Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.8
      1 /*
      2  * Copyright (c) 1992, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This software was developed by the Computer Systems Engineering group
      6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7  * contributed to Berkeley.
      8  *
      9  * All advertising materials mentioning features or use of this software
     10  * must display the following acknowledgement:
     11  *	This product includes software developed by the University of
     12  *	California, Lawrence Berkeley Laboratory.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  * 3. All advertising materials mentioning features or use of this software
     23  *    must display the following acknowledgement:
     24  *	This product includes software developed by the University of
     25  *	California, Berkeley and its contributors.
     26  * 4. Neither the name of the University nor the names of its contributors
     27  *    may be used to endorse or promote products derived from this software
     28  *    without specific prior written permission.
     29  *
     30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     40  * SUCH DAMAGE.
     41  *
     42  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     43  *
     44  * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
     45  * from: sparc/dev/zs.c,v 1.3 1993/10/13 02:36:44 deraadt Exp
     46  * $Id: zs.c,v 1.8 1994/06/28 21:42:32 gwr Exp $
     47  */
     48 
     49 /*
     50  * Zilog Z8530 (ZSCC) driver.
     51  *
     52  * Runs two tty ports (ttya and ttyb) on zs0,
     53  * and runs a keyboard and mouse on zs1.
     54  *
     55  * This driver knows far too much about chip to usage mappings.
     56  */
     57 #define	NZS	2		/* XXX */
     58 
     59 #include <sys/param.h>
     60 #include <sys/systm.h>
     61 #include <sys/proc.h>
     62 #include <sys/device.h>
     63 #include <sys/conf.h>
     64 #include <sys/file.h>
     65 #include <sys/ioctl.h>
     66 #include <sys/tty.h>
     67 #include <sys/time.h>
     68 #include <sys/kernel.h>
     69 #include <sys/syslog.h>
     70 
     71 #include <machine/autoconf.h>
     72 #include <machine/cpu.h>
     73 #include <machine/obio.h>
     74 #include <machine/mon.h>
     75 #include <machine/eeprom.h>
     76 
     77 #include <dev/cons.h>
     78 
     79 #include "kbd.h"
     80 #include "zsreg.h"
     81 #include "zsvar.h"
     82 
     83 #ifdef KGDB
     84 #include <machine/remote-sl.h>
     85 #endif
     86 
     87 #define	ZSMAJOR	12		/* XXX */
     88 
     89 #define	ZS_KBD		2	/* XXX */
     90 #define	ZS_MOUSE	3	/* XXX */
     91 
     92 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
     93 #define PCLK	(9600 * 512)	/* PCLK pin input clock rate */
     94 
     95 /*
     96  * Select software interrupt levels.
     97  */
     98 #define ZSSOFT_PRI	2	/* XXX - Want TTY_PRI */
     99 #define ZSHARD_PRI	6	/* Wired on the CPU board... */
    100 
    101 /*
    102  * Software state per found chip.  This would be called `zs_softc',
    103  * but the previous driver had a rather different zs_softc....
    104  */
    105 struct zsinfo {
    106 	struct	device zi_dev;		/* base device */
    107 	volatile struct zsdevice *zi_zs;/* chip registers */
    108 	struct	zs_chanstate zi_cs[2];	/* channel A and B software state */
    109 };
    110 
    111 struct tty *zs_tty[NZS * 2];		/* XXX should be dynamic */
    112 
    113 /* Definition of the driver for autoconfig. */
    114 static int	zsmatch(struct device *, struct cfdata *, void *);
    115 static void	zsattach(struct device *, struct device *, void *);
    116 struct cfdriver zscd =
    117     { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
    118 
    119 /* Interrupt handlers. */
    120 static int	zshard(int);
    121 static int	zssoft(int);
    122 
    123 struct zs_chanstate *zslist;
    124 
    125 /* Routines called from other code. */
    126 int zsopen(dev_t, int, int, struct proc *);
    127 int zsclose(dev_t, int, int, struct proc *);
    128 static void	zsiopen(struct tty *);
    129 static void	zsiclose(struct tty *);
    130 static void	zsstart(struct tty *);
    131 void		zsstop(struct tty *, int);
    132 static int	zsparam(struct tty *, struct termios *);
    133 
    134 /* Routines purely local to this driver. */
    135 static int	zs_getspeed(volatile struct zschan *);
    136 static void	zs_reset(volatile struct zschan *, int, int);
    137 static void	zs_modem(struct zs_chanstate *, int);
    138 static void	zs_loadchannelregs(volatile struct zschan *, u_char *);
    139 static u_char zs_read(volatile struct zschan *, u_char);
    140 static u_char zs_write(volatile struct zschan *, u_char, u_char);
    141 
    142 /* Console stuff. */
    143 static volatile struct zschan *zs_conschan;
    144 
    145 #ifdef KGDB
    146 /* KGDB stuff.  Must reboot to change zs_kgdbunit. */
    147 extern int kgdb_dev, kgdb_rate;
    148 static int zs_kgdb_savedspeed;
    149 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
    150 #endif
    151 
    152 static volatile struct zsdevice *zsaddr[NZS];	/* XXX, but saves work */
    153 
    154 /*
    155  * Console keyboard L1-A processing is done in the hardware interrupt code,
    156  * so we need to duplicate some of the console keyboard decode state.  (We
    157  * must not use the regular state as the hardware code keeps ahead of the
    158  * software state: the software state tracks the most recent ring input but
    159  * the hardware state tracks the most recent ZSCC input.)  See also kbd.h.
    160  */
    161 static struct conk_state {	/* console keyboard state */
    162 	char	conk_id;	/* true => ID coming up (console only) */
    163 	char	conk_l1;	/* true => L1 pressed (console only) */
    164 } zsconk_state;
    165 
    166 int zshardscope;
    167 int zsshortcuts;		/* number of "shortcut" software interrupts */
    168 
    169 /*
    170  * Match slave number to zs unit number, so that misconfiguration will
    171  * not set up the keyboard as ttya, etc.
