zs.c revision 1.2 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * from: Id: sparc/dev/zs.c,v 1.3 1993/10/13 02:36:44 deraadt Exp
46 * gwr: merged some of Adam's changes and fixed some bugs.
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (ttya and ttyb) on zs0,
53 * and runs a keyboard and mouse on zs1.
54 *
55 * This driver knows far too much about chip to usage mappings.
56 */
57 #define NZS 2 /* XXX */
58
59 #include <sys/systm.h>
60 #include <sys/param.h>
61 #include <sys/proc.h>
62 #include <sys/device.h>
63 #include <sys/conf.h>
64 #include <sys/file.h>
65 #include <sys/ioctl.h>
66 #include <sys/tty.h>
67 #include <sys/time.h>
68 #include <sys/kernel.h>
69 #include <sys/syslog.h>
70 #include <sys/conf.h>
71
72 #include <machine/autoconf.h>
73 #include <machine/cpu.h>
74 #include <machine/obio.h>
75
76 #include "cons.h"
77 #include "kbd.h"
78 #include "zsreg.h"
79 #include "zsvar.h"
80
81 #ifdef KGDB
82 #include <machine/remote-sl.h>
83 #endif
84
85 /* #define DEBUG 1 */
86
87 #define ZSMAJOR 12 /* XXX */
88
89 #define ZS_KBD 2 /* XXX */
90 #define ZS_MOUSE 3 /* XXX */
91
92 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
93 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
94
95 /*
96 * Select software interrupt levels.
97 */
98 #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
99 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
100
101 /*
102 * Software state per found chip. This would be called `zs_softc',
103 * but the previous driver had a rather different zs_softc....
104 */
105 struct zsinfo {
106 struct device zi_dev; /* base device */
107 volatile struct zsdevice *zi_zs;/* chip registers */
108 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
109 };
110
111 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
112
113 /* Definition of the driver for autoconfig. */
114 static int zsmatch(struct device *, struct cfdata *, void *);
115 static void zsattach(struct device *, struct device *, void *);
116 struct cfdriver zscd =
117 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
118
119 /* Interrupt handlers. */
120 static int zshard(int);
121 static int zssoft(int);
122
123 struct zs_chanstate *zslist;
124
125 /* Routines called from other code. */
126 int zsopen(dev_t, int, int, struct proc *);
127 int zsclose(dev_t, int, int, struct proc *);
128 static void zsiopen(struct tty *);
129 static void zsiclose(struct tty *);
130 static void zsstart(struct tty *);
131 void zsstop(struct tty *, int);
132 static int zsparam(struct tty *, struct termios *);
133
134 /* Routines purely local to this driver. */
135 static int zs_getspeed(volatile struct zschan *);
136 static void zs_reset(volatile struct zschan *, int, int);
137 static void zs_modem(struct zs_chanstate *, int);
138 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
139 static void zs_delay(void);
140 static u_char zs_read(volatile struct zschan *, u_char);
141 static u_char zs_write(volatile struct zschan *, u_char, u_char);
142
143 /* Console stuff. */
144 static struct tty *zs_ctty; /* console `struct tty *' */
145 static int zs_consin = -1, zs_consout = -1;
146 static int zscnputc(int); /* console putc function */
147 static volatile struct zschan *zs_conschan;
148 static struct tty *zs_checkcons(struct zsinfo *, int, struct zs_chanstate *);
149
150 #ifdef KGDB
151 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
152 extern int kgdb_dev, kgdb_rate;
153 static int zs_kgdb_savedspeed;
154 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
155 #endif
156
157 static volatile struct zsdevice *zsaddr[NZS];
158
159 /*
160 * Console keyboard L1-A processing is done in the hardware interrupt code,
161 * so we need to duplicate some of the console keyboard decode state. (We
162 * must not use the regular state as the hardware code keeps ahead of the
163 * software state: the software state tracks the most recent ring input but
164 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
165 */
166 static struct conk_state { /* console keyboard state */
167 char conk_id; /* true => ID coming up (console only) */
168 char conk_l1; /* true => L1 pressed (console only) */
169 } zsconk_state;
170
171 int zshardscope;
172 int zsshortcuts; /* number of "shortcut" software interrupts */
173
174 /*
175 * Match slave number to zs unit number, so that misconfiguration will
176 * not set up the keyboard as ttya, etc.
177 */
178 static int
179 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
180 {
181 struct obio_cf_loc *obio_loc;
182 caddr_t zs_addr;
183
184 obio_loc = (struct obio_cf_loc *) CFDATA_LOC(cf);
185 zs_addr = (caddr_t) obio_loc->obio_addr;
186 return !obio_probe_byte(zs_addr);
187 }
188
189 /*
190 * Attach a found zs.
