zs.c revision 1.5 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * from: sparc/dev/zs.c,v 1.3 1993/10/13 02:36:44 deraadt Exp
46 * $Id: zs.c,v 1.5 1994/05/06 07:49:20 gwr Exp $
47 */
48
49 /*
50 * Zilog Z8530 (ZSCC) driver.
51 *
52 * Runs two tty ports (ttya and ttyb) on zs0,
53 * and runs a keyboard and mouse on zs1.
54 *
55 * This driver knows far too much about chip to usage mappings.
56 */
57 #define NZS 2 /* XXX */
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/proc.h>
62 #include <sys/device.h>
63 #include <sys/conf.h>
64 #include <sys/file.h>
65 #include <sys/ioctl.h>
66 #include <sys/tty.h>
67 #include <sys/time.h>
68 #include <sys/kernel.h>
69 #include <sys/syslog.h>
70
71 #include <machine/autoconf.h>
72 #include <machine/cpu.h>
73 #include <machine/obio.h>
74 #include <machine/mon.h>
75 #include <machine/eeprom.h>
76
77 #include <dev/cons.h>
78
79 #include "kbd.h"
80 #include "zsreg.h"
81 #include "zsvar.h"
82
83 #ifdef KGDB
84 #include <machine/remote-sl.h>
85 #endif
86
87 #define ZSMAJOR 12 /* XXX */
88
89 #define ZS_KBD 2 /* XXX */
90 #define ZS_MOUSE 3 /* XXX */
91
92 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
93 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
94
95 /*
96 * Select software interrupt levels.
97 */
98 #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
99 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
100
101 /*
102 * Software state per found chip. This would be called `zs_softc',
103 * but the previous driver had a rather different zs_softc....
104 */
105 struct zsinfo {
106 struct device zi_dev; /* base device */
107 volatile struct zsdevice *zi_zs;/* chip registers */
108 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
109 };
110
111 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
112
113 /* Definition of the driver for autoconfig. */
114 static int zsmatch(struct device *, struct cfdata *, void *);
115 static void zsattach(struct device *, struct device *, void *);
116 struct cfdriver zscd =
117 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
118
119 /* Interrupt handlers. */
120 static int zshard(int);
121 static int zssoft(int);
122
123 struct zs_chanstate *zslist;
124
125 /* Routines called from other code. */
126 int zsopen(dev_t, int, int, struct proc *);
127 int zsclose(dev_t, int, int, struct proc *);
128 static void zsiopen(struct tty *);
129 static void zsiclose(struct tty *);
130 static void zsstart(struct tty *);
131 void zsstop(struct tty *, int);
132 static int zsparam(struct tty *, struct termios *);
133
134 /* Routines purely local to this driver. */
135 static int zs_getspeed(volatile struct zschan *);
136 static void zs_reset(volatile struct zschan *, int, int);
137 static void zs_modem(struct zs_chanstate *, int);
138 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
139 static u_char zs_read(volatile struct zschan *, u_char);
140 static u_char zs_write(volatile struct zschan *, u_char, u_char);
141
142 /* Console stuff. */
143 static volatile struct zschan *zs_conschan;
144
145 #ifdef KGDB
146 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
147 extern int kgdb_dev, kgdb_rate;
148 static int zs_kgdb_savedspeed;
149 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
150 #endif
151
152 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
153
154 /*
155 * Console keyboard L1-A processing is done in the hardware interrupt code,
156 * so we need to duplicate some of the console keyboard decode state. (We
157 * must not use the regular state as the hardware code keeps ahead of the
158 * software state: the software state tracks the most recent ring input but
159 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
160 */
161 static struct conk_state { /* console keyboard state */
162 char conk_id; /* true => ID coming up (console only) */
163 char conk_l1; /* true => L1 pressed (console only) */
164 } zsconk_state;
165
166 int zshardscope;
167 int zsshortcuts; /* number of "shortcut" software interrupts */
168
169 /*
170 * Match slave number to zs unit number, so that misconfiguration will
171 * not set up the keyboard as ttya, etc.
172 */
173 static int
174 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
175 {
176 struct obio_cf_loc *obio_loc;
177 caddr_t zs_addr;
178
179 obio_loc = (struct obio_cf_loc *) CFDATA_LOC(cf);
180 zs_addr = (caddr_t) obio_loc->obio_addr;
181 return !obio_probe_byte(zs_addr);
182 }
183
184 /*
185 * Attach a found zs.