    172  */
    173 static int
    174 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
    175 {
    176 	struct obio_cf_loc *obio_loc;
    177 	caddr_t zs_addr;
    178 
    179 	obio_loc = (struct obio_cf_loc *) CFDATA_LOC(cf);
    180 	zs_addr = (caddr_t) obio_loc->obio_addr;
    181 	return !obio_probe_byte(zs_addr);
    182 }
    183 
    184 /*
    185  * Attach a found zs.
    186  *
    187  * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
    188  * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
    189  */
    190 static void
    191 zsattach(struct device *parent, struct device *dev, void *aux)
    192 {
    193 	struct obio_cf_loc *obio_loc = OBIO_LOC(dev);
    194 	register int zs = dev->dv_unit, unit;
    195 	register struct zsinfo *zi;
    196 	register struct zs_chanstate *cs;
    197 	register volatile struct zsdevice *addr;
    198 	register struct tty *tp, *ctp;
    199 	int softcar;
    200 	static int didintr;
    201 	caddr_t obio_addr;
    202 
    203 	obio_addr = (caddr_t)obio_loc->obio_addr;
    204 	obio_print(obio_addr, ZSSOFT_PRI);
    205 	printf(" hwpri %d\n", ZSHARD_PRI);
    206 
    207 	if ((addr = zsaddr[zs]) == NULL) {
    208 		zsaddr[zs] = addr = (struct zsdevice *)
    209 			obio_alloc(obio_addr, OBIO_ZS_SIZE, OBIO_WRITE);
    210 	}
    211 
    212 	if (!didintr) {
    213 		didintr = 1;
    214 		isr_add(ZSSOFT_PRI, zssoft, 0);
    215 		isr_add(ZSHARD_PRI, zshard, 0);
    216 	}
    217 
    218 	zi = (struct zsinfo *)dev;
    219 	zi->zi_zs = addr;
    220 	unit = zs * 2;
    221 	cs = zi->zi_cs;
    222 
    223 	if(!zs_tty[unit])
    224 		zs_tty[unit] = ttymalloc();
    225 	tp = zs_tty[unit];
    226 	if(!zs_tty[unit+1])
    227 		zs_tty[unit+1] = ttymalloc();
    228 
    229 	if (unit == 0) {
    230 		softcar = 0;
    231 	} else
    232 		softcar = dev->dv_cfdata->cf_flags;
    233 
    234 	/* link into interrupt list with order (A,B) (B=A+1) */
    235 	cs[0].cs_next = &cs[1];
    236 	cs[1].cs_next = zslist;
    237 	zslist = cs;
    238 
    239 	cs->cs_unit = unit;
    240 	cs->cs_zc = &addr->zs_chan[CHAN_A];
    241 	cs->cs_speed = zs_getspeed(cs->cs_zc);
    242 #ifdef	DEBUG
    243 	mon_printf("zs%da speed %d ",  zs, cs->cs_speed);
    244 #endif
    245 	cs->cs_softcar = softcar & 1;
    246 #if 0
    247 	/* XXX - Drop carrier here? -gwr */
    248 	zs_modem(cs, cs->cs_softcar ? 1 : 0);
    249 #endif
    250 	cs->cs_ttyp = tp;
    251 	tp->t_dev = makedev(ZSMAJOR, unit);
    252 	tp->t_oproc = zsstart;
    253 	tp->t_param = zsparam;
    254 	if (cs->cs_zc == zs_conschan) {
    255 		/* This unit is the console. */
    256 		cs->cs_consio = 1;
    257 		cs->cs_brkabort = 1;
    258 		cs->cs_softcar = 1;
    259 	} else {
    260 		/* Can not run kgdb on the console? */
    261 #ifdef KGDB
    262 		zs_checkkgdb(unit, cs, tp);
    263 #endif
    264 	}
    265 	if (unit == ZS_KBD) {
    266 		/*
    267 		 * Keyboard: tell /dev/kbd driver how to talk to us.
    268 		 */
    269 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    270 		tp->t_cflag = CS8;
    271 		kbd_serial(tp, zsiopen, zsiclose);
    272 		cs->cs_conk = 1;		/* do L1-A processing */
    273 	}
    274 	unit++;
    275 	cs++;
    276 	tp = zs_tty[unit];
    277 
    278 	cs->cs_unit = unit;
    279 	cs->cs_zc = &addr->zs_chan[CHAN_B];
    280 	cs->cs_speed = zs_getspeed(cs->cs_zc);
    281 #ifdef	DEBUG
    282 	mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
    283 #endif
    284 	cs->cs_softcar = softcar & 2;
    285 #if 0
    286 	/* XXX - Drop carrier here? -gwr */
    287 	zs_modem(cs, cs->cs_softcar ? 1 : 0);
    288 #endif
    289 	cs->cs_ttyp = tp;
    290 	tp->t_dev = makedev(ZSMAJOR, unit);
    291 	tp->t_oproc = zsstart;
    292 	tp->t_param = zsparam;
    293 	if (cs->cs_zc == zs_conschan) {
    294 		/* This unit is the console. */
    295 		cs->cs_consio = 1;
    296 		cs->cs_brkabort = 1;
    297 		cs->cs_softcar = 1;
    298 	} else {
    299 		/* Can not run kgdb on the console? */
    300 #ifdef KGDB
    301 		zs_checkkgdb(unit, cs, tp);
    302 #endif
    303 	}
    304 	if (unit == ZS_MOUSE) {
    305 		/*
    306 		 * Mouse: tell /dev/mouse driver how to talk to us.
    307 		 */
    308 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    309 		tp->t_cflag = CS8;
    310 		ms_serial(tp, zsiopen, zsiclose);
    311 	}
    312 }
    313 
    314 /*
    315  * Put a channel in a known state.  Interrupts may be left disabled
    316  * or enabled, as desired.
