zs.c revision 1.14 1 /* $NetBSD: zs.c,v 1.14 1994/12/13 18:31:54 gwr Exp $ */
2
3 /*
4 * Copyright (c) 1994 Gordon W. Ross
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)zs.c 8.1 (Berkeley) 7/19/93
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/autoconf.h>
71 #include <machine/cpu.h>
72 #include <machine/obio.h>
73 #include <machine/mon.h>
74 #include <machine/eeprom.h>
75 #include <machine/kbd.h>
76
77 #include <dev/cons.h>
78
79 #include "zsreg.h"
80 #include "zsvar.h"
81
82 #ifdef KGDB
83 #include <machine/remote-sl.h>
84 #endif
85
86 #define ZSMAJOR 12 /* XXX */
87
88 #define ZS_KBD 2 /* XXX */
89 #define ZS_MOUSE 3 /* XXX */
90
91 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
92 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
93
94 /*
95 * Select software interrupt levels.
96 */
97 #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
98 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
99
100 /*
101 * Software state per found chip. This would be called `zs_softc',
102 * but the previous driver had a rather different zs_softc....
103 */
104 struct zsinfo {
105 struct device zi_dev; /* base device */
106 volatile struct zsdevice *zi_zs;/* chip registers */
107 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
108 };
109
110 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
111
112 /* Definition of the driver for autoconfig. */
113 static int zs_match(struct device *, void *, void *);
114 static void zs_attach(struct device *, struct device *, void *);
115
116 struct cfdriver zscd = {
117 NULL, "zs", zs_match, zs_attach,
118 DV_TTY, sizeof(struct zsinfo) };
119
120 /* Interrupt handlers. */
121 static int zshard(int);
122 static int zssoft(int);
123
124 struct zs_chanstate *zslist;
125
126 /* Routines called from other code. */
127 int zsopen(dev_t, int, int, struct proc *);
128 int zsclose(dev_t, int, int, struct proc *);
129 static void zsiopen(struct tty *);
130 static void zsiclose(struct tty *);
131 static void zsstart(struct tty *);
132 void zsstop(struct tty *, int);
133 static int zsparam(struct tty *, struct termios *);
134
135 /* Routines purely local to this driver. */
136 static int zs_getspeed(volatile struct zschan *);
137 static void zs_reset(volatile struct zschan *, int, int);
138 static void zs_modem(struct zs_chanstate *, int);
139 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
140 static u_char zs_read(volatile struct zschan *, u_char);
141 static u_char zs_write(volatile struct zschan *, u_char, u_char);
142
143 /* Console stuff. */
144 static volatile struct zschan *zs_conschan;
145
146 #ifdef KGDB
147 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
148 extern int kgdb_dev, kgdb_rate;
149 static int zs_kgdb_savedspeed;
150 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
151 #endif
152
153 /*
154 * Console keyboard L1-A processing is done in the hardware interrupt code,
155 * so we need to duplicate some of the console keyboard decode state. (We
156 * must not use the regular state as the hardware code keeps ahead of the
157 * software state: the software state tracks the most recent ring input but
158 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
159 */
160 static struct conk_state { /* console keyboard state */
161 char conk_id; /* true => ID coming up (console only) */
162 char conk_l1; /* true => L1 pressed (console only) */
163 } zsconk_state;
164
165 int zshardscope;
166 int zsshortcuts; /* number of "shortcut" software interrupts */
167
168 int zssoftpending; /* We have done isr_soft_request() */
169
170 static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
171
172 /* Default OBIO addresses. */
173 static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS };
174
175
176 /* Find PROM mappings (for console support). */
177 void zs_init()
178 {
179 if (zsaddr[0] == NULL)
180 zsaddr[0] = (struct zsdevice *)
181 obio_find_mapping(OBIO_ZS, OBIO_ZS_SIZE);
182 if (zsaddr[1] == NULL)
183 zsaddr[1] = (struct zsdevice *)
184 obio_find_mapping(OBIO_KEYBD_MS, OBIO_ZS_SIZE);
185 }
186
187 /*
188 * Match slave number to zs unit number, so that misconfiguration will
189 * not set up the keyboard as ttya, etc.
190 */
191 static int
192 zs_match(struct device *parent, void *vcf, void *args)
193 {
194 struct cfdata *cf = vcf;
195 struct confargs *ca = args;
196 int unit, x;
197
198 unit = cf->cf_unit;
199 if (unit < 0 || unit >= NZS)
200 return (0);
201
202 if (ca->ca_paddr == -1)
203 ca->ca_paddr = zs_physaddr[unit];
204 if (ca->ca_intpri == -1)
205 ca->ca_intpri = ZSHARD_PRI;
206
207 /* The peek returns non-zero on error. */
208 x = bus_peek(ca->ca_bustype, ca->ca_paddr, 1);
209 return (x != -1);
210 }
211
212 /*
213 * Attach a found zs.
