zs.c revision 1.29 1 /* $NetBSD: zs.c,v 1.29 1995/08/08 20:54:08 gwr Exp $ */
2
3 /*
4 * Copyright (c) 1994 Gordon W. Ross
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This software was developed by the Computer Systems Engineering group
9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10 * contributed to Berkeley.
11 *
12 * All advertising materials mentioning features or use of this software
13 * must display the following acknowledgement:
14 * This product includes software developed by the University of
15 * California, Lawrence Berkeley Laboratory.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 * must display the following acknowledgement:
27 * This product includes software developed by the University of
28 * California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)zs.c 8.1 (Berkeley) 7/19/93
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/autoconf.h>
71 #include <machine/cpu.h>
72 #include <machine/isr.h>
73 #include <machine/obio.h>
74 #include <machine/mon.h>
75 #include <machine/eeprom.h>
76 #include <machine/kbd.h>
77
78 #include <dev/cons.h>
79
80 #include <dev/ic/z8530reg.h>
81 #include <sun3/dev/zsvar.h>
82
83 /*
84 * The default parity REALLY needs to be the same as the PROM uses,
85 * or you can not see messages done with printf during boot-up...
86 */
87 #undef TTYDEF_CFLAG
88 #define TTYDEF_CFLAG (CREAD | CS8 | HUPCL)
89
90 #ifdef KGDB
91 #include <machine/remote-sl.h>
92 #endif
93
94 #define ZSMAJOR 12 /* XXX */
95
96 #define ZS_KBD 2 /* XXX */
97 #define ZS_MOUSE 3 /* XXX */
98
99 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
100 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
101
102 /*
103 * Define interrupt levels.
104 */
105 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
106 #define ZSSOFT_PRI 3 /* Want tty pri (4) but this is OK. */
107
108 /*
109 * Software state per found chip. This would be called `zs_softc',
110 * but the previous driver had a rather different zs_softc....
111 */
112 struct zsinfo {
113 struct device zi_dev; /* base device */
114 volatile struct zsdevice *zi_zs;/* chip registers */
115 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
116 };
117
118 static struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
119
120 /* Definition of the driver for autoconfig. */
121 static int zs_match(struct device *, void *, void *);
122 static void zs_attach(struct device *, struct device *, void *);
123
124 struct cfdriver zscd = {
125 NULL, "zs", zs_match, zs_attach,
126 DV_TTY, sizeof(struct zsinfo) };
127
128 /* Interrupt handlers. */
129 static int zshard(int);
130 static int zssoft(int);
131
132 struct zs_chanstate *zslist;
133
134 /* Routines called from other code. */
135 int zsopen(dev_t, int, int, struct proc *);
136 int zsclose(dev_t, int, int, struct proc *);
137 static void zsiopen(struct tty *);
138 static void zsiclose(struct tty *);
139 static void zsstart(struct tty *);
140 void zsstop(struct tty *, int);
141 static int zsparam(struct tty *, struct termios *);
142
143 /* Routines purely local to this driver. */
144 static int zs_getspeed(volatile struct zschan *);
145 static void zs_reset(volatile struct zschan *, int, int);
146 static void zs_modem(struct zs_chanstate *, int);
147 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
148 static u_char zs_read(volatile struct zschan *, u_char);
149 static u_char zs_write(volatile struct zschan *, u_char, u_char);
150
151 /* Console stuff. */
152 static volatile struct zschan *zs_conschan;
153
154 #ifdef KGDB
155 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
156 extern int kgdb_dev, kgdb_rate;
157 static int zs_kgdb_savedspeed;
158 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
159 #endif
160
161 /*
162 * Console keyboard L1-A processing is done in the hardware interrupt code,
163 * so we need to duplicate some of the console keyboard decode state. (We
164 * must not use the regular state as the hardware code keeps ahead of the
165 * software state: the software state tracks the most recent ring input but
166 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
167 */
168 static struct conk_state { /* console keyboard state */
169 char conk_id; /* true => ID coming up (console only) */
170 char conk_l1; /* true => L1 pressed (console only) */
171 } zsconk_state;
172
173 int zshardscope;
174 int zsshortcuts; /* number of "shortcut" software interrupts */
175
176 int zssoftpending; /* We have done isr_soft_request() */
177
178 static struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
179
180 /* Default OBIO addresses. */
181 static int zs_physaddr[NZS] = { OBIO_ZS, OBIO_KEYBD_MS };
182
183 static u_char zs_init_reg[16] = {
184 0, /* 0: CMD (reset, etc.) */
185 ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE,
186 0x18 + ZSHARD_PRI, /* IVECT */
187 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
188 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
189 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
190 0, /* 6: TXSYNC/SYNCLO */
191 0, /* 7: RXSYNC/SYNCHI */
192 0, /* 8: alias for data port */
193 0, /* 9: ZSWR9_MASTER_IE (later) */
194 0, /*10: Misc. TX/RX control bits */
195 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
196 0, /*12: BAUDLO (later) */
197 0, /*13: BAUDHI (later) */
198 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
199 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
200 };
201
202 /* Find PROM mappings (for console support). */
203 void zs_init()
204 {
205 int i;
206
207 for (i = 0; i < NZS; i++) {
208 zsaddr[i] = (struct zsdevice *)
209 obio_find_mapping(zs_physaddr[i], OBIO_ZS_SIZE);
210 }
211 }
212
213 /*
214 * Match slave number to zs unit number, so that misconfiguration will
215 * not set up the keyboard as ttya, etc.
216 */
217 static int
218 zs_match(struct device *parent, void *vcf, void *args)
219 {
220 struct cfdata *cf = vcf;
221 struct confargs *ca = args;
222 int unit, x;
223 void *zsva;
224
225 unit = cf->cf_unit;
226 if (unit < 0 || unit >= NZS)
227 return (0);
228
229 zsva = zsaddr[unit];
230 if (zsva == NULL)
231 return (0);
232
233 if (ca->ca_paddr == -1)
234 ca->ca_paddr = zs_physaddr[unit];
235 if (ca->ca_intpri == -1)
236 ca->ca_intpri = ZSHARD_PRI;
237
238 /* This returns -1 on a fault (bus error). */
239 x = peek_byte(zsva);
240 return (x != -1);
241 }
242
243 /*
244 * Attach a found zs.