191 *
192 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
193 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
194 */
195 static void
196 zsattach(struct device *parent, struct device *dev, void *aux)
197 {
198 struct obio_cf_loc *obio_loc = OBIO_LOC(dev);
199 register int zs = dev->dv_unit, unit;
200 register struct zsinfo *zi;
201 register struct zs_chanstate *cs;
202 register volatile struct zsdevice *addr;
203 register struct tty *tp, *ctp;
204 int softcar;
205 static int didintr;
206 caddr_t obio_addr;
207
208 obio_addr = (caddr_t)obio_loc->obio_addr;
209 obio_print(obio_addr, ZSSOFT_PRI);
210 printf(" hwpri %d\n", ZSHARD_PRI);
211
212 addr = (struct zsdevice *)
213 obio_alloc(obio_addr, OBIO_ZS_SIZE, OBIO_WRITE);
214
215 if (!didintr) {
216 didintr = 1;
217 isr_add(ZSSOFT_PRI, zssoft, 0);
218 isr_add(ZSHARD_PRI, zshard, 0);
219 }
220
221 zi = (struct zsinfo *)dev;
222 zi->zi_zs = addr;
223 unit = zs * 2;
224 cs = zi->zi_cs;
225
226 if(!zs_tty[unit])
227 zs_tty[unit] = ttymalloc();
228 tp = zs_tty[unit];
229 if(!zs_tty[unit+1])
230 zs_tty[unit+1] = ttymalloc();
231
232 if (unit == 0) {
233 softcar = 0;
234 } else
235 softcar = dev->dv_cfdata->cf_flags;
236
237 /* link into interrupt list with order (A,B) (B=A+1) */
238 cs[0].cs_next = &cs[1];
239 cs[1].cs_next = zslist;
240 zslist = cs;
241
242 cs->cs_unit = unit;
243 cs->cs_zc = &addr->zs_chan[CHAN_A];
244 cs->cs_speed = zs_getspeed(cs->cs_zc);
245 #ifdef DEBUG
246 printf("zs%d speed %d ", cs->cs_unit, cs->cs_speed);
247 #endif
248 cs->cs_softcar = softcar & 1;
249 #if 0
250 /* XXX - Drop carrier here? -gwr */
251 zs_modem(cs, cs->cs_softcar ? 1 : 0);
252 #endif
253 tp->t_dev = makedev(ZSMAJOR, unit);
254 tp->t_oproc = zsstart;
255 tp->t_param = zsparam;
256 /*tp->t_stop = zsstop;*/
257 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
258 tp = ctp;
259 cs->cs_ttyp = tp;
260 #ifdef KGDB
261 if (ctp == NULL)
262 zs_checkkgdb(unit, cs, tp);
263 #endif
264 if (unit == ZS_KBD) {
265 /*
266 * Keyboard: tell /dev/kbd driver how to talk to us.
267 */
268 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
269 tp->t_cflag = CS8;
270 kbd_serial(tp, zsiopen, zsiclose);
271 cs->cs_conk = 1; /* do L1-A processing */
272 }
273 unit++;
274 cs++;
275 tp = zs_tty[unit];
276
277 cs->cs_unit = unit;
278 cs->cs_zc = &addr->zs_chan[CHAN_B];
279 cs->cs_speed = zs_getspeed(cs->cs_zc);
280 #ifdef DEBUG
281 printf("zs%d speed %d\n", cs->cs_unit, cs->cs_speed);
282 #endif
283 cs->cs_softcar = softcar & 2;
284 #if 0
285 /* XXX - Drop carrier here? -gwr */
286 zs_modem(cs, cs->cs_softcar ? 1 : 0);
287 #endif
288 tp->t_dev = makedev(ZSMAJOR, unit);
289 tp->t_oproc = zsstart;
290 tp->t_param = zsparam;
291 /*tp->t_stop = zsstop;*/
292 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
293 tp = ctp;
294 cs->cs_ttyp = tp;
295 #ifdef KGDB
296 if (ctp == NULL)
297 zs_checkkgdb(unit, cs, tp);
298 #endif
299 if (unit == ZS_MOUSE) {
300 /*
301 * Mouse: tell /dev/mouse driver how to talk to us.
302 */
303 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
304 tp->t_cflag = CS8;
305 ms_serial(tp, zsiopen, zsiclose);
306 }
307 }
308
309 /*
310 * Put a channel in a known state. Interrupts may be left disabled
311 * or enabled, as desired.
312 */
313 static void
314 zs_reset(zc, inten, speed)
315 volatile struct zschan *zc;
316 int inten, speed;
317 {
318 int tconst;
319 static u_char reg[16] = {
320 0,
321 0,
322 0,
323 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
324 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
325 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
326 0,
327 0,
328 0,
329 0,
330 ZSWR10_NRZ,
331 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
332 0,
333 0,
334 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
335 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
336 };
337
338 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
339 tconst = BPS_TO_TCONST(PCLK / 16, speed);
340 reg[12] = tconst;
341 reg[13] = tconst >> 8;
342 zs_loadchannelregs(zc, reg);
343 }
344
345
346 /* This is only called when the EEPROM says the console is ttyA or ttyB */
347 int
348 zscnprobe(struct consdev *cn)
349 {
350 int maj, unit = minor(cn->cn_dev);
351
352 /* locate the major number */
353 for (maj = 0; maj < nchrdev; maj++)
354 if (cdevsw[maj].d_open == zsopen)
355 break;
356 if (maj >= nchrdev) {
357 cn->cn_pri = CN_DEAD;
358 return 0;
359 }
360
361 /* initialize required fields */
362 #if 0 /* XXX - Not yet. */
363 cn->cn_dev = makedev(maj, unit);
364 cn->cn_pri = CN_REMOTE;
365 #else
366 cn->cn_pri = CN_DEAD;
367 /* XXX - See below... */
368 #endif
369 return (0);
370 }
371
372 /* Attach as console. Also set zs_conschan */
373 int
374 zscninit(struct consdev *cn)
375 {
376 int unit = minor(cn->cn_dev);
377
378 /* XXX - We need a way to find a VA for the device. */
379 /* zs_conschan = zsaddr[unit]; */
380 }
381
382
383 #if 0
384 /*
385 * Declare the given tty (which is in fact &cons) as a console input
386 * or output. This happens before the zs chip is attached; the hookup
387 * is finished later, in zs_setcons() below.