214 *
215 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
216 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
217 */
218 static void
219 zs_attach(struct device *parent, struct device *self, void *args)
220 {
221 struct cfdata *cf;
222 struct confargs *ca;
223 register int zs, unit;
224 register struct zsinfo *zi;
225 register struct zs_chanstate *cs;
226 register volatile struct zsdevice *addr;
227 register struct tty *tp, *ctp;
228 int softcar;
229 static int didintr;
230
231 cf = self->dv_cfdata;
232 zs = self->dv_unit;
233 ca = args;
234
235 printf(" softpri %d\n", ZSSOFT_PRI);
236
237 if (zsaddr[zs] == NULL) {
238 zsaddr[zs] = (struct zsdevice *)
239 obio_alloc(ca->ca_paddr, OBIO_ZS_SIZE);
240 }
241 addr = zsaddr[zs];
242
243 if (!didintr) {
244 didintr = 1;
245 isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
246 isr_add_autovect(zshard, NULL, ZSHARD_PRI);
247 }
248
249 zi = (struct zsinfo *)self;
250 zi->zi_zs = addr;
251 unit = zs * 2;
252 cs = zi->zi_cs;
253
254 if(!zs_tty[unit])
255 zs_tty[unit] = ttymalloc();
256 tp = zs_tty[unit];
257 if(!zs_tty[unit+1])
258 zs_tty[unit+1] = ttymalloc();
259
260 if (unit == 0) {
261 softcar = 0;
262 } else
263 softcar = cf->cf_flags;
264
265 /* link into interrupt list with order (A,B) (B=A+1) */
266 cs[0].cs_next = &cs[1];
267 cs[1].cs_next = zslist;
268 zslist = cs;
269
270 cs->cs_unit = unit;
271 cs->cs_zc = &addr->zs_chan[CHAN_A];
272 cs->cs_speed = zs_getspeed(cs->cs_zc);
273 #ifdef DEBUG
274 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
275 #endif
276 cs->cs_softcar = softcar & 1;
277 #if 0
278 /* XXX - Drop carrier here? -gwr */
279 zs_modem(cs, cs->cs_softcar ? 1 : 0);
280 #endif
281 cs->cs_ttyp = tp;
282 tp->t_dev = makedev(ZSMAJOR, unit);
283 tp->t_oproc = zsstart;
284 tp->t_param = zsparam;
285 if (cs->cs_zc == zs_conschan) {
286 /* This unit is the console. */
287 cs->cs_consio = 1;
288 cs->cs_brkabort = 1;
289 cs->cs_softcar = 1;
290 } else {
291 /* Can not run kgdb on the console? */
292 #ifdef KGDB
293 zs_checkkgdb(unit, cs, tp);
294 #endif
295 }
296 if (unit == ZS_KBD) {
297 /*
298 * Keyboard: tell /dev/kbd driver how to talk to us.
299 */
300 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
301 tp->t_cflag = CS8;
302 kbd_serial(tp, zsiopen, zsiclose);
303 cs->cs_conk = 1; /* do L1-A processing */
304 }
305 unit++;
306 cs++;
307 tp = zs_tty[unit];
308
309 cs->cs_unit = unit;
310 cs->cs_zc = &addr->zs_chan[CHAN_B];
311 cs->cs_speed = zs_getspeed(cs->cs_zc);
312 #ifdef DEBUG
313 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
314 #endif
315 cs->cs_softcar = softcar & 2;
316 #if 0
317 /* XXX - Drop carrier here? -gwr */
318 zs_modem(cs, cs->cs_softcar ? 1 : 0);
319 #endif
320 cs->cs_ttyp = tp;
321 tp->t_dev = makedev(ZSMAJOR, unit);
322 tp->t_oproc = zsstart;
323 tp->t_param = zsparam;
324 if (cs->cs_zc == zs_conschan) {
325 /* This unit is the console. */
326 cs->cs_consio = 1;
327 cs->cs_brkabort = 1;
328 cs->cs_softcar = 1;
329 } else {
330 /* Can not run kgdb on the console? */
331 #ifdef KGDB
332 zs_checkkgdb(unit, cs, tp);
333 #endif
334 }
335 if (unit == ZS_MOUSE) {
336 /*
337 * Mouse: tell /dev/mouse driver how to talk to us.
338 */
339 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
340 tp->t_cflag = CS8;
341 ms_serial(tp, zsiopen, zsiclose);
342 }
343 }
344
345 /*
346 * Put a channel in a known state. Interrupts may be left disabled
347 * or enabled, as desired.
348 */
349 static void
350 zs_reset(zc, inten, speed)
351 volatile struct zschan *zc;
352 int inten, speed;
353 {
354 int tconst;
355 static u_char reg[16] = {
356 0,
357 0,
358 0,
359 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
360 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
361 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
362 0,
363 0,
364 0,
365 0,
366 ZSWR10_NRZ,
367 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
368 0,
369 0,
370 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
371 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
372 };
373
374 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
375 tconst = BPS_TO_TCONST(PCLK / 16, speed);
376 reg[12] = tconst;
377 reg[13] = tconst >> 8;
378 zs_loadchannelregs(zc, reg);
379 }
380
381 /*
382 * Console support
383 */
384
385 /*
386 * Used by the kd driver to find out if it can work.
387 */
388 int
389 zscnprobe_kbd()
390 {
391 if (zsaddr[1] == NULL) {
392 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
393 return CN_DEAD;
394 }
395 return CN_INTERNAL;
396 }
397
398 /*
399 * This is the console probe routine for ttya and ttyb.
