zs.c revision 1.23 1 /* $NetBSD: zs.c,v 1.23 1995/04/11 02:41:42 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1994 Gordon W. Ross
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)zs.c 8.1 (Berkeley) 7/19/93
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/autoconf.h>
71 #include <machine/cpu.h>
72 #include <machine/isr.h>
73 #include <machine/obio.h>
74 #include <machine/mon.h>
75 #include <machine/eeprom.h>
76 #include <machine/kbd.h>
77
78 #include <dev/cons.h>
79
80 #include <dev/ic/z8530.h>
81 #include <sun3/dev/zsvar.h>
82
83 /*
84 * The default parity REALLY needs to be the same as the PROM uses,
85 * or you can not see messages done with printf during boot-up...
86 */
87 #undef TTYDEF_CFLAG
88 #define TTYDEF_CFLAG (CREAD | CS8 | HUPCL)
89
90 #ifdef KGDB
91 #include <machine/remote-sl.h>
92 #endif
93
94 #define ZSMAJOR 12 /* XXX */
95
96 #define ZS_KBD 2 /* XXX */
97 #define ZS_MOUSE 3 /* XXX */
98
99 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
100 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
101
102 /*
103 * Define interrupt levels.
104 */
105 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
106 #define ZSSOFT_PRI 3 /* Want tty pri (4) but this is OK. */
107
108 /*
109 * Software state per found chip. This would be called `zs_softc',
110 * but the previous driver had a rather different zs_softc....
111 */
112 struct zsinfo {
113 struct device zi_dev; /* base device */
114 volatile struct zsdevice *zi_zs;/* chip registers */
115 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
116 };
117
118 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
119
120 /* Definition of the driver for autoconfig. */
121 static int zs_match(struct device *, void *, void *);
122 static void zs_attach(struct device *, struct device *, void *);
123
124 struct cfdriver zscd = {
125 NULL, "zs", zs_match, zs_attach,
126 DV_TTY, sizeof(struct zsinfo) };
127
128 /* Interrupt handlers. */
129 static int zshard(int);
130 static int zssoft(int);
131
132 struct zs_chanstate *zslist;
133
134 /* Routines called from other code. */
135 int zsopen(dev_t, int, int, struct proc *);
136 int zsclose(dev_t, int, int, struct proc *);
137 static void zsiopen(struct tty *);
138 static void zsiclose(struct tty *);
139 static void zsstart(struct tty *);
140 void zsstop(struct tty *, int);
141 static int zsparam(struct tty *, struct termios *);
142
143 /* Routines purely local to this driver. */
144 static int zs_getspeed(volatile struct zschan *);
145 static void zs_reset(volatile struct zschan *, int, int);
146 static void zs_modem(struct zs_chanstate *, int);
147 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
148 static u_char zs_read(volatile struct zschan *, u_char);
149 static u_char zs_write(volatile struct zschan *, u_char, u_char);
150
151 /* Console stuff. */
152 static volatile struct zschan *zs_conschan;
153
154 #ifdef KGDB
155 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
156 extern int kgdb_dev, kgdb_rate;
157 static int zs_kgdb_savedspeed;
158 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
159 #endif
160
161 /*
162 * Console keyboard L1-A processing is done in the hardware interrupt code,
163 * so we need to duplicate some of the console keyboard decode state. (We
164 * must not use the regular state as the hardware code keeps ahead of the
165 * software state: the software state tracks the most recent ring input but
166 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
167 */
168 static struct conk_state { /* console keyboard state */
169 char conk_id; /* true => ID coming up (console only) */
170 char conk_l1; /* true => L1 pressed (console only) */
171 } zsconk_state;
172
173 int zshardscope;
174 int zsshortcuts; /* number of "shortcut" software interrupts */
175
176 int zssoftpending; /* We have done isr_soft_request() */
177
178 static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
179
180 /* Default OBIO addresses. */
181 static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS };
182
183 static u_char zs_init_reg[16] = {
184 0, /* 0: CMD (reset, etc.) */
185 ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE,
186 0x18 + ZSHARD_PRI, /* IVECT */
187 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
188 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
189 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
190 0, /* 6: TXSYNC/SYNCLO */
191 0, /* 7: RXSYNC/SYNCHI */
192 0, /* 8: alias for data port */
193 0, /* 9: ZSWR9_MASTER_IE (later) */
194 0, /*10: Misc. TX/RX control bits */
195 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
196 0, /*12: BAUDLO (later) */
197 0, /*13: BAUDHI (later) */
198 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
199 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
200 };
201
202 /* Find PROM mappings (for console support). */
203 void zs_init()
204 {
205 int i;
206
207 for (i = 0; i < NZS; i++) {
208 zsaddr[i] = (struct zsdevice *)
209 obio_find_mapping(zs_physaddr[i], OBIO_ZS_SIZE);
210 }
211 }
212
213 /*
214 * Match slave number to zs unit number, so that misconfiguration will
215 * not set up the keyboard as ttya, etc.
216 */
217 static int
218 zs_match(struct device *parent, void *vcf, void *args)
219 {
220 struct cfdata *cf = vcf;
221 struct confargs *ca = args;
222 int unit, x;
223 void *zsva;
224
225 unit = cf->cf_unit;
226 if (unit < 0 || unit >= NZS)
227 return (0);
228
229 zsva = zsaddr[unit];
230 if (zsva == NULL)
231 return (0);
232
233 if (ca->ca_paddr == -1)
234 ca->ca_paddr = zs_physaddr[unit];
235 if (ca->ca_intpri == -1)
236 ca->ca_intpri = ZSHARD_PRI;
237
238 /* This returns -1 on a fault (bus error). */
239 x = peek_byte(zsva);
240 return (x != -1);
241 }
242
243 /*
244 * Attach a found zs.