186 *
187 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
188 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
189 */
190 static void
191 zsattach(struct device *parent, struct device *dev, void *aux)
192 {
193 struct obio_cf_loc *obio_loc = OBIO_LOC(dev);
194 register int zs = dev->dv_unit, unit;
195 register struct zsinfo *zi;
196 register struct zs_chanstate *cs;
197 register volatile struct zsdevice *addr;
198 register struct tty *tp, *ctp;
199 int softcar;
200 static int didintr;
201 caddr_t obio_addr;
202
203 obio_addr = (caddr_t)obio_loc->obio_addr;
204 obio_print(obio_addr, ZSSOFT_PRI);
205 printf(" hwpri %d\n", ZSHARD_PRI);
206
207 if ((addr = zsaddr[zs]) == NULL) {
208 zsaddr[zs] = addr = (struct zsdevice *)
209 obio_alloc(obio_addr, OBIO_ZS_SIZE, OBIO_WRITE);
210 }
211
212 if (!didintr) {
213 didintr = 1;
214 isr_add(ZSSOFT_PRI, zssoft, 0);
215 isr_add(ZSHARD_PRI, zshard, 0);
216 }
217
218 zi = (struct zsinfo *)dev;
219 zi->zi_zs = addr;
220 unit = zs * 2;
221 cs = zi->zi_cs;
222
223 if(!zs_tty[unit])
224 zs_tty[unit] = ttymalloc();
225 tp = zs_tty[unit];
226 if(!zs_tty[unit+1])
227 zs_tty[unit+1] = ttymalloc();
228
229 if (unit == 0) {
230 softcar = 0;
231 } else
232 softcar = dev->dv_cfdata->cf_flags;
233
234 /* link into interrupt list with order (A,B) (B=A+1) */
235 cs[0].cs_next = &cs[1];
236 cs[1].cs_next = zslist;
237 zslist = cs;
238
239 cs->cs_unit = unit;
240 cs->cs_zc = &addr->zs_chan[CHAN_A];
241 cs->cs_speed = zs_getspeed(cs->cs_zc);
242 #ifdef DEBUG
243 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
244 #endif
245 cs->cs_softcar = softcar & 1;
246 #if 0
247 /* XXX - Drop carrier here? -gwr */
248 zs_modem(cs, cs->cs_softcar ? 1 : 0);
249 #endif
250 cs->cs_ttyp = tp;
251 tp->t_dev = makedev(ZSMAJOR, unit);
252 tp->t_oproc = zsstart;
253 tp->t_param = zsparam;
254 /*tp->t_stop = zsstop;*/
255 if (cs->cs_zc == zs_conschan) {
256 /* This unit is the console. */
257 cs->cs_consio = 1;
258 cs->cs_brkabort = 1;
259 cs->cs_softcar = 1;
260 } else {
261 /* Can not run kgdb on the console? */
262 #ifdef KGDB
263 zs_checkkgdb(unit, cs, tp);
264 #endif
265 }
266 if (unit == ZS_KBD) {
267 /*
268 * Keyboard: tell /dev/kbd driver how to talk to us.
269 */
270 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
271 tp->t_cflag = CS8;
272 kbd_serial(tp, zsiopen, zsiclose);
273 cs->cs_conk = 1; /* do L1-A processing */
274 }
275 unit++;
276 cs++;
277 tp = zs_tty[unit];
278
279 cs->cs_unit = unit;
280 cs->cs_zc = &addr->zs_chan[CHAN_B];
281 cs->cs_speed = zs_getspeed(cs->cs_zc);
282 #ifdef DEBUG
283 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
284 #endif
285 cs->cs_softcar = softcar & 2;
286 #if 0
287 /* XXX - Drop carrier here? -gwr */
288 zs_modem(cs, cs->cs_softcar ? 1 : 0);
289 #endif
290 cs->cs_ttyp = tp;
291 tp->t_dev = makedev(ZSMAJOR, unit);
292 tp->t_oproc = zsstart;
293 tp->t_param = zsparam;
294 /*tp->t_stop = zsstop;*/
295 if (cs->cs_zc == zs_conschan) {
296 /* This unit is the console. */
297 cs->cs_consio = 1;
298 cs->cs_brkabort = 1;
299 cs->cs_softcar = 1;
300 } else {
301 /* Can not run kgdb on the console? */
302 #ifdef KGDB
303 zs_checkkgdb(unit, cs, tp);
304 #endif
305 }
306 if (unit == ZS_MOUSE) {
307 /*
308 * Mouse: tell /dev/mouse driver how to talk to us.
309 */
310 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
311 tp->t_cflag = CS8;
312 ms_serial(tp, zsiopen, zsiclose);
313 }
314 }
315
316 /*
317 * Put a channel in a known state. Interrupts may be left disabled
318 * or enabled, as desired.
319 */
320 static void
321 zs_reset(zc, inten, speed)
322 volatile struct zschan *zc;
323 int inten, speed;
324 {
325 int tconst;
326 static u_char reg[16] = {
327 0,
328 0,
329 0,
330 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
331 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
332 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
333 0,
334 0,
335 0,
336 0,
337 ZSWR10_NRZ,
338 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
339 0,
340 0,
341 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
342 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
343 };
344
345 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
346 tconst = BPS_TO_TCONST(PCLK / 16, speed);
347 reg[12] = tconst;
348 reg[13] = tconst >> 8;
349 zs_loadchannelregs(zc, reg);
350 }
351
352 /*
353 * Console support
354 */
355
356 /*
357 * Used by the kd driver to find out if it can work.
