zs.c revision 1.9 1 /*
2 * Copyright (c) 1994 Gordon W. Ross
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This software was developed by the Computer Systems Engineering group
7 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
8 * contributed to Berkeley.
9 *
10 * All advertising materials mentioning features or use of this software
11 * must display the following acknowledgement:
12 * This product includes software developed by the University of
13 * California, Lawrence Berkeley Laboratory.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 * @(#)zs.c 8.1 (Berkeley) 7/19/93
44 *
45 * $Id: zs.c,v 1.9 1994/09/20 16:21:48 gwr Exp $
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <machine/autoconf.h>
71 #include <machine/cpu.h>
72 #include <machine/obio.h>
73 #include <machine/mon.h>
74 #include <machine/eeprom.h>
75
76 #include <dev/cons.h>
77
78 #include "kbd.h"
79 #include "zsreg.h"
80 #include "zsvar.h"
81
82 #ifdef KGDB
83 #include <machine/remote-sl.h>
84 #endif
85
86 #define ZSMAJOR 12 /* XXX */
87
88 #define ZS_KBD 2 /* XXX */
89 #define ZS_MOUSE 3 /* XXX */
90
91 /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */
92 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
93
94 /*
95 * Select software interrupt levels.
96 */
97 #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */
98 #define ZSHARD_PRI 6 /* Wired on the CPU board... */
99
100 /*
101 * Software state per found chip. This would be called `zs_softc',
102 * but the previous driver had a rather different zs_softc....
103 */
104 struct zsinfo {
105 struct device zi_dev; /* base device */
106 volatile struct zsdevice *zi_zs;/* chip registers */
107 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
108 };
109
110 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
111
112 /* Definition of the driver for autoconfig. */
113 static int zsmatch(struct device *, struct cfdata *, void *);
114 static void zsattach(struct device *, struct device *, void *);
115 struct cfdriver zscd =
116 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
117
118 /* Interrupt handlers. */
119 static int zshard(int);
120 static int zssoft(int);
121
122 struct zs_chanstate *zslist;
123
124 /* Routines called from other code. */
125 int zsopen(dev_t, int, int, struct proc *);
126 int zsclose(dev_t, int, int, struct proc *);
127 static void zsiopen(struct tty *);
128 static void zsiclose(struct tty *);
129 static void zsstart(struct tty *);
130 void zsstop(struct tty *, int);
131 static int zsparam(struct tty *, struct termios *);
132
133 /* Routines purely local to this driver. */
134 static int zs_getspeed(volatile struct zschan *);
135 static void zs_reset(volatile struct zschan *, int, int);
136 static void zs_modem(struct zs_chanstate *, int);
137 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
138 static u_char zs_read(volatile struct zschan *, u_char);
139 static u_char zs_write(volatile struct zschan *, u_char, u_char);
140
141 /* Console stuff. */
142 static volatile struct zschan *zs_conschan;
143
144 #ifdef KGDB
145 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
146 extern int kgdb_dev, kgdb_rate;
147 static int zs_kgdb_savedspeed;
148 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
149 #endif
150
151 /*
152 * Console keyboard L1-A processing is done in the hardware interrupt code,
153 * so we need to duplicate some of the console keyboard decode state. (We
154 * must not use the regular state as the hardware code keeps ahead of the
155 * software state: the software state tracks the most recent ring input but
156 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
157 */
158 static struct conk_state { /* console keyboard state */
159 char conk_id; /* true => ID coming up (console only) */
160 char conk_l1; /* true => L1 pressed (console only) */
161 } zsconk_state;
162
163 int zshardscope;
164 int zsshortcuts; /* number of "shortcut" software interrupts */
165
166 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
167
168 /* Find PROM mappings (for console support). */
169 void zs_init()
170 {
171 if (zsaddr[0] == NULL)
172 zsaddr[0] = (struct zsdevice *)
173 obio_find_mapping(OBIO_ZS, OBIO_ZS_SIZE);
174 if (zsaddr[1] == NULL)
175 zsaddr[1] = (struct zsdevice *)
176 obio_find_mapping(OBIO_KEYBD_MS, OBIO_ZS_SIZE);
177 }
178
179 /*
180 * Match slave number to zs unit number, so that misconfiguration will
181 * not set up the keyboard as ttya, etc.
182 */
183 static int
184 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
185 {
186 struct obio_cf_loc *obio_loc;
187 caddr_t zs_addr;
188
189 obio_loc = (struct obio_cf_loc *) CFDATA_LOC(cf);
190 zs_addr = (caddr_t) obio_loc->obio_addr;
191 return !obio_probe_byte(zs_addr);
192 }
193
194 /*
195 * Attach a found zs.