245 *
246 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
247 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
248 */
249 static void
250 zs_attach(struct device *parent, struct device *self, void *args)
251 {
252 struct cfdata *cf;
253 struct confargs *ca;
254 register int zs, unit;
255 register struct zsinfo *zi;
256 register struct zs_chanstate *cs;
257 register volatile struct zsdevice *addr;
258 register struct tty *tp, *ctp;
259 int softcar;
260 static int didintr;
261
262 cf = self->dv_cfdata;
263 zs = self->dv_unit;
264 ca = args;
265
266 printf(" softpri %d\n", ZSSOFT_PRI);
267
268 if (zsaddr[zs] == NULL)
269 panic("zs_attach: zs%d not mapped\n", zs);
270 addr = zsaddr[zs];
271
272 if (!didintr) {
273 didintr = 1;
274 isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
275 isr_add_autovect(zshard, NULL, ZSHARD_PRI);
276 }
277
278 zi = (struct zsinfo *)self;
279 zi->zi_zs = addr;
280 unit = zs * 2;
281 cs = zi->zi_cs;
282 softcar = cf->cf_flags;
283
284 if(!zs_tty[unit])
285 zs_tty[unit] = ttymalloc();
286 if(!zs_tty[unit+1])
287 zs_tty[unit+1] = ttymalloc();
288
289 /* link into interrupt list with order (A,B) (B=A+1) */
290 cs[0].cs_next = &cs[1];
291 cs[1].cs_next = zslist;
292 zslist = cs;
293
294 tp = zs_tty[unit];
295 cs->cs_unit = unit;
296 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
297 cs->cs_speed = zs_getspeed(cs->cs_zc);
298 #ifdef DEBUG
299 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
300 #endif
301 cs->cs_softcar = softcar & 1;
302 cs->cs_ttyp = tp;
303 tp->t_dev = makedev(ZSMAJOR, unit);
304 tp->t_oproc = zsstart;
305 tp->t_param = zsparam;
306 if (cs->cs_zc == zs_conschan) {
307 /* This unit is the console. */
308 cs->cs_consio = 1;
309 cs->cs_brkabort = 1;
310 cs->cs_softcar = 1;
311 /* Call zsparam so interrupts get enabled. */
312 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
313 tp->t_cflag = TTYDEF_CFLAG;
314 (void) zsparam(tp, &tp->t_termios);
315 } else {
316 /* Can not run kgdb on the console? */
317 #ifdef KGDB
318 zs_checkkgdb(unit, cs, tp);
319 #endif
320 }
321 #if 0
322 /* XXX - Drop carrier here? -gwr */
323 zs_modem(cs, cs->cs_softcar ? 1 : 0);
324 #endif
325
326 if (unit == ZS_KBD) {
327 /*
328 * Keyboard: tell /dev/kbd driver how to talk to us.
329 */
330 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
331 tp->t_cflag = CS8;
332 /* zsparam called by zsiopen */
333 kbd_serial(tp, zsiopen, zsiclose);
334 cs->cs_conk = 1; /* do L1-A processing */
335 }
336 unit++;
337 cs++;
338 tp = zs_tty[unit];
339
340 cs->cs_unit = unit;
341 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
342 cs->cs_speed = zs_getspeed(cs->cs_zc);
343 #ifdef DEBUG
344 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
345 #endif
346 cs->cs_softcar = softcar & 2;
347 cs->cs_ttyp = tp;
348 tp->t_dev = makedev(ZSMAJOR, unit);
349 tp->t_oproc = zsstart;
350 tp->t_param = zsparam;
351 if (cs->cs_zc == zs_conschan) {
352 /* This unit is the console. */
353 cs->cs_consio = 1;
354 cs->cs_brkabort = 1;
355 cs->cs_softcar = 1;
356 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
357 tp->t_cflag = TTYDEF_CFLAG;
358 (void) zsparam(tp, &tp->t_termios);
359 } else {
360 /* Can not run kgdb on the console? */
361 #ifdef KGDB
362 zs_checkkgdb(unit, cs, tp);
363 #endif
364 }
365 #if 0
366 /* XXX - Drop carrier here? -gwr */
367 zs_modem(cs, cs->cs_softcar ? 1 : 0);
368 #endif
369
370 if (unit == ZS_MOUSE) {
371 /*
372 * Mouse: tell /dev/mouse driver how to talk to us.
373 */
374 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
375 tp->t_cflag = CS8;
376 /* zsparam called by zsiopen */
377 ms_serial(tp, zsiopen, zsiclose);
378 }
379 }
380
381 /*
382 * Put a channel in a known state. Interrupts may be left disabled
383 * or enabled, as desired. (Used only by kgdb)
384 */
385 static void
386 zs_reset(zc, inten, speed)
387 volatile struct zschan *zc;
388 int inten, speed;
389 {
390 int tconst;
391 u_char reg[16];
392
393 bcopy(zs_init_reg, reg, 16);
394 if (inten)
395 reg[9] |= ZSWR9_MASTER_IE;
396
397 tconst = BPS_TO_TCONST(PCLK / 16, speed);
398 reg[12] = tconst;
399 reg[13] = tconst >> 8;
400 zs_loadchannelregs(zc, reg);
401 }
402
403 /*
404 * Console support
405 */
406
407 /*
408 * Used by the kd driver to find out if it can work.
409 */
410 int
411 zscnprobe_kbd()
412 {
413 if (zsaddr[1] == NULL) {
414 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
415 return CN_DEAD;
416 }
417 return CN_INTERNAL;
418 }
419
420 /*
421 * This is the console probe routine for ttya and ttyb.
