zs.c revision 1.25 1 /* $NetBSD: zs.c,v 1.25 1995/06/13 22:11:33 gwr Exp $ */
2
3 /*
4 * Copyright (c) 1994 Gordon W. Ross
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)zs.c 8.1 (Berkeley) 7/19/93
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/autoconf.h>
71 #include <machine/cpu.h>
72 #include <machine/isr.h>
73 #include <machine/obio.h>
74 #include <machine/mon.h>
75 #include <machine/eeprom.h>
76 #include <machine/kbd.h>
77
78 #include <dev/cons.h>
79
80 #include <dev/ic/z8530.h>
81 #include <sun3/dev/zsvar.h>
82
83 /*
84 * The default parity REALLY needs to be the same as the PROM uses,
85 * or you can not see messages done with printf during boot-up...
86 */
87 #undef TTYDEF_CFLAG
88 #define TTYDEF_CFLAG (CREAD | CS8 | HUPCL)
89
90 #ifdef KGDB
91 #include <machine/remote-sl.h>
92 #endif
93
94 #define ZSMAJOR 12 /* XXX */
95
96 #define ZS_KBD 2 /* XXX */
97 #define ZS_MOUSE 3 /* XXX */
98
99 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
100 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
101
102 /*
103 * Define interrupt levels.
104 */
105 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
106 #define ZSSOFT_PRI 3 /* Want tty pri (4) but this is OK. */
107
108 /*
109 * Software state per found chip. This would be called `zs_softc',
110 * but the previous driver had a rather different zs_softc....
111 */
112 struct zsinfo {
113 struct device zi_dev; /* base device */
114 volatile struct zsdevice *zi_zs;/* chip registers */
115 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
116 };
117
118 static struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
119
120 /* Definition of the driver for autoconfig. */
121 static int zs_match(struct device *, void *, void *);
122 static void zs_attach(struct device *, struct device *, void *);
123
124 struct cfdriver zscd = {
125 NULL, "zs", zs_match, zs_attach,
126 DV_TTY, sizeof(struct zsinfo) };
127
128 /* Interrupt handlers. */
129 static int zshard(int);
130 static int zssoft(int);
131
132 struct zs_chanstate *zslist;
133
134 /* Routines called from other code. */
135 int zsopen(dev_t, int, int, struct proc *);
136 int zsclose(dev_t, int, int, struct proc *);
137 static void zsiopen(struct tty *);
138 static void zsiclose(struct tty *);
139 static void zsstart(struct tty *);
140 void zsstop(struct tty *, int);
141 static int zsparam(struct tty *, struct termios *);
142
143 /* Routines purely local to this driver. */
144 static int zs_getspeed(volatile struct zschan *);
145 static void zs_reset(volatile struct zschan *, int, int);
146 static void zs_modem(struct zs_chanstate *, int);
147 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
148 static u_char zs_read(volatile struct zschan *, u_char);
149 static u_char zs_write(volatile struct zschan *, u_char, u_char);
150
151 /* Console stuff. */
152 static volatile struct zschan *zs_conschan;
153
154 #ifdef KGDB
155 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
156 extern int kgdb_dev, kgdb_rate;
157 static int zs_kgdb_savedspeed;
158 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
159 #endif
160
161 /*
162 * Console keyboard L1-A processing is done in the hardware interrupt code,
163 * so we need to duplicate some of the console keyboard decode state. (We
164 * must not use the regular state as the hardware code keeps ahead of the
165 * software state: the software state tracks the most recent ring input but
166 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
167 */
168 static struct conk_state { /* console keyboard state */
169 char conk_id; /* true => ID coming up (console only) */
170 char conk_l1; /* true => L1 pressed (console only) */
171 } zsconk_state;
172
173 int zshardscope;
174 int zsshortcuts; /* number of "shortcut" software interrupts */
175
176 int zssoftpending; /* We have done isr_soft_request() */
177
178 static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
179
180 /* Default OBIO addresses. */
181 static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS };
182
183 static u_char zs_init_reg[16] = {
184 0, /* 0: CMD (reset, etc.) */
185 ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE,
186 0x18 + ZSHARD_PRI, /* IVECT */
187 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
188 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
189 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
190 0, /* 6: TXSYNC/SYNCLO */
191 0, /* 7: RXSYNC/SYNCHI */
192 0, /* 8: alias for data port */
193 0, /* 9: ZSWR9_MASTER_IE (later) */
194 0, /*10: Misc. TX/RX control bits */
195 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
196 0, /*12: BAUDLO (later) */
197 0, /*13: BAUDHI (later) */
198 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
199 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
200 };
201
202 /* Find PROM mappings (for console support). */
203 void zs_init()
204 {
205 int i;
206
207 for (i = 0; i < NZS; i++) {
208 zsaddr[i] = (struct zsdevice *)
209 obio_find_mapping(zs_physaddr[i], OBIO_ZS_SIZE);
210 }
211 }
212
213 /*
214 * Match slave number to zs unit number, so that misconfiguration will
215 * not set up the keyboard as ttya, etc.
216 */
217 static int
218 zs_match(struct device *parent, void *vcf, void *args)
219 {
220 struct cfdata *cf = vcf;
221 struct confargs *ca = args;
222 int unit, x;
223 void *zsva;
224
225 unit = cf->cf_unit;
226 if (unit < 0 || unit >= NZS)
227 return (0);
228
229 zsva = zsaddr[unit];
230 if (zsva == NULL)
231 return (0);
232
233 if (ca->ca_paddr == -1)
234 ca->ca_paddr = zs_physaddr[unit];
235 if (ca->ca_intpri == -1)
236 ca->ca_intpri = ZSHARD_PRI;
237
238 /* This returns -1 on a fault (bus error). */
239 x = peek_byte(zsva);
240 return (x != -1);
241 }
242
243 /*
244 * Attach a found zs.