245 *
246 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
247 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
248 */
249 static void
250 zs_attach(struct device *parent, struct device *self, void *args)
251 {
252 struct cfdata *cf;
253 struct confargs *ca;
254 register int zs, unit;
255 register struct zsinfo *zi;
256 register struct zs_chanstate *cs;
257 register volatile struct zsdevice *addr;
258 register struct tty *tp, *ctp;
259 int softcar;
260 static int didintr;
261
262 cf = self->dv_cfdata;
263 zs = self->dv_unit;
264 ca = args;
265
266 printf(" softpri %d\n", ZSSOFT_PRI);
267
268 if (zsaddr[zs] == NULL)
269 panic("zs_attach: zs%d not mapped\n", zs);
270 addr = zsaddr[zs];
271
272 if (!didintr) {
273 didintr = 1;
274 isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
275 isr_add_autovect(zshard, NULL, ZSHARD_PRI);
276 }
277
278 zi = (struct zsinfo *)self;
279 zi->zi_zs = addr;
280 unit = zs * 2;
281 cs = zi->zi_cs;
282 softcar = cf->cf_flags;
283
284 if(!zs_tty[unit])
285 zs_tty[unit] = ttymalloc();
286 if(!zs_tty[unit+1])
287 zs_tty[unit+1] = ttymalloc();
288
289 /* link into interrupt list with order (A,B) (B=A+1) */
290 cs[0].cs_next = &cs[1];
291 cs[1].cs_next = zslist;
292 zslist = cs;
293
294 tp = zs_tty[unit];
295 cs->cs_unit = unit;
296 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
297 cs->cs_speed = zs_getspeed(cs->cs_zc);
298 #ifdef DEBUG
299 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
300 #endif
301 cs->cs_softcar = softcar & 1;
302 cs->cs_ttyp = tp;
303 tp->t_dev = makedev(ZSMAJOR, unit);
304 tp->t_oproc = zsstart;
305 tp->t_param = zsparam;
306 if (cs->cs_zc == zs_conschan) {
307 /* This unit is the console. */
308 cs->cs_consio = 1;
309 cs->cs_brkabort = 1;
310 cs->cs_softcar = 1;
311 /* Call zsparam so interrupts get enabled. */
312 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
313 tp->t_cflag = TTYDEF_CFLAG;
314 (void) zsparam(tp, &tp->t_termios);
315 } else {
316 /* Can not run kgdb on the console? */
317 #ifdef KGDB
318 zs_checkkgdb(unit, cs, tp);
319 #endif
320 }
321 #if 0
322 /* XXX - Drop carrier here? -gwr */
323 zs_modem(cs, cs->cs_softcar ? 1 : 0);
324 #endif
325
326 if (unit == ZS_KBD) {
327 /*
328 * Keyboard: tell /dev/kbd driver how to talk to us.
329 */
330 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
331 tp->t_cflag = CS8;
332 /* zsparam called by zsiopen */
333 kbd_serial(tp, zsiopen, zsiclose);
334 cs->cs_conk = 1; /* do L1-A processing */
335 }
336 unit++;
337 cs++;
338 tp = zs_tty[unit];
339
340 cs->cs_unit = unit;
341 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
342 cs->cs_speed = zs_getspeed(cs->cs_zc);
343 #ifdef DEBUG
344 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
345 #endif
346 cs->cs_softcar = softcar & 2;
347 cs->cs_ttyp = tp;
348 tp->t_dev = makedev(ZSMAJOR, unit);
349 tp->t_oproc = zsstart;
350 tp->t_param = zsparam;
351 if (cs->cs_zc == zs_conschan) {
352 /* This unit is the console. */
353 cs->cs_consio = 1;
354 cs->cs_brkabort = 1;
355 cs->cs_softcar = 1;
356 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
357 tp->t_cflag = TTYDEF_CFLAG;
358 (void) zsparam(tp, &tp->t_termios);
359 } else {
360 /* Can not run kgdb on the console? */
361 #ifdef KGDB
362 zs_checkkgdb(unit, cs, tp);
363 #endif
364 }
365 #if 0
366 /* XXX - Drop carrier here? -gwr */
367 zs_modem(cs, cs->cs_softcar ? 1 : 0);
368 #endif
369
370 if (unit == ZS_MOUSE) {
371 /*
372 * Mouse: tell /dev/mouse driver how to talk to us.
373 */
374 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
375 tp->t_cflag = CS8;
376 /* zsparam called by zsiopen */
377 ms_serial(tp, zsiopen, zsiclose);
378 }
379 }
380
381 /*
382 * XXX - Temporary hack...
383 */
384 struct tty *
385 zstty(dev)
386 dev_t dev;
387 {
388 int unit = minor(dev);
389
390 return (zs_tty[unit]);
391 }
392
393 /*
394 * Put a channel in a known state. Interrupts may be left disabled
395 * or enabled, as desired. (Used only by kgdb)
396 */
397 static void
398 zs_reset(zc, inten, speed)
399 volatile struct zschan *zc;
400 int inten, speed;
401 {
402 int tconst;
403 u_char reg[16];
404
405 bcopy(zs_init_reg, reg, 16);
406 if (inten)
407 reg[9] |= ZSWR9_MASTER_IE;
408
409 tconst = BPS_TO_TCONST(PCLK / 16, speed);
410 reg[12] = tconst;
411 reg[13] = tconst >> 8;
412 zs_loadchannelregs(zc, reg);
413 }
414
415 /*
416 * Console support
417 */
418
419 /*
420 * Used by the kd driver to find out if it can work.
421 */
422 int
423 zscnprobe_kbd()
424 {
425 if (zsaddr[1] == NULL) {
426 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
427 return CN_DEAD;
428 }
429 return CN_INTERNAL;
430 }
431
432 /*
433 * This is the console probe routine for ttya and ttyb.