422 */
423 static int
424 zscnprobe(struct consdev *cn, int unit)
425 {
426 int maj;
427
428 if (zsaddr[0] == NULL) {
429 mon_printf("zscnprobe: zs0 not mapped\n");
430 cn->cn_pri = CN_DEAD;
431 return 0;
432 }
433 /* XXX - Also try to make sure it exists? */
434
435 /* locate the major number */
436 for (maj = 0; maj < nchrdev; maj++)
437 if (cdevsw[maj].d_open == (void*)zsopen)
438 break;
439
440 cn->cn_dev = makedev(maj, unit);
441
442 /* Use EEPROM console setting to decide "remote" console. */
443 /* Note: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
444 if (ee_console == (EE_CONS_TTYA + unit)) {
445 cn->cn_pri = CN_REMOTE;
446 } else {
447 cn->cn_pri = CN_NORMAL;
448 }
449 return (0);
450 }
451
452 /* This is the constab entry for TTYA. */
453 int
454 zscnprobe_a(struct consdev *cn)
455 {
456 return (zscnprobe(cn, 0));
457 }
458
459 /* This is the constab entry for TTYB. */
460 int
461 zscnprobe_b(struct consdev *cn)
462 {
463 return (zscnprobe(cn, 1));
464 }
465
466 /* Called by kdcninit() or below. */
467 void
468 zs_set_conschan(unit, ab)
469 int unit, ab;
470 {
471 volatile struct zsdevice *addr;
472
473 addr = zsaddr[unit];
474 zs_conschan = ((ab == 0) ?
475 &addr->zs_chan[ZS_CHAN_A] :
476 &addr->zs_chan[ZS_CHAN_B] );
477 }
478
479 /* Attach as console. Also set zs_conschan */
480 int
481 zscninit(struct consdev *cn)
482 {
483 int ab = minor(cn->cn_dev) & 1;
484 zs_set_conschan(0, ab);
485 mon_printf("console on zs0 (tty%c)\n", 'a' + ab);
486 }
487
488
489 /*
490 * Polled console input putchar.
491 */
492 int
493 zscngetc(dev)
494 dev_t dev;
495 {
496 register volatile struct zschan *zc = zs_conschan;
497 register int s, c;
498
499 if (zc == NULL)
500 return (0);
501
502 s = splhigh();
503
504 /* Wait for a character to arrive. */
505 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
506 ZS_DELAY();
507 ZS_DELAY();
508
509 c = zc->zc_data;
510 ZS_DELAY();
511
512 splx(s);
513
514 /*
515 * This is used by the kd driver to read scan codes,
516 * so don't translate '\r' ==> '\n' here...
517 */
518 return (c);
519 }
520
521 /*
522 * Polled console output putchar.
523 */
524 int
525 zscnputc(dev, c)
526 dev_t dev;
527 int c;
528 {
529 register volatile struct zschan *zc = zs_conschan;
530 register int s;
531
532 if (zc == NULL) {
533 s = splhigh();
534 mon_putchar(c);
535 splx(s);
536 return (0);
537 }
538 s = splhigh();
539
540 /* Wait for transmitter to become ready. */
541 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
542 ZS_DELAY();
543 ZS_DELAY();
544
545 zc->zc_data = c;
546 ZS_DELAY();
547 splx(s);
548 }
549
550 #ifdef KGDB
551 /*
552 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
553 * Pick up the current speed and character size and restore the original
554 * speed.
555 */
556 static void
557 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
558 {
559
560 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
561 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
562 tp->t_cflag = CS8;
563 cs->cs_kgdb = 1;
564 cs->cs_speed = zs_kgdb_savedspeed;
565 (void) zsparam(tp, &tp->t_termios);
566 }
567 }
568 #endif
569
570 /*
571 * Compute the current baud rate given a ZSCC channel.
572 */
573 static int
574 zs_getspeed(zc)
575 register volatile struct zschan *zc;
576 {
577 register int tconst;
578
579 tconst = ZS_READ(zc, 12);
580 tconst |= ZS_READ(zc, 13) << 8;
581 return (TCONST_TO_BPS(PCLK / 16, tconst));
582 }
583
584
585 /*
586 * Do an internal open.
587 */
588 static void
589 zsiopen(struct tty *tp)
590 {
591
592 (void) zsparam(tp, &tp->t_termios);
593 ttsetwater(tp);
594 tp->t_state = TS_ISOPEN | TS_CARR_ON;
595 }
596
597 /*
598 * Do an internal close. Eventually we should shut off the chip when both
599 * ports on it are closed.