358 */
359 int
360 zscnprobe_kbd()
361 {
362 if (zs1_va == NULL) {
363 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
364 return CN_DEAD;
365 }
366 zsaddr[1] = (struct zsdevice *)zs1_va;
367 return CN_INTERNAL;
368 }
369
370 /*
371 * This is the console probe routine for ttya and ttyb.
372 */
373 static int
374 zscnprobe(struct consdev *cn, int unit)
375 {
376 int maj, eeCons;
377
378 if (zs0_va == NULL) {
379 mon_printf("zscnprobe: zs0 not yet mapped\n");
380 cn->cn_pri = CN_DEAD;
381 return 0;
382 }
383 zsaddr[0] = (struct zsdevice *)zs0_va;
384 /* XXX - Also try to make sure it exists? */
385
386 /* locate the major number */
387 for (maj = 0; maj < nchrdev; maj++)
388 if (cdevsw[maj].d_open == zsopen)
389 break;
390
391 cn->cn_dev = makedev(maj, unit);
392
393 /* Use EEPROM console setting to decide "remote" console. */
394 if (eeprom_va == NULL) {
395 mon_printf("zscnprobe: eeprom not yet mapped\n");
396 eeCons = -1;
397 } else {
398 eeCons = ((struct eeprom *)eeprom_va)->eeConsole;
399 }
400
401 /* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
402 if (eeCons == (EE_CONS_TTYA + unit)) {
403 cn->cn_pri = CN_REMOTE;
404 } else {
405 cn->cn_pri = CN_NORMAL;
406 }
407 return (0);
408 }
409
410 /* This is the constab entry for TTYA. */
411 int
412 zscnprobe_a(struct consdev *cn)
413 {
414 return (zscnprobe(cn, 0));
415 }
416
417 /* This is the constab entry for TTYB. */
418 int
419 zscnprobe_b(struct consdev *cn)
420 {
421 return (zscnprobe(cn, 1));
422 }
423
424 /* Attach as console. Also set zs_conschan */
425 int
426 zscninit(struct consdev *cn)
427 {
428 int unit;
429 volatile struct zsdevice *addr;
430
431 unit = minor(cn->cn_dev) & 1;
432 addr = (struct zsdevice *)zs0_va;
433 zs_conschan = ((unit == 0) ?
434 &addr->zs_chan[CHAN_A] :
435 &addr->zs_chan[CHAN_B] );
436
437 mon_printf("console on zs0 (tty%c)\n", unit + 'a');
438 }
439
440
441 /*
442 * Polled console input putchar.
443 */
444 int
445 zscngetc(dev)
446 dev_t dev;
447 {
448 register volatile struct zschan *zc = zs_conschan;
449 register int s, c;
450
451 if (zc == NULL)
452 return (0);
453
454 s = splhigh();
455 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
456 ZS_DELAY();
457 ZS_DELAY();
458 c = zc->zc_data;
459 splx(s);
460 return (c);
461 }
462
463 /*
464 * Polled console output putchar.
465 */
466 int
467 zscnputc(dev, c)
468 dev_t dev;
469 int c;
470 {
471 register volatile struct zschan *zc = zs_conschan;
472 register int s;
473
474 if (zc == NULL) {
475 s = splhigh();
476 mon_putchar(c);
477 splx(s);
478 return (0);
479 }
480
481 s = splhigh();
482 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
483 ZS_DELAY();
484 ZS_DELAY();
485 zc->zc_data = c;
486 ZS_DELAY();
487 splx(s);
488 }
489
490 #ifdef KGDB
491 /*
492 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
493 * Pick up the current speed and character size and restore the original
494 * speed.
495 */
496 static void
497 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
498 {
499
500 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
501 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
502 tp->t_cflag = CS8;
503 cs->cs_kgdb = 1;
504 cs->cs_speed = zs_kgdb_savedspeed;
505 (void) zsparam(tp, &tp->t_termios);
506 }
507 }
508 #endif
509
510 /*
511 * Compute the current baud rate given a ZSCC channel.
512 */
513 static int
514 zs_getspeed(zc)
515 register volatile struct zschan *zc;
516 {
517 register int tconst;
518
519 tconst = ZS_READ(zc, 12);
520 tconst |= ZS_READ(zc, 13) << 8;
521 return (TCONST_TO_BPS(PCLK / 16, tconst));
522 }
523
524
525 /*
526 * Do an internal open.
527 */
528 static void
529 zsiopen(struct tty *tp)
530 {
531
532 (void) zsparam(tp, &tp->t_termios);
533 ttsetwater(tp);
534 tp->t_state = TS_ISOPEN | TS_CARR_ON;
535 }
536
537 /*
538 * Do an internal close. Eventually we should shut off the chip when both
539 * ports on it are closed.