388 *
389 * This is used only for ports a and b. The console keyboard is decoded
390 * independently (we always send unit-2 input to /dev/kbd, which will
391 * direct it to /dev/console if appropriate).
392 */
393 void
394 zsconsole(tp, unit, out, fnstop)
395 register struct tty *tp;
396 register int unit;
397 int out;
398 void (**fnstop) __P((struct tty *, int));
399 {
400 extern int (*v_putc)();
401 int zs;
402 volatile struct zsdevice *addr;
403
404 if (unit >= ZS_KBD)
405 panic("zsconsole");
406 if (out) {
407 zs_consout = unit;
408 zs = unit >> 1;
409 if ((addr = zsaddr[zs]) == NULL)
410 addr = zsaddr[zs] = findzs(zs);
411 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
412 &addr->zs_chan[CHAN_B];
413 v_putc = zscnputc;
414 } else
415 zs_consin = unit;
416 if(fnstop)
417 *fnstop = &zsstop;
418 zs_ctty = tp;
419 }
420 #endif
421
422 /*
423 * Polled console input putchar.
424 */
425 int
426 zscngetc()
427 {
428 register volatile struct zschan *zc = zs_conschan;
429 register int s, c;
430
431 if (zc == NULL)
432 return (0);
433
434 s = splhigh();
435 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
436 zs_delay();
437 c = zc->zc_data;
438 splx(s);
439 return (c);
440 }
441
442 /*
443 * Polled console output putchar.
444 */
445 int
446 zscnputc(c)
447 int c;
448 {
449 register volatile struct zschan *zc = zs_conschan;
450 register int s;
451
452 if (zc == NULL)
453 return (0);
454
455 if (c == '\n')
456 zscnputc('\r');
457 s = splhigh();
458 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
459 zs_delay();
460 zc->zc_data = c;
461 splx(s);
462 }
463
464 /*
465 * Set up the given unit as console input, output, both, or neither, as
466 * needed. Return console tty if it is to receive console input.
467 */
468 static struct tty *
469 zs_checkcons(struct zsinfo *zi, int unit, struct zs_chanstate *cs)
470 {
471 register struct tty *tp;
472 char *i, *o;
473
474 if ((tp = zs_ctty) == NULL)
475 return (0);
476 i = zs_consin == unit ? "input" : NULL;
477 o = zs_consout == unit ? "output" : NULL;
478 if (i == NULL && o == NULL)
479 return (0);
480
481 /* rewire the minor device (gack) */
482 tp->t_dev = makedev(major(tp->t_dev), unit);
483
484 /*
485 * Rewire input and/or output. Note that baud rate reflects
486 * input settings, not output settings, but we can do no better
487 * if the console is split across two ports.
488 *
489 * XXX split consoles don't work anyway -- this needs to be
490 * thrown away and redone
491 */
492 if (i) {
493 tp->t_param = zsparam;
494 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
495 tp->t_cflag = CS8;
496 ttsetwater(tp);
497 }
498 if (o) {
499 tp->t_oproc = zsstart;
500 /*tp->t_stop = zsstop;*/
501 }
502 printf("%s%c: console %s\n",
503 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
504 cs->cs_consio = 1;
505 cs->cs_brkabort = 1;
506 return (tp);
507 }
508
509 #ifdef KGDB
510 /*
511 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
512 * Pick up the current speed and character size and restore the original
513 * speed.
514 */
515 static void
516 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
517 {
518
519 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
520 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
521 tp->t_cflag = CS8;
522 cs->cs_kgdb = 1;
523 cs->cs_speed = zs_kgdb_savedspeed;
524 (void) zsparam(tp, &tp->t_termios);
525 }
526 }
527 #endif
528
529 /*
530 * Compute the current baud rate given a ZSCC channel.
531 */
532 static int
533 zs_getspeed(zc)
534 register volatile struct zschan *zc;
535 {
536 register int tconst;
537
538 tconst = ZS_READ(zc, 12);
539 tconst |= ZS_READ(zc, 13) << 8;
540 return (TCONST_TO_BPS(PCLK / 16, tconst));
541 }
542
543
544 /*
545 * Do an internal open.