600 */
601 static void
602 zsiclose(struct tty *tp)
603 {
604
605 ttylclose(tp, 0); /* ??? */
606 ttyclose(tp); /* ??? */
607 tp->t_state = 0;
608 }
609
610
611 /*
612 * Open a zs serial port. This interface may not be used to open
613 * the keyboard and mouse ports. (XXX)
614 */
615 int
616 zsopen(dev_t dev, int flags, int mode, struct proc *p)
617 {
618 register struct tty *tp;
619 register struct zs_chanstate *cs;
620 struct zsinfo *zi;
621 int unit = minor(dev), zs = unit >> 1, error, s;
622
623 #ifdef DEBUG
624 mon_printf("zs_open\n");
625 #endif
626 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
627 unit == ZS_KBD || unit == ZS_MOUSE)
628 return (ENXIO);
629 cs = &zi->zi_cs[unit & 1];
630 tp = cs->cs_ttyp;
631 s = spltty();
632 if ((tp->t_state & TS_ISOPEN) == 0) {
633 ttychars(tp);
634 tp->t_iflag = TTYDEF_IFLAG;
635 tp->t_oflag = TTYDEF_OFLAG;
636 tp->t_cflag = TTYDEF_CFLAG;
637 tp->t_lflag = TTYDEF_LFLAG;
638 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
639 (void) zsparam(tp, &tp->t_termios);
640 ttsetwater(tp);
641 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
642 splx(s);
643 return (EBUSY);
644 }
645 error = 0;
646 #ifdef DEBUG
647 mon_printf("wait for carrier...\n");
648 #endif
649 for (;;) {
650 /* loop, turning on the device, until carrier present */
651 zs_modem(cs, 1);
652 /* May never get status intr if carrier already on. -gwr */
653 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
654 tp->t_state |= TS_CARR_ON;
655 if (cs->cs_softcar)
656 tp->t_state |= TS_CARR_ON;
657 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
658 tp->t_state & TS_CARR_ON)
659 break;
660 tp->t_state |= TS_WOPEN;
661 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
662 ttopen, 0))
663 break;
664 }
665 #ifdef DEBUG
666 mon_printf("...carrier %s\n",
667 (tp->t_state & TS_CARR_ON) ? "on" : "off");
668 #endif
669 splx(s);
670 if (error == 0)
671 error = linesw[tp->t_line].l_open(dev, tp);
672 if (error)
673 zs_modem(cs, 0);
674 return (error);
675 }
676
677 /*
678 * Close a zs serial port.
679 */
680 int
681 zsclose(dev_t dev, int flags, int mode, struct proc *p)
682 {
683 register struct zs_chanstate *cs;
684 register struct tty *tp;
685 struct zsinfo *zi;
686 int unit = minor(dev), s;
687
688 #ifdef DEBUG
689 mon_printf("zs_close\n");
690 #endif
691 zi = zscd.cd_devs[unit >> 1];
692 cs = &zi->zi_cs[unit & 1];
693 tp = cs->cs_ttyp;
694 linesw[tp->t_line].l_close(tp, flags);
695 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
696 (tp->t_state & TS_ISOPEN) == 0) {
697 zs_modem(cs, 0);
698 /* hold low for 1 second */
699 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
700 }
701 if (cs->cs_creg[5] & ZSWR5_BREAK)
702 {
703 s = splzs();
704 cs->cs_preg[5] &= ~ZSWR5_BREAK;
705 cs->cs_creg[5] &= ~ZSWR5_BREAK;
706 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
707 splx(s);
708 }
709 ttyclose(tp);
710 #ifdef KGDB
711 /* Reset the speed if we're doing kgdb on this port */
712 if (cs->cs_kgdb) {
713 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
714 (void) zsparam(tp, &tp->t_termios);
715 }
716 #endif
717 return (0);
718 }
719
720 /*
721 * Read/write zs serial port.
722 */
723 int
724 zsread(dev_t dev, struct uio *uio, int flags)
725 {
726 register struct tty *tp = zs_tty[minor(dev)];
727
728 return (linesw[tp->t_line].l_read(tp, uio, flags));
729 }
730
731 int
732 zswrite(dev_t dev, struct uio *uio, int flags)
733 {
734 register struct tty *tp = zs_tty[minor(dev)];
735
736 return (linesw[tp->t_line].l_write(tp, uio, flags));
737 }
738
739 /*
740 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
741 * channels are kept in (A,B) pairs.
742 *
743 * Do just a little, then get out; set a software interrupt if more
744 * work is needed.
745 *
746 * We deliberately ignore the vectoring Zilog gives us, and match up
747 * only the number of `reset interrupt under service' operations, not
748 * the order.
749 */
750 /* ARGSUSED */
751 int
752 zshard(int intrarg)
753 {
754 register struct zs_chanstate *a;
755 #define b (a + 1)
756 register volatile struct zschan *zc;
757 register int rr3, intflags = 0, v, i;
758 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
759 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
760 static int zssint(struct zs_chanstate *, volatile struct zschan *);
761
762 for (a = zslist; a != NULL; a = b->cs_next) {
763 rr3 = ZS_READ(a->cs_zc, 3);
764
765 /* XXX - This should loop to empty the on-chip fifo. */
766 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
767 intflags |= 2;
768 zc = a->cs_zc;
769 i = a->cs_rbput;
770 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
771 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
772 intflags |= 1;
773 }
774 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
775 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
776 intflags |= 1;
777 }
778 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
779 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
780 intflags |= 1;
781 }
782 a->cs_rbput = i;
783 }
784
785 /* XXX - This should loop to empty the on-chip fifo. */
786 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
787 intflags |= 2;
788 zc = b->cs_zc;
789 i = b->cs_rbput;
790 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
791 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
792 intflags |= 1;
793 }
794 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
795 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
796 intflags |= 1;
797 }
798 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
799 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
800 intflags |= 1;
801 }
802 b->cs_rbput = i;
803 }
804 }
805 #undef b
806 if (intflags & 1) {
807 if (zssoftpending == 0) {
808 /* We are at splzs here, so no need to lock. */
809 zssoftpending = ZSSOFT_PRI;
810 isr_soft_request(ZSSOFT_PRI);
811 }
812 }
813 return (intflags & 2);
814 }
815
816 static int
817 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
818 {
819 register int c = zc->zc_data;
820
821 if (cs->cs_conk) {
822 register struct conk_state *conk = &zsconk_state;
823
824 /*
825 * Check here for console abort function, so that we
826 * can abort even when interrupts are locking up the
827 * machine.