400 */
401 static int
402 zscnprobe(struct consdev *cn, int unit)
403 {
404 int maj, eeCons;
405
406 if (zsaddr[0] == NULL) {
407 mon_printf("zscnprobe: zs0 not mapped\n");
408 cn->cn_pri = CN_DEAD;
409 return 0;
410 }
411 /* XXX - Also try to make sure it exists? */
412
413 /* locate the major number */
414 for (maj = 0; maj < nchrdev; maj++)
415 if (cdevsw[maj].d_open == (void*)zsopen)
416 break;
417
418 cn->cn_dev = makedev(maj, unit);
419
420 /* Use EEPROM console setting to decide "remote" console. */
421 eeCons = ee_get_byte(EE_CONS_OFFSET, 0);
422
423 /* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
424 if (eeCons == (EE_CONS_TTYA + unit)) {
425 cn->cn_pri = CN_REMOTE;
426 } else {
427 cn->cn_pri = CN_NORMAL;
428 }
429 return (0);
430 }
431
432 /* This is the constab entry for TTYA. */
433 int
434 zscnprobe_a(struct consdev *cn)
435 {
436 return (zscnprobe(cn, 0));
437 }
438
439 /* This is the constab entry for TTYB. */
440 int
441 zscnprobe_b(struct consdev *cn)
442 {
443 return (zscnprobe(cn, 1));
444 }
445
446 /* Attach as console. Also set zs_conschan */
447 int
448 zscninit(struct consdev *cn)
449 {
450 int unit;
451 volatile struct zsdevice *addr;
452
453 unit = minor(cn->cn_dev) & 1;
454 addr = zsaddr[0];
455 zs_conschan = ((unit == 0) ?
456 &addr->zs_chan[CHAN_A] :
457 &addr->zs_chan[CHAN_B] );
458
459 mon_printf("console on zs0 (tty%c)\n", unit + 'a');
460 }
461
462
463 /*
464 * Polled console input putchar.
465 */
466 int
467 zscngetc(dev)
468 dev_t dev;
469 {
470 register volatile struct zschan *zc = zs_conschan;
471 register int s, c;
472
473 if (zc == NULL)
474 return (0);
475
476 s = splhigh();
477
478 /* Wait for a character to arrive. */
479 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
480 ZS_DELAY();
481 ZS_DELAY();
482
483 c = zc->zc_data;
484 ZS_DELAY();
485
486 splx(s);
487 return (c);
488 }
489
490 /*
491 * Polled console output putchar.
492 */
493 int
494 zscnputc(dev, c)
495 dev_t dev;
496 int c;
497 {
498 register volatile struct zschan *zc = zs_conschan;
499 register int s;
500
501 if (zc == NULL) {
502 s = splhigh();
503 mon_putchar(c);
504 splx(s);
505 return (0);
506 }
507 s = splhigh();
508
509 /* Wait for transmitter to become ready. */
510 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
511 ZS_DELAY();
512 ZS_DELAY();
513
514 zc->zc_data = c;
515 ZS_DELAY();
516 splx(s);
517 }
518
519 #ifdef KGDB
520 /*
521 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
522 * Pick up the current speed and character size and restore the original
523 * speed.
524 */
525 static void
526 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
527 {
528
529 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
530 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
531 tp->t_cflag = CS8;
532 cs->cs_kgdb = 1;
533 cs->cs_speed = zs_kgdb_savedspeed;
534 (void) zsparam(tp, &tp->t_termios);
535 }
536 }
537 #endif
538
539 /*
540 * Compute the current baud rate given a ZSCC channel.
541 */
542 static int
543 zs_getspeed(zc)
544 register volatile struct zschan *zc;
545 {
546 register int tconst;
547
548 tconst = ZS_READ(zc, 12);
549 tconst |= ZS_READ(zc, 13) << 8;
550 return (TCONST_TO_BPS(PCLK / 16, tconst));
551 }
552
553
554 /*
555 * Do an internal open.
556 */
557 static void
558 zsiopen(struct tty *tp)
559 {
560
561 (void) zsparam(tp, &tp->t_termios);
562 ttsetwater(tp);
563 tp->t_state = TS_ISOPEN | TS_CARR_ON;
564 }
565
566 /*
567 * Do an internal close. Eventually we should shut off the chip when both
568 * ports on it are closed.
