] &= ~ZSWR3_HFC;
886 ZS_WRITE(zc, 3, cs->cs_creg[3]);
887 }
888 }
889 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
890 /* Wait for end of break to avoid PROM abort. */
891 while (zc->zc_csr & ZSRR0_BREAK)
892 ZS_DELAY();
893 zsabort();
894 return (0);
895 }
896 return (ZRING_MAKE(ZRING_SINT, rr0));
897 }
898
899 zsabort()
900 {
901 #ifdef DDB
902 Debugger();
903 #else
904 printf("stopping on keyboard abort\n");
905 sun3_rom_abort();
906 #endif
907 }
908
909 #ifdef KGDB
910 /*
911 * KGDB framing character received: enter kernel debugger. This probably
912 * should time out after a few seconds to avoid hanging on spurious input.
913 */
914 zskgdb(int unit)
915 {
916
917 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
918 kgdb_connect(1);
919 }
920 #endif
921
922 /*
923 * Print out a ring or fifo overrun error message.
924 */
925 static void
926 zsoverrun(int unit, long *ptime, char *what)
927 {
928
929 if (*ptime != time.tv_sec) {
930 *ptime = time.tv_sec;
931 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
932 (unit & 1) + 'a', what);
933 }
934 }
935
936 /*
937 * ZS software interrupt. Scan all channels for deferred interrupts.
938 */
939 int
940 zssoft(int arg)
941 {
942 register struct zs_chanstate *cs;
943 register volatile struct zschan *zc;
944 register struct linesw *line;
945 register struct tty *tp;
946 register int get, n, c, cc, unit, s;
947
948 if (zssoftpending == 0)
949 return (0);
950
951 zssoftpending = 0;
952 isr_soft_clear(ZSSOFT_PRI);
953
954 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
955 get = cs->cs_rbget;
956 again:
957 n = cs->cs_rbput; /* atomic */
958 if (get == n) /* nothing more on this line */
959 continue;
960 unit = cs->cs_unit; /* set up to handle interrupts */
961 zc = cs->cs_zc;
962 tp = cs->cs_ttyp;
963 line = &linesw[tp->t_line];
964 /*
965 * Compute the number of interrupts in the receive ring.
966 * If the count is overlarge, we lost some events, and
967 * must advance to the first valid one. It may get
968 * overwritten if more data are arriving, but this is
969 * too expensive to check and gains nothing (we already
970 * lost out; all we can do at this point is trade one
971 * kind of loss for another).
972 */
973 n -= get;
974 if (n > ZLRB_RING_SIZE) {
975 zsoverrun(unit, &cs->cs_rotime, "ring");
976 get += n - ZLRB_RING_SIZE;
977 n = ZLRB_RING_SIZE;
978 }
979 while (--n >= 0) {
980 /* race to keep ahead of incoming interrupts */
981 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
982 switch (ZRING_TYPE(c)) {
983
984 case ZRING_RINT:
985 c = ZRING_VALUE(c);
986 if (c & ZSRR1_DO)
987 zsoverrun(unit, &cs->cs_fotime, "fifo");
988 cc = c >> 8;
989 if (c & ZSRR1_FE)
990 cc |= TTY_FE;
991 if (c & ZSRR1_PE)
992 cc |= TTY_PE;
993 /*
994 * this should be done through
995 * bstreams XXX gag choke
996 */
997 if (unit == ZS_KBD)
998 kbd_rint(cc);
999 else if (unit == ZS_MOUSE)
1000 ms_rint(cc);
1001 else
1002 line->l_rint(cc, tp);
1003 break;
1004
1005 case ZRING_XINT:
1006 /*
1007 * Transmit done: change registers and resume,
1008 * or clear BUSY.
