zs.c revision 1.60 1 /* $NetBSD: zs.c,v 1.60 2000/03/06 21:36:12 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/conf.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/ioctl.h>
53 #include <sys/kernel.h>
54 #include <sys/proc.h>
55 #include <sys/tty.h>
56 #include <sys/time.h>
57 #include <sys/syslog.h>
58
59 #include <machine/autoconf.h>
60 #include <machine/cpu.h>
61 #include <machine/mon.h>
62 #include <machine/z8530var.h>
63
64 #include <sun3/sun3/machdep.h>
65 #ifdef _SUN3X_
66 #include <sun3/sun3x/obio.h>
67 #else
68 #include <sun3/sun3/obio.h>
69 #endif
70 #include <sun3/dev/zs_cons.h>
71
72 #include <dev/cons.h>
73 #include <dev/ic/z8530reg.h>
74
75 #include "kbd.h" /* NKBD */
76 #include "zsc.h" /* NZSC */
77 #define NZS NZSC
78
79 /* Make life easier for the initialized arrays here. */
80 #if NZS < 2
81 #undef NZS
82 #define NZS 2
83 #endif
84
85 /*
86 * Some warts needed by z8530tty.c -
87 * The default parity REALLY needs to be the same as the PROM uses,
88 * or you can not see messages done with printf during boot-up...
89 */
90 int zs_def_cflag = (CREAD | CS8 | HUPCL);
91 int zs_major = 12;
92
93 /*
94 * The Sun3 provides a 4.9152 MHz clock to the ZS chips.
95 */
96 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
97
98 /*
99 * Define interrupt levels.
100 */
101 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
102 #define ZSSOFT_PRI 3 /* Want tty pri (4) but this is OK. */
103
104 #define ZS_DELAY() delay(2)
105
106 /* The layout of this is hardware-dependent (padding, order). */
107 struct zschan {
108 volatile u_char zc_csr; /* ctrl,status, and indirect access */
109 u_char zc_xxx0;
110 volatile u_char zc_data; /* data */
111 u_char zc_xxx1;
112 };
113 struct zsdevice {
114 /* Yes, they are backwards. */
115 struct zschan zs_chan_b;
116 struct zschan zs_chan_a;
117 };
118
119
120 /* Default OBIO addresses. */
121 static int zs_physaddr[NZS] = {
122 OBIO_ZS_KBD_MS,
123 OBIO_ZS_TTY_AB };
124
125 /* Saved PROM mappings */
126 static struct zsdevice *zsaddr[NZS];
127
128 /* Flags from cninit() */
129 static int zs_hwflags[NZS][2];
130
131 /* Default speed for each channel */
132 static int zs_defspeed[NZS][2] = {
133 { 1200, /* keyboard */
134 1200 }, /* mouse */
135 { 9600, /* ttya */
136 9600 }, /* ttyb */
137 };
138
139 static u_char zs_init_reg[16] = {
140 0, /* 0: CMD (reset, etc.) */
141 0, /* 1: No interrupts yet. */
142 0x18 + ZSHARD_PRI, /* IVECT */
143 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
144 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
145 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
146 0, /* 6: TXSYNC/SYNCLO */
147 0, /* 7: RXSYNC/SYNCHI */
148 0, /* 8: alias for data port */
149 ZSWR9_MASTER_IE,
150 0, /*10: Misc. TX/RX control bits */
151 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
152 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
153 0, /*13: BAUDHI (default=9600) */
154 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
155 ZSWR15_BREAK_IE,
156 };
157
158
159 /* Find PROM mappings (for console support). */
160 void
161 zs_init()
162 {
163 int i;
164
165 for (i = 0; i < NZS; i++) {
166 zsaddr[i] = (struct zsdevice *)
167 obio_find_mapping(zs_physaddr[i], sizeof(struct zschan));
168 }
169 }
170
171 struct zschan *
172 zs_get_chan_addr(zs_unit, channel)
173 int zs_unit, channel;
174 {
175 struct zsdevice *addr;
176 struct zschan *zc;
177
178 if (zs_unit >= NZS)
179 return NULL;
180 addr = zsaddr[zs_unit];
181 if (addr == NULL)
182 return NULL;
183 if (channel == 0) {
184 zc = &addr->zs_chan_a;
185 } else {
186 zc = &addr->zs_chan_b;
187 }
188 return (zc);
189 }
190
191
192 /****************************************************************
193 * Autoconfig
194 ****************************************************************/
195
196 /* Definition of the driver for autoconfig. */
197 static int zs_match __P((struct device *, struct cfdata *, void *));
198 static void zs_attach __P((struct device *, struct device *, void *));
199 static int zs_print __P((void *, const char *name));
200
201 struct cfattach zsc_ca = {
202 sizeof(struct zsc_softc), zs_match, zs_attach
203 };
204
205 extern struct cfdriver zsc_cd;
206
207 static int zshard __P((void *));
208 static int zssoft __P((void *));
209 static int zs_get_speed __P((struct zs_chanstate *));
210
211
212 /*
213 * Is the zs chip present?