196 *
197 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
198 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
199 */
200 static void
201 zsattach(struct device *parent, struct device *dev, void *aux)
202 {
203 struct obio_cf_loc *obio_loc = OBIO_LOC(dev);
204 register int zs = dev->dv_unit, unit;
205 register struct zsinfo *zi;
206 register struct zs_chanstate *cs;
207 register volatile struct zsdevice *addr;
208 register struct tty *tp, *ctp;
209 int softcar, obio_addr;
210 static int didintr;
211
212 obio_addr = obio_loc->obio_addr;
213 obio_print(obio_addr, ZSSOFT_PRI);
214 printf(" hwpri %d\n", ZSHARD_PRI);
215
216 if (zsaddr[zs] == NULL) {
217 zsaddr[zs] = (struct zsdevice *)
218 obio_alloc(obio_addr, OBIO_ZS_SIZE);
219 }
220 addr = zsaddr[zs];
221
222 if (!didintr) {
223 didintr = 1;
224 isr_add(ZSSOFT_PRI, zssoft, 0);
225 isr_add(ZSHARD_PRI, zshard, 0);
226 }
227
228 zi = (struct zsinfo *)dev;
229 zi->zi_zs = addr;
230 unit = zs * 2;
231 cs = zi->zi_cs;
232
233 if(!zs_tty[unit])
234 zs_tty[unit] = ttymalloc();
235 tp = zs_tty[unit];
236 if(!zs_tty[unit+1])
237 zs_tty[unit+1] = ttymalloc();
238
239 if (unit == 0) {
240 softcar = 0;
241 } else
242 softcar = dev->dv_cfdata->cf_flags;
243
244 /* link into interrupt list with order (A,B) (B=A+1) */
245 cs[0].cs_next = &cs[1];
246 cs[1].cs_next = zslist;
247 zslist = cs;
248
249 cs->cs_unit = unit;
250 cs->cs_zc = &addr->zs_chan[CHAN_A];
251 cs->cs_speed = zs_getspeed(cs->cs_zc);
252 #ifdef DEBUG
253 mon_printf("zs%da speed %d ", zs, cs->cs_speed);
254 #endif
255 cs->cs_softcar = softcar & 1;
256 #if 0
257 /* XXX - Drop carrier here? -gwr */
258 zs_modem(cs, cs->cs_softcar ? 1 : 0);
259 #endif
260 cs->cs_ttyp = tp;
261 tp->t_dev = makedev(ZSMAJOR, unit);
262 tp->t_oproc = zsstart;
263 tp->t_param = zsparam;
264 if (cs->cs_zc == zs_conschan) {
265 /* This unit is the console. */
266 cs->cs_consio = 1;
267 cs->cs_brkabort = 1;
268 cs->cs_softcar = 1;
269 } else {
270 /* Can not run kgdb on the console? */
271 #ifdef KGDB
272 zs_checkkgdb(unit, cs, tp);
273 #endif
274 }
275 if (unit == ZS_KBD) {
276 /*
277 * Keyboard: tell /dev/kbd driver how to talk to us.
278 */
279 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
280 tp->t_cflag = CS8;
281 kbd_serial(tp, zsiopen, zsiclose);
282 cs->cs_conk = 1; /* do L1-A processing */
283 }
284 unit++;
285 cs++;
286 tp = zs_tty[unit];
287
288 cs->cs_unit = unit;
289 cs->cs_zc = &addr->zs_chan[CHAN_B];
290 cs->cs_speed = zs_getspeed(cs->cs_zc);
291 #ifdef DEBUG
292 mon_printf("zs%db speed %d\n", zs, cs->cs_speed);
293 #endif
294 cs->cs_softcar = softcar & 2;
295 #if 0
296 /* XXX - Drop carrier here? -gwr */
297 zs_modem(cs, cs->cs_softcar ? 1 : 0);
298 #endif
299 cs->cs_ttyp = tp;
300 tp->t_dev = makedev(ZSMAJOR, unit);
301 tp->t_oproc = zsstart;
302 tp->t_param = zsparam;
303 if (cs->cs_zc == zs_conschan) {
304 /* This unit is the console. */
305 cs->cs_consio = 1;
306 cs->cs_brkabort = 1;
307 cs->cs_softcar = 1;
308 } else {
309 /* Can not run kgdb on the console? */
310 #ifdef KGDB
311 zs_checkkgdb(unit, cs, tp);
312 #endif
313 }
314 if (unit == ZS_MOUSE) {
315 /*
316 * Mouse: tell /dev/mouse driver how to talk to us.
317 */
318 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
319 tp->t_cflag = CS8;
320 ms_serial(tp, zsiopen, zsiclose);
321 }
322 }
323
324 /*
325 * Put a channel in a known state. Interrupts may be left disabled
326 * or enabled, as desired.
327 */
328 static void
329 zs_reset(zc, inten, speed)
330 volatile struct zschan *zc;
331 int inten, speed;
332 {
333 int tconst;
334 static u_char reg[16] = {
335 0,
336 0,
337 0,
338 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
339 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
340 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
341 0,
342 0,
343 0,
344 0,
345 ZSWR10_NRZ,
346 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
347 0,
348 0,
349 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
350 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
351 };
352
353 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
354 tconst = BPS_TO_TCONST(PCLK / 16, speed);
355 reg[12] = tconst;
356 reg[13] = tconst >> 8;
357 zs_loadchannelregs(zc, reg);
358 }
359
360 /*
361 * Console support
362 */
363
364 /*
365 * Used by the kd driver to find out if it can work.