    317  */
    318 static void
    319 zs_reset(zc, inten, speed)
    320 	volatile struct zschan *zc;
    321 	int inten, speed;
    322 {
    323 	int tconst;
    324 	static u_char reg[16] = {
    325 		0,
    326 		0,
    327 		0,
    328 		ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
    329 		ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
    330 		ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
    331 		0,
    332 		0,
    333 		0,
    334 		0,
    335 		ZSWR10_NRZ,
    336 		ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    337 		0,
    338 		0,
    339 		ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    340 		ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
    341 	};
    342 
    343 	reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
    344 	tconst = BPS_TO_TCONST(PCLK / 16, speed);
    345 	reg[12] = tconst;
    346 	reg[13] = tconst >> 8;
    347 	zs_loadchannelregs(zc, reg);
    348 }
    349 
    350 /*
    351  * Console support
    352  */
    353 
    354 /*
    355  * Used by the kd driver to find out if it can work.
    356  */
    357 int
    358 zscnprobe_kbd()
    359 {
    360 	if (zs1_va == NULL) {
    361 		mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
    362 		return CN_DEAD;
    363 	}
    364 	zsaddr[1] = (struct zsdevice *)zs1_va;
    365 	return CN_INTERNAL;
    366 }
    367 
    368 /*
    369  * This is the console probe routine for ttya and ttyb.
    370  */
    371 static int
    372 zscnprobe(struct consdev *cn, int unit)
    373 {
    374 	int maj, eeCons;
    375 
    376 	if (zs0_va == NULL) {
    377 		mon_printf("zscnprobe: zs0 not yet mapped\n");
    378 		cn->cn_pri = CN_DEAD;
    379 		return 0;
    380 	}
    381 	zsaddr[0] = (struct zsdevice *)zs0_va;
    382 	/* XXX - Also try to make sure it exists? */
    383 
    384 	/* locate the major number */
    385 	for (maj = 0; maj < nchrdev; maj++)
    386 		if (cdevsw[maj].d_open == zsopen)
    387 			break;
    388 
    389 	cn->cn_dev = makedev(maj, unit);
    390 
    391 	/* Use EEPROM console setting to decide "remote" console. */
    392 	if (eeprom_va == NULL) {
    393 		mon_printf("zscnprobe: eeprom not yet mapped\n");
    394 		eeCons = -1;
    395 	} else {
    396 		eeCons = ((struct eeprom *)eeprom_va)->eeConsole;
    397 	}
    398 
    399 	/* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
    400 	if (eeCons == (EE_CONS_TTYA + unit)) {
    401 		cn->cn_pri = CN_REMOTE;
    402 	} else {
    403 		cn->cn_pri = CN_NORMAL;
    404 	}
    405 	return (0);
    406 }
    407 
    408 /* This is the constab entry for TTYA. */
    409 int
    410 zscnprobe_a(struct consdev *cn)
    411 {
    412 	return (zscnprobe(cn, 0));
    413 }
    414 
    415 /* This is the constab entry for TTYB. */
    416 int
    417 zscnprobe_b(struct consdev *cn)
    418 {
    419 	return (zscnprobe(cn, 1));
    420 }
    421 
    422 /* Attach as console.  Also set zs_conschan */
    423 int
    424 zscninit(struct consdev *cn)
    425 {
    426 	int unit;
    427 	volatile struct zsdevice *addr;
    428 
    429 	unit = minor(cn->cn_dev) & 1;
    430 	addr = (struct zsdevice *)zs0_va;
    431 	zs_conschan = ((unit == 0) ?
    432 				   &addr->zs_chan[CHAN_A] :
    433 				   &addr->zs_chan[CHAN_B] );
    434 
    435 	mon_printf("console on zs0 (tty%c)\n", unit + 'a');
    436 }
    437 
    438 
    439 /*
    440  * Polled console input putchar.
    441  */
    442 int
    443 zscngetc(dev)
    444 	dev_t dev;
    445 {
    446 	register volatile struct zschan *zc = zs_conschan;
    447 	register int s, c;
    448 
    449 	if (zc == NULL)
    450 		return (0);
    451 
    452 	s = splhigh();
    453 	while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
    454 		ZS_DELAY();
    455 	ZS_DELAY();
    456 	c = zc->zc_data;
    457 	splx(s);
    458 	return (c);
    459 }
    460 
    461 /*
    462  * Polled console output putchar.
    463  */
    464 int
    465 zscnputc(dev, c)
    466 	dev_t dev;
    467 	int c;
    468 {
    469 	register volatile struct zschan *zc = zs_conschan;
    470 	register int s;
    471 
    472 	if (zc == NULL) {
    473 		s = splhigh();
    474 		mon_putchar(c);
    475 		splx(s);
    476 		return (0);
    477 	}
    478 
    479 	s = splhigh();
    480 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
    481 		ZS_DELAY();
    482 	ZS_DELAY();
    483 	zc->zc_data = c;
    484 	ZS_DELAY();
    485 	splx(s);
    486 }
    487 
    488 #ifdef KGDB
    489 /*
    490  * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
    491  * Pick up the current speed and character size and restore the original
    492  * speed.
    493  */
    494 static void
    495 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
    496 {
    497 
    498 	if (kgdb_dev == makedev(ZSMAJOR, unit)) {
    499 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
    500 		tp->t_cflag = CS8;
    501 		cs->cs_kgdb = 1;
    502 		cs->cs_speed = zs_kgdb_savedspeed;
    503 		(void) zsparam(tp, &tp->t_termios);
    504 	}
    505 }
    506 #endif
    507 
    508 /*
    509  * Compute the current baud rate given a ZSCC channel.
    510  */
    511 static int
    512 zs_getspeed(zc)
    513 	register volatile struct zschan *zc;
    514 {
    515 	register int tconst;
    516 
    517 	tconst = ZS_READ(zc, 12);
    518 	tconst |= ZS_READ(zc, 13) << 8;
    519 	return (TCONST_TO_BPS(PCLK / 16, tconst));
    520 }
    521 
    522 
    523 /*
    524  * Do an internal open.
    525  */
    526 static void
    527 zsiopen(struct tty *tp)
    528 {
    529 
    530 	(void) zsparam(tp, &tp->t_termios);
    531 	ttsetwater(tp);
    532 	tp->t_state = TS_ISOPEN | TS_CARR_ON;
    533 }
    534 
    535 /*
    536  * Do an internal close.  Eventually we should shut off the chip when both
    537  * ports on it are closed.