214 */
215 static int
216 zs_match(parent, cf, aux)
217 struct device *parent;
218 struct cfdata *cf;
219 void *aux;
220 {
221 struct confargs *ca = aux;
222 int unit = cf->cf_unit;
223 void *va;
224
225 /*
226 * This driver only supports its wired-in mappings,
227 * because the console support depends on those.
228 */
229 if (ca->ca_paddr != zs_physaddr[unit])
230 return (0);
231
232 /* Make sure zs_init() found mappings. */
233 va = zsaddr[unit];
234 if (va == NULL)
235 return (0);
236
237 /* This returns -1 on a fault (bus error). */
238 if (peek_byte(va) == -1)
239 return (0);
240
241 /* Default interrupt priority (always splbio==2) */
242 if (ca->ca_intpri == -1)
243 ca->ca_intpri = ZSHARD_PRI;
244
245 return (1);
246 }
247
248 /*
249 * Attach a found zs.
250 *
251 * Match slave number to zs unit number, so that misconfiguration will
252 * not set up the keyboard as ttya, etc.
253 */
254 static void
255 zs_attach(parent, self, aux)
256 struct device *parent;
257 struct device *self;
258 void *aux;
259 {
260 struct zsc_softc *zsc = (void *) self;
261 struct confargs *ca = aux;
262 struct zsc_attach_args zsc_args;
263 volatile struct zschan *zc;
264 struct zs_chanstate *cs;
265 int s, zs_unit, channel;
266 static int didintr;
267
268 zs_unit = zsc->zsc_dev.dv_unit;
269
270 printf(": (softpri %d)\n", ZSSOFT_PRI);
271
272 /* Use the mapping setup by the Sun PROM. */
273 if (zsaddr[zs_unit] == NULL)
274 panic("zs_attach: zs%d not mapped\n", zs_unit);
275
276 /*
277 * Initialize software state for each channel.
278 */
279 for (channel = 0; channel < 2; channel++) {
280 zsc_args.channel = channel;
281 zsc_args.hwflags = zs_hwflags[zs_unit][channel];
282 cs = &zsc->zsc_cs_store[channel];
283 zsc->zsc_cs[channel] = cs;
284
285 cs->cs_channel = channel;
286 cs->cs_private = NULL;
287 cs->cs_ops = &zsops_null;
288 cs->cs_brg_clk = PCLK / 16;
289
290 zc = zs_get_chan_addr(zs_unit, channel);
291 cs->cs_reg_csr = &zc->zc_csr;
292 cs->cs_reg_data = &zc->zc_data;
293
294 bcopy(zs_init_reg, cs->cs_creg, 16);
295 bcopy(zs_init_reg, cs->cs_preg, 16);
296
297 /* XXX: Get these from the EEPROM instead? */
298 /* XXX: See the mvme167 code. Better. */
299 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
300 cs->cs_defspeed = zs_get_speed(cs);
301 else
302 cs->cs_defspeed = zs_defspeed[zs_unit][channel];
303 cs->cs_defcflag = zs_def_cflag;
304
305 /* Make these correspond to cs_defcflag (-crtscts) */
306 cs->cs_rr0_dcd = ZSRR0_DCD;
307 cs->cs_rr0_cts = 0;
308 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
309 cs->cs_wr5_rts = 0;
310
311 /*
312 * Clear the master interrupt enable.