366 */
367 int
368 zscnprobe_kbd()
369 {
370 if (zsaddr[1] == NULL) {
371 mon_printf("zscnprobe_kbd: zs1 not yet mapped\n");
372 return CN_DEAD;
373 }
374 return CN_INTERNAL;
375 }
376
377 /*
378 * This is the console probe routine for ttya and ttyb.
379 */
380 static int
381 zscnprobe(struct consdev *cn, int unit)
382 {
383 int maj, eeCons;
384
385 if (zsaddr[0] == NULL) {
386 mon_printf("zscnprobe: zs0 not mapped\n");
387 cn->cn_pri = CN_DEAD;
388 return 0;
389 }
390 /* XXX - Also try to make sure it exists? */
391
392 /* locate the major number */
393 for (maj = 0; maj < nchrdev; maj++)
394 if (cdevsw[maj].d_open == zsopen)
395 break;
396
397 cn->cn_dev = makedev(maj, unit);
398
399 /* Use EEPROM console setting to decide "remote" console. */
400 eeCons = ee_get_byte(EE_CONS_OFFSET, 0);
401
402 /* Hack: EE_CONS_TTYA + 1 == EE_CONS_TTYB */
403 if (eeCons == (EE_CONS_TTYA + unit)) {
404 cn->cn_pri = CN_REMOTE;
405 } else {
406 cn->cn_pri = CN_NORMAL;
407 }
408 return (0);
409 }
410
411 /* This is the constab entry for TTYA. */
412 int
413 zscnprobe_a(struct consdev *cn)
414 {
415 return (zscnprobe(cn, 0));
416 }
417
418 /* This is the constab entry for TTYB. */
419 int
420 zscnprobe_b(struct consdev *cn)
421 {
422 return (zscnprobe(cn, 1));
423 }
424
425 /* Attach as console. Also set zs_conschan */
426 int
427 zscninit(struct consdev *cn)
428 {
429 int unit;
430 volatile struct zsdevice *addr;
431
432 unit = minor(cn->cn_dev) & 1;
433 addr = zsaddr[0];
434 zs_conschan = ((unit == 0) ?
435 &addr->zs_chan[CHAN_A] :
436 &addr->zs_chan[CHAN_B] );
437
438 mon_printf("console on zs0 (tty%c)\n", unit + 'a');
439 }
440
441
442 /*
443 * Polled console input putchar.
444 */
445 int
446 zscngetc(dev)
447 dev_t dev;
448 {
449 register volatile struct zschan *zc = zs_conschan;
450 register int s, c;
451
452 if (zc == NULL)
453 return (0);
454
455 s = splhigh();
456
457 /* Wait for a character to arrive. */
458 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
459 ZS_DELAY();
460 ZS_DELAY();
461
462 c = zc->zc_data;
463 ZS_DELAY();
464
465 splx(s);
466 return (c);
467 }
468
469 /*
470 * Polled console output putchar.
471 */
472 int
473 zscnputc(dev, c)
474 dev_t dev;
475 int c;
476 {
477 register volatile struct zschan *zc = zs_conschan;
478 register int s;
479
480 if (zc == NULL) {
481 s = splhigh();
482 mon_putchar(c);
483 splx(s);
484 return (0);
485 }
486 s = splhigh();
487
488 /* Wait for transmitter to become ready. */
489 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
490 ZS_DELAY();
491 ZS_DELAY();
492
493 zc->zc_data = c;
494 ZS_DELAY();
495 splx(s);
496 }
497
498 #ifdef KGDB
499 /*
500 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
501 * Pick up the current speed and character size and restore the original
502 * speed.
503 */
504 static void
505 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
506 {
507
508 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
509 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
510 tp->t_cflag = CS8;
511 cs->cs_kgdb = 1;
512 cs->cs_speed = zs_kgdb_savedspeed;
513 (void) zsparam(tp, &tp->t_termios);
514 }
515 }
516 #endif
517
518 /*
519 * Compute the current baud rate given a ZSCC channel.
520 */
521 static int
522 zs_getspeed(zc)
523 register volatile struct zschan *zc;
524 {
525 register int tconst;
526
527 tconst = ZS_READ(zc, 12);
528 tconst |= ZS_READ(zc, 13) << 8;
529 return (TCONST_TO_BPS(PCLK / 16, tconst));
530 }
531
532
533 /*
534 * Do an internal open.
535 */
536 static void
537 zsiopen(struct tty *tp)
538 {
539
540 (void) zsparam(tp, &tp->t_termios);
541 ttsetwater(tp);
542 tp->t_state = TS_ISOPEN | TS_CARR_ON;
543 }
544
545 /*
546 * Do an internal close. Eventually we should shut off the chip when both
547 * ports on it are closed.
