zs.c revision 1.4 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * from: sparc/dev/zs.c,v 1.3 1993/10/13 02:36:44 deraadt Exp
46 * $Id: zs.c,v 1.4 1994/05/05 06:54:08 gwr Exp $
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (ttya and ttyb) on zs0,
53 * and runs a keyboard and mouse on zs1.
54 *
55 * This driver knows far too much about chip to usage mappings.
56 */
57 #define NZS 2 /* XXX */
58
59 #include <sys/systm.h>
60 #include <sys/param.h>
61 #include <sys/proc.h>
62 #include <sys/device.h>
63 #include <sys/conf.h>
64 #include <sys/file.h>
65 #include <sys/ioctl.h>
66 #include <sys/tty.h>
67 #include <sys/time.h>
68 #include <sys/kernel.h>
69 #include <sys/syslog.h>
70 #include <sys/conf.h>
71
72 #include <machine/autoconf.h>
73 #include <machine/cpu.h>
74 #include <machine/obio.h>
75 #include <machine/mon.h>
76 #include <machine/eeprom.h>
77
78 #include <dev/cons.h>
79
80 #include "kbd.h"
81 #include "zsreg.h"
82 #include "zsvar.h"
83
84 #ifdef KGDB
85 #include <machine/remote-sl.h>
86 #endif
87
88 #define ZSMAJOR 12 /* XXX */
89
90 #define ZS_KBD 2 /* XXX */
91 #define ZS_MOUSE 3 /* XXX */
92
93 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
94 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
95
96 /*
97 * Select software interrupt levels.
98 */
99 #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
100 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
101
102 /*
103 * Software state per found chip. This would be called `zs_softc',
104 * but the previous driver had a rather different zs_softc....
105 */
106 struct zsinfo {
107 struct device zi_dev; /* base device */
108 volatile struct zsdevice *zi_zs;/* chip registers */
109 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
110 };
111
112 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
113
114 /* Definition of the driver for autoconfig. */
115 static int zsmatch(struct device *, struct cfdata *, void *);
116 static void zsattach(struct device *, struct device *, void *);
117 struct cfdriver zscd =
118 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
119
120 /* Interrupt handlers. */
121 static int zshard(int);
122 static int zssoft(int);
123
124 struct zs_chanstate *zslist;
125
126 /* Routines called from other code. */
127 int zsopen(dev_t, int, int, struct proc *);
128 int zsclose(dev_t, int, int, struct proc *);
129 static void zsiopen(struct tty *);
130 static void zsiclose(struct tty *);
131 static void zsstart(struct tty *);
132 void zsstop(struct tty *, int);
133 static int zsparam(struct tty *, struct termios *);
134
135 /* Routines purely local to this driver. */
136 static int zs_getspeed(volatile struct zschan *);
137 static void zs_reset(volatile struct zschan *, int, int);
138 static void zs_modem(struct zs_chanstate *, int);
139 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
140 static u_char zs_read(volatile struct zschan *, u_char);
141 static u_char zs_write(volatile struct zschan *, u_char, u_char);
142
143 /* Console stuff. */
144 static volatile struct zschan *zs_conschan;
145
146 #ifdef KGDB
147 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
148 extern int kgdb_dev, kgdb_rate;
149 static int zs_kgdb_savedspeed;
150 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
151 #endif
152
153 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
154
155 /*
156 * Console keyboard L1-A processing is done in the hardware interrupt code,
157 * so we need to duplicate some of the console keyboard decode state. (We
158 * must not use the regular state as the hardware code keeps ahead of the
159 * software state: the software state tracks the most recent ring input but
160 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
161 */
162 static struct conk_state { /* console keyboard state */
163 char conk_id; /* true => ID coming up (console only) */
164 char conk_l1; /* true => L1 pressed (console only) */
165 } zsconk_state;
166
167 int zshardscope;
168 int zsshortcuts; /* number of "shortcut" software interrupts */
169
170 /*
171 * Match slave number to zs unit number, so that misconfiguration will
172 * not set up the keyboard as ttya, etc.
173 */
174 static int
175 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
176 {
177 struct obio_cf_loc *obio_loc;
178 caddr_t zs_addr;
179
180 obio_loc = (struct obio_cf_loc *) CFDATA_LOC(cf);
181 zs_addr = (caddr_t) obio_loc->obio_addr;
182 return !obio_probe_byte(zs_addr);
183 }
184
185 /*
186 * Attach a found zs.