569 */
570 static void
571 zsiclose(struct tty *tp)
572 {
573
574 ttylclose(tp, 0); /* ??? */
575 ttyclose(tp); /* ??? */
576 tp->t_state = 0;
577 }
578
579
580 /*
581 * Open a zs serial port. This interface may not be used to open
582 * the keyboard and mouse ports. (XXX)
583 */
584 int
585 zsopen(dev_t dev, int flags, int mode, struct proc *p)
586 {
587 register struct tty *tp;
588 register struct zs_chanstate *cs;
589 struct zsinfo *zi;
590 int unit = minor(dev), zs = unit >> 1, error, s;
591
592 #ifdef DEBUG
593 mon_printf("zs_open\n");
594 #endif
595 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
596 unit == ZS_KBD || unit == ZS_MOUSE)
597 return (ENXIO);
598 cs = &zi->zi_cs[unit & 1];
599 #if 0
600 /* The kd driver avoids the need for this hack. */
601 if (cs->cs_consio)
602 return (ENXIO); /* ??? */
603 #endif
604 tp = cs->cs_ttyp;
605 s = spltty();
606 if ((tp->t_state & TS_ISOPEN) == 0) {
607 ttychars(tp);
608 if (tp->t_ispeed == 0) {
609 tp->t_iflag = TTYDEF_IFLAG;
610 tp->t_oflag = TTYDEF_OFLAG;
611 #if 0
612 tp->t_cflag = TTYDEF_CFLAG;
613 #else
614 /* Make default same as PROM uses. */
615 tp->t_cflag = (CREAD | CS8 | HUPCL);
616 #endif
617 tp->t_lflag = TTYDEF_LFLAG;
618 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
619 }
620 (void) zsparam(tp, &tp->t_termios);
621 ttsetwater(tp);
622 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
623 splx(s);
624 return (EBUSY);
625 }
626 error = 0;
627 #ifdef DEBUG
628 mon_printf("wait for carrier...\n");
629 #endif
630 for (;;) {
631 /* loop, turning on the device, until carrier present */
632 zs_modem(cs, 1);
633 /* May never get status intr if carrier already on. -gwr */
634 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
635 tp->t_state |= TS_CARR_ON;
636 if (cs->cs_softcar)
637 tp->t_state |= TS_CARR_ON;
638 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
639 tp->t_state & TS_CARR_ON)
640 break;
641 tp->t_state |= TS_WOPEN;
642 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
643 ttopen, 0))
644 break;
645 }
646 #ifdef DEBUG
647 mon_printf("...carrier %s\n",
648 (tp->t_state & TS_CARR_ON) ? "on" : "off");
649 #endif
650 splx(s);
651 if (error == 0)
652 error = linesw[tp->t_line].l_open(dev, tp);
653 if (error)
654 zs_modem(cs, 0);
655 return (error);
656 }
657
658 /*
659 * Close a zs serial port.
660 */
661 int
662 zsclose(dev_t dev, int flags, int mode, struct proc *p)
663 {
664 register struct zs_chanstate *cs;
665 register struct tty *tp;
666 struct zsinfo *zi;
667 int unit = minor(dev), s;
668
669 #ifdef DEBUG
670 mon_printf("zs_close\n");
671 #endif
672 zi = zscd.cd_devs[unit >> 1];
673 cs = &zi->zi_cs[unit & 1];
674 tp = cs->cs_ttyp;
675 linesw[tp->t_line].l_close(tp, flags);
676 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
677 (tp->t_state & TS_ISOPEN) == 0) {
678 zs_modem(cs, 0);
679 /* hold low for 1 second */
680 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
681 }
682 if (cs->cs_creg[5] & ZSWR5_BREAK)
683 {
684 s = splzs();
685 cs->cs_preg[5] &= ~ZSWR5_BREAK;
686 cs->cs_creg[5] &= ~ZSWR5_BREAK;
687 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
688 splx(s);
689 }
690 ttyclose(tp);
691 #ifdef KGDB
692 /* Reset the speed if we're doing kgdb on this port */
693 if (cs->cs_kgdb) {
694 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
695 (void) zsparam(tp, &tp->t_termios);
696 }
697 #endif
698 return (0);
699 }
700
701 /*
702 * Read/write zs serial port.
703 */
704 int
705 zsread(dev_t dev, struct uio *uio, int flags)
706 {
707 register struct tty *tp = zs_tty[minor(dev)];
708
709 return (linesw[tp->t_line].l_read(tp, uio, flags));
710 }
711
712 int
713 zswrite(dev_t dev, struct uio *uio, int flags)
714 {
715 register struct tty *tp = zs_tty[minor(dev)];
716
717 return (linesw[tp->t_line].l_write(tp, uio, flags));
718 }
719
720 /*
721 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
722 * channels are kept in (A,B) pairs.
723 *
724 * Do just a little, then get out; set a software interrupt if more
725 * work is needed.
726 *
727 * We deliberately ignore the vectoring Zilog gives us, and match up
728 * only the number of `reset interrupt under service' operations, not
729 * the order.
730 */
731 /* ARGSUSED */
732 int
733 zshard(int intrarg)
734 {
735 register struct zs_chanstate *a;
736 #define b (a + 1)
737 register volatile struct zschan *zc;
738 register int rr3, intflags = 0, v, i;
739 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
740 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
741 static int zssint(struct zs_chanstate *, volatile struct zschan *);
742
743 for (a = zslist; a != NULL; a = b->cs_next) {
744 rr3 = ZS_READ(a->cs_zc, 3);
745
746 /* XXX - This should loop to empty the on-chip fifo. */
747 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
748 intflags |= 2;
749 zc = a->cs_zc;
750 i = a->cs_rbput;
751 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
752 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
753 intflags |= 1;
754 }
755 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
756 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
757 intflags |= 1;
758 }
759 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
760 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
761 intflags |= 1;
762 }
763 a->cs_rbput = i;
764 }
765
766 /* XXX - This should loop to empty the on-chip fifo. */
767 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
768 intflags |= 2;
769 zc = b->cs_zc;
770 i = b->cs_rbput;
771 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
772 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
773 intflags |= 1;
774 }
775 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
776 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
777 intflags |= 1;
778 }
779 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
780 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
781 intflags |= 1;
782 }
783 b->cs_rbput = i;
784 }
785 }
786 #undef b
787 if (intflags & 1) {
788 if (zssoftpending == 0) {
789 zssoftpending = ZSSOFT_PRI;
790 isr_soft_request(ZSSOFT_PRI);
791 }
792 }
793 return (intflags & 2);
794 }
795
796 static int
797 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
798 {
799 register int c = zc->zc_data;
800
801 if (cs->cs_conk) {
802 register struct conk_state *conk = &zsconk_state;
803
804 /*
805 * Check here for console abort function, so that we
806 * can abort even when interrupts are locking up the
807 * machine.