548 */
549 static void
550 zsiclose(struct tty *tp)
551 {
552
553 ttylclose(tp, 0); /* ??? */
554 ttyclose(tp); /* ??? */
555 tp->t_state = 0;
556 }
557
558
559 /*
560 * Open a zs serial port. This interface may not be used to open
561 * the keyboard and mouse ports. (XXX)
562 */
563 int
564 zsopen(dev_t dev, int flags, int mode, struct proc *p)
565 {
566 register struct tty *tp;
567 register struct zs_chanstate *cs;
568 struct zsinfo *zi;
569 int unit = minor(dev), zs = unit >> 1, error, s;
570
571 #ifdef DEBUG
572 mon_printf("zs_open\n");
573 #endif
574 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
575 unit == ZS_KBD || unit == ZS_MOUSE)
576 return (ENXIO);
577 cs = &zi->zi_cs[unit & 1];
578 #if 0
579 /* The kd driver avoids the need for this hack. */
580 if (cs->cs_consio)
581 return (ENXIO); /* ??? */
582 #endif
583 tp = cs->cs_ttyp;
584 s = spltty();
585 if ((tp->t_state & TS_ISOPEN) == 0) {
586 ttychars(tp);
587 if (tp->t_ispeed == 0) {
588 tp->t_iflag = TTYDEF_IFLAG;
589 tp->t_oflag = TTYDEF_OFLAG;
590 #if 0
591 tp->t_cflag = TTYDEF_CFLAG;
592 #else
593 /* Make default same as PROM uses. */
594 tp->t_cflag = (CREAD | CS8 | HUPCL);
595 #endif
596 tp->t_lflag = TTYDEF_LFLAG;
597 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
598 }
599 (void) zsparam(tp, &tp->t_termios);
600 ttsetwater(tp);
601 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
602 splx(s);
603 return (EBUSY);
604 }
605 error = 0;
606 #ifdef DEBUG
607 mon_printf("wait for carrier...\n");
608 #endif
609 for (;;) {
610 /* loop, turning on the device, until carrier present */
611 zs_modem(cs, 1);
612 /* May never get status intr if carrier already on. -gwr */
613 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
614 tp->t_state |= TS_CARR_ON;
615 if (cs->cs_softcar)
616 tp->t_state |= TS_CARR_ON;
617 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
618 tp->t_state & TS_CARR_ON)
619 break;
620 tp->t_state |= TS_WOPEN;
621 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
622 ttopen, 0))
623 break;
624 }
625 #ifdef DEBUG
626 mon_printf("...carrier %s\n",
627 (tp->t_state & TS_CARR_ON) ? "on" : "off");
628 #endif
629 splx(s);
630 if (error == 0)
631 error = linesw[tp->t_line].l_open(dev, tp);
632 if (error)
633 zs_modem(cs, 0);
634 return (error);
635 }
636
637 /*
638 * Close a zs serial port.
639 */
640 int
641 zsclose(dev_t dev, int flags, int mode, struct proc *p)
642 {
643 register struct zs_chanstate *cs;
644 register struct tty *tp;
645 struct zsinfo *zi;
646 int unit = minor(dev), s;
647
648 #ifdef DEBUG
649 mon_printf("zs_close\n");
650 #endif
651 zi = zscd.cd_devs[unit >> 1];
652 cs = &zi->zi_cs[unit & 1];
653 tp = cs->cs_ttyp;
654 linesw[tp->t_line].l_close(tp, flags);
655 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
656 (tp->t_state & TS_ISOPEN) == 0) {
657 zs_modem(cs, 0);
658 /* hold low for 1 second */
659 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
660 }
661 if (cs->cs_creg[5] & ZSWR5_BREAK)
662 {
663 s = splzs();
664 cs->cs_preg[5] &= ~ZSWR5_BREAK;
665 cs->cs_creg[5] &= ~ZSWR5_BREAK;
666 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
667 splx(s);
668 }
669 ttyclose(tp);
670 #ifdef KGDB
671 /* Reset the speed if we're doing kgdb on this port */
672 if (cs->cs_kgdb) {
673 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
674 (void) zsparam(tp, &tp->t_termios);
675 }
676 #endif
677 return (0);
678 }
679
680 /*
681 * Read/write zs serial port.
682 */
683 int
684 zsread(dev_t dev, struct uio *uio, int flags)
685 {
686 register struct tty *tp = zs_tty[minor(dev)];
687
688 return (linesw[tp->t_line].l_read(tp, uio, flags));
689 }
690
691 int
692 zswrite(dev_t dev, struct uio *uio, int flags)
693 {
694 register struct tty *tp = zs_tty[minor(dev)];
695
696 return (linesw[tp->t_line].l_write(tp, uio, flags));
697 }
698
699 /*
700 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
701 * channels are kept in (A,B) pairs.
702 *
703 * Do just a little, then get out; set a software interrupt if more
704 * work is needed.
705 *
706 * We deliberately ignore the vectoring Zilog gives us, and match up
707 * only the number of `reset interrupt under service' operations, not
708 * the order.