1009 */
1010 if (cs->cs_heldchange) {
1011 s = splzs();
1012 c = zc->zc_csr;
1013 if ((c & ZSRR0_DCD) == 0)
1014 cs->cs_preg[3] &= ~ZSWR3_HFC;
1015 bcopy((caddr_t)cs->cs_preg,
1016 (caddr_t)cs->cs_creg, 16);
1017 zs_loadchannelregs(zc, cs->cs_creg);
1018 splx(s);
1019 cs->cs_heldchange = 0;
1020 if (cs->cs_heldtbc &&
1021 (tp->t_state & TS_TTSTOP) == 0) {
1022 cs->cs_tbc = cs->cs_heldtbc - 1;
1023 zc->zc_data = *cs->cs_tba++;
1024 goto again;
1025 }
1026 }
1027 tp->t_state &= ~TS_BUSY;
1028 if (tp->t_state & TS_FLUSH)
1029 tp->t_state &= ~TS_FLUSH;
1030 else
1031 ndflush(&tp->t_outq, cs->cs_tba -
1032 (caddr_t) tp->t_outq.c_cf);
1033 line->l_start(tp);
1034 break;
1035
1036 case ZRING_SINT:
1037 /*
1038 * Status line change. HFC bit is run in
1039 * hardware interrupt, to avoid locking
1040 * at splzs here.
1041 */
1042 c = ZRING_VALUE(c);
1043 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1044 cc = (c & ZSRR0_DCD) != 0;
1045 if (line->l_modem(tp, cc) == 0)
1046 zs_modem(cs, cc);
1047 }
1048 cs->cs_rr0 = c;
1049 break;
1050
1051 default:
1052 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1053 unit >> 1, (unit & 1) + 'a', c);
1054 break;
1055 }
1056 }
1057 cs->cs_rbget = get;
1058 goto again;
1059 }
1060 return (1);
1061 }
1062
1063 int
1064 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1065 {
1066 int unit = minor(dev);
1067 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1068 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1069 register struct tty *tp = cs->cs_ttyp;
1070 register int error, s;
1071
1072 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1073 if (error >= 0)
1074 return (error);
1075 error = ttioctl(tp, cmd, data, flag, p);
1076 if (error >= 0)
1077 return (error);
1078
1079 switch (cmd) {
1080
1081 case TIOCSBRK:
1082 {
1083 s = splzs();
1084 cs->cs_preg[5] |= ZSWR5_BREAK;
1085 cs->cs_creg[5] |= ZSWR5_BREAK;
1086 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1087 splx(s);
1088 break;
1089 }
1090
1091 case TIOCCBRK:
1092 {
1093 s = splzs();
1094 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1095 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1096 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1097 splx(s);
1098 break;
1099 }
1100
1101 case TIOCSDTR:
1102
1103 case TIOCCDTR:
1104
1105 case TIOCMSET:
1106
1107 case TIOCMBIS:
1108
1109 case TIOCMBIC:
1110
1111 case TIOCMGET:
1112
1113 default:
1114 return (ENOTTY);
1115 }
1116 return (0);
1117 }
1118
1119 /*
1120 * Start or restart transmission.
1121 */
1122 static void
1123 zsstart(register struct tty *tp)
1124 {
1125 register struct zs_chanstate *cs;
1126 register int s, nch;
1127 int unit = minor(tp->t_dev);
1128 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1129
1130 cs = &zi->zi_cs[unit & 1];
1131 s = spltty();
1132
1133 /*
1134 * If currently active or delaying, no need to do anything.
1135 */
1136 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1137 goto out;
1138
1139 /*
1140 * If there are sleepers, and output has drained below low
1141 * water mark, awaken.
1142 */
1143 if (tp->t_outq.c_cc <= tp->t_lowat) {
1144 if (tp->t_state & TS_ASLEEP) {
1145 tp->t_state &= ~TS_ASLEEP;
1146 wakeup((caddr_t)&tp->t_outq);
1147 }
1148 selwakeup(&tp->t_wsel);
1149 }
1150
1151 nch = ndqb(&tp->t_outq, 0); /* XXX */
1152 if (nch) {
1153 register char *p = tp->t_outq.c_cf;
1154
1155 /* mark busy, enable tx done interrupts, & send first byte */
1156 tp->t_state |= TS_BUSY;
1157 (void) splzs();
1158 cs->cs_preg[1] |= ZSWR1_TIE;
1159 cs->cs_creg[1] |= ZSWR1_TIE;
1160 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1161 cs->cs_zc->zc_data = *p;
1162 cs->cs_tba = p + 1;
1163 cs->cs_tbc = nch - 1;
1164 } else {
1165 /*
1166 * Nothing to send, turn off transmit done interrupts.
1167 * This is useful if something is doing polled output.