808 */
809 if (c == KBD_RESET) {
810 conk->conk_id = 1; /* ignore next byte */
811 conk->conk_l1 = 0;
812 } else if (conk->conk_id)
813 conk->conk_id = 0; /* stop ignoring bytes */
814 else if (c == KBD_L1)
815 conk->conk_l1 = 1; /* L1 went down */
816 else if (c == (KBD_L1|KBD_UP))
817 conk->conk_l1 = 0; /* L1 went up */
818 else if (c == KBD_A && conk->conk_l1) {
819 zsabort();
820 conk->conk_l1 = 0; /* we never see the up */
821 goto clearit; /* eat the A after L1-A */
822 }
823 }
824 #ifdef KGDB
825 if (c == FRAME_START && cs->cs_kgdb &&
826 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
827 zskgdb(cs->cs_unit);
828 goto clearit;
829 }
830 #endif
831 /* compose receive character and status */
832 c <<= 8;
833 c |= ZS_READ(zc, 1);
834
835 /* clear receive error & interrupt condition */
836 zc->zc_csr = ZSWR0_RESET_ERRORS;
837 zc->zc_csr = ZSWR0_CLR_INTR;
838
839 return (ZRING_MAKE(ZRING_RINT, c));
840
841 clearit:
842 zc->zc_csr = ZSWR0_RESET_ERRORS;
843 zc->zc_csr = ZSWR0_CLR_INTR;
844 return (0);
845 }
846
847 static int
848 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
849 {
850 register int i = cs->cs_tbc;
851
852 if (i == 0) {
853 zc->zc_csr = ZSWR0_RESET_TXINT;
854 zc->zc_csr = ZSWR0_CLR_INTR;
855 return (ZRING_MAKE(ZRING_XINT, 0));
856 }
857 cs->cs_tbc = i - 1;
858 zc->zc_data = *cs->cs_tba++;
859 zc->zc_csr = ZSWR0_CLR_INTR;
860 return (0);
861 }
862
863 static int
864 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
865 {
866 register int rr0;
867
868 rr0 = zc->zc_csr;
869 zc->zc_csr = ZSWR0_RESET_STATUS;
870 zc->zc_csr = ZSWR0_CLR_INTR;
871 /*
872 * The chip's hardware flow control is, as noted in zsreg.h,
873 * busted---if the DCD line goes low the chip shuts off the
874 * receiver (!). If we want hardware CTS flow control but do
875 * not have it, and carrier is now on, turn HFC on; if we have
876 * HFC now but carrier has gone low, turn it off.
877 */
878 if (rr0 & ZSRR0_DCD) {
879 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
880 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
881 cs->cs_creg[3] |= ZSWR3_HFC;
882 ZS_WRITE(zc, 3, cs->cs_creg[3]);
883 }
884 } else {
885 if (cs->cs_creg[3] & ZSWR3_HFC) {
886 cs->cs_creg[3] &= ~ZSWR3_HFC;
887 ZS_WRITE(zc, 3, cs->cs_creg[3]);
888 }
889 }
890 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
891 /* Wait for end of break to avoid PROM abort. */
892 while (zc->zc_csr & ZSRR0_BREAK)
893 ZS_DELAY();
894 zsabort();
895 return (0);
896 }
897 return (ZRING_MAKE(ZRING_SINT, rr0));
898 }
899
900 zsabort()
901 {
902 #ifdef DDB
903 Debugger();
904 #else
905 printf("stopping on keyboard abort\n");
906 sun3_rom_abort();
907 #endif
908 }
909
910 #ifdef KGDB
911 /*
912 * KGDB framing character received: enter kernel debugger. This probably
913 * should time out after a few seconds to avoid hanging on spurious input.
914 */
915 zskgdb(int unit)
916 {
917
918 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
919 kgdb_connect(1);
920 }
921 #endif
922
923 /*
924 * Print out a ring or fifo overrun error message.
925 */
926 static void
927 zsoverrun(int unit, long *ptime, char *what)
928 {
929
930 if (*ptime != time.tv_sec) {
931 *ptime = time.tv_sec;
932 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
933 (unit & 1) + 'a', what);
934 }
935 }
936
937 /*
938 * ZS software interrupt. Scan all channels for deferred interrupts.