    538  */
    539 static void
    540 zsiclose(struct tty *tp)
    541 {
    542 
    543 	ttylclose(tp, 0);	/* ??? */
    544 	ttyclose(tp);		/* ??? */
    545 	tp->t_state = 0;
    546 }
    547 
    548 
    549 /*
    550  * Open a zs serial port.  This interface may not be used to open
    551  * the keyboard and mouse ports. (XXX)
    552  */
    553 int
    554 zsopen(dev_t dev, int flags, int mode, struct proc *p)
    555 {
    556 	register struct tty *tp;
    557 	register struct zs_chanstate *cs;
    558 	struct zsinfo *zi;
    559 	int unit = minor(dev), zs = unit >> 1, error, s;
    560 
    561 #ifdef	DEBUG
    562 	mon_printf("zs_open\n");
    563 #endif
    564 	if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
    565 	    unit == ZS_KBD || unit == ZS_MOUSE)
    566 		return (ENXIO);
    567 	cs = &zi->zi_cs[unit & 1];
    568 #if 0
    569 	/* The kd driver avoids the need for this hack. */
    570 	if (cs->cs_consio)
    571 		return (ENXIO);		/* ??? */
    572 #endif
    573 	tp = cs->cs_ttyp;
    574 	s = spltty();
    575 	if ((tp->t_state & TS_ISOPEN) == 0) {
    576 		ttychars(tp);
    577 		if (tp->t_ispeed == 0) {
    578 			tp->t_iflag = TTYDEF_IFLAG;
    579 			tp->t_oflag = TTYDEF_OFLAG;
    580 #if 0
    581 			tp->t_cflag = TTYDEF_CFLAG;
    582 #else
    583 			/* Make default same as PROM uses. */
    584 			tp->t_cflag = (CREAD | CS8 | HUPCL);
    585 #endif
    586 			tp->t_lflag = TTYDEF_LFLAG;
    587 			tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    588 		}
    589 		(void) zsparam(tp, &tp->t_termios);
    590 		ttsetwater(tp);
    591 	} else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    592 		splx(s);
    593 		return (EBUSY);
    594 	}
    595 	error = 0;
    596 #ifdef	DEBUG
    597 	mon_printf("wait for carrier...\n");
    598 #endif
    599 	for (;;) {
    600 		/* loop, turning on the device, until carrier present */
    601 		zs_modem(cs, 1);
    602 		/* May never get status intr if carrier already on. -gwr */
    603 		if (cs->cs_zc->zc_csr & ZSRR0_DCD)
    604 			tp->t_state |= TS_CARR_ON;
    605 		if (cs->cs_softcar)
    606 			tp->t_state |= TS_CARR_ON;
    607 		if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    608 		    tp->t_state & TS_CARR_ON)
    609 			break;
    610 		tp->t_state |= TS_WOPEN;
    611 		if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    612 		    ttopen, 0))
    613 			break;
    614 	}
    615 #ifdef	DEBUG
    616 	mon_printf("...carrier %s\n",
    617 			   (tp->t_state & TS_CARR_ON) ? "on" : "off");
    618 #endif
    619 	splx(s);
    620 	if (error == 0)
    621 		error = linesw[tp->t_line].l_open(dev, tp);
    622 	if (error)
    623 		zs_modem(cs, 0);
    624 	return (error);
    625 }
    626 
    627 /*
    628  * Close a zs serial port.
    629  */
    630 int
    631 zsclose(dev_t dev, int flags, int mode, struct proc *p)
    632 {
    633 	register struct zs_chanstate *cs;
    634 	register struct tty *tp;
    635 	struct zsinfo *zi;
    636 	int unit = minor(dev), s;
    637 
    638 #ifdef	DEBUG
    639 	mon_printf("zs_close\n");
    640 #endif
    641 	zi = zscd.cd_devs[unit >> 1];
    642 	cs = &zi->zi_cs[unit & 1];
    643 	tp = cs->cs_ttyp;
    644 	linesw[tp->t_line].l_close(tp, flags);
    645 	if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    646 	    (tp->t_state & TS_ISOPEN) == 0) {
    647 		zs_modem(cs, 0);
    648 		/* hold low for 1 second */
    649 		(void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    650 	}
    651 	if (cs->cs_creg[5] & ZSWR5_BREAK)
    652 	{
    653 		s = splzs();
    654 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    655 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    656 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    657 		splx(s);
    658 	}
    659 	ttyclose(tp);
    660 #ifdef KGDB
    661 	/* Reset the speed if we're doing kgdb on this port */
    662 	if (cs->cs_kgdb) {
    663 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
    664 		(void) zsparam(tp, &tp->t_termios);
    665 	}
    666 #endif
    667 	return (0);
    668 }
    669 
    670 /*
    671  * Read/write zs serial port.
    672  */
    673 int
    674 zsread(dev_t dev, struct uio *uio, int flags)
    675 {
    676 	register struct tty *tp = zs_tty[minor(dev)];
    677 
    678 	return (linesw[tp->t_line].l_read(tp, uio, flags));
    679 }
    680 
    681 int
    682 zswrite(dev_t dev, struct uio *uio, int flags)
    683 {
    684 	register struct tty *tp = zs_tty[minor(dev)];
    685 
    686 	return (linesw[tp->t_line].l_write(tp, uio, flags));
    687 }
    688 
    689 /*
    690  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    691  * channels are kept in (A,B) pairs.
    692  *
    693  * Do just a little, then get out; set a software interrupt if more
    694  * work is needed.
    695  *
    696  * We deliberately ignore the vectoring Zilog gives us, and match up
    697  * only the number of `reset interrupt under service' operations, not
    698  * the order.