546 */
547 static void
548 zsiopen(struct tty *tp)
549 {
550
551 (void) zsparam(tp, &tp->t_termios);
552 ttsetwater(tp);
553 tp->t_state = TS_ISOPEN | TS_CARR_ON;
554 }
555
556 /*
557 * Do an internal close. Eventually we should shut off the chip when both
558 * ports on it are closed.
559 */
560 static void
561 zsiclose(struct tty *tp)
562 {
563
564 ttylclose(tp, 0); /* ??? */
565 ttyclose(tp); /* ??? */
566 tp->t_state = 0;
567 }
568
569
570 /*
571 * Open a zs serial port. This interface may not be used to open
572 * the keyboard and mouse ports. (XXX)
573 */
574 int
575 zsopen(dev_t dev, int flags, int mode, struct proc *p)
576 {
577 register struct tty *tp;
578 register struct zs_chanstate *cs;
579 struct zsinfo *zi;
580 int unit = minor(dev), zs = unit >> 1, error, s;
581
582 #ifdef DEBUG
583 printf("zs_open\n");
584 #endif
585 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
586 unit == ZS_KBD || unit == ZS_MOUSE)
587 return (ENXIO);
588 cs = &zi->zi_cs[unit & 1];
589 /* Prevent simultaneous use by console? */
590 if (cs->cs_consio)
591 return (ENXIO); /* ??? */
592 tp = cs->cs_ttyp;
593 s = spltty();
594 if ((tp->t_state & TS_ISOPEN) == 0) {
595 ttychars(tp);
596 if (tp->t_ispeed == 0) {
597 tp->t_iflag = TTYDEF_IFLAG;
598 tp->t_oflag = TTYDEF_OFLAG;
599 tp->t_cflag = TTYDEF_CFLAG;
600 tp->t_lflag = TTYDEF_LFLAG;
601 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
602 }
603 (void) zsparam(tp, &tp->t_termios);
604 ttsetwater(tp);
605 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
606 splx(s);
607 return (EBUSY);
608 }
609 error = 0;
610 for (;;) {
611 /* loop, turning on the device, until carrier present */
612 zs_modem(cs, 1);
613 /* May never get status intr if carrier already on. -gwr */
614 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
615 tp->t_state |= TS_CARR_ON;
616 if (cs->cs_softcar)
617 tp->t_state |= TS_CARR_ON;
618 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
619 tp->t_state & TS_CARR_ON)
620 break;
621 tp->t_state |= TS_WOPEN;
622 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
623 ttopen, 0))
624 break;
625 }
626 splx(s);
627 if (error == 0)
628 error = linesw[tp->t_line].l_open(dev, tp);
629 if (error)
630 zs_modem(cs, 0);
631 return (error);
632 }
633
634 /*
635 * Close a zs serial port.
636 */
637 int
638 zsclose(dev_t dev, int flags, int mode, struct proc *p)
639 {
640 register struct zs_chanstate *cs;
641 register struct tty *tp;
642 struct zsinfo *zi;
643 int unit = minor(dev), s;
644
645 zi = zscd.cd_devs[unit >> 1];
646 cs = &zi->zi_cs[unit & 1];
647 tp = cs->cs_ttyp;
648 linesw[tp->t_line].l_close(tp, flags);
649 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
650 (tp->t_state & TS_ISOPEN) == 0) {
651 zs_modem(cs, 0);
652 /* hold low for 1 second */
653 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
654 }
655 ttyclose(tp);
656 #ifdef KGDB
657 /* Reset the speed if we're doing kgdb on this port */
658 if (cs->cs_kgdb) {
659 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
660 (void) zsparam(tp, &tp->t_termios);
661 }
662 #endif
663 return (0);
664 }
665
666 /*
667 * Read/write zs serial port.
668 */
669 int
670 zsread(dev_t dev, struct uio *uio, int flags)
671 {
672 register struct tty *tp = zs_tty[minor(dev)];
673
674 return (linesw[tp->t_line].l_read(tp, uio, flags));
675 }
676
677 int
678 zswrite(dev_t dev, struct uio *uio, int flags)
679 {
680 register struct tty *tp = zs_tty[minor(dev)];
681
682 return (linesw[tp->t_line].l_write(tp, uio, flags));
683 }
684
685 /*
686 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
687 * channels are kept in (A,B) pairs.
688 *
689 * Do just a little, then get out; set a software interrupt if more
690 * work is needed.
691 *
692 * We deliberately ignore the vectoring Zilog gives us, and match up
693 * only the number of `reset interrupt under service' operations, not
694 * the order.