1168 */
1169 (void) splzs();
1170 cs->cs_preg[1] &= ~ZSWR1_TIE;
1171 cs->cs_creg[1] &= ~ZSWR1_TIE;
1172 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1173 }
1174 out:
1175 splx(s);
1176 }
1177
1178 /*
1179 * Stop output, e.g., for ^S or output flush.
1180 */
1181 void
1182 zsstop(register struct tty *tp, int flag)
1183 {
1184 register struct zs_chanstate *cs;
1185 register int s, unit = minor(tp->t_dev);
1186 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1187
1188 cs = &zi->zi_cs[unit & 1];
1189 s = splzs();
1190 if (tp->t_state & TS_BUSY) {
1191 /*
1192 * Device is transmitting; must stop it.
1193 */
1194 cs->cs_tbc = 0;
1195 if ((tp->t_state & TS_TTSTOP) == 0)
1196 tp->t_state |= TS_FLUSH;
1197 }
1198 splx(s);
1199 }
1200
1201 /*
1202 * Set ZS tty parameters from termios.
1203 *
1204 * This routine makes use of the fact that only registers
1205 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1206 */
1207 static int
1208 zsparam(register struct tty *tp, register struct termios *t)
1209 {
1210 int unit = minor(tp->t_dev);
1211 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1212 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1213 register int tmp, tmp5, cflag, s;
1214
1215 /*
1216 * Because PCLK is only run at 4.9 MHz, the fastest we
1217 * can go is 51200 baud (this corresponds to TC=1).
1218 * This is somewhat unfortunate as there is no real
1219 * reason we should not be able to handle higher rates.
1220 */
1221 tmp = t->c_ospeed;
1222 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1223 return (EINVAL);
1224 if (tmp == 0) {
1225 /* stty 0 => drop DTR and RTS */
1226 zs_modem(cs, 0);
1227 return (0);
1228 }
1229 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1230 if (tmp < 2)
1231 return (EINVAL);
1232
1233 cflag = t->c_cflag;
1234 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1235 tp->t_cflag = cflag;
1236
1237 /*
1238 * Block interrupts so that state will not
1239 * be altered until we are done setting it up.
1240 */
1241 s = splzs();
1242 cs->cs_preg[12] = tmp;
1243 cs->cs_preg[13] = tmp >> 8;
1244 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1245 switch (cflag & CSIZE) {
1246 case CS5:
1247 tmp = ZSWR3_RX_5;
1248 tmp5 = ZSWR5_TX_5;
1249 break;
1250 case CS6:
1251 tmp = ZSWR3_RX_6;
1252 tmp5 = ZSWR5_TX_6;
1253 break;
1254 case CS7:
1255 tmp = ZSWR3_RX_7;
1256 tmp5 = ZSWR5_TX_7;
1257 break;
1258 case CS8:
1259 default:
1260 tmp = ZSWR3_RX_8;
1261 tmp5 = ZSWR5_TX_8;
1262 break;
1263 }
1264
1265 /*
1266 * Output hardware flow control on the chip is horrendous: if
1267 * carrier detect drops, the receiver is disabled. Hence we
1268 * can only do this when the carrier is on.
1269 */
1270 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1271 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1272 else
1273 tmp |= ZSWR3_RX_ENABLE;
1274 cs->cs_preg[3] = tmp;
1275 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1276
1277 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1278 if ((cflag & PARODD) == 0)
1279 tmp |= ZSWR4_EVENP;
1280 if (cflag & PARENB)
1281 tmp |= ZSWR4_PARENB;
1282 cs->cs_preg[4] = tmp;
1283 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1284 cs->cs_preg[10] = ZSWR10_NRZ;
1285 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1286 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1287 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1288
1289 /*
1290 * If nothing is being transmitted, set up new current values,
1291 * else mark them as pending.
1292 */
1293 if (cs->cs_heldchange == 0) {
1294 if (cs->cs_ttyp->t_state & TS_BUSY) {
1295 cs->cs_heldtbc = cs->cs_tbc;
1296 cs->cs_tbc = 0;
1297 cs->cs_heldchange = 1;
1298 } else {
1299 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1300 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1301 }
1302 }
1303 splx(s);
1304 return (0);
1305 }
1306
1307 /*
1308 * Raise or lower modem control (DTR/RTS) signals. If a character is
1309 * in transmission, the change is deferred.
