zs.c revision 1.18 1 /* $NetBSD: zs.c,v 1.18 1994/12/21 23:56:43 gwr Exp $ */
2
3 /*
4 * Copyright (c) 1994 Gordon W. Ross
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)zs.c 8.1 (Berkeley) 7/19/93
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/autoconf.h>
71 #include <machine/cpu.h>
72 #include <machine/isr.h>
73 #include <machine/obio.h>
74 #include <machine/mon.h>
75 #include <machine/eeprom.h>
76 #include <machine/kbd.h>
77
78 #include <dev/cons.h>
79
80 #include "zsreg.h"
81 #include "zsvar.h"
82
83 /*
84 * The default parity REALLY needs to be the same as the PROM uses,
85 * or you can not see messages done with printf during boot-up...
86 */
87 #undef TTYDEF_CFLAG
88 #define TTYDEF_CFLAG (CREAD | CS8 | HUPCL)
89
90 #ifdef KGDB
91 #include <machine/remote-sl.h>
92 #endif
93
94 #define ZSMAJOR 12 /* XXX */
95
96 #define ZS_KBD 2 /* XXX */
97 #define ZS_MOUSE 3 /* XXX */
98
99 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
100 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
101
102 /*
103 * Select software interrupt levels.
104 */
105 #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
106 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
107
108 /*
109 * Software state per found chip. This would be called `zs_softc',
110 * but the previous driver had a rather different zs_softc....
111 */
112 struct zsinfo {
113 struct device zi_dev; /* base device */
114 volatile struct zsdevice *zi_zs;/* chip registers */
115 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
116 };
117
118 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
119
120 /* Definition of the driver for autoconfig. */
121 static int zs_match(struct device *, void *, void *);
122 static void zs_attach(struct device *, struct device *, void *);
123
124 struct cfdriver zscd = {
125 NULL, "zs", zs_match, zs_attach,
126 DV_TTY, sizeof(struct zsinfo) };
127
128 /* Interrupt handlers. */
129 static int zshard(int);
130 static int zssoft(int);
131
132 struct zs_chanstate *zslist;
133
134 /* Routines called from other code. */
135 int zsopen(dev_t, int, int, struct proc *);
136 int zsclose(dev_t, int, int, struct proc *);
137 static void zsiopen(struct tty *);
138 static void zsiclose(struct tty *);
139 static void zsstart(struct tty *);
140 void zsstop(struct tty *, int);
141 static int zsparam(struct tty *, struct termios *);
142
143 /* Routines purely local to this driver. */
144 static int zs_getspeed(volatile struct zschan *);
145 static void zs_reset(volatile struct zschan *, int, int);
146 static void zs_modem(struct zs_chanstate *, int);
147 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
148 static u_char zs_read(volatile struct zschan *, u_char);
149 static u_char zs_write(volatile struct zschan *, u_char, u_char);
150
151 /* Console stuff. */
152 static volatile struct zschan *zs_conschan;
153
154 #ifdef KGDB
155 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
156 extern int kgdb_dev, kgdb_rate;
157 static int zs_kgdb_savedspeed;
158 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
159 #endif
160
161 /*
162 * Console keyboard L1-A processing is done in the hardware interrupt code,
163 * so we need to duplicate some of the console keyboard decode state. (We
164 * must not use the regular state as the hardware code keeps ahead of the
165 * software state: the software state tracks the most recent ring input but
166 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
167 */
168 static struct conk_state { /* console keyboard state */
169 char conk_id; /* true => ID coming up (console only) */
170 char conk_l1; /* true => L1 pressed (console only) */
171 } zsconk_state;
172
173 int zshardscope;
174 int zsshortcuts; /* number of "shortcut" software interrupts */
175
176 int zssoftpending; /* We have done isr_soft_request() */
177
178 static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
179
180 /* Default OBIO addresses. */
181 static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS };
182
183 static u_char zs_init_reg[16] = {
184 0, /* 0: CMD (reset, etc.) */
185 ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE,
186 0x18 + ZSHARD_PRI, /* IVECT */
187 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
188 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
189 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
190 0, /* 6: TXSYNC/SYNCLO */
191 0, /* 7: RXSYNC/SYNCHI */
192 0, /* 8: alias for data port */
193 0, /* 9: ZSWR9_MASTER_IE (later) */
194 0, /*10: Misc. TX/RX control bits */
195 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
196 0, /*12: BAUDLO (later) */
197 0, /*13: BAUDHI (later) */
198 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
199 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
200 };
201
202 /* Find PROM mappings (for console support). */
203 void zs_init()
204 {
205 if (zsaddr[0] == NULL)
206 zsaddr[0] = (struct zsdevice *)
207 obio_find_mapping(OBIO_ZS, OBIO_ZS_SIZE);
208 if (zsaddr[1] == NULL)
209 zsaddr[1] = (struct zsdevice *)
210 obio_find_mapping(OBIO_KEYBD_MS, OBIO_ZS_SIZE);
211 }
212
213 /*
214 * Match slave number to zs unit number, so that misconfiguration will
215 * not set up the keyboard as ttya, etc.
216 */
217 static int
218 zs_match(struct device *parent, void *vcf, void *args)
219 {
220 struct cfdata *cf = vcf;
221 struct confargs *ca = args;
222 int unit, x;
223
224 unit = cf->cf_unit;
225 if (unit < 0 || unit >= NZS)
226 return (0);
227
228 if (ca->ca_paddr == -1)
229 ca->ca_paddr = zs_physaddr[unit];
230 if (ca->ca_intpri == -1)
231 ca->ca_intpri = ZSHARD_PRI;
232
233 /* The peek returns non-zero on error. */
234 x = bus_peek(ca->ca_bustype, ca->ca_paddr, 1);
235 return (x != -1);
236 }
237
238 /*
239 * Attach a found zs.