187 *
188 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
189 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
190 */
191 static void
192 zsattach(struct device *parent, struct device *dev, void *aux)
193 {
194 struct obio_cf_loc *obio_loc = OBIO_LOC(dev);
195 register int zs = dev->dv_unit, unit;
196 register struct zsinfo *zi;
197 register struct zs_chanstate *cs;
198 register volatile struct zsdevice *addr;
199 register struct tty *tp, *ctp;
200 int softcar;
201 static int didintr;
202 caddr_t obio_addr;
203
204 obio_addr = (caddr_t)obio_loc->obio_addr;
205 obio_print(obio_addr, ZSSOFT_PRI);
206 printf(" hwpri %d\n", ZSHARD_PRI);
207
208 if ((addr = zsaddr[zs]) == NULL) {
209 zsaddr[zs] = addr = (struct zsdevice *)
210 obio_alloc(obio_addr, OBIO_ZS_SIZE, OBIO_WRITE);
211 }
212
213 if (!didintr) {
214 didintr = 1;
215 isr_add(ZSSOFT_PRI, zssoft, 0);
216 isr_add(ZSHARD_PRI, zshard, 0);
217 }
218
219 zi = (struct zsinfo *)dev;
220 zi->zi_zs = addr;
221 unit = zs * 2;
222 cs = zi->zi_cs;
223
224 if(!zs_tty[unit])
225 zs_tty[unit] = ttymalloc();
226 tp = zs_tty[unit];
227 if(!zs_tty[unit+1])
228 zs_tty[unit+1] = ttymalloc();
229
230 if (unit == 0) {
231 softcar = 0;
232 } else
233 softcar = dev->dv_cfdata->cf_flags;
234
235 /* link into interrupt list with order (A,B) (B=A+1) */
236 cs[0].cs_next = &cs[1];
237 cs[1].cs_next = zslist;
238 zslist = cs;
239
240 cs->cs_unit = unit;
241 cs->cs_zc = &addr->zs_chan[CHAN_A];
242 cs->cs_speed = zs_getspeed(cs->cs_zc);
243 #ifdef DEBUG
244 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
245 #endif
246 cs->cs_softcar = softcar & 1;
247 #if 0
248 /* XXX - Drop carrier here? -gwr */
249 zs_modem(cs, cs->cs_softcar ? 1 : 0);
250 #endif
251 cs->cs_ttyp = tp;
252 tp->t_dev = makedev(ZSMAJOR, unit);
253 tp->t_oproc = zsstart;
254 tp->t_param = zsparam;
255 /*tp->t_stop = zsstop;*/
256 if (cs->cs_zc == zs_conschan) {
257 /* This unit is the console. */
258 cs->cs_consio = 1;
259 cs->cs_brkabort = 1;
260 cs->cs_softcar = 1;
261 } else {
262 /* Can not run kgdb on the console? */
263 #ifdef KGDB
264 zs_checkkgdb(unit, cs, tp);
265 #endif
266 }
267 if (unit == ZS_KBD) {
268 /*
269 * Keyboard: tell /dev/kbd driver how to talk to us.
270 */
271 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
272 tp->t_cflag = CS8;
273 kbd_serial(tp, zsiopen, zsiclose);
274 cs->cs_conk = 1; /* do L1-A processing */
275 }
276 unit++;
277 cs++;
278 tp = zs_tty[unit];
279
280 cs->cs_unit = unit;
281 cs->cs_zc = &addr->zs_chan[CHAN_B];
282 cs->cs_speed = zs_getspeed(cs->cs_zc);
283 #ifdef DEBUG
284 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
285 #endif
286 cs->cs_softcar = softcar & 2;
287 #if 0
288 /* XXX - Drop carrier here? -gwr */
289 zs_modem(cs, cs->cs_softcar ? 1 : 0);
290 #endif
291 cs->cs_ttyp = tp;
292 tp->t_dev = makedev(ZSMAJOR, unit);
293 tp->t_oproc = zsstart;
294 tp->t_param = zsparam;
295 /*tp->t_stop = zsstop;*/
296 if (cs->cs_zc == zs_conschan) {
297 /* This unit is the console. */
298 cs->cs_consio = 1;
299 cs->cs_brkabort = 1;
300 cs->cs_softcar = 1;
301 } else {
302 /* Can not run kgdb on the console? */
303 #ifdef KGDB
304 zs_checkkgdb(unit, cs, tp);
305 #endif
306 }
307 if (unit == ZS_MOUSE) {
308 /*
309 * Mouse: tell /dev/mouse driver how to talk to us.
310 */
311 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
312 tp->t_cflag = CS8;
313 ms_serial(tp, zsiopen, zsiclose);
314 }
315 }
316
317 /*
318 * Put a channel in a known state. Interrupts may be left disabled
319 * or enabled, as desired.
320 */
321 static void
322 zs_reset(zc, inten, speed)
323 volatile struct zschan *zc;
324 int inten, speed;
325 {
326 int tconst;
327 static u_char reg[16] = {
328 0,
329 0,
330 0,
331 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
332 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
333 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
334 0,
335 0,
336 0,
337 0,
338 ZSWR10_NRZ,
339 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
340 0,
341 0,
342 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
343 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
344 };
345
346 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
347 tconst = BPS_TO_TCONST(PCLK / 16, speed);
348 reg[12] = tconst;
349 reg[13] = tconst >> 8;
350 zs_loadchannelregs(zc, reg);
351 }
352
353 /*
354 * Console support
355 */
356
357 /*
358 * Used by the kd driver to find out if it can work.