245 *
246 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
247 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
248 */
249 static void
250 zs_attach(struct device *parent, struct device *self, void *args)
251 {
252 struct cfdata *cf;
253 struct confargs *ca;
254 register int zs, unit;
255 register struct zsinfo *zi;
256 register struct zs_chanstate *cs;
257 register volatile struct zsdevice *addr;
258 register struct tty *tp, *ctp;
259 int softcar;
260 static int didintr;
261
262 cf = self->dv_cfdata;
263 zs = self->dv_unit;
264 ca = args;
265
266 printf(" softpri %d\n", ZSSOFT_PRI);
267
268 if (zsaddr[zs] == NULL)
269 panic("zs_attach: zs%d not mapped\n", zs);
270 addr = zsaddr[zs];
271
272 if (!didintr) {
273 didintr = 1;
274 isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
275 isr_add_autovect(zshard, NULL, ZSHARD_PRI);
276 }
277
278 zi = (struct zsinfo *)self;
279 zi->zi_zs = addr;
280 unit = zs * 2;
281 cs = zi->zi_cs;
282 softcar = cf->cf_flags;
283
284 if(!zs_tty[unit])
285 zs_tty[unit] = ttymalloc();
286 if(!zs_tty[unit+1])
287 zs_tty[unit+1] = ttymalloc();
288
289 /* link into interrupt list with order (A,B) (B=A+1) */
290 cs[0].cs_next = &cs[1];
291 cs[1].cs_next = zslist;
292 zslist = cs;
293
294 tp = zs_tty[unit];
295 cs->cs_unit = unit;
296 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
297 cs->cs_speed = zs_getspeed(cs->cs_zc);
298 #ifdef DEBUG
299 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
300 #endif
301 cs->cs_softcar = softcar & 1;
302 cs->cs_ttyp = tp;
303 tp->t_dev = makedev(ZSMAJOR, unit);
304 tp->t_oproc = zsstart;
305 tp->t_param = zsparam;
306 if (cs->cs_zc == zs_conschan) {
307 /* This unit is the console. */
308 cs->cs_consio = 1;
309 cs->cs_brkabort = 1;
310 cs->cs_softcar = 1;
311 /* Call zsparam so interrupts get enabled. */
312 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
313 tp->t_cflag = TTYDEF_CFLAG;
314 (void) zsparam(tp, &tp->t_termios);
315 } else {
316 /* Can not run kgdb on the console? */
317 #ifdef KGDB
318 zs_checkkgdb(unit, cs, tp);
319 #endif
320 }
321 #if 0
322 /* XXX - Drop carrier here? -gwr */
323 zs_modem(cs, cs->cs_softcar ? 1 : 0);
324 #endif
325
326 if (unit == ZS_KBD) {
327 /*
328 * Keyboard: tell /dev/kbd driver how to talk to us.
329 */
330 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
331 tp->t_cflag = CS8;
332 /* zsparam called by zsiopen */
333 kbd_serial(tp, zsiopen, zsiclose);
334 cs->cs_conk = 1; /* do L1-A processing */
335 }
336 unit++;
337 cs++;
338 tp = zs_tty[unit];
339
340 cs->cs_unit = unit;
341 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
342 cs->cs_speed = zs_getspeed(cs->cs_zc);
343 #ifdef DEBUG
344 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
345 #endif
346 cs->cs_softcar = softcar & 2;
347 cs->cs_ttyp = tp;
348 tp->t_dev = makedev(ZSMAJOR, unit);
349 tp->t_oproc = zsstart;
350 tp->t_param = zsparam;
351 if (cs->cs_zc == zs_conschan) {
352 /* This unit is the console. */
353 cs->cs_consio = 1;
354 cs->cs_brkabort = 1;
355 cs->cs_softcar = 1;
356 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
357 tp->t_cflag = TTYDEF_CFLAG;
358 (void) zsparam(tp, &tp->t_termios);
359 } else {
360 /* Can not run kgdb on the console? */
361 #ifdef KGDB
362 zs_checkkgdb(unit, cs, tp);
363 #endif
364 }
365 #if 0
366 /* XXX - Drop carrier here? -gwr */
367 zs_modem(cs, cs->cs_softcar ? 1 : 0);
368 #endif
369
370 if (unit == ZS_MOUSE) {
371 /*
372 * Mouse: tell /dev/mouse driver how to talk to us.
373 */
374 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
375 tp->t_cflag = CS8;
376 /* zsparam called by zsiopen */
377 ms_serial(tp, zsiopen, zsiclose);
378 }
379 }
380
381 /*
382 * XXX - Temporary hack...
383 */
384 struct tty *
385 zstty(dev)
386 dev_t dev;
387 {
388 int unit = minor(dev);
389
390 return (zs_tty[unit]);
391 }
392
393 /*
394 * Put a channel in a known state. Interrupts may be left disabled
395 * or enabled, as desired. (Used only by kgdb)
396 */
397 static void
398 zs_reset(zc, inten, speed)
399 volatile struct zschan *zc;
400 int inten, speed;
401 {
402 int tconst;
403 u_char reg[16];
404
405 bcopy(zs_init_reg, reg, 16);
406 if (inten)
407 reg[9] |= ZSWR9_MASTER_IE;
408
409 tconst = BPS_TO_TCONST(PCLK / 16, speed);
410 reg[12] = tconst;
411 reg[13] = tconst >> 8;
412 zs_loadchannelregs(zc, reg);
413 }
414
415 /*
416 * Console support
417 */
418
419 /*
420 * Used by the kd driver to find out if it can work.
421 */
422 int
423 zscnprobe_kbd()
424 {
425 if (zsaddr[1] == NULL) {
426 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
427 return CN_DEAD;
428 }
429 return CN_INTERNAL;
430 }
431
432 /*
433 * This is the console probe routine for ttya and ttyb.