240 *
241 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
242 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
243 */
244 static void
245 zs_attach(struct device *parent, struct device *self, void *args)
246 {
247 struct cfdata *cf;
248 struct confargs *ca;
249 register int zs, unit;
250 register struct zsinfo *zi;
251 register struct zs_chanstate *cs;
252 register volatile struct zsdevice *addr;
253 register struct tty *tp, *ctp;
254 int softcar;
255 static int didintr;
256
257 cf = self->dv_cfdata;
258 zs = self->dv_unit;
259 ca = args;
260
261 printf(" softpri %d\n", ZSSOFT_PRI);
262
263 if (zsaddr[zs] == NULL) {
264 zsaddr[zs] = (struct zsdevice *)
265 obio_alloc(ca->ca_paddr, OBIO_ZS_SIZE);
266 }
267 addr = zsaddr[zs];
268
269 if (!didintr) {
270 didintr = 1;
271 isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
272 isr_add_autovect(zshard, NULL, ZSHARD_PRI);
273 }
274
275 zi = (struct zsinfo *)self;
276 zi->zi_zs = addr;
277 unit = zs * 2;
278 cs = zi->zi_cs;
279 softcar = cf->cf_flags;
280
281 if(!zs_tty[unit])
282 zs_tty[unit] = ttymalloc();
283 if(!zs_tty[unit+1])
284 zs_tty[unit+1] = ttymalloc();
285
286 /* link into interrupt list with order (A,B) (B=A+1) */
287 cs[0].cs_next = &cs[1];
288 cs[1].cs_next = zslist;
289 zslist = cs;
290
291 tp = zs_tty[unit];
292 cs->cs_unit = unit;
293 cs->cs_zc = &addr->zs_chan[CHAN_A];
294 cs->cs_speed = zs_getspeed(cs->cs_zc);
295 #ifdef DEBUG
296 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
297 #endif
298 cs->cs_softcar = softcar & 1;
299 cs->cs_ttyp = tp;
300 tp->t_dev = makedev(ZSMAJOR, unit);
301 tp->t_oproc = zsstart;
302 tp->t_param = zsparam;
303 if (cs->cs_zc == zs_conschan) {
304 /* This unit is the console. */
305 cs->cs_consio = 1;
306 cs->cs_brkabort = 1;
307 cs->cs_softcar = 1;
308 /* Call zsparam so interrupts get enabled. */
309 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
310 tp->t_cflag = TTYDEF_CFLAG;
311 (void) zsparam(tp, &tp->t_termios);
312 } else {
313 /* Can not run kgdb on the console? */
314 #ifdef KGDB
315 zs_checkkgdb(unit, cs, tp);
316 #endif
317 }
318 #if 0
319 /* XXX - Drop carrier here? -gwr */
320 zs_modem(cs, cs->cs_softcar ? 1 : 0);
321 #endif
322
323 if (unit == ZS_KBD) {
324 /*
325 * Keyboard: tell /dev/kbd driver how to talk to us.
326 */
327 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
328 tp->t_cflag = CS8;
329 /* zsparam called by zsiopen */
330 kbd_serial(tp, zsiopen, zsiclose);
331 cs->cs_conk = 1; /* do L1-A processing */
332 }
333 unit++;
334 cs++;
335 tp = zs_tty[unit];
336
337 cs->cs_unit = unit;
338 cs->cs_zc = &addr->zs_chan[CHAN_B];
339 cs->cs_speed = zs_getspeed(cs->cs_zc);
340 #ifdef DEBUG
341 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
342 #endif
343 cs->cs_softcar = softcar & 2;
344 cs->cs_ttyp = tp;
345 tp->t_dev = makedev(ZSMAJOR, unit);
346 tp->t_oproc = zsstart;
347 tp->t_param = zsparam;
348 if (cs->cs_zc == zs_conschan) {
349 /* This unit is the console. */
350 cs->cs_consio = 1;
351 cs->cs_brkabort = 1;
352 cs->cs_softcar = 1;
353 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
354 tp->t_cflag = TTYDEF_CFLAG;
355 (void) zsparam(tp, &tp->t_termios);
356 } else {
357 /* Can not run kgdb on the console? */
358 #ifdef KGDB
359 zs_checkkgdb(unit, cs, tp);
360 #endif
361 }
362 #if 0
363 /* XXX - Drop carrier here? -gwr */
364 zs_modem(cs, cs->cs_softcar ? 1 : 0);
365 #endif
366
367 if (unit == ZS_MOUSE) {
368 /*
369 * Mouse: tell /dev/mouse driver how to talk to us.
370 */
371 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
372 tp->t_cflag = CS8;
373 /* zsparam called by zsiopen */
374 ms_serial(tp, zsiopen, zsiclose);
375 }
376 }
377
378 /*
379 * Put a channel in a known state. Interrupts may be left disabled
380 * or enabled, as desired. (Used only by kgdb)
381 */
382 static void
383 zs_reset(zc, inten, speed)
384 volatile struct zschan *zc;
385 int inten, speed;
386 {
387 int tconst;
388 u_char reg[16];
389
390 bcopy(zs_init_reg, reg, 16);
391 if (inten)
392 reg[9] |= ZSWR9_MASTER_IE;
393
394 tconst = BPS_TO_TCONST(PCLK / 16, speed);
395 reg[12] = tconst;
396 reg[13] = tconst >> 8;
397 zs_loadchannelregs(zc, reg);
398 }
399
400 /*
401 * Console support
402 */
403
404 /*
405 * Used by the kd driver to find out if it can work.
