zs.c revision 1.68 1 /* $NetBSD: zs.c,v 1.68 2002/10/01 05:32:44 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_kgdb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/autoconf.h>
62 #include <machine/cpu.h>
63 #include <machine/mon.h>
64 #include <machine/z8530var.h>
65
66 #include <sun3/sun3/machdep.h>
67 #ifdef _SUN3X_
68 #include <sun3/sun3x/obio.h>
69 #else
70 #include <sun3/sun3/obio.h>
71 #endif
72 #include <sun3/dev/zs_cons.h>
73
74 #include <dev/cons.h>
75 #include <dev/ic/z8530reg.h>
76
77 #include "kbd.h" /* NKBD */
78 #include "zsc.h" /* NZSC */
79 #define NZS NZSC
80
81 /* Make life easier for the initialized arrays here. */
82 #if NZS < 2
83 #undef NZS
84 #define NZS 2
85 #endif
86
87 /*
88 * Some warts needed by z8530tty.c -
89 * The default parity REALLY needs to be the same as the PROM uses,
90 * or you can not see messages done with printf during boot-up...
91 */
92 int zs_def_cflag = (CREAD | CS8 | HUPCL);
93
94 /*
95 * The Sun3 provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 /*
100 * Define interrupt levels.
101 */
102 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
103 #define ZSSOFT_PRI 3 /* Want tty pri (4) but this is OK. */
104
105 #define ZS_DELAY() delay(2)
106
107 /* The layout of this is hardware-dependent (padding, order). */
108 struct zschan {
109 volatile u_char zc_csr; /* ctrl,status, and indirect access */
110 u_char zc_xxx0;
111 volatile u_char zc_data; /* data */
112 u_char zc_xxx1;
113 };
114 struct zsdevice {
115 /* Yes, they are backwards. */
116 struct zschan zs_chan_b;
117 struct zschan zs_chan_a;
118 };
119
120
121 /* Default OBIO addresses. */
122 static int zs_physaddr[NZS] = {
123 OBIO_ZS_KBD_MS,
124 OBIO_ZS_TTY_AB };
125
126 /* Saved PROM mappings */
127 static struct zsdevice *zsaddr[NZS];
128
129 /* Flags from cninit() */
130 static int zs_hwflags[NZS][2];
131
132 /* Default speed for each channel */
133 static int zs_defspeed[NZS][2] = {
134 { 1200, /* keyboard */
135 1200 }, /* mouse */
136 { 9600, /* ttya */
137 9600 }, /* ttyb */
138 };
139
140 static u_char zs_init_reg[16] = {
141 0, /* 0: CMD (reset, etc.) */
142 0, /* 1: No interrupts yet. */
143 0x18 + ZSHARD_PRI, /* IVECT */
144 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
145 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
146 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
147 0, /* 6: TXSYNC/SYNCLO */
148 0, /* 7: RXSYNC/SYNCHI */
149 0, /* 8: alias for data port */
150 ZSWR9_MASTER_IE,
151 0, /*10: Misc. TX/RX control bits */
152 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
153 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
154 0, /*13: BAUDHI (default=9600) */
155 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
156 ZSWR15_BREAK_IE,
157 };
158
159
160 /* Find PROM mappings (for console support). */
161 void
162 zs_init()
163 {
164 int i;
165
166 for (i = 0; i < NZS; i++) {
167 zsaddr[i] = (struct zsdevice *)
168 obio_find_mapping(zs_physaddr[i], sizeof(struct zschan));
169 }
170 }
171
172 struct zschan *
173 zs_get_chan_addr(zs_unit, channel)
174 int zs_unit, channel;
175 {
176 struct zsdevice *addr;
177 struct zschan *zc;
178
179 if (zs_unit >= NZS)
180 return NULL;
181 addr = zsaddr[zs_unit];
182 if (addr == NULL)
183 return NULL;
184 if (channel == 0) {
185 zc = &addr->zs_chan_a;
186 } else {
187 zc = &addr->zs_chan_b;
188 }
189 return (zc);
190 }
191
192
193 /****************************************************************
194 * Autoconfig
195 ****************************************************************/
196
197 /* Definition of the driver for autoconfig. */
198 static int zs_match __P((struct device *, struct cfdata *, void *));
199 static void zs_attach __P((struct device *, struct device *, void *));
200 static int zs_print __P((void *, const char *name));
201
202 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
203 zs_match, zs_attach, NULL, NULL)
204
205 extern struct cfdriver zsc_cd;
206
207 static int zshard __P((void *));
208 static int zssoft __P((void *));
209 static int zs_get_speed __P((struct zs_chanstate *));
210
211
212 /*
213 * Is the zs chip present?