434 */
435 static int
436 zscnprobe(struct consdev *cn, int unit)
437 {
438 int maj;
439
440 if (zsaddr[0] == NULL) {
441 mon_printf("zscnprobe: zs0 not mapped\n");
442 cn->cn_pri = CN_DEAD;
443 return 0;
444 }
445 /* XXX - Also try to make sure it exists? */
446
447 /* locate the major number */
448 for (maj = 0; maj < nchrdev; maj++)
449 if (cdevsw[maj].d_open == (void*)zsopen)
450 break;
451
452 cn->cn_dev = makedev(maj, unit);
453
454 /* Use EEPROM console setting to decide "remote" console. */
455 /* Note: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
456 if (ee_console == (EE_CONS_TTYA + unit)) {
457 cn->cn_pri = CN_REMOTE;
458 } else {
459 cn->cn_pri = CN_NORMAL;
460 }
461 return (0);
462 }
463
464 /* This is the constab entry for TTYA. */
465 int
466 zscnprobe_a(struct consdev *cn)
467 {
468 return (zscnprobe(cn, 0));
469 }
470
471 /* This is the constab entry for TTYB. */
472 int
473 zscnprobe_b(struct consdev *cn)
474 {
475 return (zscnprobe(cn, 1));
476 }
477
478 /* Called by kdcninit() or below. */
479 void
480 zs_set_conschan(unit, ab)
481 int unit, ab;
482 {
483 volatile struct zsdevice *addr;
484
485 addr = zsaddr[unit];
486 zs_conschan = ((ab == 0) ?
487 &addr->zs_chan[ZS_CHAN_A] :
488 &addr->zs_chan[ZS_CHAN_B] );
489 }
490
491 /* Attach as console. Also set zs_conschan */
492 int
493 zscninit(struct consdev *cn)
494 {
495 int ab = minor(cn->cn_dev) & 1;
496 zs_set_conschan(0, ab);
497 mon_printf("console on zs0 (tty%c)\n", 'a' + ab);
498 }
499
500
501 /*
502 * Polled console input putchar.
503 */
504 int
505 zscngetc(dev)
506 dev_t dev;
507 {
508 register volatile struct zschan *zc = zs_conschan;
509 register int s, c, rr0;
510
511 if (zc == NULL)
512 return (0);
513
514 s = splhigh();
515
516 /* Wait for a character to arrive. */
517 do {
518 rr0 = zc->zc_csr;
519 ZS_DELAY();
520 } while ((rr0 & ZSRR0_RX_READY) == 0);
521
522 c = zc->zc_data;
523 ZS_DELAY();
524
525 splx(s);
526
527 /*
528 * This is used by the kd driver to read scan codes,
529 * so don't translate '\r' ==> '\n' here...
530 */
531 return (c);
532 }
533
534 /*
535 * Polled console output putchar.
536 */
537 int
538 zscnputc(dev, c)
539 dev_t dev;
540 int c;
541 {
542 register volatile struct zschan *zc = zs_conschan;
543 register int s, rr0;
544
545 if (zc == NULL) {
546 s = splhigh();
547 mon_putchar(c);
548 splx(s);
549 return (0);
550 }
551 s = splhigh();
552
553 /* Wait for transmitter to become ready. */
554 do {
555 rr0 = zc->zc_csr;
556 ZS_DELAY();
557 } while ((rr0 & ZSRR0_TX_READY) == 0);
558
559 zc->zc_data = c;
560 ZS_DELAY();
561 splx(s);
562 }
563
564 #ifdef KGDB
565 /*
566 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
567 * Pick up the current speed and character size and restore the original
568 * speed.
569 */
570 static void
571 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
572 {
573
574 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
575 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
576 tp->t_cflag = CS8;
577 cs->cs_kgdb = 1;
578 cs->cs_speed = zs_kgdb_savedspeed;
579 (void) zsparam(tp, &tp->t_termios);
580 }
581 }
582 #endif
583
584 /*
585 * Compute the current baud rate given a ZSCC channel.
586 */
587 static int
588 zs_getspeed(zc)
589 register volatile struct zschan *zc;
590 {
591 register int tconst;
592
593 tconst = ZS_READ(zc, 12);
594 tconst |= ZS_READ(zc, 13) << 8;
595 return (TCONST_TO_BPS(PCLK / 16, tconst));
596 }
597
598
599 /*
600 * Do an internal open.
601 */
602 static void
603 zsiopen(struct tty *tp)
604 {
605
606 (void) zsparam(tp, &tp->t_termios);
607 ttsetwater(tp);
608 tp->t_state = TS_ISOPEN | TS_CARR_ON;
609 }
610
611 /*
612 * Do an internal close. Eventually we should shut off the chip when both
613 * ports on it are closed.
614 */
615 static void
616 zsiclose(struct tty *tp)
617 {
618
619 ttylclose(tp, 0); /* ??? */
620 ttyclose(tp); /* ??? */
621 tp->t_state = 0;
622 }
623
624
625 /*
626 * Open a zs serial port. This interface may not be used to open
627 * the keyboard and mouse ports. (XXX)
628 */
629 int
630 zsopen(dev_t dev, int flags, int mode, struct proc *p)
631 {
632 register struct tty *tp;
633 register struct zs_chanstate *cs;
634 struct zsinfo *zi;
635 int unit = minor(dev), zs = unit >> 1, error, s;
636
637 #ifdef DEBUG
638 mon_printf("zs_open\n");
639 #endif
640 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
641 unit == ZS_KBD || unit == ZS_MOUSE)
642 return (ENXIO);
643 cs = &zi->zi_cs[unit & 1];
644 tp = cs->cs_ttyp;
645 s = spltty();
646 if ((tp->t_state & TS_ISOPEN) == 0) {
647 ttychars(tp);
648 tp->t_iflag = TTYDEF_IFLAG;
649 tp->t_oflag = TTYDEF_OFLAG;
650 tp->t_cflag = TTYDEF_CFLAG;
651 tp->t_lflag = TTYDEF_LFLAG;
652 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
653 (void) zsparam(tp, &tp->t_termios);
654 ttsetwater(tp);
655 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
656 splx(s);
657 return (EBUSY);
658 }
659 error = 0;
660 #ifdef DEBUG
661 mon_printf("wait for carrier...\n");
662 #endif
663 for (;;) {
664 register int rr0;
665
666 /* loop, turning on the device, until carrier present */
667 zs_modem(cs, 1);
668 /* May never get status intr if carrier already on. -gwr */
669 rr0 = cs->cs_zc->zc_csr;
670 ZS_DELAY();
671 if (rr0 & ZSRR0_DCD)
672 tp->t_state |= TS_CARR_ON;
673 if (cs->cs_softcar)
674 tp->t_state |= TS_CARR_ON;
675 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
676 tp->t_state & TS_CARR_ON)
677 break;
678 tp->t_state |= TS_WOPEN;
679 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
680 ttopen, 0))
681 break;
682 }
683 #ifdef DEBUG
684 mon_printf("...carrier %s\n",
685 (tp->t_state & TS_CARR_ON) ? "on" : "off");
686 #endif
687 splx(s);
688 if (error == 0)
689 error = linesw[tp->t_line].l_open(dev, tp);
690 if (error)
691 zs_modem(cs, 0);
692 return (error);
693 }
694
695 /*
696 * Close a zs serial port.