709 */
710 /* ARGSUSED */
711 int
712 zshard(int intrarg)
713 {
714 register struct zs_chanstate *a;
715 #define b (a + 1)
716 register volatile struct zschan *zc;
717 register int rr3, intflags = 0, v, i;
718 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
719 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
720 static int zssint(struct zs_chanstate *, volatile struct zschan *);
721
722 for (a = zslist; a != NULL; a = b->cs_next) {
723 rr3 = ZS_READ(a->cs_zc, 3);
724
725 /* XXX - This should loop to empty the on-chip fifo. */
726 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
727 intflags |= 2;
728 zc = a->cs_zc;
729 i = a->cs_rbput;
730 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
731 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
732 intflags |= 1;
733 }
734 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
735 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
736 intflags |= 1;
737 }
738 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
739 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
740 intflags |= 1;
741 }
742 a->cs_rbput = i;
743 }
744
745 /* XXX - This should loop to empty the on-chip fifo. */
746 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
747 intflags |= 2;
748 zc = b->cs_zc;
749 i = b->cs_rbput;
750 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
751 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
752 intflags |= 1;
753 }
754 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
755 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
756 intflags |= 1;
757 }
758 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
759 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
760 intflags |= 1;
761 }
762 b->cs_rbput = i;
763 }
764 }
765 #undef b
766 if (intflags & 1) {
767 isr_soft_request(ZSSOFT_PRI);
768 }
769 return (intflags & 2);
770 }
771
772 static int
773 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
774 {
775 register int c = zc->zc_data;
776
777 if (cs->cs_conk) {
778 register struct conk_state *conk = &zsconk_state;
779
780 /*
781 * Check here for console abort function, so that we
782 * can abort even when interrupts are locking up the
783 * machine.
784 */
785 if (c == KBD_RESET) {
786 conk->conk_id = 1; /* ignore next byte */
787 conk->conk_l1 = 0;
788 } else if (conk->conk_id)
789 conk->conk_id = 0; /* stop ignoring bytes */
790 else if (c == KBD_L1)
791 conk->conk_l1 = 1; /* L1 went down */
792 else if (c == (KBD_L1|KBD_UP))
793 conk->conk_l1 = 0; /* L1 went up */
794 else if (c == KBD_A && conk->conk_l1) {
795 zsabort();
796 conk->conk_l1 = 0; /* we never see the up */
797 goto clearit; /* eat the A after L1-A */
798 }
799 }
800 #ifdef KGDB
801 if (c == FRAME_START && cs->cs_kgdb &&
802 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
803 zskgdb(cs->cs_unit);
804 goto clearit;
805 }
806 #endif
807 /* compose receive character and status */
808 c <<= 8;
809 c |= ZS_READ(zc, 1);
810
811 /* clear receive error & interrupt condition */
812 zc->zc_csr = ZSWR0_RESET_ERRORS;
813 zc->zc_csr = ZSWR0_CLR_INTR;
814
815 return (ZRING_MAKE(ZRING_RINT, c));
816
817 clearit:
818 zc->zc_csr = ZSWR0_RESET_ERRORS;
819 zc->zc_csr = ZSWR0_CLR_INTR;
820 return (0);
821 }
822
823 static int
824 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
825 {
826 register int i = cs->cs_tbc;
827
828 if (i == 0) {
829 zc->zc_csr = ZSWR0_RESET_TXINT;
830 zc->zc_csr = ZSWR0_CLR_INTR;
831 return (ZRING_MAKE(ZRING_XINT, 0));
832 }
833 cs->cs_tbc = i - 1;
834 zc->zc_data = *cs->cs_tba++;
835 zc->zc_csr = ZSWR0_CLR_INTR;
836 return (0);
837 }
838
839 static int
840 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
841 {
842 register int rr0;
843
844 rr0 = zc->zc_csr;
845 zc->zc_csr = ZSWR0_RESET_STATUS;
846 zc->zc_csr = ZSWR0_CLR_INTR;
847 /*
848 * The chip's hardware flow control is, as noted in zsreg.h,
849 * busted---if the DCD line goes low the chip shuts off the
850 * receiver (!). If we want hardware CTS flow control but do
851 * not have it, and carrier is now on, turn HFC on; if we have
852 * HFC now but carrier has gone low, turn it off.
853 */
854 if (rr0 & ZSRR0_DCD) {
855 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
856 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
857 cs->cs_creg[3] |= ZSWR3_HFC;
858 ZS_WRITE(zc, 3, cs->cs_creg[3]);
859 }
860 } else {
861 if (cs->cs_creg[3] & ZSWR3_HFC) {
862 cs->cs_creg[3] &= ~ZSWR3_HFC;
863 ZS_WRITE(zc, 3, cs->cs_creg[3]);
864 }
865 }
866 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
867 /* Wait for end of break to avoid PROM abort. */
868 while (zc->zc_csr & ZSRR0_BREAK)
869 ZS_DELAY();
870 zsabort();
871 return (0);
872 }
873 return (ZRING_MAKE(ZRING_SINT, rr0));
874 }
875
876 zsabort()
877 {
878 #ifdef DDB
879 Debugger();
880 #else
881 printf("stopping on keyboard abort\n");
882 sun3_rom_abort();
883 #endif
884 }
885
886 #ifdef KGDB
887 /*
888 * KGDB framing character received: enter kernel debugger. This probably
889 * should time out after a few seconds to avoid hanging on spurious input.