313 * The INTENA is common to both channels,
314 * so just do it on the A channel.
315 */
316 if (channel == 0) {
317 zs_write_reg(cs, 9, 0);
318 }
319
320 /*
321 * Look for a child driver for this channel.
322 * The child attach will setup the hardware.
323 */
324 if (!config_found(self, (void *)&zsc_args, zs_print)) {
325 /* No sub-driver. Just reset it. */
326 u_char reset = (channel == 0) ?
327 ZSWR9_A_RESET : ZSWR9_B_RESET;
328 s = splhigh();
329 zs_write_reg(cs, 9, reset);
330 splx(s);
331 }
332 }
333
334 /*
335 * Now safe to install interrupt handlers. Note the arguments
336 * to the interrupt handlers aren't used. Note, we only do this
337 * once since both SCCs interrupt at the same level and vector.
338 */
339 if (!didintr) {
340 didintr = 1;
341 isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
342 isr_add_autovect(zshard, NULL, ca->ca_intpri);
343 }
344 /* XXX; evcnt_attach() ? */
345
346 /*
347 * Set the master interrupt enable and interrupt vector.
348 * (common to both channels, do it on A)
349 */
350 cs = zsc->zsc_cs[0];
351 s = splhigh();
352 /* interrupt vector */
353 zs_write_reg(cs, 2, zs_init_reg[2]);
354 /* master interrupt control (enable) */
355 zs_write_reg(cs, 9, zs_init_reg[9]);
356 splx(s);
357
358 /*
359 * XXX: L1A hack - We would like to be able to break into
360 * the debugger during the rest of autoconfiguration, so
361 * lower interrupts just enough to let zs interrupts in.
362 * This is done after both zs devices are attached.
363 */
364 if (zs_unit == 1) {
365 (void)spl5(); /* splzs - 1 */
366 }
367 }
368
369 static int
370 zs_print(aux, name)
371 void *aux;
372 const char *name;
373 {
374 struct zsc_attach_args *args = aux;
375
376 if (name != NULL)
377 printf("%s: ", name);
378
379 if (args->channel != -1)
380 printf(" channel %d", args->channel);
381
382 return UNCONF;
383 }
384
385 static volatile int zssoftpending;
386
387 /*
388 * Our ZS chips all share a common, autovectored interrupt,
389 * so we have to look at all of them on each interrupt.
390 */
391 static int
392 zshard(arg)
393 void *arg;
394 {
395 register struct zsc_softc *zsc;
396 register int unit, rval, softreq;
397
398 rval = softreq = 0;
399 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
400 zsc = zsc_cd.cd_devs[unit];
401 if (zsc == NULL)
402 continue;
403 rval |= zsc_intr_hard(zsc);
404 softreq |= zsc->zsc_cs[0]->cs_softreq;
405 softreq |= zsc->zsc_cs[1]->cs_softreq;
406 }
407
408 /* We are at splzs here, so no need to lock. */
409 if (softreq && (zssoftpending == 0)) {
410 zssoftpending = ZSSOFT_PRI;
411 isr_soft_request(ZSSOFT_PRI);
412 }
413 return (rval);
414 }
415
416 /*
417 * Similar scheme as for zshard (look at all of them)
418 */
419 static int
420 zssoft(arg)
421 void *arg;
422 {
423 register struct zsc_softc *zsc;
424 register int s, unit;
425
426 /* This is not the only ISR on this IPL. */
427 if (zssoftpending == 0)
428 return (0);
429
430 /*
431 * The soft intr. bit will be set by zshard only if
432 * the variable zssoftpending is zero. The order of
433 * these next two statements prevents our clearing
434 * the soft intr bit just after zshard has set it.