697 */
698 int
699 zsclose(dev_t dev, int flags, int mode, struct proc *p)
700 {
701 register struct zs_chanstate *cs;
702 register struct tty *tp;
703 struct zsinfo *zi;
704 int unit = minor(dev), s;
705
706 #ifdef DEBUG
707 mon_printf("zs_close\n");
708 #endif
709 zi = zscd.cd_devs[unit >> 1];
710 cs = &zi->zi_cs[unit & 1];
711 tp = cs->cs_ttyp;
712 linesw[tp->t_line].l_close(tp, flags);
713 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
714 (tp->t_state & TS_ISOPEN) == 0) {
715 zs_modem(cs, 0);
716 /* hold low for 1 second */
717 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
718 }
719 if (cs->cs_creg[5] & ZSWR5_BREAK)
720 {
721 s = splzs();
722 cs->cs_preg[5] &= ~ZSWR5_BREAK;
723 cs->cs_creg[5] &= ~ZSWR5_BREAK;
724 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
725 splx(s);
726 }
727 ttyclose(tp);
728 #ifdef KGDB
729 /* Reset the speed if we're doing kgdb on this port */
730 if (cs->cs_kgdb) {
731 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
732 (void) zsparam(tp, &tp->t_termios);
733 }
734 #endif
735 return (0);
736 }
737
738 /*
739 * Read/write zs serial port.
740 */
741 int
742 zsread(dev_t dev, struct uio *uio, int flags)
743 {
744 register struct tty *tp = zs_tty[minor(dev)];
745
746 return (linesw[tp->t_line].l_read(tp, uio, flags));
747 }
748
749 int
750 zswrite(dev_t dev, struct uio *uio, int flags)
751 {
752 register struct tty *tp = zs_tty[minor(dev)];
753
754 return (linesw[tp->t_line].l_write(tp, uio, flags));
755 }
756
757 /*
758 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
759 * channels are kept in (A,B) pairs.
760 *
761 * Do just a little, then get out; set a software interrupt if more
762 * work is needed.
763 *
764 * We deliberately ignore the vectoring Zilog gives us, and match up
765 * only the number of `reset interrupt under service' operations, not
766 * the order.
767 */
768 /* ARGSUSED */
769 int
770 zshard(int intrarg)
771 {
772 register struct zs_chanstate *a;
773 #define b (a + 1)
774 register volatile struct zschan *zc;
775 register int rr3, intflags = 0, v, i;
776 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
777 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
778 static int zssint(struct zs_chanstate *, volatile struct zschan *);
779
780 for (a = zslist; a != NULL; a = b->cs_next) {
781 rr3 = ZS_READ(a->cs_zc, 3);
782
783 /* XXX - This should loop to empty the on-chip fifo. */
784 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
785 intflags |= 2;
786 zc = a->cs_zc;
787 i = a->cs_rbput;
788 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
789 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
790 intflags |= 1;
791 }
792 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
793 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
794 intflags |= 1;
795 }
796 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
797 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
798 intflags |= 1;
799 }
800 a->cs_rbput = i;
801 }
802
803 /* XXX - This should loop to empty the on-chip fifo. */
804 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
805 intflags |= 2;
806 zc = b->cs_zc;
807 i = b->cs_rbput;
808 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
809 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
810 intflags |= 1;
811 }
812 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
813 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
814 intflags |= 1;
815 }
816 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
817 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
818 intflags |= 1;
819 }
820 b->cs_rbput = i;
821 }
822 }
823 #undef b
824 if (intflags & 1) {
825 if (zssoftpending == 0) {
826 /* We are at splzs here, so no need to lock. */
827 zssoftpending = ZSSOFT_PRI;
828 isr_soft_request(ZSSOFT_PRI);
829 }
830 }
831 return (intflags & 2);
832 }
833
834 static int
835 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
836 {
837 register int c;
838
839 c = zc->zc_data;
840 ZS_DELAY();
841
842 if (cs->cs_conk) {
843 register struct conk_state *conk = &zsconk_state;
844
845 /*
846 * Check here for console abort function, so that we
847 * can abort even when interrupts are locking up the
848 * machine.