359 */
360 int
361 zscnprobe_kbd()
362 {
363 if (zs1_va == NULL) {
364 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
365 return CN_DEAD;
366 }
367 zsaddr[1] = (struct zsdevice *)zs1_va;
368 return CN_INTERNAL;
369 }
370
371 /*
372 * This is the console probe routine for ttya and ttyb.
373 */
374 static int
375 zscnprobe(struct consdev *cn, int unit)
376 {
377 int maj, eeCons;
378
379 if (zs0_va == NULL) {
380 mon_printf("zscnprobe: zs0 not yet mapped\n");
381 cn->cn_pri = CN_DEAD;
382 return 0;
383 }
384 zsaddr[0] = (struct zsdevice *)zs0_va;
385 /* XXX - Also try to make sure it exists? */
386
387 /* locate the major number */
388 for (maj = 0; maj < nchrdev; maj++)
389 if (cdevsw[maj].d_open == zsopen)
390 break;
391
392 cn->cn_dev = makedev(maj, unit);
393
394 /* Use EEPROM console setting to decide "remote" console. */
395 if (eeprom_va == NULL) {
396 mon_printf("zscnprobe: eeprom not yet mapped\n");
397 eeCons = -1;
398 } else {
399 eeCons = ((struct eeprom *)eeprom_va)->eeConsole;
400 }
401
402 /* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
403 if (eeCons == (EE_CONS_TTYA + unit)) {
404 cn->cn_pri = CN_REMOTE;
405 } else {
406 cn->cn_pri = CN_NORMAL;
407 }
408 return (0);
409 }
410
411 /* This is the constab entry for TTYA. */
412 int
413 zscnprobe_a(struct consdev *cn)
414 {
415 return (zscnprobe(cn, 0));
416 }
417
418 /* This is the constab entry for TTYB. */
419 int
420 zscnprobe_b(struct consdev *cn)
421 {
422 return (zscnprobe(cn, 1));
423 }
424
425 /* Attach as console. Also set zs_conschan */
426 int
427 zscninit(struct consdev *cn)
428 {
429 int unit;
430 volatile struct zsdevice *addr;
431
432 unit = minor(cn->cn_dev) & 1;
433 addr = (struct zsdevice *)zs0_va;
434 zs_conschan = ((unit == 0) ?
435 &addr->zs_chan[CHAN_A] :
436 &addr->zs_chan[CHAN_B] );
437
438 mon_printf("console on zs0 (tty%c)\n", unit + 'a');
439 }
440
441
442 /*
443 * Polled console input putchar.
444 */
445 int
446 zscngetc(dev)
447 dev_t dev;
448 {
449 register volatile struct zschan *zc = zs_conschan;
450 register int s, c;
451
452 if (zc == NULL)
453 return (0);
454
455 s = splhigh();
456 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
457 ZS_DELAY();
458 ZS_DELAY();
459 c = zc->zc_data;
460 splx(s);
461 return (c);
462 }
463
464 /*
465 * Polled console output putchar.
466 */
467 int
468 zscnputc(dev, c)
469 dev_t dev;
470 int c;
471 {
472 register volatile struct zschan *zc = zs_conschan;
473 register int s;
474
475 if (zc == NULL) {
476 s = splhigh();
477 mon_putchar(c);
478 splx(s);
479 return (0);
480 }
481
482 s = splhigh();
483 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
484 ZS_DELAY();
485 ZS_DELAY();
486 zc->zc_data = c;
487 ZS_DELAY();
488 splx(s);
489 }
490
491 #ifdef KGDB
492 /*
493 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
494 * Pick up the current speed and character size and restore the original
495 * speed.
496 */
497 static void
498 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
499 {
500
501 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
502 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
503 tp->t_cflag = CS8;
504 cs->cs_kgdb = 1;
505 cs->cs_speed = zs_kgdb_savedspeed;
506 (void) zsparam(tp, &tp->t_termios);
507 }
508 }
509 #endif
510
511 /*
512 * Compute the current baud rate given a ZSCC channel.
513 */
514 static int
515 zs_getspeed(zc)
516 register volatile struct zschan *zc;
517 {
518 register int tconst;
519
520 tconst = ZS_READ(zc, 12);
521 tconst |= ZS_READ(zc, 13) << 8;
522 return (TCONST_TO_BPS(PCLK / 16, tconst));
523 }
524
525
526 /*
527 * Do an internal open.
528 */
529 static void
530 zsiopen(struct tty *tp)
531 {
532
533 (void) zsparam(tp, &tp->t_termios);
534 ttsetwater(tp);
535 tp->t_state = TS_ISOPEN | TS_CARR_ON;
536 }
537
538 /*
539 * Do an internal close. Eventually we should shut off the chip when both
540 * ports on it are closed.