828 */
829 if (c == KBD_RESET) {
830 conk->conk_id = 1; /* ignore next byte */
831 conk->conk_l1 = 0;
832 } else if (conk->conk_id)
833 conk->conk_id = 0; /* stop ignoring bytes */
834 else if (c == KBD_L1)
835 conk->conk_l1 = 1; /* L1 went down */
836 else if (c == (KBD_L1|KBD_UP))
837 conk->conk_l1 = 0; /* L1 went up */
838 else if (c == KBD_A && conk->conk_l1) {
839 zsabort();
840 /* Debugger done. Send L1-up in case X is running. */
841 conk->conk_l1 = 0;
842 c = (KBD_L1|KBD_UP);
843 }
844 }
845 #ifdef KGDB
846 if (c == FRAME_START && cs->cs_kgdb &&
847 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
848 zskgdb(cs->cs_unit);
849 goto clearit;
850 }
851 #endif
852 /* compose receive character and status */
853 c <<= 8;
854 c |= ZS_READ(zc, 1);
855
856 /* clear receive error & interrupt condition */
857 zc->zc_csr = ZSWR0_RESET_ERRORS;
858 zc->zc_csr = ZSWR0_CLR_INTR;
859
860 return (ZRING_MAKE(ZRING_RINT, c));
861
862 clearit:
863 zc->zc_csr = ZSWR0_RESET_ERRORS;
864 zc->zc_csr = ZSWR0_CLR_INTR;
865 return (0);
866 }
867
868 static int
869 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
870 {
871 register int i = cs->cs_tbc;
872
873 if (i == 0) {
874 zc->zc_csr = ZSWR0_RESET_TXINT;
875 zc->zc_csr = ZSWR0_CLR_INTR;
876 return (ZRING_MAKE(ZRING_XINT, 0));
877 }
878 cs->cs_tbc = i - 1;
879 zc->zc_data = *cs->cs_tba++;
880 zc->zc_csr = ZSWR0_CLR_INTR;
881 return (0);
882 }
883
884 static int
885 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
886 {
887 register int rr0;
888
889 rr0 = zc->zc_csr;
890 zc->zc_csr = ZSWR0_RESET_STATUS;
891 zc->zc_csr = ZSWR0_CLR_INTR;
892 /*
893 * The chip's hardware flow control is, as noted in zsreg.h,
894 * busted---if the DCD line goes low the chip shuts off the
895 * receiver (!). If we want hardware CTS flow control but do
896 * not have it, and carrier is now on, turn HFC on; if we have
897 * HFC now but carrier has gone low, turn it off.
898 */
899 if (rr0 & ZSRR0_DCD) {
900 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
901 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
902 cs->cs_creg[3] |= ZSWR3_HFC;
903 ZS_WRITE(zc, 3, cs->cs_creg[3]);
904 }
905 } else {
906 if (cs->cs_creg[3] & ZSWR3_HFC) {
907 cs->cs_creg[3] &= ~ZSWR3_HFC;
908 ZS_WRITE(zc, 3, cs->cs_creg[3]);
909 }
910 }
911 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
912 /* Wait for end of break to avoid PROM abort. */
913 while (zc->zc_csr & ZSRR0_BREAK)
914 ZS_DELAY();
915 zsabort();
916 return (0);
917 }
918 return (ZRING_MAKE(ZRING_SINT, rr0));
919 }
920
921 zsabort()
922 {
923 #ifdef DDB
924 Debugger();
925 #else
926 printf("stopping on keyboard abort\n");
927 sun3_rom_abort();
928 #endif
929 }
930
931 #ifdef KGDB
932 /*
933 * KGDB framing character received: enter kernel debugger. This probably
934 * should time out after a few seconds to avoid hanging on spurious input.
935 */
936 zskgdb(int unit)
937 {
938
939 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
940 kgdb_connect(1);
941 }
942 #endif
943
944 /*
945 * Print out a ring or fifo overrun error message.
946 */
947 static void
948 zsoverrun(int unit, long *ptime, char *what)
949 {
950
951 if (*ptime != time.tv_sec) {
952 *ptime = time.tv_sec;
953 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
954 (unit & 1) + 'a', what);
955 }
956 }
957
958 /*
959 * ZS software interrupt. Scan all channels for deferred interrupts.
960 */
961 int
962 zssoft(int arg)
963 {
964 register struct zs_chanstate *cs;
965 register volatile struct zschan *zc;
966 register struct linesw *line;
967 register struct tty *tp;
968 register int get, n, c, cc, unit, s;
969
970 /* This is not the only ISR on this IPL. */
971 if (zssoftpending == 0)
972 return (0);
973
974 /*
975 * The soft intr. bit will be set by zshard only if
976 * the variable zssoftpending is zero. The order of
977 * these next two statements prevents our clearing
978 * the soft intr bit just after zshard has set it.
979 */
980 isr_soft_clear(ZSSOFT_PRI);
981 zssoftpending = 0; /* Now zshard may set it again. */
982
983 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
984 get = cs->cs_rbget;
985 again:
986 n = cs->cs_rbput; /* atomic */
987 if (get == n) /* nothing more on this line */
988 continue;
989 unit = cs->cs_unit; /* set up to handle interrupts */
990 zc = cs->cs_zc;
991 tp = cs->cs_ttyp;
992 line = &linesw[tp->t_line];
993 /*
994 * Compute the number of interrupts in the receive ring.
995 * If the count is overlarge, we lost some events, and
996 * must advance to the first valid one. It may get
997 * overwritten if more data are arriving, but this is
998 * too expensive to check and gains nothing (we already
999 * lost out; all we can do at this point is trade one
1000 * kind of loss for another).