939 */
940 int
941 zssoft(int arg)
942 {
943 register struct zs_chanstate *cs;
944 register volatile struct zschan *zc;
945 register struct linesw *line;
946 register struct tty *tp;
947 register int get, n, c, cc, unit, s;
948
949 if (zssoftpending == 0)
950 return (0);
951
952 zssoftpending = 0;
953 isr_soft_clear(ZSSOFT_PRI);
954
955 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
956 get = cs->cs_rbget;
957 again:
958 n = cs->cs_rbput; /* atomic */
959 if (get == n) /* nothing more on this line */
960 continue;
961 unit = cs->cs_unit; /* set up to handle interrupts */
962 zc = cs->cs_zc;
963 tp = cs->cs_ttyp;
964 line = &linesw[tp->t_line];
965 /*
966 * Compute the number of interrupts in the receive ring.
967 * If the count is overlarge, we lost some events, and
968 * must advance to the first valid one. It may get
969 * overwritten if more data are arriving, but this is
970 * too expensive to check and gains nothing (we already
971 * lost out; all we can do at this point is trade one
972 * kind of loss for another).
973 */
974 n -= get;
975 if (n > ZLRB_RING_SIZE) {
976 zsoverrun(unit, &cs->cs_rotime, "ring");
977 get += n - ZLRB_RING_SIZE;
978 n = ZLRB_RING_SIZE;
979 }
980 while (--n >= 0) {
981 /* race to keep ahead of incoming interrupts */
982 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
983 switch (ZRING_TYPE(c)) {
984
985 case ZRING_RINT:
986 c = ZRING_VALUE(c);
987 if (c & ZSRR1_DO)
988 zsoverrun(unit, &cs->cs_fotime, "fifo");
989 cc = c >> 8;
990 if (c & ZSRR1_FE)
991 cc |= TTY_FE;
992 if (c & ZSRR1_PE)
993 cc |= TTY_PE;
994 /*
995 * this should be done through
996 * bstreams XXX gag choke
997 */
998 if (unit == ZS_KBD)
999 kbd_rint(cc);
1000 else if (unit == ZS_MOUSE)
1001 ms_rint(cc);
1002 else
1003 line->l_rint(cc, tp);
1004 break;
1005
1006 case ZRING_XINT:
1007 /*
1008 * Transmit done: change registers and resume,
1009 * or clear BUSY.
1010 */
1011 if (cs->cs_heldchange) {
1012 s = splzs();
1013 c = zc->zc_csr;
1014 if ((c & ZSRR0_DCD) == 0)
1015 cs->cs_preg[3] &= ~ZSWR3_HFC;
1016 bcopy((caddr_t)cs->cs_preg,
1017 (caddr_t)cs->cs_creg, 16);
1018 zs_loadchannelregs(zc, cs->cs_creg);
1019 splx(s);
1020 cs->cs_heldchange = 0;
1021 if (cs->cs_heldtbc &&
1022 (tp->t_state & TS_TTSTOP) == 0) {
1023 cs->cs_tbc = cs->cs_heldtbc - 1;
1024 zc->zc_data = *cs->cs_tba++;
1025 goto again;
1026 }
1027 }
1028 tp->t_state &= ~TS_BUSY;
1029 if (tp->t_state & TS_FLUSH)
1030 tp->t_state &= ~TS_FLUSH;
1031 else
1032 ndflush(&tp->t_outq, cs->cs_tba -
1033 (caddr_t) tp->t_outq.c_cf);
1034 line->l_start(tp);
1035 break;
1036
1037 case ZRING_SINT:
1038 /*
1039 * Status line change. HFC bit is run in
1040 * hardware interrupt, to avoid locking
1041 * at splzs here.
1042 */
1043 c = ZRING_VALUE(c);
1044 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1045 cc = (c & ZSRR0_DCD) != 0;
1046 if (line->l_modem(tp, cc) == 0)
1047 zs_modem(cs, cc);
1048 }
1049 cs->cs_rr0 = c;
1050 break;
1051
1052 default:
1053 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1054 unit >> 1, (unit & 1) + 'a', c);
1055 break;
1056 }
1057 }
1058 cs->cs_rbget = get;
1059 goto again;
1060 }
1061 return (1);
1062 }
1063
1064 int
1065 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1066 {
1067 int unit = minor(dev);
1068 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1069 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1070 register struct tty *tp = cs->cs_ttyp;
1071 register int error, s;
1072
1073 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1074 if (error >= 0)
1075 return (error);
1076 error = ttioctl(tp, cmd, data, flag, p);
1077 if (error >= 0)
1078 return (error);
1079
1080 switch (cmd) {
1081
1082 case TIOCSBRK:
1083 {
1084 s = splzs();
1085 cs->cs_preg[5] |= ZSWR5_BREAK;
1086 cs->cs_creg[5] |= ZSWR5_BREAK;
1087 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1088 splx(s);
1089 break;
1090 }
1091
1092 case TIOCCBRK:
1093 {
1094 s = splzs();
1095 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1096 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1097 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1098 splx(s);
1099 break;
1100 }
1101
1102 case TIOCSDTR:
1103
1104 case TIOCCDTR:
1105
1106 case TIOCMSET:
1107
1108 case TIOCMBIS:
1109
1110 case TIOCMBIC:
1111
1112 case TIOCMGET:
1113
1114 default:
1115 return (ENOTTY);
1116 }
1117 return (0);
1118 }
1119
1120 /*
1121 * Start or restart transmission.