406 */
407 int
408 zscnprobe_kbd()
409 {
410 if (zsaddr[1] == NULL) {
411 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
412 return CN_DEAD;
413 }
414 return CN_INTERNAL;
415 }
416
417 /*
418 * This is the console probe routine for ttya and ttyb.
419 */
420 static int
421 zscnprobe(struct consdev *cn, int unit)
422 {
423 int maj, eeCons;
424
425 if (zsaddr[0] == NULL) {
426 mon_printf("zscnprobe: zs0 not mapped\n");
427 cn->cn_pri = CN_DEAD;
428 return 0;
429 }
430 /* XXX - Also try to make sure it exists? */
431
432 /* locate the major number */
433 for (maj = 0; maj < nchrdev; maj++)
434 if (cdevsw[maj].d_open == (void*)zsopen)
435 break;
436
437 cn->cn_dev = makedev(maj, unit);
438
439 /* Use EEPROM console setting to decide "remote" console. */
440 eeCons = ee_get_byte(EE_CONS_OFFSET, 0);
441
442 /* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
443 if (eeCons == (EE_CONS_TTYA + unit)) {
444 cn->cn_pri = CN_REMOTE;
445 } else {
446 cn->cn_pri = CN_NORMAL;
447 }
448 return (0);
449 }
450
451 /* This is the constab entry for TTYA. */
452 int
453 zscnprobe_a(struct consdev *cn)
454 {
455 return (zscnprobe(cn, 0));
456 }
457
458 /* This is the constab entry for TTYB. */
459 int
460 zscnprobe_b(struct consdev *cn)
461 {
462 return (zscnprobe(cn, 1));
463 }
464
465 /* Called by kdcninit() or below. */
466 void
467 zs_set_conschan(unit, ab)
468 int unit, ab;
469 {
470 volatile struct zsdevice *addr;
471
472 addr = zsaddr[unit];
473 zs_conschan = ((ab == 0) ?
474 &addr->zs_chan[CHAN_A] :
475 &addr->zs_chan[CHAN_B] );
476 }
477
478 /* Attach as console. Also set zs_conschan */
479 int
480 zscninit(struct consdev *cn)
481 {
482 int ab = minor(cn->cn_dev) & 1;
483 zs_set_conschan(0, ab);
484 mon_printf("console on zs0 (tty%c)\n", 'a' + ab);
485 }
486
487
488 /*
489 * Polled console input putchar.
490 */
491 int
492 zscngetc(dev)
493 dev_t dev;
494 {
495 register volatile struct zschan *zc = zs_conschan;
496 register int s, c;
497
498 if (zc == NULL)
499 return (0);
500
501 s = splhigh();
502
503 /* Wait for a character to arrive. */
504 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
505 ZS_DELAY();
506 ZS_DELAY();
507
508 c = zc->zc_data;
509 ZS_DELAY();
510
511 splx(s);
512
513 /*
514 * This is used by the kd driver to read scan codes,
515 * so don't translate '\r' ==> '\n' here...
516 */
517 return (c);
518 }
519
520 /*
521 * Polled console output putchar.
522 */
523 int
524 zscnputc(dev, c)
525 dev_t dev;
526 int c;
527 {
528 register volatile struct zschan *zc = zs_conschan;
529 register int s;
530
531 if (zc == NULL) {
532 s = splhigh();
533 mon_putchar(c);
534 splx(s);
535 return (0);
536 }
537 s = splhigh();
538
539 /* Wait for transmitter to become ready. */
540 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
541 ZS_DELAY();
542 ZS_DELAY();
543
544 zc->zc_data = c;
545 ZS_DELAY();
546 splx(s);
547 }
548
549 #ifdef KGDB
550 /*
551 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
552 * Pick up the current speed and character size and restore the original
553 * speed.
554 */
555 static void
556 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
557 {
558
559 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
560 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
561 tp->t_cflag = CS8;
562 cs->cs_kgdb = 1;
563 cs->cs_speed = zs_kgdb_savedspeed;
564 (void) zsparam(tp, &tp->t_termios);
565 }
566 }
567 #endif
568
569 /*
570 * Compute the current baud rate given a ZSCC channel.
571 */
572 static int
573 zs_getspeed(zc)
574 register volatile struct zschan *zc;
575 {
576 register int tconst;
577
578 tconst = ZS_READ(zc, 12);
579 tconst |= ZS_READ(zc, 13) << 8;
580 return (TCONST_TO_BPS(PCLK / 16, tconst));
581 }
582
583
584 /*
585 * Do an internal open.
586 */
587 static void
588 zsiopen(struct tty *tp)
589 {
590
591 (void) zsparam(tp, &tp->t_termios);
592 ttsetwater(tp);
593 tp->t_state = TS_ISOPEN | TS_CARR_ON;
594 }
595
596 /*
597 * Do an internal close. Eventually we should shut off the chip when both
598 * ports on it are closed.