849 */
850 if (c == KBD_RESET) {
851 conk->conk_id = 1; /* ignore next byte */
852 conk->conk_l1 = 0;
853 } else if (conk->conk_id)
854 conk->conk_id = 0; /* stop ignoring bytes */
855 else if (c == KBD_L1)
856 conk->conk_l1 = 1; /* L1 went down */
857 else if (c == (KBD_L1|KBD_UP))
858 conk->conk_l1 = 0; /* L1 went up */
859 else if (c == KBD_A && conk->conk_l1) {
860 zsabort();
861 /* Debugger done. Send L1-up in case X is running. */
862 conk->conk_l1 = 0;
863 c = (KBD_L1|KBD_UP);
864 }
865 }
866 #ifdef KGDB
867 if (c == FRAME_START && cs->cs_kgdb &&
868 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
869 zskgdb(cs->cs_unit);
870 c = 0;
871 goto clearit;
872 }
873 #endif
874 /* compose receive character and status */
875 c <<= 8;
876 c |= ZS_READ(zc, 1);
877 c = ZRING_MAKE(ZRING_RINT, c);
878
879 clearit:
880 /* clear receive error & interrupt condition */
881 zc->zc_csr = ZSWR0_RESET_ERRORS;
882 ZS_DELAY();
883 zc->zc_csr = ZSWR0_CLR_INTR;
884 ZS_DELAY();
885 return (c);
886 }
887
888 static int
889 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
890 {
891 register int i = cs->cs_tbc;
892
893 if (i == 0) {
894 zc->zc_csr = ZSWR0_RESET_TXINT;
895 ZS_DELAY();
896 zc->zc_csr = ZSWR0_CLR_INTR;
897 ZS_DELAY();
898 return (ZRING_MAKE(ZRING_XINT, 0));
899 }
900 cs->cs_tbc = i - 1;
901 zc->zc_data = *cs->cs_tba++;
902 ZS_DELAY();
903 zc->zc_csr = ZSWR0_CLR_INTR;
904 ZS_DELAY();
905 return (0);
906 }
907
908 static int
909 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
910 {
911 register int rr0;
912
913 rr0 = zc->zc_csr;
914 ZS_DELAY();
915 zc->zc_csr = ZSWR0_RESET_STATUS;
916 ZS_DELAY();
917 zc->zc_csr = ZSWR0_CLR_INTR;
918 ZS_DELAY();
919 /*
920 * The chip's hardware flow control is, as noted in zsreg.h,
921 * busted---if the DCD line goes low the chip shuts off the
922 * receiver (!). If we want hardware CTS flow control but do
923 * not have it, and carrier is now on, turn HFC on; if we have
924 * HFC now but carrier has gone low, turn it off.
925 */
926 if (rr0 & ZSRR0_DCD) {
927 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
928 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
929 cs->cs_creg[3] |= ZSWR3_HFC;
930 ZS_WRITE(zc, 3, cs->cs_creg[3]);
931 }
932 } else {
933 if (cs->cs_creg[3] & ZSWR3_HFC) {
934 cs->cs_creg[3] &= ~ZSWR3_HFC;
935 ZS_WRITE(zc, 3, cs->cs_creg[3]);
936 }
937 }
938 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
939 /* Wait for end of break to avoid PROM abort. */
940 do {
941 rr0 = zc->zc_csr;
942 ZS_DELAY();
943 } while (rr0 & ZSRR0_BREAK);
944 zsabort();
945 return (0);
946 }
947 return (ZRING_MAKE(ZRING_SINT, rr0));
948 }
949
950 zsabort()
951 {
952 #ifdef DDB
953 Debugger();
954 #else
955 printf("stopping on keyboard abort\n");
956 sun3_rom_abort();
957 #endif
958 }
959
960 #ifdef KGDB
961 /*
962 * KGDB framing character received: enter kernel debugger. This probably
963 * should time out after a few seconds to avoid hanging on spurious input.
964 */
965 zskgdb(int unit)
966 {
967
968 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
969 kgdb_connect(1);
970 }
971 #endif
972
973 /*
974 * Print out a ring or fifo overrun error message.
975 */
976 static void
977 zsoverrun(int unit, long *ptime, char *what)
978 {
979
980 if (*ptime != time.tv_sec) {
981 *ptime = time.tv_sec;
982 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
983 (unit & 1) + 'a', what);
984 }
985 }
986
987 /*
988 * ZS software interrupt. Scan all channels for deferred interrupts.
989 */
990 int
991 zssoft(int arg)
992 {
993 register struct zs_chanstate *cs;
994 register volatile struct zschan *zc;
995 register struct linesw *line;
996 register struct tty *tp;
997 register int get, n, c, cc, unit, s;
998
999 /* This is not the only ISR on this IPL. */
1000 if (zssoftpending == 0)
1001 return (0);
1002
1003 /*
1004 * The soft intr. bit will be set by zshard only if
1005 * the variable zssoftpending is zero. The order of
1006 * these next two statements prevents our clearing
1007 * the soft intr bit just after zshard has set it.
1008 */
1009 isr_soft_clear(ZSSOFT_PRI);
1010 zssoftpending = 0; /* Now zshard may set it again. */
1011
1012 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1013 get = cs->cs_rbget;
1014 again:
1015 n = cs->cs_rbput; /* atomic */
1016 if (get == n) /* nothing more on this line */
1017 continue;
1018 unit = cs->cs_unit; /* set up to handle interrupts */
1019 zc = cs->cs_zc;
1020 tp = cs->cs_ttyp;
1021 line = &linesw[tp->t_line];
1022 /*
1023 * Compute the number of interrupts in the receive ring.
1024 * If the count is overlarge, we lost some events, and
1025 * must advance to the first valid one. It may get
1026 * overwritten if more data are arriving, but this is
1027 * too expensive to check and gains nothing (we already
1028 * lost out; all we can do at this point is trade one
1029 * kind of loss for another).