214 */
215 static int
216 zs_match(parent, cf, aux)
217 struct device *parent;
218 struct cfdata *cf;
219 void *aux;
220 {
221 struct confargs *ca = aux;
222 int unit;
223 void *va;
224
225 /*
226 * This driver only supports its wired-in mappings,
227 * because the console support depends on those.
228 */
229 if (ca->ca_paddr == zs_physaddr[0]) {
230 unit = 0;
231 } else if (ca->ca_paddr == zs_physaddr[1]) {
232 unit = 1;
233 } else {
234 return (0);
235 }
236
237 /* Make sure zs_init() found mappings. */
238 va = zsaddr[unit];
239 if (va == NULL)
240 return (0);
241
242 /* This returns -1 on a fault (bus error). */
243 if (peek_byte(va) == -1)
244 return (0);
245
246 /* Default interrupt priority (always splbio==2) */
247 if (ca->ca_intpri == -1)
248 ca->ca_intpri = ZSHARD_PRI;
249
250 return (1);
251 }
252
253 /*
254 * Attach a found zs.
255 *
256 * Match slave number to zs unit number, so that misconfiguration will
257 * not set up the keyboard as ttya, etc.
258 */
259 static void
260 zs_attach(parent, self, aux)
261 struct device *parent;
262 struct device *self;
263 void *aux;
264 {
265 struct zsc_softc *zsc = (void *) self;
266 struct confargs *ca = aux;
267 struct zsc_attach_args zsc_args;
268 volatile struct zschan *zc;
269 struct zs_chanstate *cs;
270 int s, zs_unit, channel;
271 static int didintr;
272
273 zs_unit = zsc->zsc_dev.dv_unit;
274
275 printf(": (softpri %d)\n", ZSSOFT_PRI);
276
277 /* Use the mapping setup by the Sun PROM. */
278 if (zsaddr[zs_unit] == NULL)
279 panic("zs_attach: zs%d not mapped", zs_unit);
280
281 /*
282 * Initialize software state for each channel.
283 */
284 for (channel = 0; channel < 2; channel++) {
285 zsc_args.channel = channel;
286 zsc_args.hwflags = zs_hwflags[zs_unit][channel];
287 cs = &zsc->zsc_cs_store[channel];
288 zsc->zsc_cs[channel] = cs;
289
290 cs->cs_channel = channel;
291 cs->cs_private = NULL;
292 cs->cs_ops = &zsops_null;
293 cs->cs_brg_clk = PCLK / 16;
294
295 zc = zs_get_chan_addr(zs_unit, channel);
296 cs->cs_reg_csr = &zc->zc_csr;
297 cs->cs_reg_data = &zc->zc_data;
298
299 memcpy(cs->cs_creg, zs_init_reg, 16);
300 memcpy(cs->cs_preg, zs_init_reg, 16);
301
302 /* XXX: Get these from the EEPROM instead? */
303 /* XXX: See the mvme167 code. Better. */
304 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
305 cs->cs_defspeed = zs_get_speed(cs);
306 else
307 cs->cs_defspeed = zs_defspeed[zs_unit][channel];
308 cs->cs_defcflag = zs_def_cflag;
309
310 /* Make these correspond to cs_defcflag (-crtscts) */
311 cs->cs_rr0_dcd = ZSRR0_DCD;
312 cs->cs_rr0_cts = 0;
313 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
314 cs->cs_wr5_rts = 0;
315
316 /*
317 * Clear the master interrupt enable.