541 */
542 static void
543 zsiclose(struct tty *tp)
544 {
545
546 ttylclose(tp, 0); /* ??? */
547 ttyclose(tp); /* ??? */
548 tp->t_state = 0;
549 }
550
551
552 /*
553 * Open a zs serial port. This interface may not be used to open
554 * the keyboard and mouse ports. (XXX)
555 */
556 int
557 zsopen(dev_t dev, int flags, int mode, struct proc *p)
558 {
559 register struct tty *tp;
560 register struct zs_chanstate *cs;
561 struct zsinfo *zi;
562 int unit = minor(dev), zs = unit >> 1, error, s;
563
564 #ifdef DEBUG
565 mon_printf("zs_open\n");
566 #endif
567 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
568 unit == ZS_KBD || unit == ZS_MOUSE)
569 return (ENXIO);
570 cs = &zi->zi_cs[unit & 1];
571 #if 0
572 /* The kd driver avoids the need for this hack. */
573 if (cs->cs_consio)
574 return (ENXIO); /* ??? */
575 #endif
576 tp = cs->cs_ttyp;
577 s = spltty();
578 if ((tp->t_state & TS_ISOPEN) == 0) {
579 ttychars(tp);
580 if (tp->t_ispeed == 0) {
581 tp->t_iflag = TTYDEF_IFLAG;
582 tp->t_oflag = TTYDEF_OFLAG;
583 tp->t_cflag = TTYDEF_CFLAG;
584 tp->t_lflag = TTYDEF_LFLAG;
585 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
586 }
587 (void) zsparam(tp, &tp->t_termios);
588 ttsetwater(tp);
589 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
590 splx(s);
591 return (EBUSY);
592 }
593 error = 0;
594 #ifdef DEBUG
595 mon_printf("wait for carrier...\n");
596 #endif
597 for (;;) {
598 /* loop, turning on the device, until carrier present */
599 zs_modem(cs, 1);
600 /* May never get status intr if carrier already on. -gwr */
601 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
602 tp->t_state |= TS_CARR_ON;
603 if (cs->cs_softcar)
604 tp->t_state |= TS_CARR_ON;
605 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
606 tp->t_state & TS_CARR_ON)
607 break;
608 tp->t_state |= TS_WOPEN;
609 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
610 ttopen, 0))
611 break;
612 }
613 #ifdef DEBUG
614 mon_printf("...carrier %s\n",
615 (tp->t_state & TS_CARR_ON) ? "on" : "off");
616 #endif
617 splx(s);
618 if (error == 0)
619 error = linesw[tp->t_line].l_open(dev, tp);
620 if (error)
621 zs_modem(cs, 0);
622 return (error);
623 }
624
625 /*
626 * Close a zs serial port.
627 */
628 int
629 zsclose(dev_t dev, int flags, int mode, struct proc *p)
630 {
631 register struct zs_chanstate *cs;
632 register struct tty *tp;
633 struct zsinfo *zi;
634 int unit = minor(dev), s;
635
636 #ifdef DEBUG
637 mon_printf("zs_close\n");
638 #endif
639 zi = zscd.cd_devs[unit >> 1];
640 cs = &zi->zi_cs[unit & 1];
641 tp = cs->cs_ttyp;
642 linesw[tp->t_line].l_close(tp, flags);
643 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
644 (tp->t_state & TS_ISOPEN) == 0) {
645 zs_modem(cs, 0);
646 /* hold low for 1 second */
647 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
648 }
649 ttyclose(tp);
650 #ifdef KGDB
651 /* Reset the speed if we're doing kgdb on this port */
652 if (cs->cs_kgdb) {
653 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
654 (void) zsparam(tp, &tp->t_termios);
655 }
656 #endif
657 return (0);
658 }
659
660 /*
661 * Read/write zs serial port.
662 */
663 int
664 zsread(dev_t dev, struct uio *uio, int flags)
665 {
666 register struct tty *tp = zs_tty[minor(dev)];
667
668 return (linesw[tp->t_line].l_read(tp, uio, flags));
669 }
670
671 int
672 zswrite(dev_t dev, struct uio *uio, int flags)
673 {
674 register struct tty *tp = zs_tty[minor(dev)];
675
676 return (linesw[tp->t_line].l_write(tp, uio, flags));
677 }
678
679 /*
680 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
681 * channels are kept in (A,B) pairs.
682 *
683 * Do just a little, then get out; set a software interrupt if more
684 * work is needed.
685 *
686 * We deliberately ignore the vectoring Zilog gives us, and match up
687 * only the number of `reset interrupt under service' operations, not
688 * the order.
689 */
690 /* ARGSUSED */
691 int
692 zshard(int intrarg)
693 {
694 register struct zs_chanstate *a;
695 #define b (a + 1)
696 register volatile struct zschan *zc;
697 register int rr3, intflags = 0, v, i;
698 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
699 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
700 static int zssint(struct zs_chanstate *, volatile struct zschan *);
701
702 for (a = zslist; a != NULL; a = b->cs_next) {
703 rr3 = ZS_READ(a->cs_zc, 3);
704
705 /* XXX - This should loop to empty the on-chip fifo. */
706 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
707 intflags |= 2;
708 zc = a->cs_zc;
709 i = a->cs_rbput;
710 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
711 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
712 intflags |= 1;
713 }
714 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
715 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
716 intflags |= 1;
717 }
718 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
719 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
720 intflags |= 1;
721 }
722 a->cs_rbput = i;
723 }
724
725 /* XXX - This should loop to empty the on-chip fifo. */
726 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
727 intflags |= 2;
728 zc = b->cs_zc;
729 i = b->cs_rbput;
730 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
731 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
732 intflags |= 1;
733 }
734 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
735 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
736 intflags |= 1;
737 }
738 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
739 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
740 intflags |= 1;
741 }
742 b->cs_rbput = i;
743 }
744 }
745 #undef b
746 if (intflags & 1) {
747 isr_soft_request(ZSSOFT_PRI);
748 }
749 return (intflags & 2);
750 }
751
752 static int
753 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
754 {
755 register int c = zc->zc_data;
756
757 if (cs->cs_conk) {
758 register struct conk_state *conk = &zsconk_state;
759
760 /*
761 * Check here for console abort function, so that we
762 * can abort even when interrupts are locking up the
763 * machine.