695 */
696 /* ARGSUSED */
697 int
698 zshard(int intrarg)
699 {
700 register struct zs_chanstate *a;
701 #define b (a + 1)
702 register volatile struct zschan *zc;
703 register int rr3, intflags = 0, v, i;
704 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
705 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
706 static int zssint(struct zs_chanstate *, volatile struct zschan *);
707 #ifdef DEBUG
708 printf("zshard\n");
709 #endif
710
711 for (a = zslist; a != NULL; a = b->cs_next) {
712 rr3 = ZS_READ(a->cs_zc, 3);
713 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
714 intflags |= 2;
715 zc = a->cs_zc;
716 i = a->cs_rbput;
717 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
718 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
719 intflags |= 1;
720 }
721 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
722 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
723 intflags |= 1;
724 }
725 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
726 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
727 intflags |= 1;
728 }
729 a->cs_rbput = i;
730 }
731 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
732 intflags |= 2;
733 zc = b->cs_zc;
734 i = b->cs_rbput;
735 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
736 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
737 intflags |= 1;
738 }
739 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
740 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
741 intflags |= 1;
742 }
743 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
744 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
745 intflags |= 1;
746 }
747 b->cs_rbput = i;
748 }
749 }
750 #undef b
751 if (intflags & 1) {
752 isr_soft_request(ZSSOFT_PRI);
753 }
754 return (intflags & 2);
755 }
756
757 static int
758 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
759 {
760 register int c = zc->zc_data;
761
762 if (cs->cs_conk) {
763 register struct conk_state *conk = &zsconk_state;
764
765 /*
766 * Check here for console abort function, so that we
767 * can abort even when interrupts are locking up the
768 * machine.
769 */
770 if (c == KBD_RESET) {
771 conk->conk_id = 1; /* ignore next byte */
772 conk->conk_l1 = 0;
773 } else if (conk->conk_id)
774 conk->conk_id = 0; /* stop ignoring bytes */
775 else if (c == KBD_L1)
776 conk->conk_l1 = 1; /* L1 went down */
777 else if (c == (KBD_L1|KBD_UP))
778 conk->conk_l1 = 0; /* L1 went up */
779 else if (c == KBD_A && conk->conk_l1) {
780 zsabort();
781 conk->conk_l1 = 0; /* we never see the up */
782 goto clearit; /* eat the A after L1-A */
783 }
784 }
785 #ifdef KGDB
786 if (c == FRAME_START && cs->cs_kgdb &&
787 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
788 zskgdb(cs->cs_unit);
789 goto clearit;
790 }
791 #endif
792 /* compose receive character and status */
793 c <<= 8;
794 c |= ZS_READ(zc, 1);
795
796 /* clear receive error & interrupt condition */
797 zc->zc_csr = ZSWR0_RESET_ERRORS;
798 zc->zc_csr = ZSWR0_CLR_INTR;
799
800 return (ZRING_MAKE(ZRING_RINT, c));
801
802 clearit:
803 zc->zc_csr = ZSWR0_RESET_ERRORS;
804 zc->zc_csr = ZSWR0_CLR_INTR;
805 return (0);
806 }
807
808 static int
809 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
810 {
811 register int i = cs->cs_tbc;
812
813 if (i == 0) {
814 zc->zc_csr = ZSWR0_RESET_TXINT;
815 zc->zc_csr = ZSWR0_CLR_INTR;
816 return (ZRING_MAKE(ZRING_XINT, 0));
817 }
818 cs->cs_tbc = i - 1;
819 zc->zc_data = *cs->cs_tba++;
820 zc->zc_csr = ZSWR0_CLR_INTR;
821 return (0);
822 }
823
824 static int
825 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
826 {
827 register int rr0;
828
829 rr0 = zc->zc_csr;
830 zc->zc_csr = ZSWR0_RESET_STATUS;
831 zc->zc_csr = ZSWR0_CLR_INTR;
832 /*
833 * The chip's hardware flow control is, as noted in zsreg.h,
834 * busted---if the DCD line goes low the chip shuts off the
835 * receiver (!). If we want hardware CTS flow control but do
836 * not have it, and carrier is now on, turn HFC on; if we have
837 * HFC now but carrier has gone low, turn it off.
838 */
839 if (rr0 & ZSRR0_DCD) {
840 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
841 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
842 cs->cs_creg[3] |= ZSWR3_HFC;
843 ZS_WRITE(zc, 3, cs->cs_creg[3]);
844 }
845 } else {
846 if (cs->cs_creg[3] & ZSWR3_HFC) {
847 cs->cs_creg[3] &= ~ZSWR3_HFC;
848 ZS_WRITE(zc, 3, cs->cs_creg[3]);
849 }
850 }
851 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
852 zsabort();
853 return (0);
854 }
855 return (ZRING_MAKE(ZRING_SINT, rr0));
856 }
857
858 zsabort()
859 {
860
861 printf("stopping on keyboard abort\n");
862 sun3_stop();
863 }
864
865 #ifdef KGDB
866 /*
867 * KGDB framing character received: enter kernel debugger. This probably
868 * should time out after a few seconds to avoid hanging on spurious input.
869 */
870 zskgdb(int unit)
871 {
872
873 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
874 kgdb_connect(1);
875 }
876 #endif
877
878 /*
879 * Print out a ring or fifo overrun error message.
880 */
881 static void
882 zsoverrun(int unit, long *ptime, char *what)
883 {
884
885 if (*ptime != time.tv_sec) {
886 *ptime = time.tv_sec;
887 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
888 (unit & 1) + 'a', what);
889 }
890 }
891
892 /*
893 * ZS software interrupt. Scan all channels for deferred interrupts.