599 */
600 static void
601 zsiclose(struct tty *tp)
602 {
603
604 ttylclose(tp, 0); /* ??? */
605 ttyclose(tp); /* ??? */
606 tp->t_state = 0;
607 }
608
609
610 /*
611 * Open a zs serial port. This interface may not be used to open
612 * the keyboard and mouse ports. (XXX)
613 */
614 int
615 zsopen(dev_t dev, int flags, int mode, struct proc *p)
616 {
617 register struct tty *tp;
618 register struct zs_chanstate *cs;
619 struct zsinfo *zi;
620 int unit = minor(dev), zs = unit >> 1, error, s;
621
622 #ifdef DEBUG
623 mon_printf("zs_open\n");
624 #endif
625 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
626 unit == ZS_KBD || unit == ZS_MOUSE)
627 return (ENXIO);
628 cs = &zi->zi_cs[unit & 1];
629 tp = cs->cs_ttyp;
630 s = spltty();
631 if ((tp->t_state & TS_ISOPEN) == 0) {
632 ttychars(tp);
633 tp->t_iflag = TTYDEF_IFLAG;
634 tp->t_oflag = TTYDEF_OFLAG;
635 tp->t_cflag = TTYDEF_CFLAG;
636 tp->t_lflag = TTYDEF_LFLAG;
637 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
638 (void) zsparam(tp, &tp->t_termios);
639 ttsetwater(tp);
640 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
641 splx(s);
642 return (EBUSY);
643 }
644 error = 0;
645 #ifdef DEBUG
646 mon_printf("wait for carrier...\n");
647 #endif
648 for (;;) {
649 /* loop, turning on the device, until carrier present */
650 zs_modem(cs, 1);
651 /* May never get status intr if carrier already on. -gwr */
652 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
653 tp->t_state |= TS_CARR_ON;
654 if (cs->cs_softcar)
655 tp->t_state |= TS_CARR_ON;
656 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
657 tp->t_state & TS_CARR_ON)
658 break;
659 tp->t_state |= TS_WOPEN;
660 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
661 ttopen, 0))
662 break;
663 }
664 #ifdef DEBUG
665 mon_printf("...carrier %s\n",
666 (tp->t_state & TS_CARR_ON) ? "on" : "off");
667 #endif
668 splx(s);
669 if (error == 0)
670 error = linesw[tp->t_line].l_open(dev, tp);
671 if (error)
672 zs_modem(cs, 0);
673 return (error);
674 }
675
676 /*
677 * Close a zs serial port.
678 */
679 int
680 zsclose(dev_t dev, int flags, int mode, struct proc *p)
681 {
682 register struct zs_chanstate *cs;
683 register struct tty *tp;
684 struct zsinfo *zi;
685 int unit = minor(dev), s;
686
687 #ifdef DEBUG
688 mon_printf("zs_close\n");
689 #endif
690 zi = zscd.cd_devs[unit >> 1];
691 cs = &zi->zi_cs[unit & 1];
692 tp = cs->cs_ttyp;
693 linesw[tp->t_line].l_close(tp, flags);
694 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
695 (tp->t_state & TS_ISOPEN) == 0) {
696 zs_modem(cs, 0);
697 /* hold low for 1 second */
698 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
699 }
700 if (cs->cs_creg[5] & ZSWR5_BREAK)
701 {
702 s = splzs();
703 cs->cs_preg[5] &= ~ZSWR5_BREAK;
704 cs->cs_creg[5] &= ~ZSWR5_BREAK;
705 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
706 splx(s);
707 }
708 ttyclose(tp);
709 #ifdef KGDB
710 /* Reset the speed if we're doing kgdb on this port */
711 if (cs->cs_kgdb) {
712 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
713 (void) zsparam(tp, &tp->t_termios);
714 }
715 #endif
716 return (0);
717 }
718
719 /*
720 * Read/write zs serial port.
721 */
722 int
723 zsread(dev_t dev, struct uio *uio, int flags)
724 {
725 register struct tty *tp = zs_tty[minor(dev)];
726
727 return (linesw[tp->t_line].l_read(tp, uio, flags));
728 }
729
730 int
731 zswrite(dev_t dev, struct uio *uio, int flags)
732 {
733 register struct tty *tp = zs_tty[minor(dev)];
734
735 return (linesw[tp->t_line].l_write(tp, uio, flags));
736 }
737
738 /*
739 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
740 * channels are kept in (A,B) pairs.
741 *
742 * Do just a little, then get out; set a software interrupt if more
743 * work is needed.
744 *
745 * We deliberately ignore the vectoring Zilog gives us, and match up
746 * only the number of `reset interrupt under service' operations, not
747 * the order.
748 */
749 /* ARGSUSED */
750 int
751 zshard(int intrarg)
752 {
753 register struct zs_chanstate *a;
754 #define b (a + 1)
755 register volatile struct zschan *zc;
756 register int rr3, intflags = 0, v, i;
757 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
758 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
759 static int zssint(struct zs_chanstate *, volatile struct zschan *);
760
761 for (a = zslist; a != NULL; a = b->cs_next) {
762 rr3 = ZS_READ(a->cs_zc, 3);
763
764 /* XXX - This should loop to empty the on-chip fifo. */
765 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
766 intflags |= 2;
767 zc = a->cs_zc;
768 i = a->cs_rbput;
769 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
770 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
771 intflags |= 1;
772 }
773 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
774 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
775 intflags |= 1;
776 }
777 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
778 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
779 intflags |= 1;
780 }
781 a->cs_rbput = i;
782 }
783
784 /* XXX - This should loop to empty the on-chip fifo. */
785 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
786 intflags |= 2;
787 zc = b->cs_zc;
788 i = b->cs_rbput;
789 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
790 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
791 intflags |= 1;
792 }
793 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
794 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
795 intflags |= 1;
796 }
797 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
798 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
799 intflags |= 1;
800 }
801 b->cs_rbput = i;
802 }
803 }
804 #undef b
805 if (intflags & 1) {
806 if (zssoftpending == 0) {
807 zssoftpending = ZSSOFT_PRI;
808 isr_soft_request(ZSSOFT_PRI);
809 }
810 }
811 return (intflags & 2);
812 }
813
814 static int
815 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
816 {
817 register int c = zc->zc_data;
818
819 if (cs->cs_conk) {
820 register struct conk_state *conk = &zsconk_state;
821
822 /*
823 * Check here for console abort function, so that we
824 * can abort even when interrupts are locking up the
825 * machine.