435 */
436 isr_soft_clear(ZSSOFT_PRI);
437 zssoftpending = 0;
438
439 /* Make sure we call the tty layer at spltty. */
440 s = spltty();
441 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
442 zsc = zsc_cd.cd_devs[unit];
443 if (zsc == NULL)
444 continue;
445 (void) zsc_intr_soft(zsc);
446 }
447 splx(s);
448 return (1);
449 }
450
451
452 /*
453 * Compute the current baud rate given a ZS channel.
454 */
455 static int
456 zs_get_speed(cs)
457 struct zs_chanstate *cs;
458 {
459 int tconst;
460
461 tconst = zs_read_reg(cs, 12);
462 tconst |= zs_read_reg(cs, 13) << 8;
463 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
464 }
465
466 /*
467 * MD functions for setting the baud rate and control modes.
468 */
469 int
470 zs_set_speed(cs, bps)
471 struct zs_chanstate *cs;
472 int bps; /* bits per second */
473 {
474 int tconst, real_bps;
475
476 if (bps == 0)
477 return (0);
478
479 #ifdef DIAGNOSTIC
480 if (cs->cs_brg_clk == 0)
481 panic("zs_set_speed");
482 #endif
483
484 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
485 if (tconst < 0)
486 return (EINVAL);
487
488 /* Convert back to make sure we can do it. */
489 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
490
491 /* XXX - Allow some tolerance here? */
492 if (real_bps != bps)
493 return (EINVAL);
494
495 cs->cs_preg[12] = tconst;
496 cs->cs_preg[13] = tconst >> 8;
497
498 /* Caller will stuff the pending registers. */
499 return (0);
500 }
501
502 int
503 zs_set_modes(cs, cflag)
504 struct zs_chanstate *cs;
505 int cflag; /* bits per second */
506 {
507 int s;
508
509 /*
510 * Output hardware flow control on the chip is horrendous:
511 * if carrier detect drops, the receiver is disabled, and if
512 * CTS drops, the transmitter is stoped IN MID CHARACTER!
513 * Therefore, NEVER set the HFC bit, and instead use the
514 * status interrupt to detect CTS changes.
515 */
516 s = splzs();
517 cs->cs_rr0_pps = 0;
518 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
519 cs->cs_rr0_dcd = 0;
520 if ((cflag & MDMBUF) == 0)
521 cs->cs_rr0_pps = ZSRR0_DCD;
522 } else
523 cs->cs_rr0_dcd = ZSRR0_DCD;
524 if ((cflag & CRTSCTS) != 0) {
525 cs->cs_wr5_dtr = ZSWR5_DTR;
526 cs->cs_wr5_rts = ZSWR5_RTS;
527 cs->cs_rr0_cts = ZSRR0_CTS;
528 } else if ((cflag & MDMBUF) != 0) {
529 cs->cs_wr5_dtr = 0;
530 cs->cs_wr5_rts = ZSWR5_DTR;
531 cs->cs_rr0_cts = ZSRR0_DCD;
532 } else {
533 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
534 cs->cs_wr5_rts = 0;
535 cs->cs_rr0_cts = 0;
536 }
537 splx(s);
538
539 /* Caller will stuff the pending registers. */
540 return (0);
541 }
542
543
544 /*
545 * Read or write the chip with suitable delays.
546 */
547
548 u_char
549 zs_read_reg(cs, reg)
550 struct zs_chanstate *cs;
551 u_char reg;
552 {
553 u_char val;
554
555 *cs->cs_reg_csr = reg;
556 ZS_DELAY();
557 val = *cs->cs_reg_csr;
558 ZS_DELAY();
559 return val;
560 }
561
562 void
563 zs_write_reg(cs, reg, val)
564 struct zs_chanstate *cs;
565 u_char reg, val;
566 {
567 *cs->cs_reg_csr = reg;
568 ZS_DELAY();
569 *cs->cs_reg_csr = val;
570 ZS_DELAY();
571 }
572
573 u_char zs_read_csr(cs)
574 struct zs_chanstate *cs;
575 {
576 register u_char val;
577
578 val = *cs->cs_reg_csr;
579 ZS_DELAY();
580 return val;
581 }
582
583 void zs_write_csr(cs, val)
584 struct zs_chanstate *cs;
585 u_char val;
586 {
587 *cs->cs_reg_csr = val;
588 ZS_DELAY();
589 }
590
591 u_char zs_read_data(cs)
592 struct zs_chanstate *cs;
593 {
594 register u_char val;
595
596 val = *cs->cs_reg_data;
597 ZS_DELAY();
598 return val;
599 }
600
601 void zs_write_data(cs, val)
602 struct zs_chanstate *cs;
603 u_char val;
604 {
605 *cs->cs_reg_data = val;
606 ZS_DELAY();
607 }
608
609 /****************************************************************
610 * Console support functions (Sun3 specific!)