434 */
435 static int
436 zscnprobe(struct consdev *cn, int unit)
437 {
438 int maj;
439
440 if (zsaddr[0] == NULL) {
441 mon_printf("zscnprobe: zs0 not mapped\n");
442 cn->cn_pri = CN_DEAD;
443 return 0;
444 }
445 /* XXX - Also try to make sure it exists? */
446
447 /* locate the major number */
448 for (maj = 0; maj < nchrdev; maj++)
449 if (cdevsw[maj].d_open == (void*)zsopen)
450 break;
451
452 cn->cn_dev = makedev(maj, unit);
453
454 /* Use EEPROM console setting to decide "remote" console. */
455 /* Note: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
456 if (ee_console == (EE_CONS_TTYA + unit)) {
457 cn->cn_pri = CN_REMOTE;
458 } else {
459 cn->cn_pri = CN_NORMAL;
460 }
461 return (0);
462 }
463
464 /* This is the constab entry for TTYA. */
465 int
466 zscnprobe_a(struct consdev *cn)
467 {
468 return (zscnprobe(cn, 0));
469 }
470
471 /* This is the constab entry for TTYB. */
472 int
473 zscnprobe_b(struct consdev *cn)
474 {
475 return (zscnprobe(cn, 1));
476 }
477
478 /* Called by kdcninit() or below. */
479 void
480 zs_set_conschan(unit, ab)
481 int unit, ab;
482 {
483 volatile struct zsdevice *addr;
484
485 addr = zsaddr[unit];
486 zs_conschan = ((ab == 0) ?
487 &addr->zs_chan[ZS_CHAN_A] :
488 &addr->zs_chan[ZS_CHAN_B] );
489 }
490
491 /* Attach as console. Also set zs_conschan */
492 int
493 zscninit(struct consdev *cn)
494 {
495 int ab = minor(cn->cn_dev) & 1;
496 zs_set_conschan(0, ab);
497 mon_printf("console on zs0 (tty%c)\n", 'a' + ab);
498 }
499
500
501 /*
502 * Polled console input putchar.
503 */
504 int
505 zscngetc(dev)
506 dev_t dev;
507 {
508 register volatile struct zschan *zc = zs_conschan;
509 register int s, c, rr0;
510
511 if (zc == NULL)
512 return (0);
513
514 s = splhigh();
515
516 /* Wait for a character to arrive. */
517 do {
518 rr0 = zc->zc_csr;
519 ZS_DELAY();
520 } while ((rr0 & ZSRR0_RX_READY) == 0);
521
522 c = zc->zc_data;
523 ZS_DELAY();
524
525 splx(s);
526
527 /*
528 * This is used by the kd driver to read scan codes,
529 * so don't translate '\r' ==> '\n' here...
530 */
531 return (c);
532 }
533
534 /*
535 * Polled console output putchar.
536 */
537 int
538 zscnputc(dev, c)
539 dev_t dev;
540 int c;
541 {
542 register volatile struct zschan *zc = zs_conschan;
543 register int s, rr0;
544
545 if (zc == NULL) {
546 s = splhigh();
547 mon_putchar(c);
548 splx(s);
549 return (0);
550 }
551 s = splhigh();
552
553 /* Wait for transmitter to become ready. */
554 do {
555 rr0 = zc->zc_csr;
556 ZS_DELAY();
557 } while ((rr0 & ZSRR0_TX_READY) == 0);
558
559 zc->zc_data = c;
560 ZS_DELAY();
561 splx(s);
562 }
563
564 #ifdef KGDB
565 /*
566 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
567 * Pick up the current speed and character size and restore the original
568 * speed.
569 */
570 static void
571 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
572 {
573
574 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
575 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
576 tp->t_cflag = CS8;
577 cs->cs_kgdb = 1;
578 cs->cs_speed = zs_kgdb_savedspeed;
579 (void) zsparam(tp, &tp->t_termios);
580 }
581 }
582 #endif
583
584 /*
585 * Compute the current baud rate given a ZSCC channel.
586 */
587 static int
588 zs_getspeed(zc)
589 register volatile struct zschan *zc;
590 {
591 register int tconst;
592
593 tconst = ZS_READ(zc, 12);
594 tconst |= ZS_READ(zc, 13) << 8;
595 return (TCONST_TO_BPS(PCLK / 16, tconst));
596 }
597
598
599 /*
600 * Do an internal open.
601 */
602 static void
603 zsiopen(tp)
604 struct tty *tp;
605 {
606
607 (void) zsparam(tp, &tp->t_termios);
608 ttsetwater(tp);
609 tp->t_state = TS_ISOPEN | TS_CARR_ON;
610 }
611
612 /*
613 * Do an internal close. Eventually we should shut off the chip when both
614 * ports on it are closed.
615 */
616 static void
617 zsiclose(tp)
618 struct tty *tp;
619 {
620
621 ttylclose(tp, 0); /* ??? */
622 ttyclose(tp); /* ??? */
623 tp->t_state = 0;
624 }
625
626
627 /*
628 * Open a zs serial port. This interface may not be used to open
629 * the keyboard and mouse ports. (XXX)
630 */
631 int
632 zsopen(dev, flags, mode, p)
633 dev_t dev;
634 int flags;
635 int mode;
636 struct proc *p;
637 {
638 register struct tty *tp;
639 register struct zs_chanstate *cs;
640 struct zsinfo *zi;
641 int unit = minor(dev), zs = unit >> 1, error, s;
642
643 #ifdef DEBUG
644 mon_printf("zs_open\n");
645 #endif
646 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
647 unit == ZS_KBD || unit == ZS_MOUSE)
648 return (ENXIO);
649 cs = &zi->zi_cs[unit & 1];
650 tp = cs->cs_ttyp;
651 s = spltty();
652 if ((tp->t_state & TS_ISOPEN) == 0) {
653 ttychars(tp);
654 tp->t_iflag = TTYDEF_IFLAG;
655 tp->t_oflag = TTYDEF_OFLAG;
656 tp->t_cflag = TTYDEF_CFLAG;
657 tp->t_lflag = TTYDEF_LFLAG;
658 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
659 (void) zsparam(tp, &tp->t_termios);
660 ttsetwater(tp);
661 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
662 splx(s);
663 return (EBUSY);
664 }
665 error = 0;
666 #ifdef DEBUG
667 mon_printf("wait for carrier...\n");
668 #endif
669 for (;;) {
670 register int rr0;
671
672 /* loop, turning on the device, until carrier present */
673 zs_modem(cs, 1);
674 /* May never get status intr if carrier already on. -gwr */
675 rr0 = cs->cs_zc->zc_csr;
676 ZS_DELAY();
677 if (rr0 & ZSRR0_DCD)
678 tp->t_state |= TS_CARR_ON;
679 if (cs->cs_softcar)
680 tp->t_state |= TS_CARR_ON;
681 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
682 tp->t_state & TS_CARR_ON)
683 break;
684 tp->t_state |= TS_WOPEN;
685 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
686 ttopen, 0)) {
687 if (!(tp->t_state & TS_ISOPEN)) {
688 zs_modem(cs, 0);
689 tp->t_state &= ~TS_WOPEN;
690 ttwakeup(tp);
691 }
692 splx(s);
693 return error;
694 }
695 }
696 #ifdef DEBUG
697 mon_printf("...carrier %s\n",
698 (tp->t_state & TS_CARR_ON) ? "on" : "off");
699 #endif
700 splx(s);
701 if (error == 0)
702 error = linesw[tp->t_line].l_open(dev, tp);
703 if (error)
704 zs_modem(cs, 0);
705 return (error);
706 }
707
708 /*
709 * Close a zs serial port.