764 */
765 if (c == KBD_RESET) {
766 conk->conk_id = 1; /* ignore next byte */
767 conk->conk_l1 = 0;
768 } else if (conk->conk_id)
769 conk->conk_id = 0; /* stop ignoring bytes */
770 else if (c == KBD_L1)
771 conk->conk_l1 = 1; /* L1 went down */
772 else if (c == (KBD_L1|KBD_UP))
773 conk->conk_l1 = 0; /* L1 went up */
774 else if (c == KBD_A && conk->conk_l1) {
775 zsabort();
776 conk->conk_l1 = 0; /* we never see the up */
777 goto clearit; /* eat the A after L1-A */
778 }
779 }
780 #ifdef KGDB
781 if (c == FRAME_START && cs->cs_kgdb &&
782 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
783 zskgdb(cs->cs_unit);
784 goto clearit;
785 }
786 #endif
787 /* compose receive character and status */
788 c <<= 8;
789 c |= ZS_READ(zc, 1);
790
791 /* clear receive error & interrupt condition */
792 zc->zc_csr = ZSWR0_RESET_ERRORS;
793 zc->zc_csr = ZSWR0_CLR_INTR;
794
795 return (ZRING_MAKE(ZRING_RINT, c));
796
797 clearit:
798 zc->zc_csr = ZSWR0_RESET_ERRORS;
799 zc->zc_csr = ZSWR0_CLR_INTR;
800 return (0);
801 }
802
803 static int
804 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
805 {
806 register int i = cs->cs_tbc;
807
808 if (i == 0) {
809 zc->zc_csr = ZSWR0_RESET_TXINT;
810 zc->zc_csr = ZSWR0_CLR_INTR;
811 return (ZRING_MAKE(ZRING_XINT, 0));
812 }
813 cs->cs_tbc = i - 1;
814 zc->zc_data = *cs->cs_tba++;
815 zc->zc_csr = ZSWR0_CLR_INTR;
816 return (0);
817 }
818
819 static int
820 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
821 {
822 register int rr0;
823
824 rr0 = zc->zc_csr;
825 zc->zc_csr = ZSWR0_RESET_STATUS;
826 zc->zc_csr = ZSWR0_CLR_INTR;
827 /*
828 * The chip's hardware flow control is, as noted in zsreg.h,
829 * busted---if the DCD line goes low the chip shuts off the
830 * receiver (!). If we want hardware CTS flow control but do
831 * not have it, and carrier is now on, turn HFC on; if we have
832 * HFC now but carrier has gone low, turn it off.
833 */
834 if (rr0 & ZSRR0_DCD) {
835 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
836 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
837 cs->cs_creg[3] |= ZSWR3_HFC;
838 ZS_WRITE(zc, 3, cs->cs_creg[3]);
839 }
840 } else {
841 if (cs->cs_creg[3] & ZSWR3_HFC) {
842 cs->cs_creg[3] &= ~ZSWR3_HFC;
843 ZS_WRITE(zc, 3, cs->cs_creg[3]);
844 }
845 }
846 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
847 /* Wait for end of break to avoid PROM abort. */
848 while (zc->zc_csr & ZSRR0_BREAK)
849 ZS_DELAY();
850 zsabort();
851 return (0);
852 }
853 return (ZRING_MAKE(ZRING_SINT, rr0));
854 }
855
856 zsabort()
857 {
858 #ifdef DDB
859 Debugger();
860 #else
861 printf("stopping on keyboard abort\n");
862 sun3_rom_abort();
863 #endif
864 }
865
866 #ifdef KGDB
867 /*
868 * KGDB framing character received: enter kernel debugger. This probably
869 * should time out after a few seconds to avoid hanging on spurious input.
870 */
871 zskgdb(int unit)
872 {
873
874 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
875 kgdb_connect(1);
876 }
877 #endif
878
879 /*
880 * Print out a ring or fifo overrun error message.
881 */
882 static void
883 zsoverrun(int unit, long *ptime, char *what)
884 {
885
886 if (*ptime != time.tv_sec) {
887 *ptime = time.tv_sec;
888 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
889 (unit & 1) + 'a', what);
890 }
891 }
892
893 /*
894 * ZS software interrupt. Scan all channels for deferred interrupts.