318 * The INTENA is common to both channels,
319 * so just do it on the A channel.
320 */
321 if (channel == 0) {
322 zs_write_reg(cs, 9, 0);
323 }
324
325 /*
326 * Look for a child driver for this channel.
327 * The child attach will setup the hardware.
328 */
329 if (!config_found(self, (void *)&zsc_args, zs_print)) {
330 /* No sub-driver. Just reset it. */
331 u_char reset = (channel == 0) ?
332 ZSWR9_A_RESET : ZSWR9_B_RESET;
333 s = splhigh();
334 zs_write_reg(cs, 9, reset);
335 splx(s);
336 }
337 }
338
339 /*
340 * Now safe to install interrupt handlers. Note the arguments
341 * to the interrupt handlers aren't used. Note, we only do this
342 * once since both SCCs interrupt at the same level and vector.
343 */
344 if (!didintr) {
345 didintr = 1;
346 isr_add_autovect(zssoft, NULL, ZSSOFT_PRI);
347 isr_add_autovect(zshard, NULL, ca->ca_intpri);
348 }
349 /* XXX; evcnt_attach() ? */
350
351 /*
352 * Set the master interrupt enable and interrupt vector.
353 * (common to both channels, do it on A)
354 */
355 cs = zsc->zsc_cs[0];
356 s = splhigh();
357 /* interrupt vector */
358 zs_write_reg(cs, 2, zs_init_reg[2]);
359 /* master interrupt control (enable) */
360 zs_write_reg(cs, 9, zs_init_reg[9]);
361 splx(s);
362
363 /*
364 * XXX: L1A hack - We would like to be able to break into
365 * the debugger during the rest of autoconfiguration, so
366 * lower interrupts just enough to let zs interrupts in.
367 * This is done after both zs devices are attached.
368 */
369 if (zs_unit == 1) {
370 (void)spl5(); /* splzs - 1 */
371 }
372 }
373
374 static int
375 zs_print(aux, name)
376 void *aux;
377 const char *name;
378 {
379 struct zsc_attach_args *args = aux;
380
381 if (name != NULL)
382 printf("%s: ", name);
383
384 if (args->channel != -1)
385 printf(" channel %d", args->channel);
386
387 return UNCONF;
388 }
389
390 static volatile int zssoftpending;
391
392 /*
393 * Our ZS chips all share a common, autovectored interrupt,
394 * so we have to look at all of them on each interrupt.
395 */
396 static int
397 zshard(arg)
398 void *arg;
399 {
400 struct zsc_softc *zsc;
401 int unit, rval, softreq;
402
403 rval = softreq = 0;
404 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
405 zsc = zsc_cd.cd_devs[unit];
406 if (zsc == NULL)
407 continue;
408 rval |= zsc_intr_hard(zsc);
409 softreq |= zsc->zsc_cs[0]->cs_softreq;
410 softreq |= zsc->zsc_cs[1]->cs_softreq;
411 }
412
413 /* We are at splzs here, so no need to lock. */
414 if (softreq && (zssoftpending == 0)) {
415 zssoftpending = ZSSOFT_PRI;
416 isr_soft_request(ZSSOFT_PRI);
417 }
418 return (rval);
419 }
420
421 /*
422 * Similar scheme as for zshard (look at all of them)
423 */
424 static int
425 zssoft(arg)
426 void *arg;
427 {
428 struct zsc_softc *zsc;
429 int s, unit;
430
431 /* This is not the only ISR on this IPL. */
432 if (zssoftpending == 0)
433 return (0);
434
435 /*
436 * The soft intr. bit will be set by zshard only if
437 * the variable zssoftpending is zero. The order of
438 * these next two statements prevents our clearing
439 * the soft intr bit just after zshard has set it.