540 */
541 static void
542 zsiclose(struct tty *tp)
543 {
544
545 ttylclose(tp, 0); /* ??? */
546 ttyclose(tp); /* ??? */
547 tp->t_state = 0;
548 }
549
550
551 /*
552 * Open a zs serial port. This interface may not be used to open
553 * the keyboard and mouse ports. (XXX)
554 */
555 int
556 zsopen(dev_t dev, int flags, int mode, struct proc *p)
557 {
558 register struct tty *tp;
559 register struct zs_chanstate *cs;
560 struct zsinfo *zi;
561 int unit = minor(dev), zs = unit >> 1, error, s;
562
563 #ifdef DEBUG
564 mon_printf("zs_open\n");
565 #endif
566 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
567 unit == ZS_KBD || unit == ZS_MOUSE)
568 return (ENXIO);
569 cs = &zi->zi_cs[unit & 1];
570 #if 0
571 /* The kd driver avoids the need for this hack. */
572 if (cs->cs_consio)
573 return (ENXIO); /* ??? */
574 #endif
575 tp = cs->cs_ttyp;
576 s = spltty();
577 if ((tp->t_state & TS_ISOPEN) == 0) {
578 ttychars(tp);
579 if (tp->t_ispeed == 0) {
580 tp->t_iflag = TTYDEF_IFLAG;
581 tp->t_oflag = TTYDEF_OFLAG;
582 tp->t_cflag = TTYDEF_CFLAG;
583 tp->t_lflag = TTYDEF_LFLAG;
584 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
585 }
586 (void) zsparam(tp, &tp->t_termios);
587 ttsetwater(tp);
588 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
589 splx(s);
590 return (EBUSY);
591 }
592 error = 0;
593 #ifdef DEBUG
594 mon_printf("wait for carrier...\n");
595 #endif
596 for (;;) {
597 /* loop, turning on the device, until carrier present */
598 zs_modem(cs, 1);
599 /* May never get status intr if carrier already on. -gwr */
600 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
601 tp->t_state |= TS_CARR_ON;
602 if (cs->cs_softcar)
603 tp->t_state |= TS_CARR_ON;
604 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
605 tp->t_state & TS_CARR_ON)
606 break;
607 tp->t_state |= TS_WOPEN;
608 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
609 ttopen, 0))
610 break;
611 }
612 #ifdef DEBUG
613 mon_printf("...carrier %s\n",
614 (tp->t_state & TS_CARR_ON) ? "on" : "off");
615 #endif
616 splx(s);
617 if (error == 0)
618 error = linesw[tp->t_line].l_open(dev, tp);
619 if (error)
620 zs_modem(cs, 0);
621 return (error);
622 }
623
624 /*
625 * Close a zs serial port.
626 */
627 int
628 zsclose(dev_t dev, int flags, int mode, struct proc *p)
629 {
630 register struct zs_chanstate *cs;
631 register struct tty *tp;
632 struct zsinfo *zi;
633 int unit = minor(dev), s;
634
635 #ifdef DEBUG
636 mon_printf("zs_close\n");
637 #endif
638 zi = zscd.cd_devs[unit >> 1];
639 cs = &zi->zi_cs[unit & 1];
640 tp = cs->cs_ttyp;
641 linesw[tp->t_line].l_close(tp, flags);
642 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
643 (tp->t_state & TS_ISOPEN) == 0) {
644 zs_modem(cs, 0);
645 /* hold low for 1 second */
646 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
647 }
648 ttyclose(tp);
649 #ifdef KGDB
650 /* Reset the speed if we're doing kgdb on this port */
651 if (cs->cs_kgdb) {
652 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
653 (void) zsparam(tp, &tp->t_termios);
654 }
655 #endif
656 return (0);
657 }
658
659 /*
660 * Read/write zs serial port.
661 */
662 int
663 zsread(dev_t dev, struct uio *uio, int flags)
664 {
665 register struct tty *tp = zs_tty[minor(dev)];
666
667 return (linesw[tp->t_line].l_read(tp, uio, flags));
668 }
669
670 int
671 zswrite(dev_t dev, struct uio *uio, int flags)
672 {
673 register struct tty *tp = zs_tty[minor(dev)];
674
675 return (linesw[tp->t_line].l_write(tp, uio, flags));
676 }
677
678 /*
679 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
680 * channels are kept in (A,B) pairs.
681 *
682 * Do just a little, then get out; set a software interrupt if more
683 * work is needed.
684 *
685 * We deliberately ignore the vectoring Zilog gives us, and match up
686 * only the number of `reset interrupt under service' operations, not
687 * the order.
688 */
689 /* ARGSUSED */
690 int
691 zshard(int intrarg)
692 {
693 register struct zs_chanstate *a;
694 #define b (a + 1)
695 register volatile struct zschan *zc;
696 register int rr3, intflags = 0, v, i;
697 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
698 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
699 static int zssint(struct zs_chanstate *, volatile struct zschan *);
700
701 for (a = zslist; a != NULL; a = b->cs_next) {
702 rr3 = ZS_READ(a->cs_zc, 3);
703
704 /* XXX - This should loop to empty the on-chip fifo. */
705 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
706 intflags |= 2;
707 zc = a->cs_zc;
708 i = a->cs_rbput;
709 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
710 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
711 intflags |= 1;
712 }
713 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
714 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
715 intflags |= 1;
716 }
717 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
718 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
719 intflags |= 1;
720 }
721 a->cs_rbput = i;
722 }
723
724 /* XXX - This should loop to empty the on-chip fifo. */
725 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
726 intflags |= 2;
727 zc = b->cs_zc;
728 i = b->cs_rbput;
729 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
730 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
731 intflags |= 1;
732 }
733 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
734 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
735 intflags |= 1;
736 }
737 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
738 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
739 intflags |= 1;
740 }
741 b->cs_rbput = i;
742 }
743 }
744 #undef b
745 if (intflags & 1) {
746 isr_soft_request(ZSSOFT_PRI);
747 }
748 return (intflags & 2);
749 }
750
751 static int
752 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
753 {
754 register int c = zc->zc_data;
755
756 if (cs->cs_conk) {
757 register struct conk_state *conk = &zsconk_state;
758
759 /*
760 * Check here for console abort function, so that we
761 * can abort even when interrupts are locking up the
762 * machine.