895 */
896 int
897 zssoft(int arg)
898 {
899 register struct zs_chanstate *cs;
900 register volatile struct zschan *zc;
901 register struct linesw *line;
902 register struct tty *tp;
903 register int get, n, c, cc, unit, s;
904
905 isr_soft_clear(ZSSOFT_PRI);
906
907 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
908 get = cs->cs_rbget;
909 again:
910 n = cs->cs_rbput; /* atomic */
911 if (get == n) /* nothing more on this line */
912 continue;
913 unit = cs->cs_unit; /* set up to handle interrupts */
914 zc = cs->cs_zc;
915 tp = cs->cs_ttyp;
916 line = &linesw[tp->t_line];
917 /*
918 * Compute the number of interrupts in the receive ring.
919 * If the count is overlarge, we lost some events, and
920 * must advance to the first valid one. It may get
921 * overwritten if more data are arriving, but this is
922 * too expensive to check and gains nothing (we already
923 * lost out; all we can do at this point is trade one
924 * kind of loss for another).
925 */
926 n -= get;
927 if (n > ZLRB_RING_SIZE) {
928 zsoverrun(unit, &cs->cs_rotime, "ring");
929 get += n - ZLRB_RING_SIZE;
930 n = ZLRB_RING_SIZE;
931 }
932 while (--n >= 0) {
933 /* race to keep ahead of incoming interrupts */
934 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
935 switch (ZRING_TYPE(c)) {
936
937 case ZRING_RINT:
938 c = ZRING_VALUE(c);
939 if (c & ZSRR1_DO)
940 zsoverrun(unit, &cs->cs_fotime, "fifo");
941 cc = c >> 8;
942 if (c & ZSRR1_FE)
943 cc |= TTY_FE;
944 if (c & ZSRR1_PE)
945 cc |= TTY_PE;
946 /*
947 * this should be done through
948 * bstreams XXX gag choke
949 */
950 if (unit == ZS_KBD)
951 kbd_rint(cc);
952 else if (unit == ZS_MOUSE)
953 ms_rint(cc);
954 else
955 line->l_rint(cc, tp);
956 break;
957
958 case ZRING_XINT:
959 /*
960 * Transmit done: change registers and resume,
961 * or clear BUSY.
962 */
963 if (cs->cs_heldchange) {
964 s = splzs();
965 c = zc->zc_csr;
966 if ((c & ZSRR0_DCD) == 0)
967 cs->cs_preg[3] &= ~ZSWR3_HFC;
968 bcopy((caddr_t)cs->cs_preg,
969 (caddr_t)cs->cs_creg, 16);
970 zs_loadchannelregs(zc, cs->cs_creg);
971 splx(s);
972 cs->cs_heldchange = 0;
973 if (cs->cs_heldtbc &&
974 (tp->t_state & TS_TTSTOP) == 0) {
975 cs->cs_tbc = cs->cs_heldtbc - 1;
976 zc->zc_data = *cs->cs_tba++;
977 goto again;
978 }
979 }
980 tp->t_state &= ~TS_BUSY;
981 if (tp->t_state & TS_FLUSH)
982 tp->t_state &= ~TS_FLUSH;
983 else
984 ndflush(&tp->t_outq,
985 (u_char *)cs->cs_tba - tp->t_outq.c_cf);
986 line->l_start(tp);
987 break;
988
989 case ZRING_SINT:
990 /*
991 * Status line change. HFC bit is run in
992 * hardware interrupt, to avoid locking
993 * at splzs here.
994 */
995 c = ZRING_VALUE(c);
996 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
997 cc = (c & ZSRR0_DCD) != 0;
998 if (line->l_modem(tp, cc) == 0)
999 zs_modem(cs, cc);
1000 }
1001 cs->cs_rr0 = c;
1002 break;
1003
1004 default:
1005 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1006 unit >> 1, (unit & 1) + 'a', c);
1007 break;
1008 }
1009 }
1010 cs->cs_rbget = get;
1011 goto again;
1012 }
1013 return (1);
1014 }
1015
1016 int
1017 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1018 {
1019 int unit = minor(dev);
1020 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1021 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1022 register int error;
1023
1024 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1025 if (error >= 0)
1026 return (error);
1027 error = ttioctl(tp, cmd, data, flag, p);
1028 if (error >= 0)
1029 return (error);
1030
1031 switch (cmd) {
1032
1033 case TIOCSBRK:
1034 /* FINISH ME ... need implicit TIOCCBRK in zsclose as well */
1035
1036 case TIOCCBRK:
1037
1038 case TIOCSDTR:
1039
1040 case TIOCCDTR:
1041
1042 case TIOCMSET:
1043
1044 case TIOCMBIS:
1045
1046 case TIOCMBIC:
1047
1048 case TIOCMGET:
1049
1050 default:
1051 return (ENOTTY);
1052 }
1053 return (0);
1054 }
1055
1056 /*
1057 * Start or restart transmission.