890 */
891 zskgdb(int unit)
892 {
893
894 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
895 kgdb_connect(1);
896 }
897 #endif
898
899 /*
900 * Print out a ring or fifo overrun error message.
901 */
902 static void
903 zsoverrun(int unit, long *ptime, char *what)
904 {
905
906 if (*ptime != time.tv_sec) {
907 *ptime = time.tv_sec;
908 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
909 (unit & 1) + 'a', what);
910 }
911 }
912
913 /*
914 * ZS software interrupt. Scan all channels for deferred interrupts.
915 */
916 int
917 zssoft(int arg)
918 {
919 register struct zs_chanstate *cs;
920 register volatile struct zschan *zc;
921 register struct linesw *line;
922 register struct tty *tp;
923 register int get, n, c, cc, unit, s;
924
925 isr_soft_clear(ZSSOFT_PRI);
926
927 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
928 get = cs->cs_rbget;
929 again:
930 n = cs->cs_rbput; /* atomic */
931 if (get == n) /* nothing more on this line */
932 continue;
933 unit = cs->cs_unit; /* set up to handle interrupts */
934 zc = cs->cs_zc;
935 tp = cs->cs_ttyp;
936 line = &linesw[tp->t_line];
937 /*
938 * Compute the number of interrupts in the receive ring.
939 * If the count is overlarge, we lost some events, and
940 * must advance to the first valid one. It may get
941 * overwritten if more data are arriving, but this is
942 * too expensive to check and gains nothing (we already
943 * lost out; all we can do at this point is trade one
944 * kind of loss for another).
945 */
946 n -= get;
947 if (n > ZLRB_RING_SIZE) {
948 zsoverrun(unit, &cs->cs_rotime, "ring");
949 get += n - ZLRB_RING_SIZE;
950 n = ZLRB_RING_SIZE;
951 }
952 while (--n >= 0) {
953 /* race to keep ahead of incoming interrupts */
954 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
955 switch (ZRING_TYPE(c)) {
956
957 case ZRING_RINT:
958 c = ZRING_VALUE(c);
959 if (c & ZSRR1_DO)
960 zsoverrun(unit, &cs->cs_fotime, "fifo");
961 cc = c >> 8;
962 if (c & ZSRR1_FE)
963 cc |= TTY_FE;
964 if (c & ZSRR1_PE)
965 cc |= TTY_PE;
966 /*
967 * this should be done through
968 * bstreams XXX gag choke
969 */
970 if (unit == ZS_KBD)
971 kbd_rint(cc);
972 else if (unit == ZS_MOUSE)
973 ms_rint(cc);
974 else
975 line->l_rint(cc, tp);
976 break;
977
978 case ZRING_XINT:
979 /*
980 * Transmit done: change registers and resume,
981 * or clear BUSY.
982 */
983 if (cs->cs_heldchange) {
984 s = splzs();
985 c = zc->zc_csr;
986 if ((c & ZSRR0_DCD) == 0)
987 cs->cs_preg[3] &= ~ZSWR3_HFC;
988 bcopy((caddr_t)cs->cs_preg,
989 (caddr_t)cs->cs_creg, 16);
990 zs_loadchannelregs(zc, cs->cs_creg);
991 splx(s);
992 cs->cs_heldchange = 0;
993 if (cs->cs_heldtbc &&
994 (tp->t_state & TS_TTSTOP) == 0) {
995 cs->cs_tbc = cs->cs_heldtbc - 1;
996 zc->zc_data = *cs->cs_tba++;
997 goto again;
998 }
999 }
1000 tp->t_state &= ~TS_BUSY;
1001 if (tp->t_state & TS_FLUSH)
1002 tp->t_state &= ~TS_FLUSH;
1003 else
1004 ndflush(&tp->t_outq, cs->cs_tba -
1005 (caddr_t) tp->t_outq.c_cf);
1006 line->l_start(tp);
1007 break;
1008
1009 case ZRING_SINT:
1010 /*
1011 * Status line change. HFC bit is run in
1012 * hardware interrupt, to avoid locking
1013 * at splzs here.