763 */
764 if (c == KBD_RESET) {
765 conk->conk_id = 1; /* ignore next byte */
766 conk->conk_l1 = 0;
767 } else if (conk->conk_id)
768 conk->conk_id = 0; /* stop ignoring bytes */
769 else if (c == KBD_L1)
770 conk->conk_l1 = 1; /* L1 went down */
771 else if (c == (KBD_L1|KBD_UP))
772 conk->conk_l1 = 0; /* L1 went up */
773 else if (c == KBD_A && conk->conk_l1) {
774 zsabort();
775 conk->conk_l1 = 0; /* we never see the up */
776 goto clearit; /* eat the A after L1-A */
777 }
778 }
779 #ifdef KGDB
780 if (c == FRAME_START && cs->cs_kgdb &&
781 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
782 zskgdb(cs->cs_unit);
783 goto clearit;
784 }
785 #endif
786 /* compose receive character and status */
787 c <<= 8;
788 c |= ZS_READ(zc, 1);
789
790 /* clear receive error & interrupt condition */
791 zc->zc_csr = ZSWR0_RESET_ERRORS;
792 zc->zc_csr = ZSWR0_CLR_INTR;
793
794 return (ZRING_MAKE(ZRING_RINT, c));
795
796 clearit:
797 zc->zc_csr = ZSWR0_RESET_ERRORS;
798 zc->zc_csr = ZSWR0_CLR_INTR;
799 return (0);
800 }
801
802 static int
803 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
804 {
805 register int i = cs->cs_tbc;
806
807 if (i == 0) {
808 zc->zc_csr = ZSWR0_RESET_TXINT;
809 zc->zc_csr = ZSWR0_CLR_INTR;
810 return (ZRING_MAKE(ZRING_XINT, 0));
811 }
812 cs->cs_tbc = i - 1;
813 zc->zc_data = *cs->cs_tba++;
814 zc->zc_csr = ZSWR0_CLR_INTR;
815 return (0);
816 }
817
818 static int
819 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
820 {
821 register int rr0;
822
823 rr0 = zc->zc_csr;
824 zc->zc_csr = ZSWR0_RESET_STATUS;
825 zc->zc_csr = ZSWR0_CLR_INTR;
826 /*
827 * The chip's hardware flow control is, as noted in zsreg.h,
828 * busted---if the DCD line goes low the chip shuts off the
829 * receiver (!). If we want hardware CTS flow control but do
830 * not have it, and carrier is now on, turn HFC on; if we have
831 * HFC now but carrier has gone low, turn it off.
832 */
833 if (rr0 & ZSRR0_DCD) {
834 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
835 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
836 cs->cs_creg[3] |= ZSWR3_HFC;
837 ZS_WRITE(zc, 3, cs->cs_creg[3]);
838 }
839 } else {
840 if (cs->cs_creg[3] & ZSWR3_HFC) {
841 cs->cs_creg[3] &= ~ZSWR3_HFC;
842 ZS_WRITE(zc, 3, cs->cs_creg[3]);
843 }
844 }
845 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
846 /* Wait for end of break to avoid PROM abort. */
847 while (zc->zc_csr & ZSRR0_BREAK)
848 ZS_DELAY();
849 zsabort();
850 return (0);
851 }
852 return (ZRING_MAKE(ZRING_SINT, rr0));
853 }
854
855 zsabort()
856 {
857 #ifdef DDB
858 Debugger();
859 #else
860 printf("stopping on keyboard abort\n");
861 sun3_rom_abort();
862 #endif
863 }
864
865 #ifdef KGDB
866 /*
867 * KGDB framing character received: enter kernel debugger. This probably
868 * should time out after a few seconds to avoid hanging on spurious input.
869 */
870 zskgdb(int unit)
871 {
872
873 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
874 kgdb_connect(1);
875 }
876 #endif
877
878 /*
879 * Print out a ring or fifo overrun error message.
880 */
881 static void
882 zsoverrun(int unit, long *ptime, char *what)
883 {
884
885 if (*ptime != time.tv_sec) {
886 *ptime = time.tv_sec;
887 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
888 (unit & 1) + 'a', what);
889 }
890 }
891
892 /*
893 * ZS software interrupt. Scan all channels for deferred interrupts.