894 */
895 int
896 zssoft(int arg)
897 {
898 register struct zs_chanstate *cs;
899 register volatile struct zschan *zc;
900 register struct linesw *line;
901 register struct tty *tp;
902 register int get, n, c, cc, unit, s;
903
904 #ifdef DEBUG
905 printf("zssoft\n");
906 #endif
907
908 isr_soft_clear(ZSSOFT_PRI);
909
910 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
911 get = cs->cs_rbget;
912 again:
913 n = cs->cs_rbput; /* atomic */
914 if (get == n) /* nothing more on this line */
915 continue;
916 unit = cs->cs_unit; /* set up to handle interrupts */
917 zc = cs->cs_zc;
918 tp = cs->cs_ttyp;
919 line = &linesw[tp->t_line];
920 /*
921 * Compute the number of interrupts in the receive ring.
922 * If the count is overlarge, we lost some events, and
923 * must advance to the first valid one. It may get
924 * overwritten if more data are arriving, but this is
925 * too expensive to check and gains nothing (we already
926 * lost out; all we can do at this point is trade one
927 * kind of loss for another).
928 */
929 n -= get;
930 if (n > ZLRB_RING_SIZE) {
931 zsoverrun(unit, &cs->cs_rotime, "ring");
932 get += n - ZLRB_RING_SIZE;
933 n = ZLRB_RING_SIZE;
934 }
935 while (--n >= 0) {
936 /* race to keep ahead of incoming interrupts */
937 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
938 switch (ZRING_TYPE(c)) {
939
940 case ZRING_RINT:
941 c = ZRING_VALUE(c);
942 if (c & ZSRR1_DO)
943 zsoverrun(unit, &cs->cs_fotime, "fifo");
944 cc = c >> 8;
945 if (c & ZSRR1_FE)
946 cc |= TTY_FE;
947 if (c & ZSRR1_PE)
948 cc |= TTY_PE;
949 /*
950 * this should be done through
951 * bstreams XXX gag choke
952 */
953 if (unit == ZS_KBD)
954 kbd_rint(cc);
955 else if (unit == ZS_MOUSE)
956 ms_rint(cc);
957 else
958 line->l_rint(cc, tp);
959 break;
960
961 case ZRING_XINT:
962 /*
963 * Transmit done: change registers and resume,
964 * or clear BUSY.
965 */
966 if (cs->cs_heldchange) {
967 s = splzs();
968 c = zc->zc_csr;
969 if ((c & ZSRR0_DCD) == 0)
970 cs->cs_preg[3] &= ~ZSWR3_HFC;
971 bcopy((caddr_t)cs->cs_preg,
972 (caddr_t)cs->cs_creg, 16);
973 zs_loadchannelregs(zc, cs->cs_creg);
974 splx(s);
975 cs->cs_heldchange = 0;
976 if (cs->cs_heldtbc &&
977 (tp->t_state & TS_TTSTOP) == 0) {
978 cs->cs_tbc = cs->cs_heldtbc - 1;
979 zc->zc_data = *cs->cs_tba++;
980 goto again;
981 }
982 }
983 tp->t_state &= ~TS_BUSY;
984 if (tp->t_state & TS_FLUSH)
985 tp->t_state &= ~TS_FLUSH;
986 else
987 ndflush(&tp->t_outq,
988 (u_char *)cs->cs_tba - tp->t_outq.c_cf);
989 line->l_start(tp);
990 break;
991
992 case ZRING_SINT:
993 /*
994 * Status line change. HFC bit is run in
995 * hardware interrupt, to avoid locking
996 * at splzs here.
997 */
998 c = ZRING_VALUE(c);
999 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1000 cc = (c & ZSRR0_DCD) != 0;
1001 if (line->l_modem(tp, cc) == 0)
1002 zs_modem(cs, cc);
1003 }
1004 cs->cs_rr0 = c;
1005 break;
1006
1007 default:
1008 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1009 unit >> 1, (unit & 1) + 'a', c);
1010 break;
1011 }
1012 }
1013 cs->cs_rbget = get;
1014 goto again;
1015 }
1016 return (1);
1017 }
1018
1019 int
1020 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1021 {
1022 int unit = minor(dev);
1023 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1024 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1025 register int error;
1026
1027 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1028 if (error >= 0)
1029 return (error);
1030 error = ttioctl(tp, cmd, data, flag, p);
1031 if (error >= 0)
1032 return (error);
1033
1034 switch (cmd) {
1035
1036 case TIOCSBRK:
1037 /* FINISH ME ... need implicit TIOCCBRK in zsclose as well */
1038
1039 case TIOCCBRK:
1040
1041 case TIOCSDTR:
1042
1043 case TIOCCDTR:
1044
1045 case TIOCMSET:
1046
1047 case TIOCMBIS:
1048
1049 case TIOCMBIC:
1050
1051 case TIOCMGET:
1052
1053 default:
1054 return (ENOTTY);
1055 }
1056 return (0);
1057 }
1058
1059 /*
1060 * Start or restart transmission.
1061 */
1062 static void
1063 zsstart(register struct tty *tp)
1064 {
1065 register struct zs_chanstate *cs;
1066 register int s, nch;
1067 int unit = minor(tp->t_dev);
1068 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1069
1070 cs = &zi->zi_cs[unit & 1];
1071 s = spltty();
1072
1073 #ifdef DEBUG
1074 printf("zsstart\n");
1075 #endif
1076
1077 /*
1078 * If currently active or delaying, no need to do anything.