710 */
711 int
712 zsclose(dev, flags, mode, p)
713 dev_t dev;
714 int flags;
715 int mode;
716 struct proc *p;
717 {
718 register struct zs_chanstate *cs;
719 register struct tty *tp;
720 struct zsinfo *zi;
721 int unit = minor(dev), s;
722
723 #ifdef DEBUG
724 mon_printf("zs_close\n");
725 #endif
726 zi = zscd.cd_devs[unit >> 1];
727 cs = &zi->zi_cs[unit & 1];
728 tp = cs->cs_ttyp;
729 linesw[tp->t_line].l_close(tp, flags);
730 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
731 (tp->t_state & TS_ISOPEN) == 0) {
732 zs_modem(cs, 0);
733 /* hold low for 1 second */
734 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
735 }
736 if (cs->cs_creg[5] & ZSWR5_BREAK)
737 {
738 s = splzs();
739 cs->cs_preg[5] &= ~ZSWR5_BREAK;
740 cs->cs_creg[5] &= ~ZSWR5_BREAK;
741 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
742 splx(s);
743 }
744 ttyclose(tp);
745 #ifdef KGDB
746 /* Reset the speed if we're doing kgdb on this port */
747 if (cs->cs_kgdb) {
748 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
749 (void) zsparam(tp, &tp->t_termios);
750 }
751 #endif
752 return (0);
753 }
754
755 /*
756 * Read/write zs serial port.
757 */
758 int
759 zsread(dev, uio, flags)
760 dev_t dev;
761 struct uio *uio;
762 int flags;
763 {
764 register struct tty *tp = zs_tty[minor(dev)];
765
766 return (linesw[tp->t_line].l_read(tp, uio, flags));
767 }
768
769 int
770 zswrite(dev, uio, flags)
771 dev_t dev;
772 struct uio *uio;
773 int flags;
774 {
775 register struct tty *tp = zs_tty[minor(dev)];
776
777 return (linesw[tp->t_line].l_write(tp, uio, flags));
778 }
779
780 /*
781 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
782 * channels are kept in (A,B) pairs.
783 *
784 * Do just a little, then get out; set a software interrupt if more
785 * work is needed.
786 *
787 * We deliberately ignore the vectoring Zilog gives us, and match up
788 * only the number of `reset interrupt under service' operations, not
789 * the order.
790 */
791 /* ARGSUSED */
792 int
793 zshard(intrarg)
794 int intrarg;
795 {
796 register struct zs_chanstate *a;
797 #define b (a + 1)
798 register volatile struct zschan *zc;
799 register int rr3, intflags = 0, v, i;
800 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
801 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
802 static int zssint(struct zs_chanstate *, volatile struct zschan *);
803
804 for (a = zslist; a != NULL; a = b->cs_next) {
805 rr3 = ZS_READ(a->cs_zc, 3);
806
807 /* XXX - This should loop to empty the on-chip fifo. */
808 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
809 intflags |= 2;
810 zc = a->cs_zc;
811 i = a->cs_rbput;
812 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
813 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
814 intflags |= 1;
815 }
816 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
817 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
818 intflags |= 1;
819 }
820 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
821 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
822 intflags |= 1;
823 }
824 a->cs_rbput = i;
825 }
826
827 /* XXX - This should loop to empty the on-chip fifo. */
828 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
829 intflags |= 2;
830 zc = b->cs_zc;
831 i = b->cs_rbput;
832 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
833 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
834 intflags |= 1;
835 }
836 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
837 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
838 intflags |= 1;
839 }
840 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
841 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
842 intflags |= 1;
843 }
844 b->cs_rbput = i;
845 }
846 }
847 #undef b
848 if (intflags & 1) {
849 if (zssoftpending == 0) {
850 /* We are at splzs here, so no need to lock. */
851 zssoftpending = ZSSOFT_PRI;
852 isr_soft_request(ZSSOFT_PRI);
853 }
854 }
855 return (intflags & 2);
856 }
857
858 static int
859 zsrint(cs, zc)
860 register struct zs_chanstate *cs;
861 register volatile struct zschan *zc;
862 {
863 register int c;
864
865 c = zc->zc_data;
866 ZS_DELAY();
867
868 if (cs->cs_conk) {
869 register struct conk_state *conk = &zsconk_state;
870
871 /*
872 * Check here for console abort function, so that we
873 * can abort even when interrupts are locking up the
874 * machine.