440 */
441 isr_soft_clear(ZSSOFT_PRI);
442 zssoftpending = 0;
443
444 /* Make sure we call the tty layer at spltty. */
445 s = spltty();
446 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
447 zsc = zsc_cd.cd_devs[unit];
448 if (zsc == NULL)
449 continue;
450 (void) zsc_intr_soft(zsc);
451 }
452 splx(s);
453 return (1);
454 }
455
456
457 /*
458 * Compute the current baud rate given a ZS channel.
459 */
460 static int
461 zs_get_speed(cs)
462 struct zs_chanstate *cs;
463 {
464 int tconst;
465
466 tconst = zs_read_reg(cs, 12);
467 tconst |= zs_read_reg(cs, 13) << 8;
468 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
469 }
470
471 /*
472 * MD functions for setting the baud rate and control modes.
473 */
474 int
475 zs_set_speed(cs, bps)
476 struct zs_chanstate *cs;
477 int bps; /* bits per second */
478 {
479 int tconst, real_bps;
480
481 if (bps == 0)
482 return (0);
483
484 #ifdef DIAGNOSTIC
485 if (cs->cs_brg_clk == 0)
486 panic("zs_set_speed");
487 #endif
488
489 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
490 if (tconst < 0)
491 return (EINVAL);
492
493 /* Convert back to make sure we can do it. */
494 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
495
496 /* XXX - Allow some tolerance here? */
497 if (real_bps != bps)
498 return (EINVAL);
499
500 cs->cs_preg[12] = tconst;
501 cs->cs_preg[13] = tconst >> 8;
502
503 /* Caller will stuff the pending registers. */
504 return (0);
505 }
506
507 int
508 zs_set_modes(cs, cflag)
509 struct zs_chanstate *cs;
510 int cflag; /* bits per second */
511 {
512 int s;
513
514 /*
515 * Output hardware flow control on the chip is horrendous:
516 * if carrier detect drops, the receiver is disabled, and if
517 * CTS drops, the transmitter is stoped IN MID CHARACTER!
518 * Therefore, NEVER set the HFC bit, and instead use the
519 * status interrupt to detect CTS changes.
520 */
521 s = splzs();
522 cs->cs_rr0_pps = 0;
523 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
524 cs->cs_rr0_dcd = 0;
525 if ((cflag & MDMBUF) == 0)
526 cs->cs_rr0_pps = ZSRR0_DCD;
527 } else
528 cs->cs_rr0_dcd = ZSRR0_DCD;
529 if ((cflag & CRTSCTS) != 0) {
530 cs->cs_wr5_dtr = ZSWR5_DTR;
531 cs->cs_wr5_rts = ZSWR5_RTS;
532 cs->cs_rr0_cts = ZSRR0_CTS;
533 } else if ((cflag & MDMBUF) != 0) {
534 cs->cs_wr5_dtr = 0;
535 cs->cs_wr5_rts = ZSWR5_DTR;
536 cs->cs_rr0_cts = ZSRR0_DCD;
537 } else {
538 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
539 cs->cs_wr5_rts = 0;
540 cs->cs_rr0_cts = 0;
541 }
542 splx(s);
543
544 /* Caller will stuff the pending registers. */
545 return (0);
546 }
547
548
549 /*
550 * Read or write the chip with suitable delays.
551 */
552
553 u_char
554 zs_read_reg(cs, reg)
555 struct zs_chanstate *cs;
556 u_char reg;
557 {
558 u_char val;
559
560 *cs->cs_reg_csr = reg;
561 ZS_DELAY();
562 val = *cs->cs_reg_csr;
563 ZS_DELAY();
564 return val;
565 }
566
567 void
568 zs_write_reg(cs, reg, val)
569 struct zs_chanstate *cs;
570 u_char reg, val;
571 {
572 *cs->cs_reg_csr = reg;
573 ZS_DELAY();
574 *cs->cs_reg_csr = val;
575 ZS_DELAY();
576 }
577
578 u_char zs_read_csr(cs)
579 struct zs_chanstate *cs;
580 {
581 u_char val;
582
583 val = *cs->cs_reg_csr;
584 ZS_DELAY();
585 return val;
586 }
587
588 void zs_write_csr(cs, val)
589 struct zs_chanstate *cs;
590 u_char val;
591 {
592 *cs->cs_reg_csr = val;
593 ZS_DELAY();
594 }
595
596 u_char zs_read_data(cs)
597 struct zs_chanstate *cs;
598 {
599 u_char val;
600
601 val = *cs->cs_reg_data;
602 ZS_DELAY();
603 return val;
604 }
605
606 void zs_write_data(cs, val)
607 struct zs_chanstate *cs;
608 u_char val;
609 {
610 *cs->cs_reg_data = val;
611 ZS_DELAY();
612 }
613
614 /****************************************************************
615 * Console support functions (Sun3 specific!)