1310 */
1311 static void
1312 zs_modem(struct zs_chanstate *cs, int onoff)
1313 {
1314 int s, bis, and;
1315
1316 if (onoff) {
1317 bis = ZSWR5_DTR | ZSWR5_RTS;
1318 and = ~0;
1319 } else {
1320 bis = 0;
1321 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1322 }
1323 s = splzs();
1324 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1325 if (cs->cs_heldchange == 0) {
1326 if (cs->cs_ttyp->t_state & TS_BUSY) {
1327 cs->cs_heldtbc = cs->cs_tbc;
1328 cs->cs_tbc = 0;
1329 cs->cs_heldchange = 1;
1330 } else {
1331 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1332 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1333 }
1334 }
1335 splx(s);
1336 }
1337
1338 /*
1339 * Write the given register set to the given zs channel in the proper order.
1340 * The channel must not be transmitting at the time. The receiver will
1341 * be disabled for the time it takes to write all the registers.
1342 */
1343 static void
1344 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1345 {
1346 int i;
1347
1348 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1349 i = zc->zc_data; /* drain fifo */
1350 i = zc->zc_data;
1351 i = zc->zc_data;
1352 ZS_WRITE(zc, 4, reg[4]);
1353 ZS_WRITE(zc, 10, reg[10]);
1354 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1355 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1356 ZS_WRITE(zc, 1, reg[1]);
1357 ZS_WRITE(zc, 9, reg[9]);
1358 ZS_WRITE(zc, 11, reg[11]);
1359 ZS_WRITE(zc, 12, reg[12]);
1360 ZS_WRITE(zc, 13, reg[13]);
1361 ZS_WRITE(zc, 14, reg[14]);
1362 ZS_WRITE(zc, 15, reg[15]);
1363 ZS_WRITE(zc, 3, reg[3]);
1364 ZS_WRITE(zc, 5, reg[5]);
1365 }
1366
1367 static u_char
1368 zs_read(zc, reg)
1369 volatile struct zschan *zc;
1370 u_char reg;
1371 {
1372 u_char val;
1373
1374 zc->zc_csr = reg;
1375 ZS_DELAY();
1376 val = zc->zc_csr;
1377 ZS_DELAY();
1378 return val;
1379 }
1380
1381 static u_char
1382 zs_write(zc, reg, val)
1383 volatile struct zschan *zc;
1384 u_char reg, val;
1385 {
1386 zc->zc_csr = reg;
1387 ZS_DELAY();
1388 zc->zc_csr = val;
1389 ZS_DELAY();
1390 return val;
1391 }
1392
1393 #ifdef KGDB
1394 /*
1395 * Get a character from the given kgdb channel. Called at splhigh().
1396 * XXX - Add delays, or combine with zscngetc()...
1397 */
1398 static int
1399 zs_kgdb_getc(void *arg)
1400 {
1401 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1402
1403 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1404 continue;
1405 return (zc->zc_data);
1406 }
1407
1408 /*
1409 * Put a character to the given kgdb channel. Called at splhigh().
1410 */
1411 static void
1412 zs_kgdb_putc(void *arg, int c)
1413 {
1414 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1415
1416 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1417 continue;
1418 zc->zc_data = c;
1419 }
1420
1421 /*
1422 * Set up for kgdb; called at boot time before configuration.
1423 * KGDB interrupts will be enabled later when zs0 is configured.
1424 */
1425 void
1426 zs_kgdb_init()
1427 {
1428 volatile struct zsdevice *addr;
1429 volatile struct zschan *zc;
1430 int unit, zs;
1431
1432 if (major(kgdb_dev) != ZSMAJOR)
1433 return;
1434 unit = minor(kgdb_dev);
1435 /*
1436 * Unit must be 0 or 1 (zs0).
1437 */
1438 if ((unsigned)unit >= ZS_KBD) {
1439 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1440 return;
1441 }
1442 zs = unit >> 1;
1443 unit &= 1;
1444
1445 if (zsaddr[0] == NULL)
1446 panic("kbdb_attach: zs0 not yet mapped");
1447 addr = zsaddr[0];
1448
1449 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1450 zs_kgdb_savedspeed = zs_getspeed(zc);
1451 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1452 zs, unit + 'a', kgdb_rate);
1453 zs_reset(zc, 1, kgdb_rate);
1454 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1455 }
1456 #endif /* KGDB */
1457