1079 */
1080 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1081 goto out;
1082
1083 /*
1084 * If there are sleepers, and output has drained below low
1085 * water mark, awaken.
1086 */
1087 if (tp->t_outq.c_cc <= tp->t_lowat) {
1088 if (tp->t_state & TS_ASLEEP) {
1089 tp->t_state &= ~TS_ASLEEP;
1090 wakeup((caddr_t)&tp->t_outq);
1091 }
1092 selwakeup(&tp->t_wsel);
1093 }
1094
1095 nch = ndqb(&tp->t_outq, 0); /* XXX */
1096 if (nch) {
1097 register char *p = tp->t_outq.c_cf;
1098
1099 /* mark busy, enable tx done interrupts, & send first byte */
1100 tp->t_state |= TS_BUSY;
1101 (void) splzs();
1102 cs->cs_preg[1] |= ZSWR1_TIE;
1103 cs->cs_creg[1] |= ZSWR1_TIE;
1104 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1105 cs->cs_zc->zc_data = *p;
1106 cs->cs_tba = p + 1;
1107 cs->cs_tbc = nch - 1;
1108 } else {
1109 /*
1110 * Nothing to send, turn off transmit done interrupts.
1111 * This is useful if something is doing polled output.
1112 */
1113 (void) splzs();
1114 cs->cs_preg[1] &= ~ZSWR1_TIE;
1115 cs->cs_creg[1] &= ~ZSWR1_TIE;
1116 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1117 }
1118 out:
1119 splx(s);
1120 }
1121
1122 /*
1123 * Stop output, e.g., for ^S or output flush.
1124 */
1125 void
1126 zsstop(register struct tty *tp, int flag)
1127 {
1128 register struct zs_chanstate *cs;
1129 register int s, unit = minor(tp->t_dev);
1130 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1131
1132 cs = &zi->zi_cs[unit & 1];
1133 s = splzs();
1134 if (tp->t_state & TS_BUSY) {
1135 /*
1136 * Device is transmitting; must stop it.
1137 */
1138 cs->cs_tbc = 0;
1139 if ((tp->t_state & TS_TTSTOP) == 0)
1140 tp->t_state |= TS_FLUSH;
1141 }
1142 splx(s);
1143 }
1144
1145 /*
1146 * Set ZS tty parameters from termios.
1147 *
1148 * This routine makes use of the fact that only registers
1149 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1150 */
1151 static int
1152 zsparam(register struct tty *tp, register struct termios *t)
1153 {
1154 int unit = minor(tp->t_dev);
1155 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1156 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1157 register int tmp, tmp5, cflag, s;
1158
1159 /*
1160 * Because PCLK is only run at 4.9 MHz, the fastest we
1161 * can go is 51200 baud (this corresponds to TC=1).
1162 * This is somewhat unfortunate as there is no real
1163 * reason we should not be able to handle higher rates.
1164 */
1165 tmp = t->c_ospeed;
1166 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1167 return (EINVAL);
1168 if (tmp == 0) {
1169 /* stty 0 => drop DTR and RTS */
1170 zs_modem(cs, 0);
1171 return (0);
1172 }
1173 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1174 if (tmp < 2)
1175 return (EINVAL);
1176
1177 cflag = t->c_cflag;
1178 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1179 tp->t_cflag = cflag;
1180
1181 /*
1182 * Block interrupts so that state will not
1183 * be altered until we are done setting it up.
1184 */
1185 s = splzs();
1186 cs->cs_preg[12] = tmp;
1187 cs->cs_preg[13] = tmp >> 8;
1188 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1189 switch (cflag & CSIZE) {
1190 case CS5:
1191 tmp = ZSWR3_RX_5;
1192 tmp5 = ZSWR5_TX_5;
1193 break;
1194 case CS6:
1195 tmp = ZSWR3_RX_6;
1196 tmp5 = ZSWR5_TX_6;
1197 break;
1198 case CS7:
1199 tmp = ZSWR3_RX_7;
1200 tmp5 = ZSWR5_TX_7;
1201 break;
1202 case CS8:
1203 default:
1204 tmp = ZSWR3_RX_8;
1205 tmp5 = ZSWR5_TX_8;
1206 break;
1207 }
1208
1209 /*
1210 * Output hardware flow control on the chip is horrendous: if
1211 * carrier detect drops, the receiver is disabled. Hence we
1212 * can only do this when the carrier is on.
1213 */
1214 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1215 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1216 else
1217 tmp |= ZSWR3_RX_ENABLE;
1218 cs->cs_preg[3] = tmp;
1219 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1220
1221 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1222 if ((cflag & PARODD) == 0)
1223 tmp |= ZSWR4_EVENP;
1224 if (cflag & PARENB)
1225 tmp |= ZSWR4_PARENB;
1226 cs->cs_preg[4] = tmp;
1227 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1228 cs->cs_preg[10] = ZSWR10_NRZ;
1229 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1230 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1231 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1232
1233 /*
1234 * If nothing is being transmitted, set up new current values,
1235 * else mark them as pending.