    699  */
    700 /* ARGSUSED */
    701 int
    702 zshard(int intrarg)
    703 {
    704 	register struct zs_chanstate *a;
    705 #define	b (a + 1)
    706 	register volatile struct zschan *zc;
    707 	register int rr3, intflags = 0, v, i;
    708 	static int zsrint(struct zs_chanstate *, volatile struct zschan *);
    709 	static int zsxint(struct zs_chanstate *, volatile struct zschan *);
    710 	static int zssint(struct zs_chanstate *, volatile struct zschan *);
    711 
    712 	for (a = zslist; a != NULL; a = b->cs_next) {
    713 		rr3 = ZS_READ(a->cs_zc, 3);
    714 
    715 		/* XXX - This should loop to empty the on-chip fifo. */
    716 		if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    717 			intflags |= 2;
    718 			zc = a->cs_zc;
    719 			i = a->cs_rbput;
    720 			if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    721 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    722 				intflags |= 1;
    723 			}
    724 			if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    725 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    726 				intflags |= 1;
    727 			}
    728 			if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    729 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    730 				intflags |= 1;
    731 			}
    732 			a->cs_rbput = i;
    733 		}
    734 
    735 		/* XXX - This should loop to empty the on-chip fifo. */
    736 		if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    737 			intflags |= 2;
    738 			zc = b->cs_zc;
    739 			i = b->cs_rbput;
    740 			if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    741 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    742 				intflags |= 1;
    743 			}
    744 			if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    745 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    746 				intflags |= 1;
    747 			}
    748 			if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    749 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
    750 				intflags |= 1;
    751 			}
    752 			b->cs_rbput = i;
    753 		}
    754 	}
    755 #undef b
    756 	if (intflags & 1) {
    757 	    isr_soft_request(ZSSOFT_PRI);
    758 	}
    759 	return (intflags & 2);
    760 }
    761 
    762 static int
    763 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
    764 {
    765 	register int c = zc->zc_data;
    766 
    767 	if (cs->cs_conk) {
    768 		register struct conk_state *conk = &zsconk_state;
    769 
    770 		/*
    771 		 * Check here for console abort function, so that we
    772 		 * can abort even when interrupts are locking up the
    773 		 * machine.
    774 		 */
    775 		if (c == KBD_RESET) {
    776 			conk->conk_id = 1;	/* ignore next byte */
    777 			conk->conk_l1 = 0;
    778 		} else if (conk->conk_id)
    779 			conk->conk_id = 0;	/* stop ignoring bytes */
    780 		else if (c == KBD_L1)
    781 			conk->conk_l1 = 1;	/* L1 went down */
    782 		else if (c == (KBD_L1|KBD_UP))
    783 			conk->conk_l1 = 0;	/* L1 went up */
    784 		else if (c == KBD_A && conk->conk_l1) {
    785 			zsabort();
    786 			conk->conk_l1 = 0;	/* we never see the up */
    787 			goto clearit;		/* eat the A after L1-A */
    788 		}
    789 	}
    790 #ifdef KGDB
    791 	if (c == FRAME_START && cs->cs_kgdb &&
    792 	    (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
    793 		zskgdb(cs->cs_unit);
    794 		goto clearit;
    795 	}
    796 #endif
    797 	/* compose receive character and status */
    798 	c <<= 8;
    799 	c |= ZS_READ(zc, 1);
    800 
    801 	/* clear receive error & interrupt condition */
    802 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    803 	zc->zc_csr = ZSWR0_CLR_INTR;
    804 
    805 	return (ZRING_MAKE(ZRING_RINT, c));
    806 
    807 clearit:
    808 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    809 	zc->zc_csr = ZSWR0_CLR_INTR;
    810 	return (0);
    811 }
    812 
    813 static int
    814 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
    815 {
    816 	register int i = cs->cs_tbc;
    817 
    818 	if (i == 0) {
    819 		zc->zc_csr = ZSWR0_RESET_TXINT;
    820 		zc->zc_csr = ZSWR0_CLR_INTR;
    821 		return (ZRING_MAKE(ZRING_XINT, 0));
    822 	}
    823 	cs->cs_tbc = i - 1;
    824 	zc->zc_data = *cs->cs_tba++;
    825 	zc->zc_csr = ZSWR0_CLR_INTR;
    826 	return (0);
    827 }
    828 
    829 static int
    830 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
    831 {
    832 	register int rr0;
    833 
    834 	rr0 = zc->zc_csr;
    835 	zc->zc_csr = ZSWR0_RESET_STATUS;
    836 	zc->zc_csr = ZSWR0_CLR_INTR;
    837 	/*
    838 	 * The chip's hardware flow control is, as noted in zsreg.h,
    839 	 * busted---if the DCD line goes low the chip shuts off the
    840 	 * receiver (!).  If we want hardware CTS flow control but do
    841 	 * not have it, and carrier is now on, turn HFC on; if we have
    842 	 * HFC now but carrier has gone low, turn it off.
    843 	 */
    844 	if (rr0 & ZSRR0_DCD) {
    845 		if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    846 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    847 			cs->cs_creg[3] |= ZSWR3_HFC;
    848 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    849 		}
    850 	} else {
    851 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    852 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    853 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    854 		}
    855 	}
    856 	if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
    857 		/* Wait for end of break to avoid PROM abort. */
    858 		while (zc->zc_csr & ZSRR0_BREAK)
    859 			ZS_DELAY();
    860 		zsabort();
    861 		return (0);
    862 	}
    863 	return (ZRING_MAKE(ZRING_SINT, rr0));
    864 }
    865 
    866 zsabort()
    867 {
    868 #ifdef DDB
    869 	Debugger();
    870 #else
    871 	printf("stopping on keyboard abort\n");
    872 	sun3_rom_abort();
    873 #endif
    874 }
    875 
    876 #ifdef KGDB
    877 /*
    878  * KGDB framing character received: enter kernel debugger.  This probably
    879  * should time out after a few seconds to avoid hanging on spurious input.
    880  */
    881 zskgdb(int unit)
    882 {
    883 
    884 	printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
    885 	kgdb_connect(1);
    886 }
    887 #endif
    888 
    889 /*
    890  * Print out a ring or fifo overrun error message.
    891  */
    892 static void
    893 zsoverrun(int unit, long *ptime, char *what)
    894 {
    895 
    896 	if (*ptime != time.tv_sec) {
    897 		*ptime = time.tv_sec;
    898 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    899 		    (unit & 1) + 'a', what);
    900 	}
    901 }
    902 
    903 /*
    904  * ZS software interrupt.  Scan all channels for deferred interrupts.