616 * Note: this code is allowed to know about the layout of
617 * the chip registers, and uses that to keep things simple.
618 * XXX - I think I like the mvme167 code better. -gwr
619 ****************************************************************/
620
621 void *zs_conschan;
622
623 /*
624 * Handle user request to enter kernel debugger.
625 */
626 void
627 zs_abort(cs)
628 struct zs_chanstate *cs;
629 {
630 volatile struct zschan *zc = zs_conschan;
631 int rr0;
632
633 /* Wait for end of break to avoid PROM abort. */
634 /* XXX - Limit the wait? */
635 do {
636 rr0 = zc->zc_csr;
637 ZS_DELAY();
638 } while (rr0 & ZSRR0_BREAK);
639
640 /* This is always available on the Sun3. */
641 Debugger();
642 }
643
644 /*
645 * Polled input char.
646 */
647 int
648 zs_getc(arg)
649 void *arg;
650 {
651 volatile struct zschan *zc = arg;
652 int s, c, rr0;
653
654 s = splhigh();
655 /* Wait for a character to arrive. */
656 do {
657 rr0 = zc->zc_csr;
658 ZS_DELAY();
659 } while ((rr0 & ZSRR0_RX_READY) == 0);
660
661 c = zc->zc_data;
662 ZS_DELAY();
663 splx(s);
664
665 /*
666 * This is used by the kd driver to read scan codes,
667 * so don't translate '\r' ==> '\n' here...
668 */
669 return (c);
670 }
671
672 /*
673 * Polled output char.
674 */
675 void
676 zs_putc(arg, c)
677 void *arg;
678 int c;
679 {
680 volatile struct zschan *zc = arg;
681 int s, rr0;
682
683 s = splhigh();
684 /* Wait for transmitter to become ready. */
685 do {
686 rr0 = zc->zc_csr;
687 ZS_DELAY();
688 } while ((rr0 & ZSRR0_TX_READY) == 0);
689
690 zc->zc_data = c;
691 ZS_DELAY();
692 splx(s);
693 }
694
695 /*****************************************************************/
696
697 static void zscninit __P((struct consdev *));
698 static int zscngetc __P((dev_t));
699 static void zscnputc __P((dev_t, int));
700
701 /*
702 * Console table shared by ttya, ttyb
703 */
704 struct consdev consdev_tty = {
705 nullcnprobe,
706 zscninit,
707 zscngetc,
708 zscnputc,
709 nullcnpollc,
710 NULL,
711 };
712
713 static void
714 zscninit(cn)
715 struct consdev *cn;
716 {
717 }
718
719 /*
720 * Polled console input putchar.
721 */
722 static int
723 zscngetc(dev)
724 dev_t dev;
725 {
726 return (zs_getc(zs_conschan));
727 }
728
729 /*
730 * Polled console output putchar.
731 */
732 static void
733 zscnputc(dev, c)
734 dev_t dev;
735 int c;
736 {
737 zs_putc(zs_conschan, c);
738 }
739
740 /*****************************************************************/
741
742 static void prom_cninit __P((struct consdev *));
743 static int prom_cngetc __P((dev_t));
744 static void prom_cnputc __P((dev_t, int));
745
746 /*
747 * The console is set to this one initially,
748 * which lets us use the PROM until consinit()
749 * is called to select a real console.