611 * Note: this code is allowed to know about the layout of
612 * the chip registers, and uses that to keep things simple.
613 * XXX - I think I like the mvme167 code better. -gwr
614 ****************************************************************/
615
616 void *zs_conschan;
617
618 /*
619 * Handle user request to enter kernel debugger.
620 */
621 void
622 zs_abort(cs)
623 struct zs_chanstate *cs;
624 {
625 register volatile struct zschan *zc = zs_conschan;
626 int rr0;
627
628 /* Wait for end of break to avoid PROM abort. */
629 /* XXX - Limit the wait? */
630 do {
631 rr0 = zc->zc_csr;
632 ZS_DELAY();
633 } while (rr0 & ZSRR0_BREAK);
634
635 /* This is always available on the Sun3. */
636 Debugger();
637 }
638
639 /*
640 * Polled input char.
641 */
642 int
643 zs_getc(arg)
644 void *arg;
645 {
646 register volatile struct zschan *zc = arg;
647 register int s, c, rr0;
648
649 s = splhigh();
650 /* Wait for a character to arrive. */
651 do {
652 rr0 = zc->zc_csr;
653 ZS_DELAY();
654 } while ((rr0 & ZSRR0_RX_READY) == 0);
655
656 c = zc->zc_data;
657 ZS_DELAY();
658 splx(s);
659
660 /*
661 * This is used by the kd driver to read scan codes,
662 * so don't translate '\r' ==> '\n' here...
663 */
664 return (c);
665 }
666
667 /*
668 * Polled output char.
669 */
670 void
671 zs_putc(arg, c)
672 void *arg;
673 int c;
674 {
675 register volatile struct zschan *zc = arg;
676 register int s, rr0;
677
678 s = splhigh();
679 /* Wait for transmitter to become ready. */
680 do {
681 rr0 = zc->zc_csr;
682 ZS_DELAY();
683 } while ((rr0 & ZSRR0_TX_READY) == 0);
684
685 zc->zc_data = c;
686 ZS_DELAY();
687 splx(s);
688 }
689
690 /*****************************************************************/
691
692 static void zscninit __P((struct consdev *));
693 static int zscngetc __P((dev_t));
694 static void zscnputc __P((dev_t, int));
695
696 /*
697 * Console table shared by ttya, ttyb
698 */
699 struct consdev consdev_tty = {
700 nullcnprobe,
701 zscninit,
702 zscngetc,
703 zscnputc,
704 nullcnpollc,
705 NULL,
706 };
707
708 static void
709 zscninit(cn)
710 struct consdev *cn;
711 {
712 }
713
714 /*
715 * Polled console input putchar.
716 */
717 static int
718 zscngetc(dev)
719 dev_t dev;
720 {
721 return (zs_getc(zs_conschan));
722 }
723
724 /*
725 * Polled console output putchar.
726 */
727 static void
728 zscnputc(dev, c)
729 dev_t dev;
730 int c;
731 {
732 zs_putc(zs_conschan, c);
733 }
734
735 /*****************************************************************/
736
737 static void prom_cninit __P((struct consdev *));
738 static int prom_cngetc __P((dev_t));
739 static void prom_cnputc __P((dev_t, int));
740
741 /*
742 * The console is set to this one initially,
743 * which lets us use the PROM until consinit()
744 * is called to select a real console.