    905  */
    906 int
    907 zssoft(int arg)
    908 {
    909 	register struct zs_chanstate *cs;
    910 	register volatile struct zschan *zc;
    911 	register struct linesw *line;
    912 	register struct tty *tp;
    913 	register int get, n, c, cc, unit, s;
    914 
    915 	isr_soft_clear(ZSSOFT_PRI);
    916 
    917 	for (cs = zslist; cs != NULL; cs = cs->cs_next) {
    918 		get = cs->cs_rbget;
    919 again:
    920 		n = cs->cs_rbput;	/* atomic */
    921 		if (get == n)		/* nothing more on this line */
    922 			continue;
    923 		unit = cs->cs_unit;	/* set up to handle interrupts */
    924 		zc = cs->cs_zc;
    925 		tp = cs->cs_ttyp;
    926 		line = &linesw[tp->t_line];
    927 		/*
    928 		 * Compute the number of interrupts in the receive ring.
    929 		 * If the count is overlarge, we lost some events, and
    930 		 * must advance to the first valid one.  It may get
    931 		 * overwritten if more data are arriving, but this is
    932 		 * too expensive to check and gains nothing (we already
    933 		 * lost out; all we can do at this point is trade one
    934 		 * kind of loss for another).
    935 		 */
    936 		n -= get;
    937 		if (n > ZLRB_RING_SIZE) {
    938 			zsoverrun(unit, &cs->cs_rotime, "ring");
    939 			get += n - ZLRB_RING_SIZE;
    940 			n = ZLRB_RING_SIZE;
    941 		}
    942 		while (--n >= 0) {
    943 			/* race to keep ahead of incoming interrupts */
    944 			c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
    945 			switch (ZRING_TYPE(c)) {
    946 
    947 			case ZRING_RINT:
    948 				c = ZRING_VALUE(c);
    949 				if (c & ZSRR1_DO)
    950 					zsoverrun(unit, &cs->cs_fotime, "fifo");
    951 				cc = c >> 8;
    952 				if (c & ZSRR1_FE)
    953 					cc |= TTY_FE;
    954 				if (c & ZSRR1_PE)
    955 					cc |= TTY_PE;
    956 				/*
    957 				 * this should be done through
    958 				 * bstreams	XXX gag choke
    959 				 */
    960 				if (unit == ZS_KBD)
    961 					kbd_rint(cc);
    962 				else if (unit == ZS_MOUSE)
    963 					ms_rint(cc);
    964 				else
    965 					line->l_rint(cc, tp);
    966 				break;
    967 
    968 			case ZRING_XINT:
    969 				/*
    970 				 * Transmit done: change registers and resume,
    971 				 * or clear BUSY.
    972 				 */
    973 				if (cs->cs_heldchange) {
    974 					s = splzs();
    975 					c = zc->zc_csr;
    976 					if ((c & ZSRR0_DCD) == 0)
    977 						cs->cs_preg[3] &= ~ZSWR3_HFC;
    978 					bcopy((caddr_t)cs->cs_preg,
    979 					    (caddr_t)cs->cs_creg, 16);
    980 					zs_loadchannelregs(zc, cs->cs_creg);
    981 					splx(s);
    982 					cs->cs_heldchange = 0;
    983 					if (cs->cs_heldtbc &&
    984 					    (tp->t_state & TS_TTSTOP) == 0) {
    985 						cs->cs_tbc = cs->cs_heldtbc - 1;
    986 						zc->zc_data = *cs->cs_tba++;
    987 						goto again;
    988 					}
    989 				}
    990 				tp->t_state &= ~TS_BUSY;
    991 				if (tp->t_state & TS_FLUSH)
    992 					tp->t_state &= ~TS_FLUSH;
    993 				else
    994 					ndflush(&tp->t_outq, cs->cs_tba -
    995 						(caddr_t) tp->t_outq.c_cf);
    996 				line->l_start(tp);
    997 				break;
    998 
    999 			case ZRING_SINT:
   1000 				/*
   1001 				 * Status line change.  HFC bit is run in
   1002 				 * hardware interrupt, to avoid locking
   1003 				 * at splzs here.
   1004 				 */
   1005 				c = ZRING_VALUE(c);
   1006 				if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
   1007 					cc = (c & ZSRR0_DCD) != 0;
   1008 					if (line->l_modem(tp, cc) == 0)
   1009 						zs_modem(cs, cc);
   1010 				}
   1011 				cs->cs_rr0 = c;
   1012 				break;
   1013 
   1014 			default:
   1015 				log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
   1016 				    unit >> 1, (unit & 1) + 'a', c);
   1017 				break;
   1018 			}
   1019 		}
   1020 		cs->cs_rbget = get;
   1021 		goto again;
   1022 	}
   1023 	return (1);
   1024 }
   1025 
   1026 int
   1027 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
   1028 {
   1029 	int unit = minor(dev);
   1030 	struct zsinfo *zi = zscd.cd_devs[unit >> 1];
   1031 	register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
   1032 	register struct tty *tp = cs->cs_ttyp;
   1033 	register int error, s;
   1034 
   1035 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
   1036 	if (error >= 0)
   1037 		return (error);
   1038 	error = ttioctl(tp, cmd, data, flag, p);
   1039 	if (error >= 0)
   1040 		return (error);
   1041 
   1042 	switch (cmd) {
   1043 
   1044 	case TIOCSBRK:
   1045 		{
   1046 			s = splzs();
   1047 			cs->cs_preg[5] |= ZSWR5_BREAK;
   1048 			cs->cs_creg[5] |= ZSWR5_BREAK;
   1049 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1050 			splx(s);
   1051 			break;
   1052 		}
   1053 
   1054 	case TIOCCBRK:
   1055 		{
   1056 			s = splzs();
   1057 			cs->cs_preg[5] &= ~ZSWR5_BREAK;
   1058 			cs->cs_creg[5] &= ~ZSWR5_BREAK;
   1059 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1060 			splx(s);
   1061 			break;
   1062 		}
   1063 
   1064 	case TIOCSDTR:
   1065 
   1066 	case TIOCCDTR:
   1067 
   1068 	case TIOCMSET:
   1069 
   1070 	case TIOCMBIS:
   1071 
   1072 	case TIOCMBIC:
   1073 
   1074 	case TIOCMGET:
   1075 
   1076 	default:
   1077 		return (ENOTTY);
   1078 	}
   1079 	return (0);
   1080 }
   1081 
   1082 /*
   1083  * Start or restart transmission.