826 */
827 if (c == KBD_RESET) {
828 conk->conk_id = 1; /* ignore next byte */
829 conk->conk_l1 = 0;
830 } else if (conk->conk_id)
831 conk->conk_id = 0; /* stop ignoring bytes */
832 else if (c == KBD_L1)
833 conk->conk_l1 = 1; /* L1 went down */
834 else if (c == (KBD_L1|KBD_UP))
835 conk->conk_l1 = 0; /* L1 went up */
836 else if (c == KBD_A && conk->conk_l1) {
837 zsabort();
838 conk->conk_l1 = 0; /* we never see the up */
839 goto clearit; /* eat the A after L1-A */
840 }
841 }
842 #ifdef KGDB
843 if (c == FRAME_START && cs->cs_kgdb &&
844 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
845 zskgdb(cs->cs_unit);
846 goto clearit;
847 }
848 #endif
849 /* compose receive character and status */
850 c <<= 8;
851 c |= ZS_READ(zc, 1);
852
853 /* clear receive error & interrupt condition */
854 zc->zc_csr = ZSWR0_RESET_ERRORS;
855 zc->zc_csr = ZSWR0_CLR_INTR;
856
857 return (ZRING_MAKE(ZRING_RINT, c));
858
859 clearit:
860 zc->zc_csr = ZSWR0_RESET_ERRORS;
861 zc->zc_csr = ZSWR0_CLR_INTR;
862 return (0);
863 }
864
865 static int
866 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
867 {
868 register int i = cs->cs_tbc;
869
870 if (i == 0) {
871 zc->zc_csr = ZSWR0_RESET_TXINT;
872 zc->zc_csr = ZSWR0_CLR_INTR;
873 return (ZRING_MAKE(ZRING_XINT, 0));
874 }
875 cs->cs_tbc = i - 1;
876 zc->zc_data = *cs->cs_tba++;
877 zc->zc_csr = ZSWR0_CLR_INTR;
878 return (0);
879 }
880
881 static int
882 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
883 {
884 register int rr0;
885
886 rr0 = zc->zc_csr;
887 zc->zc_csr = ZSWR0_RESET_STATUS;
888 zc->zc_csr = ZSWR0_CLR_INTR;
889 /*
890 * The chip's hardware flow control is, as noted in zsreg.h,
891 * busted---if the DCD line goes low the chip shuts off the
892 * receiver (!). If we want hardware CTS flow control but do
893 * not have it, and carrier is now on, turn HFC on; if we have
894 * HFC now but carrier has gone low, turn it off.
895 */
896 if (rr0 & ZSRR0_DCD) {
897 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
898 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
899 cs->cs_creg[3] |= ZSWR3_HFC;
900 ZS_WRITE(zc, 3, cs->cs_creg[3]);
901 }
902 } else {
903 if (cs->cs_creg[3] & ZSWR3_HFC) {
904 cs->cs_creg[3] &= ~ZSWR3_HFC;
905 ZS_WRITE(zc, 3, cs->cs_creg[3]);
906 }
907 }
908 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
909 /* Wait for end of break to avoid PROM abort. */
910 while (zc->zc_csr & ZSRR0_BREAK)
911 ZS_DELAY();
912 zsabort();
913 return (0);
914 }
915 return (ZRING_MAKE(ZRING_SINT, rr0));
916 }
917
918 zsabort()
919 {
920 #ifdef DDB
921 Debugger();
922 #else
923 printf("stopping on keyboard abort\n");
924 sun3_rom_abort();
925 #endif
926 }
927
928 #ifdef KGDB
929 /*
930 * KGDB framing character received: enter kernel debugger. This probably
931 * should time out after a few seconds to avoid hanging on spurious input.
932 */
933 zskgdb(int unit)
934 {
935
936 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
937 kgdb_connect(1);
938 }
939 #endif
940
941 /*
942 * Print out a ring or fifo overrun error message.
943 */
944 static void
945 zsoverrun(int unit, long *ptime, char *what)
946 {
947
948 if (*ptime != time.tv_sec) {
949 *ptime = time.tv_sec;
950 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
951 (unit & 1) + 'a', what);
952 }
953 }
954
955 /*
956 * ZS software interrupt. Scan all channels for deferred interrupts.
957 */
958 int
959 zssoft(int arg)
960 {
961 register struct zs_chanstate *cs;
962 register volatile struct zschan *zc;
963 register struct linesw *line;
964 register struct tty *tp;
965 register int get, n, c, cc, unit, s;
966
967 if (zssoftpending == 0)
968 return (0);
969
970 zssoftpending = 0;
971 isr_soft_clear(ZSSOFT_PRI);
972
973 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
974 get = cs->cs_rbget;
975 again:
976 n = cs->cs_rbput; /* atomic */
977 if (get == n) /* nothing more on this line */
978 continue;
979 unit = cs->cs_unit; /* set up to handle interrupts */
980 zc = cs->cs_zc;
981 tp = cs->cs_ttyp;
982 line = &linesw[tp->t_line];
983 /*
984 * Compute the number of interrupts in the receive ring.
985 * If the count is overlarge, we lost some events, and
986 * must advance to the first valid one. It may get
987 * overwritten if more data are arriving, but this is
988 * too expensive to check and gains nothing (we already
989 * lost out; all we can do at this point is trade one
990 * kind of loss for another).