1014 */
1015 c = ZRING_VALUE(c);
1016 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1017 cc = (c & ZSRR0_DCD) != 0;
1018 if (line->l_modem(tp, cc) == 0)
1019 zs_modem(cs, cc);
1020 }
1021 cs->cs_rr0 = c;
1022 break;
1023
1024 default:
1025 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1026 unit >> 1, (unit & 1) + 'a', c);
1027 break;
1028 }
1029 }
1030 cs->cs_rbget = get;
1031 goto again;
1032 }
1033 return (1);
1034 }
1035
1036 int
1037 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1038 {
1039 int unit = minor(dev);
1040 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1041 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1042 register struct tty *tp = cs->cs_ttyp;
1043 register int error, s;
1044
1045 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1046 if (error >= 0)
1047 return (error);
1048 error = ttioctl(tp, cmd, data, flag, p);
1049 if (error >= 0)
1050 return (error);
1051
1052 switch (cmd) {
1053
1054 case TIOCSBRK:
1055 {
1056 s = splzs();
1057 cs->cs_preg[5] |= ZSWR5_BREAK;
1058 cs->cs_creg[5] |= ZSWR5_BREAK;
1059 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1060 splx(s);
1061 break;
1062 }
1063
1064 case TIOCCBRK:
1065 {
1066 s = splzs();
1067 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1068 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1069 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1070 splx(s);
1071 break;
1072 }
1073
1074 case TIOCSDTR:
1075
1076 case TIOCCDTR:
1077
1078 case TIOCMSET:
1079
1080 case TIOCMBIS:
1081
1082 case TIOCMBIC:
1083
1084 case TIOCMGET:
1085
1086 default:
1087 return (ENOTTY);
1088 }
1089 return (0);
1090 }
1091
1092 /*
1093 * Start or restart transmission.
1094 */
1095 static void
1096 zsstart(register struct tty *tp)
1097 {
1098 register struct zs_chanstate *cs;
1099 register int s, nch;
1100 int unit = minor(tp->t_dev);
1101 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1102
1103 cs = &zi->zi_cs[unit & 1];
1104 s = spltty();
1105
1106 /*
1107 * If currently active or delaying, no need to do anything.
1108 */
1109 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1110 goto out;
1111
1112 /*
1113 * If there are sleepers, and output has drained below low
1114 * water mark, awaken.
1115 */
1116 if (tp->t_outq.c_cc <= tp->t_lowat) {
1117 if (tp->t_state & TS_ASLEEP) {
1118 tp->t_state &= ~TS_ASLEEP;
1119 wakeup((caddr_t)&tp->t_outq);
1120 }
1121 selwakeup(&tp->t_wsel);
1122 }
1123
1124 nch = ndqb(&tp->t_outq, 0); /* XXX */
1125 if (nch) {
1126 register char *p = tp->t_outq.c_cf;
1127
1128 /* mark busy, enable tx done interrupts, & send first byte */
1129 tp->t_state |= TS_BUSY;
1130 (void) splzs();
1131 cs->cs_preg[1] |= ZSWR1_TIE;
1132 cs->cs_creg[1] |= ZSWR1_TIE;
1133 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1134 cs->cs_zc->zc_data = *p;
1135 cs->cs_tba = p + 1;
1136 cs->cs_tbc = nch - 1;
1137 } else {
1138 /*
1139 * Nothing to send, turn off transmit done interrupts.
1140 * This is useful if something is doing polled output.
1141 */
1142 (void) splzs();
1143 cs->cs_preg[1] &= ~ZSWR1_TIE;
1144 cs->cs_creg[1] &= ~ZSWR1_TIE;
1145 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1146 }
1147 out:
1148 splx(s);
1149 }
1150
1151 /*
1152 * Stop output, e.g., for ^S or output flush.
1153 */
1154 void
1155 zsstop(register struct tty *tp, int flag)
1156 {
1157 register struct zs_chanstate *cs;
1158 register int s, unit = minor(tp->t_dev);
1159 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1160
1161 cs = &zi->zi_cs[unit & 1];
1162 s = splzs();
1163 if (tp->t_state & TS_BUSY) {
1164 /*
1165 * Device is transmitting; must stop it.
1166 */
1167 cs->cs_tbc = 0;
1168 if ((tp->t_state & TS_TTSTOP) == 0)
1169 tp->t_state |= TS_FLUSH;
1170 }
1171 splx(s);
1172 }
1173
1174 /*
1175 * Set ZS tty parameters from termios.
1176 *
1177 * This routine makes use of the fact that only registers
1178 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1179 */
1180 static int
1181 zsparam(register struct tty *tp, register struct termios *t)
1182 {
1183 int unit = minor(tp->t_dev);
1184 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1185 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1186 register int tmp, tmp5, cflag, s;
1187
1188 /*
1189 * Because PCLK is only run at 4.9 MHz, the fastest we
1190 * can go is 51200 baud (this corresponds to TC=1).
1191 * This is somewhat unfortunate as there is no real
1192 * reason we should not be able to handle higher rates.
1193 */
1194 tmp = t->c_ospeed;
1195 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1196 return (EINVAL);
1197 if (tmp == 0) {
1198 /* stty 0 => drop DTR and RTS */
1199 zs_modem(cs, 0);
1200 return (0);
1201 }
1202 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1203 if (tmp < 2)
1204 return (EINVAL);
1205
1206 cflag = t->c_cflag;
1207 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1208 tp->t_cflag = cflag;
1209
1210 /*
1211 * Block interrupts so that state will not
1212 * be altered until we are done setting it up.