875 */
876 if (c == KBD_RESET) {
877 conk->conk_id = 1; /* ignore next byte */
878 conk->conk_l1 = 0;
879 } else if (conk->conk_id)
880 conk->conk_id = 0; /* stop ignoring bytes */
881 else if (c == KBD_L1)
882 conk->conk_l1 = 1; /* L1 went down */
883 else if (c == (KBD_L1|KBD_UP))
884 conk->conk_l1 = 0; /* L1 went up */
885 else if (c == KBD_A && conk->conk_l1) {
886 zsabort();
887 /* Debugger done. Send L1-up in case X is running. */
888 conk->conk_l1 = 0;
889 c = (KBD_L1|KBD_UP);
890 }
891 }
892 #ifdef KGDB
893 if (c == FRAME_START && cs->cs_kgdb &&
894 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
895 zskgdb(cs->cs_unit);
896 c = 0;
897 goto clearit;
898 }
899 #endif
900 /* compose receive character and status */
901 c <<= 8;
902 c |= ZS_READ(zc, 1);
903 c = ZRING_MAKE(ZRING_RINT, c);
904
905 clearit:
906 /* clear receive error & interrupt condition */
907 zc->zc_csr = ZSWR0_RESET_ERRORS;
908 ZS_DELAY();
909 zc->zc_csr = ZSWR0_CLR_INTR;
910 ZS_DELAY();
911 return (c);
912 }
913
914 static int
915 zsxint(cs, zc)
916 register struct zs_chanstate *cs;
917 register volatile struct zschan *zc;
918 {
919 register int i = cs->cs_tbc;
920
921 if (i == 0) {
922 zc->zc_csr = ZSWR0_RESET_TXINT;
923 ZS_DELAY();
924 zc->zc_csr = ZSWR0_CLR_INTR;
925 ZS_DELAY();
926 return (ZRING_MAKE(ZRING_XINT, 0));
927 }
928 cs->cs_tbc = i - 1;
929 zc->zc_data = *cs->cs_tba++;
930 ZS_DELAY();
931 zc->zc_csr = ZSWR0_CLR_INTR;
932 ZS_DELAY();
933 return (0);
934 }
935
936 static int
937 zssint(cs, zc)
938 register struct zs_chanstate *cs;
939 register volatile struct zschan *zc;
940 {
941 register int rr0;
942
943 rr0 = zc->zc_csr;
944 ZS_DELAY();
945 zc->zc_csr = ZSWR0_RESET_STATUS;
946 ZS_DELAY();
947 zc->zc_csr = ZSWR0_CLR_INTR;
948 ZS_DELAY();
949 /*
950 * The chip's hardware flow control is, as noted in zsreg.h,
951 * busted---if the DCD line goes low the chip shuts off the
952 * receiver (!). If we want hardware CTS flow control but do
953 * not have it, and carrier is now on, turn HFC on; if we have
954 * HFC now but carrier has gone low, turn it off.
955 */
956 if (rr0 & ZSRR0_DCD) {
957 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
958 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
959 cs->cs_creg[3] |= ZSWR3_HFC;
960 ZS_WRITE(zc, 3, cs->cs_creg[3]);
961 }
962 } else {
963 if (cs->cs_creg[3] & ZSWR3_HFC) {
964 cs->cs_creg[3] &= ~ZSWR3_HFC;
965 ZS_WRITE(zc, 3, cs->cs_creg[3]);
966 }
967 }
968 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
969 /* Wait for end of break to avoid PROM abort. */
970 do {
971 rr0 = zc->zc_csr;
972 ZS_DELAY();
973 } while (rr0 & ZSRR0_BREAK);
974 zsabort();
975 return (0);
976 }
977 return (ZRING_MAKE(ZRING_SINT, rr0));
978 }
979
980 zsabort()
981 {
982 #ifdef DDB
983 Debugger();
984 #else
985 sun3_mon_abort();
986 #endif
987 }
988
989 #ifdef KGDB
990 /*
991 * KGDB framing character received: enter kernel debugger. This probably
992 * should time out after a few seconds to avoid hanging on spurious input.
993 */
994 zskgdb(unit)
995 int unit;
996 {
997
998 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
999 kgdb_connect(1);
1000 }
1001 #endif
1002
1003 /*
1004 * Print out a ring or fifo overrun error message.
1005 */
1006 static void
1007 zsoverrun(unit, ptime, what)
1008 int unit;
1009 long *ptime;
1010 char *what;
1011 {
1012
1013 if (*ptime != time.tv_sec) {
1014 *ptime = time.tv_sec;
1015 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
1016 (unit & 1) + 'a', what);
1017 }
1018 }
1019
1020 /*
1021 * ZS software interrupt. Scan all channels for deferred interrupts.
1022 */
1023 int
1024 zssoft(arg)
1025 int arg;
1026 {
1027 register struct zs_chanstate *cs;
1028 register volatile struct zschan *zc;
1029 register struct linesw *line;
1030 register struct tty *tp;
1031 register int get, n, c, cc, unit, s;
1032
1033 /* This is not the only ISR on this IPL. */
1034 if (zssoftpending == 0)
1035 return (0);
1036
1037 /*
1038 * The soft intr. bit will be set by zshard only if
1039 * the variable zssoftpending is zero. The order of
1040 * these next two statements prevents our clearing
1041 * the soft intr bit just after zshard has set it.
1042 */
1043 isr_soft_clear(ZSSOFT_PRI);
1044 zssoftpending = 0; /* Now zshard may set it again. */
1045
1046 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1047 get = cs->cs_rbget;
1048 again:
1049 n = cs->cs_rbput; /* atomic */
1050 if (get == n) /* nothing more on this line */
1051 continue;
1052 unit = cs->cs_unit; /* set up to handle interrupts */
1053 zc = cs->cs_zc;
1054 tp = cs->cs_ttyp;
1055 line = &linesw[tp->t_line];
1056 /*
1057 * Compute the number of interrupts in the receive ring.
1058 * If the count is overlarge, we lost some events, and
1059 * must advance to the first valid one. It may get
1060 * overwritten if more data are arriving, but this is
1061 * too expensive to check and gains nothing (we already
1062 * lost out; all we can do at this point is trade one
1063 * kind of loss for another).