1030 */
1031 n -= get;
1032 if (n > ZLRB_RING_SIZE) {
1033 zsoverrun(unit, &cs->cs_rotime, "ring");
1034 get += n - ZLRB_RING_SIZE;
1035 n = ZLRB_RING_SIZE;
1036 }
1037 while (--n >= 0) {
1038 /* race to keep ahead of incoming interrupts */
1039 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
1040 switch (ZRING_TYPE(c)) {
1041
1042 case ZRING_RINT:
1043 c = ZRING_VALUE(c);
1044 if (c & ZSRR1_DO)
1045 zsoverrun(unit, &cs->cs_fotime, "fifo");
1046 cc = c >> 8;
1047 if (c & ZSRR1_FE)
1048 cc |= TTY_FE;
1049 if (c & ZSRR1_PE)
1050 cc |= TTY_PE;
1051 /*
1052 * this should be done through
1053 * bstreams XXX gag choke
1054 */
1055 if (unit == ZS_KBD)
1056 kbd_rint(cc);
1057 else if (unit == ZS_MOUSE)
1058 ms_rint(cc);
1059 else
1060 line->l_rint(cc, tp);
1061 break;
1062
1063 case ZRING_XINT:
1064 /*
1065 * Transmit done: change registers and resume,
1066 * or clear BUSY.
1067 */
1068 if (cs->cs_heldchange) {
1069 s = splzs();
1070 c = zc->zc_csr;
1071 ZS_DELAY();
1072 if ((c & ZSRR0_DCD) == 0)
1073 cs->cs_preg[3] &= ~ZSWR3_HFC;
1074 bcopy((caddr_t)cs->cs_preg,
1075 (caddr_t)cs->cs_creg, 16);
1076 zs_loadchannelregs(zc, cs->cs_creg);
1077 splx(s);
1078 cs->cs_heldchange = 0;
1079 if (cs->cs_heldtbc &&
1080 (tp->t_state & TS_TTSTOP) == 0) {
1081 cs->cs_tbc = cs->cs_heldtbc - 1;
1082 zc->zc_data = *cs->cs_tba++;
1083 ZS_DELAY();
1084 goto again;
1085 }
1086 }
1087 tp->t_state &= ~TS_BUSY;
1088 if (tp->t_state & TS_FLUSH)
1089 tp->t_state &= ~TS_FLUSH;
1090 else
1091 ndflush(&tp->t_outq, cs->cs_tba -
1092 (caddr_t) tp->t_outq.c_cf);
1093 line->l_start(tp);
1094 break;
1095
1096 case ZRING_SINT:
1097 /*
1098 * Status line change. HFC bit is run in
1099 * hardware interrupt, to avoid locking
1100 * at splzs here.
1101 */
1102 c = ZRING_VALUE(c);
1103 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1104 cc = (c & ZSRR0_DCD) != 0;
1105 if (line->l_modem(tp, cc) == 0)
1106 zs_modem(cs, cc);
1107 }
1108 cs->cs_rr0 = c;
1109 break;
1110
1111 default:
1112 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1113 unit >> 1, (unit & 1) + 'a', c);
1114 break;
1115 }
1116 }
1117 cs->cs_rbget = get;
1118 goto again;
1119 }
1120 return (1);
1121 }
1122
1123 int
1124 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1125 {
1126 int unit = minor(dev);
1127 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1128 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1129 register struct tty *tp = cs->cs_ttyp;
1130 register int error, s;
1131
1132 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1133 if (error >= 0)
1134 return (error);
1135 error = ttioctl(tp, cmd, data, flag, p);
1136 if (error >= 0)
1137 return (error);
1138
1139 switch (cmd) {
1140
1141 case TIOCSBRK:
1142 s = splzs();
1143 cs->cs_preg[5] |= ZSWR5_BREAK;
1144 cs->cs_creg[5] |= ZSWR5_BREAK;
1145 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1146 splx(s);
1147 break;
1148
1149 case TIOCCBRK:
1150 s = splzs();
1151 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1152 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1153 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1154 splx(s);
1155 break;
1156
1157 case TIOCGFLAGS: {
1158 int bits = 0;
1159
1160 if (cs->cs_softcar)
1161 bits |= TIOCFLAG_SOFTCAR;
1162 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1163 bits |= TIOCFLAG_CLOCAL;
1164 if (cs->cs_creg[3] & ZSWR3_HFC)
1165 bits |= TIOCFLAG_CRTSCTS;
1166 *(int *)data = bits;
1167 break;
1168 }
1169
1170 case TIOCSFLAGS: {
1171 int userbits, driverbits = 0;
1172
1173 error = suser(p->p_ucred, &p->p_acflag);
1174 if (error != 0)
1175 return (EPERM);
1176
1177 userbits = *(int *)data;
1178
1179 /*
1180 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1181 * defaulting to software flow control.
1182 */
1183 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1184 return(EINVAL);
1185 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1186 return(ENXIO);
1187
1188 s = splzs();
1189 if ((userbits & TIOCFLAG_SOFTCAR) ||
1190 (cs->cs_zc == zs_conschan))
1191 {
1192 cs->cs_softcar = 1; /* turn on softcar */
1193 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1194 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1195 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1196 } else if (userbits & TIOCFLAG_CLOCAL) {
1197 cs->cs_softcar = 0; /* turn off softcar */
1198 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1199 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1200 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1201 tp->t_termios.c_cflag |= CLOCAL;
1202 }
1203 if (userbits & TIOCFLAG_CRTSCTS) {
1204 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1205 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1206 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1207 cs->cs_preg[3] |= ZSWR3_HFC;
1208 cs->cs_creg[3] |= ZSWR3_HFC;
1209 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1210 tp->t_termios.c_cflag |= CRTSCTS;
1211 } else {
1212 /* no mdmbuf, so we must want software flow control */
1213 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1214 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1215 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1216 cs->cs_preg[3] &= ~ZSWR3_HFC;
1217 cs->cs_creg[3] &= ~ZSWR3_HFC;
1218 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1219 tp->t_termios.c_cflag &= ~CRTSCTS;
1220 }
1221 splx(s);
1222 break;
1223 }
1224
1225 case TIOCSDTR:
1226 case TIOCCDTR:
1227 case TIOCMSET:
1228 case TIOCMBIS:
1229 case TIOCMBIC:
1230 case TIOCMGET:
1231 default:
1232 return (ENOTTY);
1233 }
1234 return (0);
1235 }
1236
1237 /*
1238 * Start or restart transmission.