991 */
992 n -= get;
993 if (n > ZLRB_RING_SIZE) {
994 zsoverrun(unit, &cs->cs_rotime, "ring");
995 get += n - ZLRB_RING_SIZE;
996 n = ZLRB_RING_SIZE;
997 }
998 while (--n >= 0) {
999 /* race to keep ahead of incoming interrupts */
1000 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
1001 switch (ZRING_TYPE(c)) {
1002
1003 case ZRING_RINT:
1004 c = ZRING_VALUE(c);
1005 if (c & ZSRR1_DO)
1006 zsoverrun(unit, &cs->cs_fotime, "fifo");
1007 cc = c >> 8;
1008 if (c & ZSRR1_FE)
1009 cc |= TTY_FE;
1010 if (c & ZSRR1_PE)
1011 cc |= TTY_PE;
1012 /*
1013 * this should be done through
1014 * bstreams XXX gag choke
1015 */
1016 if (unit == ZS_KBD)
1017 kbd_rint(cc);
1018 else if (unit == ZS_MOUSE)
1019 ms_rint(cc);
1020 else
1021 line->l_rint(cc, tp);
1022 break;
1023
1024 case ZRING_XINT:
1025 /*
1026 * Transmit done: change registers and resume,
1027 * or clear BUSY.
1028 */
1029 if (cs->cs_heldchange) {
1030 s = splzs();
1031 c = zc->zc_csr;
1032 if ((c & ZSRR0_DCD) == 0)
1033 cs->cs_preg[3] &= ~ZSWR3_HFC;
1034 bcopy((caddr_t)cs->cs_preg,
1035 (caddr_t)cs->cs_creg, 16);
1036 zs_loadchannelregs(zc, cs->cs_creg);
1037 splx(s);
1038 cs->cs_heldchange = 0;
1039 if (cs->cs_heldtbc &&
1040 (tp->t_state & TS_TTSTOP) == 0) {
1041 cs->cs_tbc = cs->cs_heldtbc - 1;
1042 zc->zc_data = *cs->cs_tba++;
1043 goto again;
1044 }
1045 }
1046 tp->t_state &= ~TS_BUSY;
1047 if (tp->t_state & TS_FLUSH)
1048 tp->t_state &= ~TS_FLUSH;
1049 else
1050 ndflush(&tp->t_outq, cs->cs_tba -
1051 (caddr_t) tp->t_outq.c_cf);
1052 line->l_start(tp);
1053 break;
1054
1055 case ZRING_SINT:
1056 /*
1057 * Status line change. HFC bit is run in
1058 * hardware interrupt, to avoid locking
1059 * at splzs here.
1060 */
1061 c = ZRING_VALUE(c);
1062 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1063 cc = (c & ZSRR0_DCD) != 0;
1064 if (line->l_modem(tp, cc) == 0)
1065 zs_modem(cs, cc);
1066 }
1067 cs->cs_rr0 = c;
1068 break;
1069
1070 default:
1071 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1072 unit >> 1, (unit & 1) + 'a', c);
1073 break;
1074 }
1075 }
1076 cs->cs_rbget = get;
1077 goto again;
1078 }
1079 return (1);
1080 }
1081
1082 int
1083 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1084 {
1085 int unit = minor(dev);
1086 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1087 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1088 register struct tty *tp = cs->cs_ttyp;
1089 register int error, s;
1090
1091 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1092 if (error >= 0)
1093 return (error);
1094 error = ttioctl(tp, cmd, data, flag, p);
1095 if (error >= 0)
1096 return (error);
1097
1098 switch (cmd) {
1099
1100 case TIOCSBRK:
1101 s = splzs();
1102 cs->cs_preg[5] |= ZSWR5_BREAK;
1103 cs->cs_creg[5] |= ZSWR5_BREAK;
1104 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1105 splx(s);
1106 break;
1107
1108 case TIOCCBRK:
1109 s = splzs();
1110 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1111 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1112 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1113 splx(s);
1114 break;
1115
1116 case TIOCGFLAGS: {
1117 int bits = 0;
1118
1119 if (cs->cs_softcar)
1120 bits |= TIOCFLAG_SOFTCAR;
1121 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1122 bits |= TIOCFLAG_CLOCAL;
1123 if (cs->cs_creg[3] & ZSWR3_HFC)
1124 bits |= TIOCFLAG_CRTSCTS;
1125 *(int *)data = bits;
1126 break;
1127 }
1128
1129 case TIOCSFLAGS: {
1130 int userbits, driverbits = 0;
1131
1132 error = suser(p->p_ucred, &p->p_acflag);
1133 if (error != 0)
1134 return (EPERM);
1135
1136 userbits = *(int *)data;
1137
1138 /*
1139 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1140 * defaulting to software flow control.
1141 */
1142 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1143 return(EINVAL);
1144 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1145 return(ENXIO);
1146
1147 s = splzs();
1148 if ((userbits & TIOCFLAG_SOFTCAR) ||
1149 (cs->cs_zc == zs_conschan))
1150 {
1151 cs->cs_softcar = 1; /* turn on softcar */
1152 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1153 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1154 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1155 } else if (userbits & TIOCFLAG_CLOCAL) {
1156 cs->cs_softcar = 0; /* turn off softcar */
1157 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1158 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1159 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1160 tp->t_termios.c_cflag |= CLOCAL;
1161 }
1162 if (userbits & TIOCFLAG_CRTSCTS) {
1163 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1164 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1165 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1166 cs->cs_preg[3] |= ZSWR3_HFC;
1167 cs->cs_creg[3] |= ZSWR3_HFC;
1168 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1169 tp->t_termios.c_cflag |= CRTSCTS;
1170 } else {
1171 /* no mdmbuf, so we must want software flow control */
1172 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1173 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1174 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1175 cs->cs_preg[3] &= ~ZSWR3_HFC;
1176 cs->cs_creg[3] &= ~ZSWR3_HFC;
1177 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1178 tp->t_termios.c_cflag &= ~CRTSCTS;
1179 }
1180 splx(s);
1181 break;
1182 }
1183
1184 case TIOCSDTR:
1185 case TIOCCDTR:
1186 case TIOCMSET:
1187 case TIOCMBIS:
1188 case TIOCMBIC:
1189 case TIOCMGET:
1190 default:
1191 return (ENOTTY);
1192 }
1193 return (0);
1194 }
1195
1196 /*
1197 * Start or restart transmission.