1064 */
1065 n -= get;
1066 if (n > ZLRB_RING_SIZE) {
1067 zsoverrun(unit, &cs->cs_rotime, "ring");
1068 get += n - ZLRB_RING_SIZE;
1069 n = ZLRB_RING_SIZE;
1070 }
1071 while (--n >= 0) {
1072 /* race to keep ahead of incoming interrupts */
1073 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
1074 switch (ZRING_TYPE(c)) {
1075
1076 case ZRING_RINT:
1077 c = ZRING_VALUE(c);
1078 if (c & ZSRR1_DO)
1079 zsoverrun(unit, &cs->cs_fotime, "fifo");
1080 cc = c >> 8;
1081 if (c & ZSRR1_FE)
1082 cc |= TTY_FE;
1083 if (c & ZSRR1_PE)
1084 cc |= TTY_PE;
1085 /*
1086 * this should be done through
1087 * bstreams XXX gag choke
1088 */
1089 if (unit == ZS_KBD)
1090 kbd_rint(cc);
1091 else if (unit == ZS_MOUSE)
1092 ms_rint(cc);
1093 else
1094 line->l_rint(cc, tp);
1095 break;
1096
1097 case ZRING_XINT:
1098 /*
1099 * Transmit done: change registers and resume,
1100 * or clear BUSY.
1101 */
1102 if (cs->cs_heldchange) {
1103 s = splzs();
1104 c = zc->zc_csr;
1105 ZS_DELAY();
1106 if ((c & ZSRR0_DCD) == 0)
1107 cs->cs_preg[3] &= ~ZSWR3_HFC;
1108 bcopy((caddr_t)cs->cs_preg,
1109 (caddr_t)cs->cs_creg, 16);
1110 zs_loadchannelregs(zc, cs->cs_creg);
1111 splx(s);
1112 cs->cs_heldchange = 0;
1113 if (cs->cs_heldtbc &&
1114 (tp->t_state & TS_TTSTOP) == 0) {
1115 cs->cs_tbc = cs->cs_heldtbc - 1;
1116 zc->zc_data = *cs->cs_tba++;
1117 ZS_DELAY();
1118 goto again;
1119 }
1120 }
1121 tp->t_state &= ~TS_BUSY;
1122 if (tp->t_state & TS_FLUSH)
1123 tp->t_state &= ~TS_FLUSH;
1124 else
1125 ndflush(&tp->t_outq, cs->cs_tba -
1126 (caddr_t) tp->t_outq.c_cf);
1127 line->l_start(tp);
1128 break;
1129
1130 case ZRING_SINT:
1131 /*
1132 * Status line change. HFC bit is run in
1133 * hardware interrupt, to avoid locking
1134 * at splzs here.
1135 */
1136 c = ZRING_VALUE(c);
1137 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1138 cc = (c & ZSRR0_DCD) != 0;
1139 if (line->l_modem(tp, cc) == 0)
1140 zs_modem(cs, cc);
1141 }
1142 cs->cs_rr0 = c;
1143 break;
1144
1145 default:
1146 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1147 unit >> 1, (unit & 1) + 'a', c);
1148 break;
1149 }
1150 }
1151 cs->cs_rbget = get;
1152 goto again;
1153 }
1154 return (1);
1155 }
1156
1157 int
1158 zsioctl(dev, cmd, data, flag, p)
1159 dev_t dev;
1160 u_long cmd;
1161 caddr_t data;
1162 int flag;
1163 struct proc *p;
1164 {
1165 int unit = minor(dev);
1166 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1167 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1168 register struct tty *tp = cs->cs_ttyp;
1169 register int error, s;
1170
1171 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1172 if (error >= 0)
1173 return (error);
1174 error = ttioctl(tp, cmd, data, flag, p);
1175 if (error >= 0)
1176 return (error);
1177
1178 switch (cmd) {
1179
1180 case TIOCSBRK:
1181 s = splzs();
1182 cs->cs_preg[5] |= ZSWR5_BREAK;
1183 cs->cs_creg[5] |= ZSWR5_BREAK;
1184 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1185 splx(s);
1186 break;
1187
1188 case TIOCCBRK:
1189 s = splzs();
1190 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1191 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1192 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1193 splx(s);
1194 break;
1195
1196 case TIOCGFLAGS: {
1197 int bits = 0;
1198
1199 if (cs->cs_softcar)
1200 bits |= TIOCFLAG_SOFTCAR;
1201 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1202 bits |= TIOCFLAG_CLOCAL;
1203 if (cs->cs_creg[3] & ZSWR3_HFC)
1204 bits |= TIOCFLAG_CRTSCTS;
1205 *(int *)data = bits;
1206 break;
1207 }
1208
1209 case TIOCSFLAGS: {
1210 int userbits, driverbits = 0;
1211
1212 error = suser(p->p_ucred, &p->p_acflag);
1213 if (error != 0)
1214 return (EPERM);
1215
1216 userbits = *(int *)data;
1217
1218 /*
1219 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1220 * defaulting to software flow control.
1221 */
1222 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1223 return(EINVAL);
1224 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1225 return(ENXIO);
1226
1227 s = splzs();
1228 if ((userbits & TIOCFLAG_SOFTCAR) ||
1229 (cs->cs_zc == zs_conschan))
1230 {
1231 cs->cs_softcar = 1; /* turn on softcar */
1232 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1233 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1234 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1235 } else if (userbits & TIOCFLAG_CLOCAL) {
1236 cs->cs_softcar = 0; /* turn off softcar */
1237 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1238 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1239 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1240 tp->t_termios.c_cflag |= CLOCAL;
1241 }
1242 if (userbits & TIOCFLAG_CRTSCTS) {
1243 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1244 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1245 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1246 cs->cs_preg[3] |= ZSWR3_HFC;
1247 cs->cs_creg[3] |= ZSWR3_HFC;
1248 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1249 tp->t_termios.c_cflag |= CRTSCTS;
1250 } else {
1251 /* no mdmbuf, so we must want software flow control */
1252 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1253 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1254 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1255 cs->cs_preg[3] &= ~ZSWR3_HFC;
1256 cs->cs_creg[3] &= ~ZSWR3_HFC;
1257 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1258 tp->t_termios.c_cflag &= ~CRTSCTS;
1259 }
1260 splx(s);
1261 break;
1262 }
1263
1264 case TIOCSDTR:
1265 zs_modem(cs, 1);
1266 break;
1267 case TIOCCDTR:
1268 zs_modem(cs, 0);
1269 break;
1270
1271 case TIOCMSET:
1272 case TIOCMBIS:
1273 case TIOCMBIC:
1274 case TIOCMGET:
1275 default:
1276 return (ENOTTY);
1277 }
1278 return (0);
1279 }
1280
1281 /*
1282 * Start or restart transmission.