1058 */
1059 static void
1060 zsstart(register struct tty *tp)
1061 {
1062 register struct zs_chanstate *cs;
1063 register int s, nch;
1064 int unit = minor(tp->t_dev);
1065 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1066
1067 cs = &zi->zi_cs[unit & 1];
1068 s = spltty();
1069
1070 /*
1071 * If currently active or delaying, no need to do anything.
1072 */
1073 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1074 goto out;
1075
1076 /*
1077 * If there are sleepers, and output has drained below low
1078 * water mark, awaken.
1079 */
1080 if (tp->t_outq.c_cc <= tp->t_lowat) {
1081 if (tp->t_state & TS_ASLEEP) {
1082 tp->t_state &= ~TS_ASLEEP;
1083 wakeup((caddr_t)&tp->t_outq);
1084 }
1085 selwakeup(&tp->t_wsel);
1086 }
1087
1088 nch = ndqb(&tp->t_outq, 0); /* XXX */
1089 if (nch) {
1090 register char *p = tp->t_outq.c_cf;
1091
1092 /* mark busy, enable tx done interrupts, & send first byte */
1093 tp->t_state |= TS_BUSY;
1094 (void) splzs();
1095 cs->cs_preg[1] |= ZSWR1_TIE;
1096 cs->cs_creg[1] |= ZSWR1_TIE;
1097 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1098 cs->cs_zc->zc_data = *p;
1099 cs->cs_tba = p + 1;
1100 cs->cs_tbc = nch - 1;
1101 } else {
1102 /*
1103 * Nothing to send, turn off transmit done interrupts.
1104 * This is useful if something is doing polled output.
1105 */
1106 (void) splzs();
1107 cs->cs_preg[1] &= ~ZSWR1_TIE;
1108 cs->cs_creg[1] &= ~ZSWR1_TIE;
1109 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1110 }
1111 out:
1112 splx(s);
1113 }
1114
1115 /*
1116 * Stop output, e.g., for ^S or output flush.
1117 */
1118 void
1119 zsstop(register struct tty *tp, int flag)
1120 {
1121 register struct zs_chanstate *cs;
1122 register int s, unit = minor(tp->t_dev);
1123 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1124
1125 cs = &zi->zi_cs[unit & 1];
1126 s = splzs();
1127 if (tp->t_state & TS_BUSY) {
1128 /*
1129 * Device is transmitting; must stop it.
1130 */
1131 cs->cs_tbc = 0;
1132 if ((tp->t_state & TS_TTSTOP) == 0)
1133 tp->t_state |= TS_FLUSH;
1134 }
1135 splx(s);
1136 }
1137
1138 /*
1139 * Set ZS tty parameters from termios.
1140 *
1141 * This routine makes use of the fact that only registers
1142 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1143 */
1144 static int
1145 zsparam(register struct tty *tp, register struct termios *t)
1146 {
1147 int unit = minor(tp->t_dev);
1148 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1149 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1150 register int tmp, tmp5, cflag, s;
1151
1152 /*
1153 * Because PCLK is only run at 4.9 MHz, the fastest we
1154 * can go is 51200 baud (this corresponds to TC=1).
1155 * This is somewhat unfortunate as there is no real
1156 * reason we should not be able to handle higher rates.
1157 */
1158 tmp = t->c_ospeed;
1159 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1160 return (EINVAL);
1161 if (tmp == 0) {
1162 /* stty 0 => drop DTR and RTS */
1163 zs_modem(cs, 0);
1164 return (0);
1165 }
1166 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1167 if (tmp < 2)
1168 return (EINVAL);
1169
1170 cflag = t->c_cflag;
1171 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1172 tp->t_cflag = cflag;
1173
1174 /*
1175 * Block interrupts so that state will not
1176 * be altered until we are done setting it up.
1177 */
1178 s = splzs();
1179 cs->cs_preg[12] = tmp;
1180 cs->cs_preg[13] = tmp >> 8;
1181 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1182 switch (cflag & CSIZE) {
1183 case CS5:
1184 tmp = ZSWR3_RX_5;
1185 tmp5 = ZSWR5_TX_5;
1186 break;
1187 case CS6:
1188 tmp = ZSWR3_RX_6;
1189 tmp5 = ZSWR5_TX_6;
1190 break;
1191 case CS7:
1192 tmp = ZSWR3_RX_7;
1193 tmp5 = ZSWR5_TX_7;
1194 break;
1195 case CS8:
1196 default:
1197 tmp = ZSWR3_RX_8;
1198 tmp5 = ZSWR5_TX_8;
1199 break;
1200 }
1201
1202 /*
1203 * Output hardware flow control on the chip is horrendous: if
1204 * carrier detect drops, the receiver is disabled. Hence we
1205 * can only do this when the carrier is on.
1206 */
1207 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1208 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1209 else
1210 tmp |= ZSWR3_RX_ENABLE;
1211 cs->cs_preg[3] = tmp;
1212 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1213
1214 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1215 if ((cflag & PARODD) == 0)
1216 tmp |= ZSWR4_EVENP;
1217 if (cflag & PARENB)
1218 tmp |= ZSWR4_PARENB;
1219 cs->cs_preg[4] = tmp;
1220 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1221 cs->cs_preg[10] = ZSWR10_NRZ;
1222 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1223 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1224 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1225
1226 /*
1227 * If nothing is being transmitted, set up new current values,
1228 * else mark them as pending.