1001 */
1002 n -= get;
1003 if (n > ZLRB_RING_SIZE) {
1004 zsoverrun(unit, &cs->cs_rotime, "ring");
1005 get += n - ZLRB_RING_SIZE;
1006 n = ZLRB_RING_SIZE;
1007 }
1008 while (--n >= 0) {
1009 /* race to keep ahead of incoming interrupts */
1010 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
1011 switch (ZRING_TYPE(c)) {
1012
1013 case ZRING_RINT:
1014 c = ZRING_VALUE(c);
1015 if (c & ZSRR1_DO)
1016 zsoverrun(unit, &cs->cs_fotime, "fifo");
1017 cc = c >> 8;
1018 if (c & ZSRR1_FE)
1019 cc |= TTY_FE;
1020 if (c & ZSRR1_PE)
1021 cc |= TTY_PE;
1022 /*
1023 * this should be done through
1024 * bstreams XXX gag choke
1025 */
1026 if (unit == ZS_KBD)
1027 kbd_rint(cc);
1028 else if (unit == ZS_MOUSE)
1029 ms_rint(cc);
1030 else
1031 line->l_rint(cc, tp);
1032 break;
1033
1034 case ZRING_XINT:
1035 /*
1036 * Transmit done: change registers and resume,
1037 * or clear BUSY.
1038 */
1039 if (cs->cs_heldchange) {
1040 s = splzs();
1041 c = zc->zc_csr;
1042 if ((c & ZSRR0_DCD) == 0)
1043 cs->cs_preg[3] &= ~ZSWR3_HFC;
1044 bcopy((caddr_t)cs->cs_preg,
1045 (caddr_t)cs->cs_creg, 16);
1046 zs_loadchannelregs(zc, cs->cs_creg);
1047 splx(s);
1048 cs->cs_heldchange = 0;
1049 if (cs->cs_heldtbc &&
1050 (tp->t_state & TS_TTSTOP) == 0) {
1051 cs->cs_tbc = cs->cs_heldtbc - 1;
1052 zc->zc_data = *cs->cs_tba++;
1053 goto again;
1054 }
1055 }
1056 tp->t_state &= ~TS_BUSY;
1057 if (tp->t_state & TS_FLUSH)
1058 tp->t_state &= ~TS_FLUSH;
1059 else
1060 ndflush(&tp->t_outq, cs->cs_tba -
1061 (caddr_t) tp->t_outq.c_cf);
1062 line->l_start(tp);
1063 break;
1064
1065 case ZRING_SINT:
1066 /*
1067 * Status line change. HFC bit is run in
1068 * hardware interrupt, to avoid locking
1069 * at splzs here.
1070 */
1071 c = ZRING_VALUE(c);
1072 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1073 cc = (c & ZSRR0_DCD) != 0;
1074 if (line->l_modem(tp, cc) == 0)
1075 zs_modem(cs, cc);
1076 }
1077 cs->cs_rr0 = c;
1078 break;
1079
1080 default:
1081 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1082 unit >> 1, (unit & 1) + 'a', c);
1083 break;
1084 }
1085 }
1086 cs->cs_rbget = get;
1087 goto again;
1088 }
1089 return (1);
1090 }
1091
1092 int
1093 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1094 {
1095 int unit = minor(dev);
1096 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1097 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1098 register struct tty *tp = cs->cs_ttyp;
1099 register int error, s;
1100
1101 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1102 if (error >= 0)
1103 return (error);
1104 error = ttioctl(tp, cmd, data, flag, p);
1105 if (error >= 0)
1106 return (error);
1107
1108 switch (cmd) {
1109
1110 case TIOCSBRK:
1111 s = splzs();
1112 cs->cs_preg[5] |= ZSWR5_BREAK;
1113 cs->cs_creg[5] |= ZSWR5_BREAK;
1114 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1115 splx(s);
1116 break;
1117
1118 case TIOCCBRK:
1119 s = splzs();
1120 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1121 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1122 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1123 splx(s);
1124 break;
1125
1126 case TIOCGFLAGS: {
1127 int bits = 0;
1128
1129 if (cs->cs_softcar)
1130 bits |= TIOCFLAG_SOFTCAR;
1131 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1132 bits |= TIOCFLAG_CLOCAL;
1133 if (cs->cs_creg[3] & ZSWR3_HFC)
1134 bits |= TIOCFLAG_CRTSCTS;
1135 *(int *)data = bits;
1136 break;
1137 }
1138
1139 case TIOCSFLAGS: {
1140 int userbits, driverbits = 0;
1141
1142 error = suser(p->p_ucred, &p->p_acflag);
1143 if (error != 0)
1144 return (EPERM);
1145
1146 userbits = *(int *)data;
1147
1148 /*
1149 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1150 * defaulting to software flow control.
1151 */
1152 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1153 return(EINVAL);
1154 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1155 return(ENXIO);
1156
1157 s = splzs();
1158 if ((userbits & TIOCFLAG_SOFTCAR) ||
1159 (cs->cs_zc == zs_conschan))
1160 {
1161 cs->cs_softcar = 1; /* turn on softcar */
1162 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1163 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1164 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1165 } else if (userbits & TIOCFLAG_CLOCAL) {
1166 cs->cs_softcar = 0; /* turn off softcar */
1167 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1168 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1169 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1170 tp->t_termios.c_cflag |= CLOCAL;
1171 }
1172 if (userbits & TIOCFLAG_CRTSCTS) {
1173 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1174 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1175 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1176 cs->cs_preg[3] |= ZSWR3_HFC;
1177 cs->cs_creg[3] |= ZSWR3_HFC;
1178 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1179 tp->t_termios.c_cflag |= CRTSCTS;
1180 } else {
1181 /* no mdmbuf, so we must want software flow control */
1182 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1183 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1184 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1185 cs->cs_preg[3] &= ~ZSWR3_HFC;
1186 cs->cs_creg[3] &= ~ZSWR3_HFC;
1187 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1188 tp->t_termios.c_cflag &= ~CRTSCTS;
1189 }
1190 splx(s);
1191 break;
1192 }
1193
1194 case TIOCSDTR:
1195 case TIOCCDTR:
1196 case TIOCMSET:
1197 case TIOCMBIS:
1198 case TIOCMBIC:
1199 case TIOCMGET:
1200 default:
1201 return (ENOTTY);
1202 }
1203 return (0);
1204 }
1205
1206 /*
1207 * Start or restart transmission.