   1084  */
   1085 static void
   1086 zsstart(register struct tty *tp)
   1087 {
   1088 	register struct zs_chanstate *cs;
   1089 	register int s, nch;
   1090 	int unit = minor(tp->t_dev);
   1091 	struct zsinfo *zi = zscd.cd_devs[unit >> 1];
   1092 
   1093 	cs = &zi->zi_cs[unit & 1];
   1094 	s = spltty();
   1095 
   1096 	/*
   1097 	 * If currently active or delaying, no need to do anything.
   1098 	 */
   1099 	if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
   1100 		goto out;
   1101 
   1102 	/*
   1103 	 * If there are sleepers, and output has drained below low
   1104 	 * water mark, awaken.
   1105 	 */
   1106 	if (tp->t_outq.c_cc <= tp->t_lowat) {
   1107 		if (tp->t_state & TS_ASLEEP) {
   1108 			tp->t_state &= ~TS_ASLEEP;
   1109 			wakeup((caddr_t)&tp->t_outq);
   1110 		}
   1111 		selwakeup(&tp->t_wsel);
   1112 	}
   1113 
   1114 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
   1115 	if (nch) {
   1116 		register char *p = tp->t_outq.c_cf;
   1117 
   1118 		/* mark busy, enable tx done interrupts, & send first byte */
   1119 		tp->t_state |= TS_BUSY;
   1120 		(void) splzs();
   1121 		cs->cs_preg[1] |= ZSWR1_TIE;
   1122 		cs->cs_creg[1] |= ZSWR1_TIE;
   1123 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1124 		cs->cs_zc->zc_data = *p;
   1125 		cs->cs_tba = p + 1;
   1126 		cs->cs_tbc = nch - 1;
   1127 	} else {
   1128 		/*
   1129 		 * Nothing to send, turn off transmit done interrupts.
   1130 		 * This is useful if something is doing polled output.
   1131 		 */
   1132 		(void) splzs();
   1133 		cs->cs_preg[1] &= ~ZSWR1_TIE;
   1134 		cs->cs_creg[1] &= ~ZSWR1_TIE;
   1135 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1136 	}
   1137 out:
   1138 	splx(s);
   1139 }
   1140 
   1141 /*
   1142  * Stop output, e.g., for ^S or output flush.
   1143  */
   1144 void
   1145 zsstop(register struct tty *tp, int flag)
   1146 {
   1147 	register struct zs_chanstate *cs;
   1148 	register int s, unit = minor(tp->t_dev);
   1149 	struct zsinfo *zi = zscd.cd_devs[unit >> 1];
   1150 
   1151 	cs = &zi->zi_cs[unit & 1];
   1152 	s = splzs();
   1153 	if (tp->t_state & TS_BUSY) {
   1154 		/*
   1155 		 * Device is transmitting; must stop it.
   1156 		 */
   1157 		cs->cs_tbc = 0;
   1158 		if ((tp->t_state & TS_TTSTOP) == 0)
   1159 			tp->t_state |= TS_FLUSH;
   1160 	}
   1161 	splx(s);
   1162 }
   1163 
   1164 /*
   1165  * Set ZS tty parameters from termios.
   1166  *
   1167  * This routine makes use of the fact that only registers
   1168  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1169  */
   1170 static int
   1171 zsparam(register struct tty *tp, register struct termios *t)
   1172 {
   1173 	int unit = minor(tp->t_dev);
   1174 	struct zsinfo *zi = zscd.cd_devs[unit >> 1];
   1175 	register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
   1176 	register int tmp, tmp5, cflag, s;
   1177 
   1178 	/*
   1179 	 * Because PCLK is only run at 4.9 MHz, the fastest we
   1180 	 * can go is 51200 baud (this corresponds to TC=1).
   1181 	 * This is somewhat unfortunate as there is no real
   1182 	 * reason we should not be able to handle higher rates.
   1183 	 */
   1184 	tmp = t->c_ospeed;
   1185 	if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
   1186 		return (EINVAL);
   1187 	if (tmp == 0) {
   1188 		/* stty 0 => drop DTR and RTS */
   1189 		zs_modem(cs, 0);
   1190 		return (0);
   1191 	}
   1192 	tmp = BPS_TO_TCONST(PCLK / 16, tmp);
   1193 	if (tmp < 2)
   1194 		return (EINVAL);
   1195 
   1196 	cflag = t->c_cflag;
   1197 	tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
   1198 	tp->t_cflag = cflag;
   1199 
   1200 	/*
   1201 	 * Block interrupts so that state will not
   1202 	 * be altered until we are done setting it up.
   1203 	 */
   1204 	s = splzs();
   1205 	cs->cs_preg[12] = tmp;
   1206 	cs->cs_preg[13] = tmp >> 8;
   1207 	cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1208 	switch (cflag & CSIZE) {
   1209 	case CS5:
   1210 		tmp = ZSWR3_RX_5;
   1211 		tmp5 = ZSWR5_TX_5;
   1212 		break;
   1213 	case CS6:
   1214 		tmp = ZSWR3_RX_6;
   1215 		tmp5 = ZSWR5_TX_6;
   1216 		break;
   1217 	case CS7:
   1218 		tmp = ZSWR3_RX_7;
   1219 		tmp5 = ZSWR5_TX_7;
   1220 		break;
   1221 	case CS8:
   1222 	default:
   1223 		tmp = ZSWR3_RX_8;
   1224 		tmp5 = ZSWR5_TX_8;
   1225 		break;
   1226 	}
   1227 
   1228 	/*
   1229 	 * Output hardware flow control on the chip is horrendous: if
   1230 	 * carrier detect drops, the receiver is disabled.  Hence we
   1231 	 * can only do this when the carrier is on.