1229 */
1230 if (cs->cs_heldchange == 0) {
1231 if (cs->cs_ttyp->t_state & TS_BUSY) {
1232 cs->cs_heldtbc = cs->cs_tbc;
1233 cs->cs_tbc = 0;
1234 cs->cs_heldchange = 1;
1235 } else {
1236 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1237 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1238 }
1239 }
1240 splx(s);
1241 return (0);
1242 }
1243
1244 /*
1245 * Raise or lower modem control (DTR/RTS) signals. If a character is
1246 * in transmission, the change is deferred.
1247 */
1248 static void
1249 zs_modem(struct zs_chanstate *cs, int onoff)
1250 {
1251 int s, bis, and;
1252
1253 if (onoff) {
1254 bis = ZSWR5_DTR | ZSWR5_RTS;
1255 and = ~0;
1256 } else {
1257 bis = 0;
1258 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1259 }
1260 s = splzs();
1261 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1262 if (cs->cs_heldchange == 0) {
1263 if (cs->cs_ttyp->t_state & TS_BUSY) {
1264 cs->cs_heldtbc = cs->cs_tbc;
1265 cs->cs_tbc = 0;
1266 cs->cs_heldchange = 1;
1267 } else {
1268 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1269 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1270 }
1271 }
1272 splx(s);
1273 }
1274
1275 /*
1276 * Write the given register set to the given zs channel in the proper order.
1277 * The channel must not be transmitting at the time. The receiver will
1278 * be disabled for the time it takes to write all the registers.
1279 */
1280 static void
1281 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1282 {
1283 int i;
1284
1285 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1286 i = zc->zc_data; /* drain fifo */
1287 i = zc->zc_data;
1288 i = zc->zc_data;
1289 ZS_WRITE(zc, 4, reg[4]);
1290 ZS_WRITE(zc, 10, reg[10]);
1291 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1292 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1293 ZS_WRITE(zc, 1, reg[1]);
1294 ZS_WRITE(zc, 9, reg[9]);
1295 ZS_WRITE(zc, 11, reg[11]);
1296 ZS_WRITE(zc, 12, reg[12]);
1297 ZS_WRITE(zc, 13, reg[13]);
1298 ZS_WRITE(zc, 14, reg[14]);
1299 ZS_WRITE(zc, 15, reg[15]);
1300 ZS_WRITE(zc, 3, reg[3]);
1301 ZS_WRITE(zc, 5, reg[5]);
1302 }
1303
1304 static u_char
1305 zs_read(zc, reg)
1306 volatile struct zschan *zc;
1307 u_char reg;
1308 {
1309 u_char val;
1310
1311 zc->zc_csr = reg;
1312 ZS_DELAY();
1313 val = zc->zc_csr;
1314 ZS_DELAY();
1315 return val;
1316 }
1317
1318 static u_char
1319 zs_write(zc, reg, val)
1320 volatile struct zschan *zc;
1321 u_char reg, val;
1322 {
1323 zc->zc_csr = reg;
1324 ZS_DELAY();
1325 zc->zc_csr = val;
1326 ZS_DELAY();
1327 return val;
1328 }
1329
1330 #ifdef KGDB
1331 /*
1332 * Get a character from the given kgdb channel. Called at splhigh().
1333 */
1334 static int
1335 zs_kgdb_getc(void *arg)
1336 {
1337 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1338
1339 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1340 continue;
1341 return (zc->zc_data);
1342 }
1343
1344 /*
1345 * Put a character to the given kgdb channel. Called at splhigh().
1346 */
1347 static void
1348 zs_kgdb_putc(void *arg, int c)
1349 {
1350 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1351
1352 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1353 continue;
1354 zc->zc_data = c;
1355 }
1356
1357 /*
1358 * Set up for kgdb; called at boot time before configuration.
1359 * KGDB interrupts will be enabled later when zs0 is configured.
1360 */
1361 void
1362 zs_kgdb_init()
1363 {
1364 volatile struct zsdevice *addr;
1365 volatile struct zschan *zc;
1366 int unit, zs;
1367
1368 if (major(kgdb_dev) != ZSMAJOR)
1369 return;
1370 unit = minor(kgdb_dev);
1371 /*
1372 * Unit must be 0 or 1 (zs0).
1373 */
1374 if ((unsigned)unit >= ZS_KBD) {
1375 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1376 return;
1377 }
1378 zs = unit >> 1;
1379 unit &= 1;
1380
1381 if ((addr = zs0_va) == NULL)
1382 panic("kbdb_attach: zs0 not yet mapped");
1383
1384 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1385 zs_kgdb_savedspeed = zs_getspeed(zc);
1386 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1387 zs, unit + 'a', kgdb_rate);
1388 zs_reset(zc, 1, kgdb_rate);
1389 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1390 }
1391 #endif /* KGDB */
1392