1208 */
1209 static void
1210 zsstart(register struct tty *tp)
1211 {
1212 register struct zs_chanstate *cs;
1213 register int s, nch;
1214 int unit = minor(tp->t_dev);
1215 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1216
1217 cs = &zi->zi_cs[unit & 1];
1218 s = spltty();
1219
1220 /*
1221 * If currently active or delaying, no need to do anything.
1222 */
1223 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1224 goto out;
1225
1226 /*
1227 * If there are sleepers, and output has drained below low
1228 * water mark, awaken.
1229 */
1230 if (tp->t_outq.c_cc <= tp->t_lowat) {
1231 if (tp->t_state & TS_ASLEEP) {
1232 tp->t_state &= ~TS_ASLEEP;
1233 wakeup((caddr_t)&tp->t_outq);
1234 }
1235 selwakeup(&tp->t_wsel);
1236 }
1237
1238 nch = ndqb(&tp->t_outq, 0); /* XXX */
1239 if (nch) {
1240 register char *p = tp->t_outq.c_cf;
1241
1242 /* mark busy, enable tx done interrupts, & send first byte */
1243 tp->t_state |= TS_BUSY;
1244 (void) splzs();
1245 cs->cs_preg[1] |= ZSWR1_TIE;
1246 cs->cs_creg[1] |= ZSWR1_TIE;
1247 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1248 cs->cs_zc->zc_data = *p;
1249 cs->cs_tba = p + 1;
1250 cs->cs_tbc = nch - 1;
1251 } else {
1252 /*
1253 * Nothing to send, turn off transmit done interrupts.
1254 * This is useful if something is doing polled output.
1255 */
1256 (void) splzs();
1257 cs->cs_preg[1] &= ~ZSWR1_TIE;
1258 cs->cs_creg[1] &= ~ZSWR1_TIE;
1259 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1260 }
1261 out:
1262 splx(s);
1263 }
1264
1265 /*
1266 * Stop output, e.g., for ^S or output flush.
1267 */
1268 void
1269 zsstop(register struct tty *tp, int flag)
1270 {
1271 register struct zs_chanstate *cs;
1272 register int s, unit = minor(tp->t_dev);
1273 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1274
1275 cs = &zi->zi_cs[unit & 1];
1276 s = splzs();
1277 if (tp->t_state & TS_BUSY) {
1278 /*
1279 * Device is transmitting; must stop it.
1280 */
1281 cs->cs_tbc = 0;
1282 if ((tp->t_state & TS_TTSTOP) == 0)
1283 tp->t_state |= TS_FLUSH;
1284 }
1285 splx(s);
1286 }
1287
1288 /*
1289 * Set ZS tty parameters from termios.
1290 */
1291 static int
1292 zsparam(register struct tty *tp, register struct termios *t)
1293 {
1294 int unit = minor(tp->t_dev);
1295 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1296 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1297 register int tmp, tmp5, cflag, s;
1298
1299 /*
1300 * Because PCLK is only run at 4.9 MHz, the fastest we
1301 * can go is 51200 baud (this corresponds to TC=1).
1302 * This is somewhat unfortunate as there is no real
1303 * reason we should not be able to handle higher rates.
1304 */
1305 tmp = t->c_ospeed;
1306 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1307 return (EINVAL);
1308 if (tmp == 0) {
1309 /* stty 0 => drop DTR and RTS */
1310 zs_modem(cs, 0);
1311 return (0);
1312 }
1313 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1314 if (tmp < 2)
1315 return (EINVAL);
1316
1317 cflag = t->c_cflag;
1318 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1319 tp->t_cflag = cflag;
1320
1321 /*
1322 * Block interrupts so that state will not
1323 * be altered until we are done setting it up.
1324 */
1325 s = splzs();
1326 bcopy(zs_init_reg, cs->cs_preg, 16);
1327 cs->cs_preg[12] = tmp;
1328 cs->cs_preg[13] = tmp >> 8;
1329 cs->cs_preg[9] |= ZSWR9_MASTER_IE;
1330 switch (cflag & CSIZE) {
1331 case CS5:
1332 tmp = ZSWR3_RX_5;
1333 tmp5 = ZSWR5_TX_5;
1334 break;
1335 case CS6:
1336 tmp = ZSWR3_RX_6;
1337 tmp5 = ZSWR5_TX_6;
1338 break;
1339 case CS7:
1340 tmp = ZSWR3_RX_7;
1341 tmp5 = ZSWR5_TX_7;
1342 break;
1343 case CS8:
1344 default:
1345 tmp = ZSWR3_RX_8;
1346 tmp5 = ZSWR5_TX_8;
1347 break;
1348 }
1349
1350 /*
1351 * Output hardware flow control on the chip is horrendous: if
1352 * carrier detect drops, the receiver is disabled. Hence we
1353 * can only do this when the carrier is on.
1354 */
1355 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1356 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1357 else
1358 tmp |= ZSWR3_RX_ENABLE;
1359 cs->cs_preg[3] = tmp;
1360 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1361
1362 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1363 if ((cflag & PARODD) == 0)
1364 tmp |= ZSWR4_EVENP;
1365 if (cflag & PARENB)
1366 tmp |= ZSWR4_PARENB;
1367 cs->cs_preg[4] = tmp;
1368
1369 /*
1370 * If nothing is being transmitted, set up new current values,
1371 * else mark them as pending.