1283 */
1284 static void
1285 zsstart(tp)
1286 register struct tty *tp;
1287 {
1288 register struct zs_chanstate *cs;
1289 register int s, nch;
1290 int unit = minor(tp->t_dev);
1291 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1292
1293 cs = &zi->zi_cs[unit & 1];
1294 s = spltty();
1295
1296 /*
1297 * If currently active or delaying, no need to do anything.
1298 */
1299 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1300 goto out;
1301
1302 /*
1303 * If there are sleepers, and output has drained below low
1304 * water mark, awaken.
1305 */
1306 if (tp->t_outq.c_cc <= tp->t_lowat) {
1307 if (tp->t_state & TS_ASLEEP) {
1308 tp->t_state &= ~TS_ASLEEP;
1309 wakeup((caddr_t)&tp->t_outq);
1310 }
1311 selwakeup(&tp->t_wsel);
1312 }
1313
1314 nch = ndqb(&tp->t_outq, 0); /* XXX */
1315 if (nch) {
1316 register char *p = tp->t_outq.c_cf;
1317
1318 /* mark busy, enable tx done interrupts, & send first byte */
1319 tp->t_state |= TS_BUSY;
1320 (void) splzs();
1321 cs->cs_preg[1] |= ZSWR1_TIE;
1322 cs->cs_creg[1] |= ZSWR1_TIE;
1323 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1324 cs->cs_zc->zc_data = *p;
1325 ZS_DELAY();
1326 cs->cs_tba = p + 1;
1327 cs->cs_tbc = nch - 1;
1328 } else {
1329 /*
1330 * Nothing to send, turn off transmit done interrupts.
1331 * This is useful if something is doing polled output.
1332 */
1333 (void) splzs();
1334 cs->cs_preg[1] &= ~ZSWR1_TIE;
1335 cs->cs_creg[1] &= ~ZSWR1_TIE;
1336 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1337 }
1338 out:
1339 splx(s);
1340 }
1341
1342 /*
1343 * Stop output, e.g., for ^S or output flush.
1344 */
1345 void
1346 zsstop(tp, flag)
1347 register struct tty *tp;
1348 int flag;
1349 {
1350 register struct zs_chanstate *cs;
1351 register int s, unit = minor(tp->t_dev);
1352 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1353
1354 cs = &zi->zi_cs[unit & 1];
1355 s = splzs();
1356 if (tp->t_state & TS_BUSY) {
1357 /*
1358 * Device is transmitting; must stop it.
1359 */
1360 cs->cs_tbc = 0;
1361 if ((tp->t_state & TS_TTSTOP) == 0)
1362 tp->t_state |= TS_FLUSH;
1363 }
1364 splx(s);
1365 }
1366
1367 /*
1368 * Set ZS tty parameters from termios.
1369 */
1370 static int
1371 zsparam(tp, t)
1372 register struct tty *tp;
1373 register struct termios *t;
1374 {
1375 int unit = minor(tp->t_dev);
1376 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1377 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1378 register int tmp, tmp5, cflag, s;
1379
1380 /*
1381 * Because PCLK is only run at 4.9 MHz, the fastest we
1382 * can go is 51200 baud (this corresponds to TC=1).
1383 * This is somewhat unfortunate as there is no real
1384 * reason we should not be able to handle higher rates.
1385 */
1386 tmp = t->c_ospeed;
1387 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1388 return (EINVAL);
1389 if (tmp == 0) {
1390 /* stty 0 => drop DTR and RTS */
1391 zs_modem(cs, 0);
1392 return (0);
1393 }
1394 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1395 if (tmp < 2)
1396 return (EINVAL);
1397
1398 cflag = t->c_cflag;
1399 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1400 tp->t_cflag = cflag;
1401
1402 /*
1403 * Block interrupts so that state will not
1404 * be altered until we are done setting it up.
1405 */
1406 s = splzs();
1407 bcopy(zs_init_reg, cs->cs_preg, 16);
1408 cs->cs_preg[12] = tmp;
1409 cs->cs_preg[13] = tmp >> 8;
1410 cs->cs_preg[9] |= ZSWR9_MASTER_IE;
1411 switch (cflag & CSIZE) {
1412 case CS5:
1413 tmp = ZSWR3_RX_5;
1414 tmp5 = ZSWR5_TX_5;
1415 break;
1416 case CS6:
1417 tmp = ZSWR3_RX_6;
1418 tmp5 = ZSWR5_TX_6;
1419 break;
1420 case CS7:
1421 tmp = ZSWR3_RX_7;
1422 tmp5 = ZSWR5_TX_7;
1423 break;
1424 case CS8:
1425 default:
1426 tmp = ZSWR3_RX_8;
1427 tmp5 = ZSWR5_TX_8;
1428 break;
1429 }
1430
1431 /*
1432 * Output hardware flow control on the chip is horrendous: if
1433 * carrier detect drops, the receiver is disabled. Hence we
1434 * can only do this when the carrier is on.
1435 */
1436 tmp |= ZSWR3_RX_ENABLE;
1437 if (cflag & CCTS_OFLOW) {
1438 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1439 tmp |= ZSWR3_HFC;
1440 ZS_DELAY();
1441 }
1442
1443 cs->cs_preg[3] = tmp;
1444 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1445
1446 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1447 if ((cflag & PARODD) == 0)
1448 tmp |= ZSWR4_EVENP;
1449 if (cflag & PARENB)
1450 tmp |= ZSWR4_PARENB;
1451 cs->cs_preg[4] = tmp;
1452
1453 /*
1454 * If nothing is being transmitted, set up new current values,
1455 * else mark them as pending.
1456 */
1457 if (cs->cs_heldchange == 0) {
1458 if (cs->cs_ttyp->t_state & TS_BUSY) {
1459 cs->cs_heldtbc = cs->cs_tbc;
1460 cs->cs_tbc = 0;
1461 cs->cs_heldchange = 1;
1462 } else {
1463 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1464 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1465 }
1466 }
1467 splx(s);
1468 return (0);
1469 }
1470
1471 /*
1472 * Raise or lower modem control (DTR/RTS) signals. If a character is
1473 * in transmission, the change is deferred.