750 */
751 struct consdev consdev_prom = {
752 nullcnprobe,
753 prom_cninit,
754 prom_cngetc,
755 prom_cnputc,
756 nullcnpollc,
757 };
758
759 /*
760 * The console table pointer is statically initialized
761 * to point to the PROM (output only) table, so that
762 * early calls to printf will work.
763 */
764 struct consdev *cn_tab = &consdev_prom;
765
766 void
767 nullcnprobe(cn)
768 struct consdev *cn;
769 {
770 }
771
772 static void
773 prom_cninit(cn)
774 struct consdev *cn;
775 {
776 }
777
778 /*
779 * PROM console input putchar.
780 * (dummy - this is output only)
781 */
782 static int
783 prom_cngetc(dev)
784 dev_t dev;
785 {
786 return (0);
787 }
788
789 /*
790 * PROM console output putchar.
791 */
792 static void
793 prom_cnputc(dev, c)
794 dev_t dev;
795 int c;
796 {
797 (*romVectorPtr->putChar)(c & 0x7f);
798 }
799
800 /*****************************************************************/
801
802 extern struct consdev consdev_kd;
803
804 static struct {
805 int zs_unit, channel;
806 } zstty_conf[NZS*2] = {
807 /* XXX: knowledge from the config file here... */
808 { 1, 0 }, /* ttya */
809 { 1, 1 }, /* ttyb */
810 { 0, 0 }, /* ttyc */
811 { 0, 1 }, /* ttyd */
812 };
813
814 static char *prom_inSrc_name[] = {
815 "keyboard/display",
816 "ttya", "ttyb",
817 "ttyc", "ttyd" };
818
819 /*
820 * This function replaces sys/dev/cninit.c
821 * Determine which device is the console using
822 * the PROM "input source" and "output sink".
823 */
824 void
825 cninit()
826 {
827 struct sunromvec *v;
828 struct zschan *zc;
829 struct consdev *cn;
830 int channel, zs_unit, zstty_unit;
831 u_char inSource, outSink;
832 extern const struct cdevsw zstty_cdevsw;
833
834 /* Get the zs driver ready for console duty. */
835 zs_init();
836
837 v = romVectorPtr;
838 inSource = *v->inSource;
839 outSink = *v->outSink;
840 if (inSource != outSink) {
841 mon_printf("cninit: mismatched PROM output selector\n");
842 }
843
844 switch (inSource) {
845 default:
846 mon_printf("cninit: invalid inSource=%d\n", inSource);
847 sunmon_abort();
848 inSource = 0;
849 /* fall through */
850
851 case 0: /* keyboard/display */
852 #if NKBD > 0
853 zs_unit = 0;
854 channel = 0;
855 cn = &consdev_kd;
856 /* Set cn_dev, cn_pri in kd.c */
857 break;
858 #else /* NKBD */
859 mon_printf("cninit: kdb/display not configured\n");
860 sunmon_abort();
861 inSource = 1;
862 /* fall through */
863 #endif /* NKBD */
864
865 case 1: /* ttya */
866 case 2: /* ttyb */
867 case 3: /* ttyc (rewired keyboard connector) */
868 case 4: /* ttyd (rewired mouse connector) */
869 zstty_unit = inSource - 1;
870 zs_unit = zstty_conf[zstty_unit].zs_unit;
871 channel = zstty_conf[zstty_unit].channel;
872 cn = &consdev_tty;
873 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw),
874 zstty_unit);
875 cn->cn_pri = CN_REMOTE;
876 break;
877
878 }
879 /* Now that inSource has been validated, print it. */
880 mon_printf("console is %s\n", prom_inSrc_name[inSource]);
881
882 zc = zs_get_chan_addr(zs_unit, channel);
883 if (zc == NULL) {
884 mon_printf("cninit: zs not mapped.\n");
885 return;
886 }
887 zs_conschan = zc;
888 zs_hwflags[zs_unit][channel] = ZS_HWFLAG_CONSOLE;
889 cn_tab = cn;
890 (*cn->cn_init)(cn);
891 #ifdef KGDB
892 zs_kgdb_init();
893 #endif
894 }
895