1122 */
1123 static void
1124 zsstart(register struct tty *tp)
1125 {
1126 register struct zs_chanstate *cs;
1127 register int s, nch;
1128 int unit = minor(tp->t_dev);
1129 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1130
1131 cs = &zi->zi_cs[unit & 1];
1132 s = spltty();
1133
1134 /*
1135 * If currently active or delaying, no need to do anything.
1136 */
1137 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1138 goto out;
1139
1140 /*
1141 * If there are sleepers, and output has drained below low
1142 * water mark, awaken.
1143 */
1144 if (tp->t_outq.c_cc <= tp->t_lowat) {
1145 if (tp->t_state & TS_ASLEEP) {
1146 tp->t_state &= ~TS_ASLEEP;
1147 wakeup((caddr_t)&tp->t_outq);
1148 }
1149 selwakeup(&tp->t_wsel);
1150 }
1151
1152 nch = ndqb(&tp->t_outq, 0); /* XXX */
1153 if (nch) {
1154 register char *p = tp->t_outq.c_cf;
1155
1156 /* mark busy, enable tx done interrupts, & send first byte */
1157 tp->t_state |= TS_BUSY;
1158 (void) splzs();
1159 cs->cs_preg[1] |= ZSWR1_TIE;
1160 cs->cs_creg[1] |= ZSWR1_TIE;
1161 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1162 cs->cs_zc->zc_data = *p;
1163 cs->cs_tba = p + 1;
1164 cs->cs_tbc = nch - 1;
1165 } else {
1166 /*
1167 * Nothing to send, turn off transmit done interrupts.
1168 * This is useful if something is doing polled output.
1169 */
1170 (void) splzs();
1171 cs->cs_preg[1] &= ~ZSWR1_TIE;
1172 cs->cs_creg[1] &= ~ZSWR1_TIE;
1173 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1174 }
1175 out:
1176 splx(s);
1177 }
1178
1179 /*
1180 * Stop output, e.g., for ^S or output flush.
1181 */
1182 void
1183 zsstop(register struct tty *tp, int flag)
1184 {
1185 register struct zs_chanstate *cs;
1186 register int s, unit = minor(tp->t_dev);
1187 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1188
1189 cs = &zi->zi_cs[unit & 1];
1190 s = splzs();
1191 if (tp->t_state & TS_BUSY) {
1192 /*
1193 * Device is transmitting; must stop it.
1194 */
1195 cs->cs_tbc = 0;
1196 if ((tp->t_state & TS_TTSTOP) == 0)
1197 tp->t_state |= TS_FLUSH;
1198 }
1199 splx(s);
1200 }
1201
1202 /*
1203 * Set ZS tty parameters from termios.
1204 *
1205 * This routine makes use of the fact that only registers
1206 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1207 */
1208 static int
1209 zsparam(register struct tty *tp, register struct termios *t)
1210 {
1211 int unit = minor(tp->t_dev);
1212 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1213 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1214 register int tmp, tmp5, cflag, s;
1215
1216 /*
1217 * Because PCLK is only run at 4.9 MHz, the fastest we
1218 * can go is 51200 baud (this corresponds to TC=1).
1219 * This is somewhat unfortunate as there is no real
1220 * reason we should not be able to handle higher rates.
1221 */
1222 tmp = t->c_ospeed;
1223 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1224 return (EINVAL);
1225 if (tmp == 0) {
1226 /* stty 0 => drop DTR and RTS */
1227 zs_modem(cs, 0);
1228 return (0);
1229 }
1230 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1231 if (tmp < 2)
1232 return (EINVAL);
1233
1234 cflag = t->c_cflag;
1235 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1236 tp->t_cflag = cflag;
1237
1238 /*
1239 * Block interrupts so that state will not
1240 * be altered until we are done setting it up.
1241 */
1242 s = splzs();
1243 cs->cs_preg[12] = tmp;
1244 cs->cs_preg[13] = tmp >> 8;
1245 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1246 switch (cflag & CSIZE) {
1247 case CS5:
1248 tmp = ZSWR3_RX_5;
1249 tmp5 = ZSWR5_TX_5;
1250 break;
1251 case CS6:
1252 tmp = ZSWR3_RX_6;
1253 tmp5 = ZSWR5_TX_6;
1254 break;
1255 case CS7:
1256 tmp = ZSWR3_RX_7;
1257 tmp5 = ZSWR5_TX_7;
1258 break;
1259 case CS8:
1260 default:
1261 tmp = ZSWR3_RX_8;
1262 tmp5 = ZSWR5_TX_8;
1263 break;
1264 }
1265
1266 /*
1267 * Output hardware flow control on the chip is horrendous: if
1268 * carrier detect drops, the receiver is disabled. Hence we
1269 * can only do this when the carrier is on.
1270 */
1271 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1272 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1273 else
1274 tmp |= ZSWR3_RX_ENABLE;
1275 cs->cs_preg[3] = tmp;
1276 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1277
1278 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1279 if ((cflag & PARODD) == 0)
1280 tmp |= ZSWR4_EVENP;
1281 if (cflag & PARENB)
1282 tmp |= ZSWR4_PARENB;
1283 cs->cs_preg[4] = tmp;
1284 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1285 cs->cs_preg[10] = ZSWR10_NRZ;
1286 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1287 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1288 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1289
1290 /*
1291 * If nothing is being transmitted, set up new current values,
1292 * else mark them as pending.