894 */
895 int
896 zssoft(int arg)
897 {
898 register struct zs_chanstate *cs;
899 register volatile struct zschan *zc;
900 register struct linesw *line;
901 register struct tty *tp;
902 register int get, n, c, cc, unit, s;
903
904 isr_soft_clear(ZSSOFT_PRI);
905
906 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
907 get = cs->cs_rbget;
908 again:
909 n = cs->cs_rbput; /* atomic */
910 if (get == n) /* nothing more on this line */
911 continue;
912 unit = cs->cs_unit; /* set up to handle interrupts */
913 zc = cs->cs_zc;
914 tp = cs->cs_ttyp;
915 line = &linesw[tp->t_line];
916 /*
917 * Compute the number of interrupts in the receive ring.
918 * If the count is overlarge, we lost some events, and
919 * must advance to the first valid one. It may get
920 * overwritten if more data are arriving, but this is
921 * too expensive to check and gains nothing (we already
922 * lost out; all we can do at this point is trade one
923 * kind of loss for another).
924 */
925 n -= get;
926 if (n > ZLRB_RING_SIZE) {
927 zsoverrun(unit, &cs->cs_rotime, "ring");
928 get += n - ZLRB_RING_SIZE;
929 n = ZLRB_RING_SIZE;
930 }
931 while (--n >= 0) {
932 /* race to keep ahead of incoming interrupts */
933 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
934 switch (ZRING_TYPE(c)) {
935
936 case ZRING_RINT:
937 c = ZRING_VALUE(c);
938 if (c & ZSRR1_DO)
939 zsoverrun(unit, &cs->cs_fotime, "fifo");
940 cc = c >> 8;
941 if (c & ZSRR1_FE)
942 cc |= TTY_FE;
943 if (c & ZSRR1_PE)
944 cc |= TTY_PE;
945 /*
946 * this should be done through
947 * bstreams XXX gag choke
948 */
949 if (unit == ZS_KBD)
950 kbd_rint(cc);
951 else if (unit == ZS_MOUSE)
952 ms_rint(cc);
953 else
954 line->l_rint(cc, tp);
955 break;
956
957 case ZRING_XINT:
958 /*
959 * Transmit done: change registers and resume,
960 * or clear BUSY.
961 */
962 if (cs->cs_heldchange) {
963 s = splzs();
964 c = zc->zc_csr;
965 if ((c & ZSRR0_DCD) == 0)
966 cs->cs_preg[3] &= ~ZSWR3_HFC;
967 bcopy((caddr_t)cs->cs_preg,
968 (caddr_t)cs->cs_creg, 16);
969 zs_loadchannelregs(zc, cs->cs_creg);
970 splx(s);
971 cs->cs_heldchange = 0;
972 if (cs->cs_heldtbc &&
973 (tp->t_state & TS_TTSTOP) == 0) {
974 cs->cs_tbc = cs->cs_heldtbc - 1;
975 zc->zc_data = *cs->cs_tba++;
976 goto again;
977 }
978 }
979 tp->t_state &= ~TS_BUSY;
980 if (tp->t_state & TS_FLUSH)
981 tp->t_state &= ~TS_FLUSH;
982 else
983 ndflush(&tp->t_outq,
984 (char *)cs->cs_tba - tp->t_outq.c_cf);
985 line->l_start(tp);
986 break;
987
988 case ZRING_SINT:
989 /*
990 * Status line change. HFC bit is run in
991 * hardware interrupt, to avoid locking
992 * at splzs here.
993 */
994 c = ZRING_VALUE(c);
995 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
996 cc = (c & ZSRR0_DCD) != 0;
997 if (line->l_modem(tp, cc) == 0)
998 zs_modem(cs, cc);
999 }
1000 cs->cs_rr0 = c;
1001 break;
1002
1003 default:
1004 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1005 unit >> 1, (unit & 1) + 'a', c);
1006 break;
1007 }
1008 }
1009 cs->cs_rbget = get;
1010 goto again;
1011 }
1012 return (1);
1013 }
1014
1015 int
1016 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1017 {
1018 int unit = minor(dev);
1019 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1020 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1021 register int error;
1022
1023 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1024 if (error >= 0)
1025 return (error);
1026 error = ttioctl(tp, cmd, data, flag, p);
1027 if (error >= 0)
1028 return (error);
1029
1030 switch (cmd) {
1031
1032 case TIOCSBRK:
1033 /* FINISH ME ... need implicit TIOCCBRK in zsclose as well */
1034
1035 case TIOCCBRK:
1036
1037 case TIOCSDTR:
1038
1039 case TIOCCDTR:
1040
1041 case TIOCMSET:
1042
1043 case TIOCMBIS:
1044
1045 case TIOCMBIC:
1046
1047 case TIOCMGET:
1048
1049 default:
1050 return (ENOTTY);
1051 }
1052 return (0);
1053 }
1054
1055 /*
1056 * Start or restart transmission.