1239 */
1240 static void
1241 zsstart(register struct tty *tp)
1242 {
1243 register struct zs_chanstate *cs;
1244 register int s, nch;
1245 int unit = minor(tp->t_dev);
1246 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1247
1248 cs = &zi->zi_cs[unit & 1];
1249 s = spltty();
1250
1251 /*
1252 * If currently active or delaying, no need to do anything.
1253 */
1254 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1255 goto out;
1256
1257 /*
1258 * If there are sleepers, and output has drained below low
1259 * water mark, awaken.
1260 */
1261 if (tp->t_outq.c_cc <= tp->t_lowat) {
1262 if (tp->t_state & TS_ASLEEP) {
1263 tp->t_state &= ~TS_ASLEEP;
1264 wakeup((caddr_t)&tp->t_outq);
1265 }
1266 selwakeup(&tp->t_wsel);
1267 }
1268
1269 nch = ndqb(&tp->t_outq, 0); /* XXX */
1270 if (nch) {
1271 register char *p = tp->t_outq.c_cf;
1272
1273 /* mark busy, enable tx done interrupts, & send first byte */
1274 tp->t_state |= TS_BUSY;
1275 (void) splzs();
1276 cs->cs_preg[1] |= ZSWR1_TIE;
1277 cs->cs_creg[1] |= ZSWR1_TIE;
1278 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1279 cs->cs_zc->zc_data = *p;
1280 ZS_DELAY();
1281 cs->cs_tba = p + 1;
1282 cs->cs_tbc = nch - 1;
1283 } else {
1284 /*
1285 * Nothing to send, turn off transmit done interrupts.
1286 * This is useful if something is doing polled output.
1287 */
1288 (void) splzs();
1289 cs->cs_preg[1] &= ~ZSWR1_TIE;
1290 cs->cs_creg[1] &= ~ZSWR1_TIE;
1291 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1292 }
1293 out:
1294 splx(s);
1295 }
1296
1297 /*
1298 * Stop output, e.g., for ^S or output flush.
1299 */
1300 void
1301 zsstop(register struct tty *tp, int flag)
1302 {
1303 register struct zs_chanstate *cs;
1304 register int s, unit = minor(tp->t_dev);
1305 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1306
1307 cs = &zi->zi_cs[unit & 1];
1308 s = splzs();
1309 if (tp->t_state & TS_BUSY) {
1310 /*
1311 * Device is transmitting; must stop it.
1312 */
1313 cs->cs_tbc = 0;
1314 if ((tp->t_state & TS_TTSTOP) == 0)
1315 tp->t_state |= TS_FLUSH;
1316 }
1317 splx(s);
1318 }
1319
1320 /*
1321 * Set ZS tty parameters from termios.
1322 */
1323 static int
1324 zsparam(register struct tty *tp, register struct termios *t)
1325 {
1326 int unit = minor(tp->t_dev);
1327 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1328 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1329 register int tmp, tmp5, cflag, s;
1330
1331 /*
1332 * Because PCLK is only run at 4.9 MHz, the fastest we
1333 * can go is 51200 baud (this corresponds to TC=1).
1334 * This is somewhat unfortunate as there is no real
1335 * reason we should not be able to handle higher rates.
1336 */
1337 tmp = t->c_ospeed;
1338 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1339 return (EINVAL);
1340 if (tmp == 0) {
1341 /* stty 0 => drop DTR and RTS */
1342 zs_modem(cs, 0);
1343 return (0);
1344 }
1345 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1346 if (tmp < 2)
1347 return (EINVAL);
1348
1349 cflag = t->c_cflag;
1350 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1351 tp->t_cflag = cflag;
1352
1353 /*
1354 * Block interrupts so that state will not
1355 * be altered until we are done setting it up.
1356 */
1357 s = splzs();
1358 bcopy(zs_init_reg, cs->cs_preg, 16);
1359 cs->cs_preg[12] = tmp;
1360 cs->cs_preg[13] = tmp >> 8;
1361 cs->cs_preg[9] |= ZSWR9_MASTER_IE;
1362 switch (cflag & CSIZE) {
1363 case CS5:
1364 tmp = ZSWR3_RX_5;
1365 tmp5 = ZSWR5_TX_5;
1366 break;
1367 case CS6:
1368 tmp = ZSWR3_RX_6;
1369 tmp5 = ZSWR5_TX_6;
1370 break;
1371 case CS7:
1372 tmp = ZSWR3_RX_7;
1373 tmp5 = ZSWR5_TX_7;
1374 break;
1375 case CS8:
1376 default:
1377 tmp = ZSWR3_RX_8;
1378 tmp5 = ZSWR5_TX_8;
1379 break;
1380 }
1381
1382 /*
1383 * Output hardware flow control on the chip is horrendous: if
1384 * carrier detect drops, the receiver is disabled. Hence we
1385 * can only do this when the carrier is on.
1386 */
1387 tmp |= ZSWR3_RX_ENABLE;
1388 if (cflag & CCTS_OFLOW) {
1389 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1390 tmp |= ZSWR3_HFC;
1391 ZS_DELAY();
1392 }
1393
1394 cs->cs_preg[3] = tmp;
1395 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1396
1397 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1398 if ((cflag & PARODD) == 0)
1399 tmp |= ZSWR4_EVENP;
1400 if (cflag & PARENB)
1401 tmp |= ZSWR4_PARENB;
1402 cs->cs_preg[4] = tmp;
1403
1404 /*
1405 * If nothing is being transmitted, set up new current values,
1406 * else mark them as pending.
1407 */
1408 if (cs->cs_heldchange == 0) {
1409 if (cs->cs_ttyp->t_state & TS_BUSY) {
1410 cs->cs_heldtbc = cs->cs_tbc;
1411 cs->cs_tbc = 0;
1412 cs->cs_heldchange = 1;
1413 } else {
1414 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1415 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1416 }
1417 }
1418 splx(s);
1419 return (0);
1420 }
1421
1422 /*
1423 * Raise or lower modem control (DTR/RTS) signals. If a character is
1424 * in transmission, the change is deferred.