1293 */
1294 if (cs->cs_heldchange == 0) {
1295 if (cs->cs_ttyp->t_state & TS_BUSY) {
1296 cs->cs_heldtbc = cs->cs_tbc;
1297 cs->cs_tbc = 0;
1298 cs->cs_heldchange = 1;
1299 } else {
1300 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1301 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1302 }
1303 }
1304 splx(s);
1305 return (0);
1306 }
1307
1308 /*
1309 * Raise or lower modem control (DTR/RTS) signals. If a character is
1310 * in transmission, the change is deferred.
1311 */
1312 static void
1313 zs_modem(struct zs_chanstate *cs, int onoff)
1314 {
1315 int s, bis, and;
1316
1317 if (onoff) {
1318 bis = ZSWR5_DTR | ZSWR5_RTS;
1319 and = ~0;
1320 } else {
1321 bis = 0;
1322 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1323 }
1324 s = splzs();
1325 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1326 if (cs->cs_heldchange == 0) {
1327 if (cs->cs_ttyp->t_state & TS_BUSY) {
1328 cs->cs_heldtbc = cs->cs_tbc;
1329 cs->cs_tbc = 0;
1330 cs->cs_heldchange = 1;
1331 } else {
1332 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1333 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1334 }
1335 }
1336 splx(s);
1337 }
1338
1339 /*
1340 * Write the given register set to the given zs channel in the proper order.
1341 * The channel must not be transmitting at the time. The receiver will
1342 * be disabled for the time it takes to write all the registers.
1343 */
1344 static void
1345 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1346 {
1347 int i;
1348
1349 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1350 i = zc->zc_data; /* drain fifo */
1351 i = zc->zc_data;
1352 i = zc->zc_data;
1353 ZS_WRITE(zc, 4, reg[4]);
1354 ZS_WRITE(zc, 10, reg[10]);
1355 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1356 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1357 ZS_WRITE(zc, 1, reg[1]);
1358 ZS_WRITE(zc, 9, reg[9]);
1359 ZS_WRITE(zc, 11, reg[11]);
1360 ZS_WRITE(zc, 12, reg[12]);
1361 ZS_WRITE(zc, 13, reg[13]);
1362 ZS_WRITE(zc, 14, reg[14]);
1363 ZS_WRITE(zc, 15, reg[15]);
1364 ZS_WRITE(zc, 3, reg[3]);
1365 ZS_WRITE(zc, 5, reg[5]);
1366 }
1367
1368 static u_char
1369 zs_read(zc, reg)
1370 volatile struct zschan *zc;
1371 u_char reg;
1372 {
1373 u_char val;
1374
1375 zc->zc_csr = reg;
1376 ZS_DELAY();
1377 val = zc->zc_csr;
1378 ZS_DELAY();
1379 return val;
1380 }
1381
1382 static u_char
1383 zs_write(zc, reg, val)
1384 volatile struct zschan *zc;
1385 u_char reg, val;
1386 {
1387 zc->zc_csr = reg;
1388 ZS_DELAY();
1389 zc->zc_csr = val;
1390 ZS_DELAY();
1391 return val;
1392 }
1393
1394 #ifdef KGDB
1395 /*
1396 * Get a character from the given kgdb channel. Called at splhigh().
1397 * XXX - Add delays, or combine with zscngetc()...
1398 */
1399 static int
1400 zs_kgdb_getc(void *arg)
1401 {
1402 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1403
1404 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1405 continue;
1406 return (zc->zc_data);
1407 }
1408
1409 /*
1410 * Put a character to the given kgdb channel. Called at splhigh().
1411 */
1412 static void
1413 zs_kgdb_putc(void *arg, int c)
1414 {
1415 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1416
1417 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1418 continue;
1419 zc->zc_data = c;
1420 }
1421
1422 /*
1423 * Set up for kgdb; called at boot time before configuration.
1424 * KGDB interrupts will be enabled later when zs0 is configured.
1425 */
1426 void
1427 zs_kgdb_init()
1428 {
1429 volatile struct zsdevice *addr;
1430 volatile struct zschan *zc;
1431 int unit, zs;
1432
1433 if (major(kgdb_dev) != ZSMAJOR)
1434 return;
1435 unit = minor(kgdb_dev);
1436 /*
1437 * Unit must be 0 or 1 (zs0).
1438 */
1439 if ((unsigned)unit >= ZS_KBD) {
1440 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1441 return;
1442 }
1443 zs = unit >> 1;
1444 unit &= 1;
1445
1446 if (zsaddr[0] == NULL)
1447 panic("kbdb_attach: zs0 not yet mapped");
1448 addr = zsaddr[0];
1449
1450 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1451 zs_kgdb_savedspeed = zs_getspeed(zc);
1452 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1453 zs, unit + 'a', kgdb_rate);
1454 zs_reset(zc, 1, kgdb_rate);
1455 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1456 }
1457 #endif /* KGDB */
1458