1474 */
1475 static void
1476 zs_modem(cs, onoff)
1477 struct zs_chanstate *cs;
1478 int onoff;
1479 {
1480 int s, bis, and;
1481
1482 if (onoff) {
1483 bis = ZSWR5_DTR | ZSWR5_RTS;
1484 and = ~0;
1485 } else {
1486 bis = 0;
1487 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1488 }
1489 s = splzs();
1490 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1491 if (cs->cs_heldchange == 0) {
1492 if (cs->cs_ttyp->t_state & TS_BUSY) {
1493 cs->cs_heldtbc = cs->cs_tbc;
1494 cs->cs_tbc = 0;
1495 cs->cs_heldchange = 1;
1496 } else {
1497 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1498 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1499 }
1500 }
1501 splx(s);
1502 }
1503
1504 /*
1505 * Write the given register set to the given zs channel in the proper order.
1506 * The channel must not be transmitting at the time. The receiver will
1507 * be disabled for the time it takes to write all the registers.
1508 */
1509 static void
1510 zs_loadchannelregs(zc, reg)
1511 volatile struct zschan *zc;
1512 u_char *reg;
1513 {
1514 int i;
1515
1516 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1517 ZS_DELAY();
1518
1519 #if 1 /* XXX - Is this really a good idea? -gwr */
1520 i = zc->zc_data; /* drain fifo */
1521 ZS_DELAY();
1522 i = zc->zc_data;
1523 ZS_DELAY();
1524 i = zc->zc_data;
1525 ZS_DELAY();
1526 #endif
1527
1528 /* baud clock divisor, stop bits, parity */
1529 ZS_WRITE(zc, 4, reg[4]);
1530
1531 /* misc. TX/RX control bits */
1532 ZS_WRITE(zc, 10, reg[10]);
1533
1534 /* char size, enable (RX/TX) */
1535 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1536 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1537
1538 /* interrupt enables: TX, TX, STATUS */
1539 ZS_WRITE(zc, 1, reg[1]);
1540
1541 /* interrupt vector */
1542 ZS_WRITE(zc, 2, reg[2]);
1543
1544 /* master interrupt control */
1545 ZS_WRITE(zc, 9, reg[9]);
1546
1547 /* clock mode control */
1548 ZS_WRITE(zc, 11, reg[11]);
1549
1550 /* baud rate (lo/hi) */
1551 ZS_WRITE(zc, 12, reg[12]);
1552 ZS_WRITE(zc, 13, reg[13]);
1553
1554 /* Misc. control bits */
1555 ZS_WRITE(zc, 14, reg[14]);
1556
1557 /* which lines cause status interrupts */
1558 ZS_WRITE(zc, 15, reg[15]);
1559
1560 /* char size, enable (RX/TX)*/
1561 ZS_WRITE(zc, 3, reg[3]);
1562 ZS_WRITE(zc, 5, reg[5]);
1563 }
1564
1565 static u_char
1566 zs_read(zc, reg)
1567 volatile struct zschan *zc;
1568 u_char reg;
1569 {
1570 u_char val;
1571
1572 zc->zc_csr = reg;
1573 ZS_DELAY();
1574 val = zc->zc_csr;
1575 ZS_DELAY();
1576 return val;
1577 }
1578
1579 static u_char
1580 zs_write(zc, reg, val)
1581 volatile struct zschan *zc;
1582 u_char reg, val;
1583 {
1584 zc->zc_csr = reg;
1585 ZS_DELAY();
1586 zc->zc_csr = val;
1587 ZS_DELAY();
1588 return val;
1589 }
1590
1591 #ifdef KGDB
1592 /*
1593 * Get a character from the given kgdb channel. Called at splhigh().
1594 * XXX - Add delays, or combine with zscngetc()...
1595 */
1596 static int
1597 zs_kgdb_getc(arg)
1598 void *arg;
1599 {
1600 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1601 register int c, rr0;
1602
1603 do {
1604 rr0 = zc->zc_csr;
1605 ZS_DELAY();
1606 } while ((rr0 & ZSRR0_RX_READY) == 0);
1607 c = zc->zc_data;
1608 ZS_DELAY();
1609 return (c);
1610 }
1611
1612 /*
1613 * Put a character to the given kgdb channel. Called at splhigh().
1614 */
1615 static void
1616 zs_kgdb_putc(arg, c)
1617 void *arg;
1618 int c;
1619 {
1620 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1621 register int c, rr0;
1622
1623 do {
1624 rr0 = zc->zc_csr;
1625 ZS_DELAY();
1626 } while ((rr0 & ZSRR0_TX_READY) == 0);
1627 zc->zc_data = c;
1628 ZS_DELAY();
1629 }
1630
1631 /*
1632 * Set up for kgdb; called at boot time before configuration.
1633 * KGDB interrupts will be enabled later when zs0 is configured.
1634 */
1635 void
1636 zs_kgdb_init()
1637 {
1638 volatile struct zsdevice *addr;
1639 volatile struct zschan *zc;
1640 int unit, zs;
1641
1642 if (major(kgdb_dev) != ZSMAJOR)
1643 return;
1644 unit = minor(kgdb_dev);
1645 /*
1646 * Unit must be 0 or 1 (zs0).
1647 */
1648 if ((unsigned)unit >= ZS_KBD) {
1649 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1650 return;
1651 }
1652 zs = unit >> 1;
1653 unit &= 1;
1654
1655 if (zsaddr[0] == NULL)
1656 panic("kbdb_attach: zs0 not yet mapped");
1657 addr = zsaddr[0];
1658
1659 zc = (unit == 0) ?
1660 &addr->zs_chan[ZS_CHAN_A] :
1661 &addr->zs_chan[ZS_CHAN_B];
1662 zs_kgdb_savedspeed = zs_getspeed(zc);
1663 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1664 zs, unit + 'a', kgdb_rate);
1665 zs_reset(zc, 1, kgdb_rate);
1666 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1667 }
1668 #endif /* KGDB */
1669