1425 */
1426 static void
1427 zs_modem(struct zs_chanstate *cs, int onoff)
1428 {
1429 int s, bis, and;
1430
1431 if (onoff) {
1432 bis = ZSWR5_DTR | ZSWR5_RTS;
1433 and = ~0;
1434 } else {
1435 bis = 0;
1436 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1437 }
1438 s = splzs();
1439 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1440 if (cs->cs_heldchange == 0) {
1441 if (cs->cs_ttyp->t_state & TS_BUSY) {
1442 cs->cs_heldtbc = cs->cs_tbc;
1443 cs->cs_tbc = 0;
1444 cs->cs_heldchange = 1;
1445 } else {
1446 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1447 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1448 }
1449 }
1450 splx(s);
1451 }
1452
1453 /*
1454 * Write the given register set to the given zs channel in the proper order.
1455 * The channel must not be transmitting at the time. The receiver will
1456 * be disabled for the time it takes to write all the registers.
1457 */
1458 static void
1459 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1460 {
1461 int i;
1462
1463 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1464 ZS_DELAY();
1465
1466 #if 1 /* XXX - Is this really a good idea? -gwr */
1467 i = zc->zc_data; /* drain fifo */
1468 ZS_DELAY();
1469 i = zc->zc_data;
1470 ZS_DELAY();
1471 i = zc->zc_data;
1472 ZS_DELAY();
1473 #endif
1474
1475 /* baud clock divisor, stop bits, parity */
1476 ZS_WRITE(zc, 4, reg[4]);
1477
1478 /* misc. TX/RX control bits */
1479 ZS_WRITE(zc, 10, reg[10]);
1480
1481 /* char size, enable (RX/TX) */
1482 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1483 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1484
1485 /* interrupt enables: TX, TX, STATUS */
1486 ZS_WRITE(zc, 1, reg[1]);
1487
1488 /* interrupt vector */
1489 ZS_WRITE(zc, 2, reg[2]);
1490
1491 /* master interrupt control */
1492 ZS_WRITE(zc, 9, reg[9]);
1493
1494 /* clock mode control */
1495 ZS_WRITE(zc, 11, reg[11]);
1496
1497 /* baud rate (lo/hi) */
1498 ZS_WRITE(zc, 12, reg[12]);
1499 ZS_WRITE(zc, 13, reg[13]);
1500
1501 /* Misc. control bits */
1502 ZS_WRITE(zc, 14, reg[14]);
1503
1504 /* which lines cause status interrupts */
1505 ZS_WRITE(zc, 15, reg[15]);
1506
1507 /* char size, enable (RX/TX)*/
1508 ZS_WRITE(zc, 3, reg[3]);
1509 ZS_WRITE(zc, 5, reg[5]);
1510 }
1511
1512 static u_char
1513 zs_read(zc, reg)
1514 volatile struct zschan *zc;
1515 u_char reg;
1516 {
1517 u_char val;
1518
1519 zc->zc_csr = reg;
1520 ZS_DELAY();
1521 val = zc->zc_csr;
1522 ZS_DELAY();
1523 return val;
1524 }
1525
1526 static u_char
1527 zs_write(zc, reg, val)
1528 volatile struct zschan *zc;
1529 u_char reg, val;
1530 {
1531 zc->zc_csr = reg;
1532 ZS_DELAY();
1533 zc->zc_csr = val;
1534 ZS_DELAY();
1535 return val;
1536 }
1537
1538 #ifdef KGDB
1539 /*
1540 * Get a character from the given kgdb channel. Called at splhigh().
1541 * XXX - Add delays, or combine with zscngetc()...
1542 */
1543 static int
1544 zs_kgdb_getc(void *arg)
1545 {
1546 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1547 register int c, rr0;
1548
1549 do {
1550 rr0 = zc->zc_csr;
1551 ZS_DELAY();
1552 } while ((rr0 & ZSRR0_RX_READY) == 0);
1553 c = zc->zc_data;
1554 ZS_DELAY();
1555 return (c);
1556 }
1557
1558 /*
1559 * Put a character to the given kgdb channel. Called at splhigh().
1560 */
1561 static void
1562 zs_kgdb_putc(void *arg, int c)
1563 {
1564 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1565 register int c, rr0;
1566
1567 do {
1568 rr0 = zc->zc_csr;
1569 ZS_DELAY();
1570 } while ((rr0 & ZSRR0_TX_READY) == 0);
1571 zc->zc_data = c;
1572 ZS_DELAY();
1573 }
1574
1575 /*
1576 * Set up for kgdb; called at boot time before configuration.
1577 * KGDB interrupts will be enabled later when zs0 is configured.
1578 */
1579 void
1580 zs_kgdb_init()
1581 {
1582 volatile struct zsdevice *addr;
1583 volatile struct zschan *zc;
1584 int unit, zs;
1585
1586 if (major(kgdb_dev) != ZSMAJOR)
1587 return;
1588 unit = minor(kgdb_dev);
1589 /*
1590 * Unit must be 0 or 1 (zs0).
1591 */
1592 if ((unsigned)unit >= ZS_KBD) {
1593 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1594 return;
1595 }
1596 zs = unit >> 1;
1597 unit &= 1;
1598
1599 if (zsaddr[0] == NULL)
1600 panic("kbdb_attach: zs0 not yet mapped");
1601 addr = zsaddr[0];
1602
1603 zc = (unit == 0) ?
1604 &addr->zs_chan[ZS_CHAN_A] :
1605 &addr->zs_chan[ZS_CHAN_B];
1606 zs_kgdb_savedspeed = zs_getspeed(zc);
1607 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1608 zs, unit + 'a', kgdb_rate);
1609 zs_reset(zc, 1, kgdb_rate);
1610 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1611 }
1612 #endif /* KGDB */
1613