1057 */
1058 static void
1059 zsstart(register struct tty *tp)
1060 {
1061 register struct zs_chanstate *cs;
1062 register int s, nch;
1063 int unit = minor(tp->t_dev);
1064 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1065
1066 cs = &zi->zi_cs[unit & 1];
1067 s = spltty();
1068
1069 /*
1070 * If currently active or delaying, no need to do anything.
1071 */
1072 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1073 goto out;
1074
1075 /*
1076 * If there are sleepers, and output has drained below low
1077 * water mark, awaken.
1078 */
1079 if (tp->t_outq.c_cc <= tp->t_lowat) {
1080 if (tp->t_state & TS_ASLEEP) {
1081 tp->t_state &= ~TS_ASLEEP;
1082 wakeup((caddr_t)&tp->t_outq);
1083 }
1084 selwakeup(&tp->t_wsel);
1085 }
1086
1087 nch = ndqb(&tp->t_outq, 0); /* XXX */
1088 if (nch) {
1089 register char *p = tp->t_outq.c_cf;
1090
1091 /* mark busy, enable tx done interrupts, & send first byte */
1092 tp->t_state |= TS_BUSY;
1093 (void) splzs();
1094 cs->cs_preg[1] |= ZSWR1_TIE;
1095 cs->cs_creg[1] |= ZSWR1_TIE;
1096 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1097 cs->cs_zc->zc_data = *p;
1098 cs->cs_tba = p + 1;
1099 cs->cs_tbc = nch - 1;
1100 } else {
1101 /*
1102 * Nothing to send, turn off transmit done interrupts.
1103 * This is useful if something is doing polled output.
1104 */
1105 (void) splzs();
1106 cs->cs_preg[1] &= ~ZSWR1_TIE;
1107 cs->cs_creg[1] &= ~ZSWR1_TIE;
1108 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1109 }
1110 out:
1111 splx(s);
1112 }
1113
1114 /*
1115 * Stop output, e.g., for ^S or output flush.
1116 */
1117 void
1118 zsstop(register struct tty *tp, int flag)
1119 {
1120 register struct zs_chanstate *cs;
1121 register int s, unit = minor(tp->t_dev);
1122 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1123
1124 cs = &zi->zi_cs[unit & 1];
1125 s = splzs();
1126 if (tp->t_state & TS_BUSY) {
1127 /*
1128 * Device is transmitting; must stop it.
1129 */
1130 cs->cs_tbc = 0;
1131 if ((tp->t_state & TS_TTSTOP) == 0)
1132 tp->t_state |= TS_FLUSH;
1133 }
1134 splx(s);
1135 }
1136
1137 /*
1138 * Set ZS tty parameters from termios.
1139 *
1140 * This routine makes use of the fact that only registers
1141 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1142 */
1143 static int
1144 zsparam(register struct tty *tp, register struct termios *t)
1145 {
1146 int unit = minor(tp->t_dev);
1147 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1148 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1149 register int tmp, tmp5, cflag, s;
1150
1151 /*
1152 * Because PCLK is only run at 4.9 MHz, the fastest we
1153 * can go is 51200 baud (this corresponds to TC=1).
1154 * This is somewhat unfortunate as there is no real
1155 * reason we should not be able to handle higher rates.
1156 */
1157 tmp = t->c_ospeed;
1158 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1159 return (EINVAL);
1160 if (tmp == 0) {
1161 /* stty 0 => drop DTR and RTS */
1162 zs_modem(cs, 0);
1163 return (0);
1164 }
1165 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1166 if (tmp < 2)
1167 return (EINVAL);
1168
1169 cflag = t->c_cflag;
1170 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1171 tp->t_cflag = cflag;
1172
1173 /*
1174 * Block interrupts so that state will not
1175 * be altered until we are done setting it up.
1176 */
1177 s = splzs();
1178 cs->cs_preg[12] = tmp;
1179 cs->cs_preg[13] = tmp >> 8;
1180 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1181 switch (cflag & CSIZE) {
1182 case CS5:
1183 tmp = ZSWR3_RX_5;
1184 tmp5 = ZSWR5_TX_5;
1185 break;
1186 case CS6:
1187 tmp = ZSWR3_RX_6;
1188 tmp5 = ZSWR5_TX_6;
1189 break;
1190 case CS7:
1191 tmp = ZSWR3_RX_7;
1192 tmp5 = ZSWR5_TX_7;
1193 break;
1194 case CS8:
1195 default:
1196 tmp = ZSWR3_RX_8;
1197 tmp5 = ZSWR5_TX_8;
1198 break;
1199 }
1200
1201 /*
1202 * Output hardware flow control on the chip is horrendous: if
1203 * carrier detect drops, the receiver is disabled. Hence we
1204 * can only do this when the carrier is on.
1205 */
1206 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1207 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1208 else
1209 tmp |= ZSWR3_RX_ENABLE;
1210 cs->cs_preg[3] = tmp;
1211 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1212
1213 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1214 if ((cflag & PARODD) == 0)
1215 tmp |= ZSWR4_EVENP;
1216 if (cflag & PARENB)
1217 tmp |= ZSWR4_PARENB;
1218 cs->cs_preg[4] = tmp;
1219 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1220 cs->cs_preg[10] = ZSWR10_NRZ;
1221 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1222 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1223 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1224
1225 /*
1226 * If nothing is being transmitted, set up new current values,
1227 * else mark them as pending.