1198 */
1199 static void
1200 zsstart(register struct tty *tp)
1201 {
1202 register struct zs_chanstate *cs;
1203 register int s, nch;
1204 int unit = minor(tp->t_dev);
1205 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1206
1207 cs = &zi->zi_cs[unit & 1];
1208 s = spltty();
1209
1210 /*
1211 * If currently active or delaying, no need to do anything.
1212 */
1213 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1214 goto out;
1215
1216 /*
1217 * If there are sleepers, and output has drained below low
1218 * water mark, awaken.
1219 */
1220 if (tp->t_outq.c_cc <= tp->t_lowat) {
1221 if (tp->t_state & TS_ASLEEP) {
1222 tp->t_state &= ~TS_ASLEEP;
1223 wakeup((caddr_t)&tp->t_outq);
1224 }
1225 selwakeup(&tp->t_wsel);
1226 }
1227
1228 nch = ndqb(&tp->t_outq, 0); /* XXX */
1229 if (nch) {
1230 register char *p = tp->t_outq.c_cf;
1231
1232 /* mark busy, enable tx done interrupts, & send first byte */
1233 tp->t_state |= TS_BUSY;
1234 (void) splzs();
1235 cs->cs_preg[1] |= ZSWR1_TIE;
1236 cs->cs_creg[1] |= ZSWR1_TIE;
1237 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1238 cs->cs_zc->zc_data = *p;
1239 cs->cs_tba = p + 1;
1240 cs->cs_tbc = nch - 1;
1241 } else {
1242 /*
1243 * Nothing to send, turn off transmit done interrupts.
1244 * This is useful if something is doing polled output.
1245 */
1246 (void) splzs();
1247 cs->cs_preg[1] &= ~ZSWR1_TIE;
1248 cs->cs_creg[1] &= ~ZSWR1_TIE;
1249 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1250 }
1251 out:
1252 splx(s);
1253 }
1254
1255 /*
1256 * Stop output, e.g., for ^S or output flush.
1257 */
1258 void
1259 zsstop(register struct tty *tp, int flag)
1260 {
1261 register struct zs_chanstate *cs;
1262 register int s, unit = minor(tp->t_dev);
1263 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1264
1265 cs = &zi->zi_cs[unit & 1];
1266 s = splzs();
1267 if (tp->t_state & TS_BUSY) {
1268 /*
1269 * Device is transmitting; must stop it.
1270 */
1271 cs->cs_tbc = 0;
1272 if ((tp->t_state & TS_TTSTOP) == 0)
1273 tp->t_state |= TS_FLUSH;
1274 }
1275 splx(s);
1276 }
1277
1278 /*
1279 * Set ZS tty parameters from termios.
1280 */
1281 static int
1282 zsparam(register struct tty *tp, register struct termios *t)
1283 {
1284 int unit = minor(tp->t_dev);
1285 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1286 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1287 register int tmp, tmp5, cflag, s;
1288
1289 /*
1290 * Because PCLK is only run at 4.9 MHz, the fastest we
1291 * can go is 51200 baud (this corresponds to TC=1).
1292 * This is somewhat unfortunate as there is no real
1293 * reason we should not be able to handle higher rates.
1294 */
1295 tmp = t->c_ospeed;
1296 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1297 return (EINVAL);
1298 if (tmp == 0) {
1299 /* stty 0 => drop DTR and RTS */
1300 zs_modem(cs, 0);
1301 return (0);
1302 }
1303 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1304 if (tmp < 2)
1305 return (EINVAL);
1306
1307 cflag = t->c_cflag;
1308 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1309 tp->t_cflag = cflag;
1310
1311 /*
1312 * Block interrupts so that state will not
1313 * be altered until we are done setting it up.
1314 */
1315 s = splzs();
1316 bcopy(zs_init_reg, cs->cs_preg, 16);
1317 cs->cs_preg[12] = tmp;
1318 cs->cs_preg[13] = tmp >> 8;
1319 cs->cs_preg[9] |= ZSWR9_MASTER_IE;
1320 switch (cflag & CSIZE) {
1321 case CS5:
1322 tmp = ZSWR3_RX_5;
1323 tmp5 = ZSWR5_TX_5;
1324 break;
1325 case CS6:
1326 tmp = ZSWR3_RX_6;
1327 tmp5 = ZSWR5_TX_6;
1328 break;
1329 case CS7:
1330 tmp = ZSWR3_RX_7;
1331 tmp5 = ZSWR5_TX_7;
1332 break;
1333 case CS8:
1334 default:
1335 tmp = ZSWR3_RX_8;
1336 tmp5 = ZSWR5_TX_8;
1337 break;
1338 }
1339
1340 /*
1341 * Output hardware flow control on the chip is horrendous: if
1342 * carrier detect drops, the receiver is disabled. Hence we
1343 * can only do this when the carrier is on.
1344 */
1345 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1346 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1347 else
1348 tmp |= ZSWR3_RX_ENABLE;
1349 cs->cs_preg[3] = tmp;
1350 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1351
1352 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1353 if ((cflag & PARODD) == 0)
1354 tmp |= ZSWR4_EVENP;
1355 if (cflag & PARENB)
1356 tmp |= ZSWR4_PARENB;
1357 cs->cs_preg[4] = tmp;
1358
1359 /*
1360 * If nothing is being transmitted, set up new current values,
1361 * else mark them as pending.