   1232 	 */
   1233 	if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
   1234 		tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
   1235 	else
   1236 		tmp |= ZSWR3_RX_ENABLE;
   1237 	cs->cs_preg[3] = tmp;
   1238 	cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1239 
   1240 	tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
   1241 	if ((cflag & PARODD) == 0)
   1242 		tmp |= ZSWR4_EVENP;
   1243 	if (cflag & PARENB)
   1244 		tmp |= ZSWR4_PARENB;
   1245 	cs->cs_preg[4] = tmp;
   1246 	cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
   1247 	cs->cs_preg[10] = ZSWR10_NRZ;
   1248 	cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
   1249 	cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
   1250 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1251 
   1252 	/*
   1253 	 * If nothing is being transmitted, set up new current values,
   1254 	 * else mark them as pending.
   1255 	 */
   1256 	if (cs->cs_heldchange == 0) {
   1257 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1258 			cs->cs_heldtbc = cs->cs_tbc;
   1259 			cs->cs_tbc = 0;
   1260 			cs->cs_heldchange = 1;
   1261 		} else {
   1262 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1263 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1264 		}
   1265 	}
   1266 	splx(s);
   1267 	return (0);
   1268 }
   1269 
   1270 /*
   1271  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1272  * in transmission, the change is deferred.
   1273  */
   1274 static void
   1275 zs_modem(struct zs_chanstate *cs, int onoff)
   1276 {
   1277 	int s, bis, and;
   1278 
   1279 	if (onoff) {
   1280 		bis = ZSWR5_DTR | ZSWR5_RTS;
   1281 		and = ~0;
   1282 	} else {
   1283 		bis = 0;
   1284 		and = ~(ZSWR5_DTR | ZSWR5_RTS);
   1285 	}
   1286 	s = splzs();
   1287 	cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
   1288 	if (cs->cs_heldchange == 0) {
   1289 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1290 			cs->cs_heldtbc = cs->cs_tbc;
   1291 			cs->cs_tbc = 0;
   1292 			cs->cs_heldchange = 1;
   1293 		} else {
   1294 			cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
   1295 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1296 		}
   1297 	}
   1298 	splx(s);
   1299 }
   1300 
   1301 /*
   1302  * Write the given register set to the given zs channel in the proper order.
   1303  * The channel must not be transmitting at the time.  The receiver will
   1304  * be disabled for the time it takes to write all the registers.
   1305  */
   1306 static void
   1307 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
   1308 {
   1309 	int i;
   1310 
   1311 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1312 	i = zc->zc_data;		/* drain fifo */
   1313 	i = zc->zc_data;
   1314 	i = zc->zc_data;
   1315 	ZS_WRITE(zc, 4, reg[4]);
   1316 	ZS_WRITE(zc, 10, reg[10]);
   1317 	ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
   1318 	ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
   1319 	ZS_WRITE(zc, 1, reg[1]);
   1320 	ZS_WRITE(zc, 9, reg[9]);
   1321 	ZS_WRITE(zc, 11, reg[11]);
   1322 	ZS_WRITE(zc, 12, reg[12]);
   1323 	ZS_WRITE(zc, 13, reg[13]);
   1324 	ZS_WRITE(zc, 14, reg[14]);
   1325 	ZS_WRITE(zc, 15, reg[15]);
   1326 	ZS_WRITE(zc, 3, reg[3]);
   1327 	ZS_WRITE(zc, 5, reg[5]);
   1328 }
   1329 
   1330 static u_char
   1331 zs_read(zc, reg)
   1332 	volatile struct zschan *zc;
   1333 	u_char reg;
   1334 {
   1335 	u_char val;
   1336 
   1337 	zc->zc_csr = reg;
   1338 	ZS_DELAY();
   1339 	val = zc->zc_csr;
   1340 	ZS_DELAY();
   1341 	return val;
   1342 }
   1343 
   1344 static u_char
   1345 zs_write(zc, reg, val)
   1346 	volatile struct zschan *zc;
   1347 	u_char reg, val;
   1348 {
   1349 	zc->zc_csr = reg;
   1350 	ZS_DELAY();
   1351 	zc->zc_csr = val;
   1352 	ZS_DELAY();
   1353 	return val;
   1354 }
   1355 
   1356 #ifdef KGDB
   1357 /*
   1358  * Get a character from the given kgdb channel.  Called at splhigh().
   1359  */
   1360 static int
   1361 zs_kgdb_getc(void *arg)
   1362 {
   1363 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
   1364 
   1365 	while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
   1366 		continue;
   1367 	return (zc->zc_data);
   1368 }
   1369 
   1370 /*
   1371  * Put a character to the given kgdb channel.  Called at splhigh().
   1372  */
   1373 static void
   1374 zs_kgdb_putc(void *arg, int c)
   1375 {
   1376 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
   1377 
   1378 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
   1379 		continue;
   1380 	zc->zc_data = c;
   1381 }
   1382 
   1383 /*
   1384  * Set up for kgdb; called at boot time before configuration.
   1385  * KGDB interrupts will be enabled later when zs0 is configured.
   1386  */
   1387 void
   1388 zs_kgdb_init()
   1389 {
   1390 	volatile struct zsdevice *addr;
   1391 	volatile struct zschan *zc;
   1392 	int unit, zs;
   1393 
   1394 	if (major(kgdb_dev) != ZSMAJOR)
   1395 		return;
   1396 	unit = minor(kgdb_dev);
   1397 	/*
   1398 	 * Unit must be 0 or 1 (zs0).
   1399 	 */
   1400 	if ((unsigned)unit >= ZS_KBD) {
   1401 		printf("zs_kgdb_init: bad minor dev %d\n", unit);
   1402 		return;
   1403 	}
   1404 	zs = unit >> 1;
   1405 	unit &= 1;
   1406 
   1407 	if ((addr = zs0_va) == NULL)
   1408 		panic("kbdb_attach: zs0 not yet mapped");
   1409 
   1410 	zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
   1411 	zs_kgdb_savedspeed = zs_getspeed(zc);
   1412 	printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
   1413 	    zs, unit + 'a', kgdb_rate);
   1414 	zs_reset(zc, 1, kgdb_rate);
   1415 	kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
   1416 }
   1417 #endif /* KGDB */
   1418