745 */
746 struct consdev consdev_prom = {
747 nullcnprobe,
748 prom_cninit,
749 prom_cngetc,
750 prom_cnputc,
751 nullcnpollc,
752 };
753
754 /*
755 * The console table pointer is statically initialized
756 * to point to the PROM (output only) table, so that
757 * early calls to printf will work.
758 */
759 struct consdev *cn_tab = &consdev_prom;
760
761 void
762 nullcnprobe(cn)
763 struct consdev *cn;
764 {
765 }
766
767 static void
768 prom_cninit(cn)
769 struct consdev *cn;
770 {
771 }
772
773 /*
774 * PROM console input putchar.
775 * (dummy - this is output only)
776 */
777 static int
778 prom_cngetc(dev)
779 dev_t dev;
780 {
781 return (0);
782 }
783
784 /*
785 * PROM console output putchar.
786 */
787 static void
788 prom_cnputc(dev, c)
789 dev_t dev;
790 int c;
791 {
792 (*romVectorPtr->putChar)(c & 0x7f);
793 }
794
795 /*****************************************************************/
796
797 extern struct consdev consdev_kd;
798
799 static struct {
800 int zs_unit, channel;
801 } zstty_conf[NZS*2] = {
802 /* XXX: knowledge from the config file here... */
803 { 1, 0 }, /* ttya */
804 { 1, 1 }, /* ttyb */
805 { 0, 0 }, /* ttyc */
806 { 0, 1 }, /* ttyd */
807 };
808
809 static char *prom_inSrc_name[] = {
810 "keyboard/display",
811 "ttya", "ttyb",
812 "ttyc", "ttyd" };
813
814 /*
815 * This function replaces sys/dev/cninit.c
816 * Determine which device is the console using
817 * the PROM "input source" and "output sink".
818 */
819 void
820 cninit()
821 {
822 struct sunromvec *v;
823 struct zschan *zc;
824 struct consdev *cn;
825 int channel, zs_unit, zstty_unit;
826 u_char inSource, outSink;
827
828 /* Get the zs driver ready for console duty. */
829 zs_init();
830
831 v = romVectorPtr;
832 inSource = *v->inSource;
833 outSink = *v->outSink;
834 if (inSource != outSink) {
835 mon_printf("cninit: mismatched PROM output selector\n");
836 }
837
838 switch (inSource) {
839 default:
840 mon_printf("cninit: invalid inSource=%d\n", inSource);
841 sunmon_abort();
842 inSource = 0;
843 /* fall through */
844
845 case 0: /* keyboard/display */
846 #if NKBD > 0
847 zs_unit = 0;
848 channel = 0;
849 cn = &consdev_kd;
850 /* Set cn_dev, cn_pri in kd.c */
851 break;
852 #else /* NKBD */
853 mon_printf("cninit: kdb/display not configured\n");
854 sunmon_abort();
855 inSource = 1;
856 /* fall through */
857 #endif /* NKBD */
858
859 case 1: /* ttya */
860 case 2: /* ttyb */
861 case 3: /* ttyc (rewired keyboard connector) */
862 case 4: /* ttyd (rewired mouse connector) */
863 zstty_unit = inSource - 1;
864 zs_unit = zstty_conf[zstty_unit].zs_unit;
865 channel = zstty_conf[zstty_unit].channel;
866 cn = &consdev_tty;
867 cn->cn_dev = makedev(zs_major, zstty_unit);
868 cn->cn_pri = CN_REMOTE;
869 break;
870
871 }
872 /* Now that inSource has been validated, print it. */
873 mon_printf("console is %s\n", prom_inSrc_name[inSource]);
874
875 zc = zs_get_chan_addr(zs_unit, channel);
876 if (zc == NULL) {
877 mon_printf("cninit: zs not mapped.\n");
878 return;
879 }
880 zs_conschan = zc;
881 zs_hwflags[zs_unit][channel] = ZS_HWFLAG_CONSOLE;
882 cn_tab = cn;
883 (*cn->cn_init)(cn);
884 #ifdef KGDB
885 zs_kgdb_init();
886 #endif
887 }
888