1362 */
1363 if (cs->cs_heldchange == 0) {
1364 if (cs->cs_ttyp->t_state & TS_BUSY) {
1365 cs->cs_heldtbc = cs->cs_tbc;
1366 cs->cs_tbc = 0;
1367 cs->cs_heldchange = 1;
1368 } else {
1369 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1370 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1371 }
1372 }
1373 splx(s);
1374 return (0);
1375 }
1376
1377 /*
1378 * Raise or lower modem control (DTR/RTS) signals. If a character is
1379 * in transmission, the change is deferred.
1380 */
1381 static void
1382 zs_modem(struct zs_chanstate *cs, int onoff)
1383 {
1384 int s, bis, and;
1385
1386 if (onoff) {
1387 bis = ZSWR5_DTR | ZSWR5_RTS;
1388 and = ~0;
1389 } else {
1390 bis = 0;
1391 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1392 }
1393 s = splzs();
1394 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1395 if (cs->cs_heldchange == 0) {
1396 if (cs->cs_ttyp->t_state & TS_BUSY) {
1397 cs->cs_heldtbc = cs->cs_tbc;
1398 cs->cs_tbc = 0;
1399 cs->cs_heldchange = 1;
1400 } else {
1401 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1402 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1403 }
1404 }
1405 splx(s);
1406 }
1407
1408 /*
1409 * Write the given register set to the given zs channel in the proper order.
1410 * The channel must not be transmitting at the time. The receiver will
1411 * be disabled for the time it takes to write all the registers.
1412 */
1413 static void
1414 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1415 {
1416 int i;
1417
1418 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1419 ZS_DELAY();
1420
1421 #if 1 /* XXX - Is this really a good idea? -gwr */
1422 i = zc->zc_data; /* drain fifo */
1423 ZS_DELAY();
1424 i = zc->zc_data;
1425 ZS_DELAY();
1426 i = zc->zc_data;
1427 ZS_DELAY();
1428 #endif
1429
1430 /* baud clock divisor, stop bits, parity */
1431 ZS_WRITE(zc, 4, reg[4]);
1432
1433 /* misc. TX/RX control bits */
1434 ZS_WRITE(zc, 10, reg[10]);
1435
1436 /* char size, enable (RX/TX) */
1437 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1438 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1439
1440 /* interrupt enables: TX, TX, STATUS */
1441 ZS_WRITE(zc, 1, reg[1]);
1442
1443 /* interrupt vector */
1444 ZS_WRITE(zc, 2, reg[2]);
1445
1446 /* master interrupt control */
1447 ZS_WRITE(zc, 9, reg[9]);
1448
1449 /* clock mode control */
1450 ZS_WRITE(zc, 11, reg[11]);
1451
1452 /* baud rate (lo/hi) */
1453 ZS_WRITE(zc, 12, reg[12]);
1454 ZS_WRITE(zc, 13, reg[13]);
1455
1456 /* Misc. control bits */
1457 ZS_WRITE(zc, 14, reg[14]);
1458
1459 /* which lines cause status interrupts */
1460 ZS_WRITE(zc, 15, reg[15]);
1461
1462 /* char size, enable (RX/TX)*/
1463 ZS_WRITE(zc, 3, reg[3]);
1464 ZS_WRITE(zc, 5, reg[5]);
1465 }
1466
1467 static u_char
1468 zs_read(zc, reg)
1469 volatile struct zschan *zc;
1470 u_char reg;
1471 {
1472 u_char val;
1473
1474 zc->zc_csr = reg;
1475 ZS_DELAY();
1476 val = zc->zc_csr;
1477 ZS_DELAY();
1478 return val;
1479 }
1480
1481 static u_char
1482 zs_write(zc, reg, val)
1483 volatile struct zschan *zc;
1484 u_char reg, val;
1485 {
1486 zc->zc_csr = reg;
1487 ZS_DELAY();
1488 zc->zc_csr = val;
1489 ZS_DELAY();
1490 return val;
1491 }
1492
1493 #ifdef KGDB
1494 /*
1495 * Get a character from the given kgdb channel. Called at splhigh().
1496 * XXX - Add delays, or combine with zscngetc()...
1497 */
1498 static int
1499 zs_kgdb_getc(void *arg)
1500 {
1501 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1502
1503 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1504 continue;
1505 return (zc->zc_data);
1506 }
1507
1508 /*
1509 * Put a character to the given kgdb channel. Called at splhigh().
1510 */
1511 static void
1512 zs_kgdb_putc(void *arg, int c)
1513 {
1514 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1515
1516 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1517 continue;
1518 zc->zc_data = c;
1519 }
1520
1521 /*
1522 * Set up for kgdb; called at boot time before configuration.
1523 * KGDB interrupts will be enabled later when zs0 is configured.
1524 */
1525 void
1526 zs_kgdb_init()
1527 {
1528 volatile struct zsdevice *addr;
1529 volatile struct zschan *zc;
1530 int unit, zs;
1531
1532 if (major(kgdb_dev) != ZSMAJOR)
1533 return;
1534 unit = minor(kgdb_dev);
1535 /*
1536 * Unit must be 0 or 1 (zs0).
1537 */
1538 if ((unsigned)unit >= ZS_KBD) {
1539 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1540 return;
1541 }
1542 zs = unit >> 1;
1543 unit &= 1;
1544
1545 if (zsaddr[0] == NULL)
1546 panic("kbdb_attach: zs0 not yet mapped");
1547 addr = zsaddr[0];
1548
1549 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1550 zs_kgdb_savedspeed = zs_getspeed(zc);
1551 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1552 zs, unit + 'a', kgdb_rate);
1553 zs_reset(zc, 1, kgdb_rate);
1554 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1555 }
1556 #endif /* KGDB */
1557