1228 */
1229 if (cs->cs_heldchange == 0) {
1230 if (cs->cs_ttyp->t_state & TS_BUSY) {
1231 cs->cs_heldtbc = cs->cs_tbc;
1232 cs->cs_tbc = 0;
1233 cs->cs_heldchange = 1;
1234 } else {
1235 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1236 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1237 }
1238 }
1239 splx(s);
1240 return (0);
1241 }
1242
1243 /*
1244 * Raise or lower modem control (DTR/RTS) signals. If a character is
1245 * in transmission, the change is deferred.
1246 */
1247 static void
1248 zs_modem(struct zs_chanstate *cs, int onoff)
1249 {
1250 int s, bis, and;
1251
1252 if (onoff) {
1253 bis = ZSWR5_DTR | ZSWR5_RTS;
1254 and = ~0;
1255 } else {
1256 bis = 0;
1257 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1258 }
1259 s = splzs();
1260 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1261 if (cs->cs_heldchange == 0) {
1262 if (cs->cs_ttyp->t_state & TS_BUSY) {
1263 cs->cs_heldtbc = cs->cs_tbc;
1264 cs->cs_tbc = 0;
1265 cs->cs_heldchange = 1;
1266 } else {
1267 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1268 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1269 }
1270 }
1271 splx(s);
1272 }
1273
1274 /*
1275 * Write the given register set to the given zs channel in the proper order.
1276 * The channel must not be transmitting at the time. The receiver will
1277 * be disabled for the time it takes to write all the registers.
1278 */
1279 static void
1280 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1281 {
1282 int i;
1283
1284 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1285 i = zc->zc_data; /* drain fifo */
1286 i = zc->zc_data;
1287 i = zc->zc_data;
1288 ZS_WRITE(zc, 4, reg[4]);
1289 ZS_WRITE(zc, 10, reg[10]);
1290 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1291 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1292 ZS_WRITE(zc, 1, reg[1]);
1293 ZS_WRITE(zc, 9, reg[9]);
1294 ZS_WRITE(zc, 11, reg[11]);
1295 ZS_WRITE(zc, 12, reg[12]);
1296 ZS_WRITE(zc, 13, reg[13]);
1297 ZS_WRITE(zc, 14, reg[14]);
1298 ZS_WRITE(zc, 15, reg[15]);
1299 ZS_WRITE(zc, 3, reg[3]);
1300 ZS_WRITE(zc, 5, reg[5]);
1301 }
1302
1303 static u_char
1304 zs_read(zc, reg)
1305 volatile struct zschan *zc;
1306 u_char reg;
1307 {
1308 u_char val;
1309
1310 zc->zc_csr = reg;
1311 ZS_DELAY();
1312 val = zc->zc_csr;
1313 ZS_DELAY();
1314 return val;
1315 }
1316
1317 static u_char
1318 zs_write(zc, reg, val)
1319 volatile struct zschan *zc;
1320 u_char reg, val;
1321 {
1322 zc->zc_csr = reg;
1323 ZS_DELAY();
1324 zc->zc_csr = val;
1325 ZS_DELAY();
1326 return val;
1327 }
1328
1329 #ifdef KGDB
1330 /*
1331 * Get a character from the given kgdb channel. Called at splhigh().
1332 */
1333 static int
1334 zs_kgdb_getc(void *arg)
1335 {
1336 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1337
1338 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1339 continue;
1340 return (zc->zc_data);
1341 }
1342
1343 /*
1344 * Put a character to the given kgdb channel. Called at splhigh().
1345 */
1346 static void
1347 zs_kgdb_putc(void *arg, int c)
1348 {
1349 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1350
1351 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1352 continue;
1353 zc->zc_data = c;
1354 }
1355
1356 /*
1357 * Set up for kgdb; called at boot time before configuration.
1358 * KGDB interrupts will be enabled later when zs0 is configured.
1359 */
1360 void
1361 zs_kgdb_init()
1362 {
1363 volatile struct zsdevice *addr;
1364 volatile struct zschan *zc;
1365 int unit, zs;
1366
1367 if (major(kgdb_dev) != ZSMAJOR)
1368 return;
1369 unit = minor(kgdb_dev);
1370 /*
1371 * Unit must be 0 or 1 (zs0).
1372 */
1373 if ((unsigned)unit >= ZS_KBD) {
1374 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1375 return;
1376 }
1377 zs = unit >> 1;
1378 unit &= 1;
1379
1380 if ((addr = zs0_va) == NULL)
1381 panic("kbdb_attach: zs0 not yet mapped");
1382
1383 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1384 zs_kgdb_savedspeed = zs_getspeed(zc);
1385 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1386 zs, unit + 'a', kgdb_rate);
1387 zs_reset(zc, 1, kgdb_rate);
1388 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1389 }
1390 #endif /* KGDB */
1391