1372 */
1373 if (cs->cs_heldchange == 0) {
1374 if (cs->cs_ttyp->t_state & TS_BUSY) {
1375 cs->cs_heldtbc = cs->cs_tbc;
1376 cs->cs_tbc = 0;
1377 cs->cs_heldchange = 1;
1378 } else {
1379 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1380 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1381 }
1382 }
1383 splx(s);
1384 return (0);
1385 }
1386
1387 /*
1388 * Raise or lower modem control (DTR/RTS) signals. If a character is
1389 * in transmission, the change is deferred.
1390 */
1391 static void
1392 zs_modem(struct zs_chanstate *cs, int onoff)
1393 {
1394 int s, bis, and;
1395
1396 if (onoff) {
1397 bis = ZSWR5_DTR | ZSWR5_RTS;
1398 and = ~0;
1399 } else {
1400 bis = 0;
1401 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1402 }
1403 s = splzs();
1404 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1405 if (cs->cs_heldchange == 0) {
1406 if (cs->cs_ttyp->t_state & TS_BUSY) {
1407 cs->cs_heldtbc = cs->cs_tbc;
1408 cs->cs_tbc = 0;
1409 cs->cs_heldchange = 1;
1410 } else {
1411 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1412 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1413 }
1414 }
1415 splx(s);
1416 }
1417
1418 /*
1419 * Write the given register set to the given zs channel in the proper order.
1420 * The channel must not be transmitting at the time. The receiver will
1421 * be disabled for the time it takes to write all the registers.
1422 */
1423 static void
1424 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1425 {
1426 int i;
1427
1428 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1429 ZS_DELAY();
1430
1431 #if 1 /* XXX - Is this really a good idea? -gwr */
1432 i = zc->zc_data; /* drain fifo */
1433 ZS_DELAY();
1434 i = zc->zc_data;
1435 ZS_DELAY();
1436 i = zc->zc_data;
1437 ZS_DELAY();
1438 #endif
1439
1440 /* baud clock divisor, stop bits, parity */
1441 ZS_WRITE(zc, 4, reg[4]);
1442
1443 /* misc. TX/RX control bits */
1444 ZS_WRITE(zc, 10, reg[10]);
1445
1446 /* char size, enable (RX/TX) */
1447 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1448 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1449
1450 /* interrupt enables: TX, TX, STATUS */
1451 ZS_WRITE(zc, 1, reg[1]);
1452
1453 /* interrupt vector */
1454 ZS_WRITE(zc, 2, reg[2]);
1455
1456 /* master interrupt control */
1457 ZS_WRITE(zc, 9, reg[9]);
1458
1459 /* clock mode control */
1460 ZS_WRITE(zc, 11, reg[11]);
1461
1462 /* baud rate (lo/hi) */
1463 ZS_WRITE(zc, 12, reg[12]);
1464 ZS_WRITE(zc, 13, reg[13]);
1465
1466 /* Misc. control bits */
1467 ZS_WRITE(zc, 14, reg[14]);
1468
1469 /* which lines cause status interrupts */
1470 ZS_WRITE(zc, 15, reg[15]);
1471
1472 /* char size, enable (RX/TX)*/
1473 ZS_WRITE(zc, 3, reg[3]);
1474 ZS_WRITE(zc, 5, reg[5]);
1475 }
1476
1477 static u_char
1478 zs_read(zc, reg)
1479 volatile struct zschan *zc;
1480 u_char reg;
1481 {
1482 u_char val;
1483
1484 zc->zc_csr = reg;
1485 ZS_DELAY();
1486 val = zc->zc_csr;
1487 ZS_DELAY();
1488 return val;
1489 }
1490
1491 static u_char
1492 zs_write(zc, reg, val)
1493 volatile struct zschan *zc;
1494 u_char reg, val;
1495 {
1496 zc->zc_csr = reg;
1497 ZS_DELAY();
1498 zc->zc_csr = val;
1499 ZS_DELAY();
1500 return val;
1501 }
1502
1503 #ifdef KGDB
1504 /*
1505 * Get a character from the given kgdb channel. Called at splhigh().
1506 * XXX - Add delays, or combine with zscngetc()...
1507 */
1508 static int
1509 zs_kgdb_getc(void *arg)
1510 {
1511 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1512
1513 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1514 continue;
1515 return (zc->zc_data);
1516 }
1517
1518 /*
1519 * Put a character to the given kgdb channel. Called at splhigh().
1520 */
1521 static void
1522 zs_kgdb_putc(void *arg, int c)
1523 {
1524 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1525
1526 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1527 continue;
1528 zc->zc_data = c;
1529 }
1530
1531 /*
1532 * Set up for kgdb; called at boot time before configuration.
1533 * KGDB interrupts will be enabled later when zs0 is configured.
1534 */
1535 void
1536 zs_kgdb_init()
1537 {
1538 volatile struct zsdevice *addr;
1539 volatile struct zschan *zc;
1540 int unit, zs;
1541
1542 if (major(kgdb_dev) != ZSMAJOR)
1543 return;
1544 unit = minor(kgdb_dev);
1545 /*
1546 * Unit must be 0 or 1 (zs0).
1547 */
1548 if ((unsigned)unit >= ZS_KBD) {
1549 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1550 return;
1551 }
1552 zs = unit >> 1;
1553 unit &= 1;
1554
1555 if (zsaddr[0] == NULL)
1556 panic("kbdb_attach: zs0 not yet mapped");
1557 addr = zsaddr[0];
1558
1559 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1560 zs_kgdb_savedspeed = zs_getspeed(zc);
1561 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1562 zs, unit + 'a', kgdb_rate);
1563 zs_reset(zc, 1, kgdb_rate);
1564 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1565 }
1566 #endif /* KGDB */
1567