1236 */
1237 if (cs->cs_heldchange == 0) {
1238 if (cs->cs_ttyp->t_state & TS_BUSY) {
1239 cs->cs_heldtbc = cs->cs_tbc;
1240 cs->cs_tbc = 0;
1241 cs->cs_heldchange = 1;
1242 } else {
1243 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1244 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1245 }
1246 }
1247 splx(s);
1248 return (0);
1249 }
1250
1251 /*
1252 * Raise or lower modem control (DTR/RTS) signals. If a character is
1253 * in transmission, the change is deferred.
1254 */
1255 static void
1256 zs_modem(struct zs_chanstate *cs, int onoff)
1257 {
1258 int s, bis, and;
1259
1260 if (onoff) {
1261 bis = ZSWR5_DTR | ZSWR5_RTS;
1262 and = ~0;
1263 } else {
1264 bis = 0;
1265 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1266 }
1267 s = splzs();
1268 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1269 if (cs->cs_heldchange == 0) {
1270 if (cs->cs_ttyp->t_state & TS_BUSY) {
1271 cs->cs_heldtbc = cs->cs_tbc;
1272 cs->cs_tbc = 0;
1273 cs->cs_heldchange = 1;
1274 } else {
1275 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1276 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1277 }
1278 }
1279 splx(s);
1280 }
1281
1282 /*
1283 * Write the given register set to the given zs channel in the proper order.
1284 * The channel must not be transmitting at the time. The receiver will
1285 * be disabled for the time it takes to write all the registers.
1286 */
1287 static void
1288 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1289 {
1290 int i;
1291
1292 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1293 i = zc->zc_data; /* drain fifo */
1294 i = zc->zc_data;
1295 i = zc->zc_data;
1296 ZS_WRITE(zc, 4, reg[4]);
1297 ZS_WRITE(zc, 10, reg[10]);
1298 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1299 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1300 ZS_WRITE(zc, 1, reg[1]);
1301 ZS_WRITE(zc, 9, reg[9]);
1302 ZS_WRITE(zc, 11, reg[11]);
1303 ZS_WRITE(zc, 12, reg[12]);
1304 ZS_WRITE(zc, 13, reg[13]);
1305 ZS_WRITE(zc, 14, reg[14]);
1306 ZS_WRITE(zc, 15, reg[15]);
1307 ZS_WRITE(zc, 3, reg[3]);
1308 ZS_WRITE(zc, 5, reg[5]);
1309 }
1310
1311 /* XXX - Tune this... -gwr */
1312 int cpuspeed = 50;
1313
1314 static void
1315 zs_delay()
1316 {
1317 int n = cpuspeed;
1318 while (n--) {
1319 nullop(); /* foil optimizer */
1320 }
1321 }
1322
1323 static u_char
1324 zs_read(zc, reg)
1325 volatile struct zschan *zc;
1326 u_char reg;
1327 {
1328 u_char val;
1329
1330 zc->zc_csr = reg;
1331 zs_delay();
1332 val = zc->zc_csr;
1333 zs_delay();
1334 return val;
1335 }
1336
1337 static u_char
1338 zs_write(zc, reg, val)
1339 volatile struct zschan *zc;
1340 u_char reg, val;
1341 {
1342 zc->zc_csr = reg;
1343 zs_delay();
1344 zc->zc_csr = val;
1345 zs_delay();
1346 return val;
1347 }
1348
1349 #ifdef KGDB
1350 /*
1351 * Get a character from the given kgdb channel. Called at splhigh().
1352 */
1353 static int
1354 zs_kgdb_getc(void *arg)
1355 {
1356 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1357
1358 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1359 continue;
1360 return (zc->zc_data);
1361 }
1362
1363 /*
1364 * Put a character to the given kgdb channel. Called at splhigh().
1365 */
1366 static void
1367 zs_kgdb_putc(void *arg, int c)
1368 {
1369 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1370
1371 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1372 continue;
1373 zc->zc_data = c;
1374 }
1375
1376 /*
1377 * Set up for kgdb; called at boot time before configuration.
1378 * KGDB interrupts will be enabled later when zs0 is configured.
1379 */
1380 void
1381 zs_kgdb_init()
1382 {
1383 volatile struct zsdevice *addr;
1384 volatile struct zschan *zc;
1385 int unit, zs;
1386
1387 if (major(kgdb_dev) != ZSMAJOR)
1388 return;
1389 unit = minor(kgdb_dev);
1390 /*
1391 * Unit must be 0 or 1 (zs0).
1392 */
1393 if ((unsigned)unit >= ZS_KBD) {
1394 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1395 return;
1396 }
1397 zs = unit >> 1;
1398 if ((addr = zsaddr[zs]) == NULL)
1399 addr = zsaddr[zs] = findzs(zs);
1400 unit &= 1;
1401 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1402 zs_kgdb_savedspeed = zs_getspeed(zc);
1403 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1404 zs, unit + 'a', kgdb_rate);
1405 zs_reset(zc, 1, kgdb_rate);
1406 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1407 }
1408 #endif /* KGDB */
1409