1213 */
1214 s = splzs();
1215 cs->cs_preg[12] = tmp;
1216 cs->cs_preg[13] = tmp >> 8;
1217 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1218 switch (cflag & CSIZE) {
1219 case CS5:
1220 tmp = ZSWR3_RX_5;
1221 tmp5 = ZSWR5_TX_5;
1222 break;
1223 case CS6:
1224 tmp = ZSWR3_RX_6;
1225 tmp5 = ZSWR5_TX_6;
1226 break;
1227 case CS7:
1228 tmp = ZSWR3_RX_7;
1229 tmp5 = ZSWR5_TX_7;
1230 break;
1231 case CS8:
1232 default:
1233 tmp = ZSWR3_RX_8;
1234 tmp5 = ZSWR5_TX_8;
1235 break;
1236 }
1237
1238 /*
1239 * Output hardware flow control on the chip is horrendous: if
1240 * carrier detect drops, the receiver is disabled. Hence we
1241 * can only do this when the carrier is on.
1242 */
1243 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1244 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1245 else
1246 tmp |= ZSWR3_RX_ENABLE;
1247 cs->cs_preg[3] = tmp;
1248 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1249
1250 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1251 if ((cflag & PARODD) == 0)
1252 tmp |= ZSWR4_EVENP;
1253 if (cflag & PARENB)
1254 tmp |= ZSWR4_PARENB;
1255 cs->cs_preg[4] = tmp;
1256 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1257 cs->cs_preg[10] = ZSWR10_NRZ;
1258 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1259 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1260 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1261
1262 /*
1263 * If nothing is being transmitted, set up new current values,
1264 * else mark them as pending.
1265 */
1266 if (cs->cs_heldchange == 0) {
1267 if (cs->cs_ttyp->t_state & TS_BUSY) {
1268 cs->cs_heldtbc = cs->cs_tbc;
1269 cs->cs_tbc = 0;
1270 cs->cs_heldchange = 1;
1271 } else {
1272 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1273 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1274 }
1275 }
1276 splx(s);
1277 return (0);
1278 }
1279
1280 /*
1281 * Raise or lower modem control (DTR/RTS) signals. If a character is
1282 * in transmission, the change is deferred.
1283 */
1284 static void
1285 zs_modem(struct zs_chanstate *cs, int onoff)
1286 {
1287 int s, bis, and;
1288
1289 if (onoff) {
1290 bis = ZSWR5_DTR | ZSWR5_RTS;
1291 and = ~0;
1292 } else {
1293 bis = 0;
1294 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1295 }
1296 s = splzs();
1297 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1298 if (cs->cs_heldchange == 0) {
1299 if (cs->cs_ttyp->t_state & TS_BUSY) {
1300 cs->cs_heldtbc = cs->cs_tbc;
1301 cs->cs_tbc = 0;
1302 cs->cs_heldchange = 1;
1303 } else {
1304 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1305 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1306 }
1307 }
1308 splx(s);
1309 }
1310
1311 /*
1312 * Write the given register set to the given zs channel in the proper order.
1313 * The channel must not be transmitting at the time. The receiver will
1314 * be disabled for the time it takes to write all the registers.
1315 */
1316 static void
1317 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1318 {
1319 int i;
1320
1321 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1322 i = zc->zc_data; /* drain fifo */
1323 i = zc->zc_data;
1324 i = zc->zc_data;
1325 ZS_WRITE(zc, 4, reg[4]);
1326 ZS_WRITE(zc, 10, reg[10]);
1327 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1328 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1329 ZS_WRITE(zc, 1, reg[1]);
1330 ZS_WRITE(zc, 9, reg[9]);
1331 ZS_WRITE(zc, 11, reg[11]);
1332 ZS_WRITE(zc, 12, reg[12]);
1333 ZS_WRITE(zc, 13, reg[13]);
1334 ZS_WRITE(zc, 14, reg[14]);
1335 ZS_WRITE(zc, 15, reg[15]);
1336 ZS_WRITE(zc, 3, reg[3]);
1337 ZS_WRITE(zc, 5, reg[5]);
1338 }
1339
1340 static u_char
1341 zs_read(zc, reg)
1342 volatile struct zschan *zc;
1343 u_char reg;
1344 {
1345 u_char val;
1346
1347 zc->zc_csr = reg;
1348 ZS_DELAY();
1349 val = zc->zc_csr;
1350 ZS_DELAY();
1351 return val;
1352 }
1353
1354 static u_char
1355 zs_write(zc, reg, val)
1356 volatile struct zschan *zc;
1357 u_char reg, val;
1358 {
1359 zc->zc_csr = reg;
1360 ZS_DELAY();
1361 zc->zc_csr = val;
1362 ZS_DELAY();
1363 return val;
1364 }
1365
1366 #ifdef KGDB
1367 /*
1368 * Get a character from the given kgdb channel. Called at splhigh().
1369 * XXX - Add delays, or combine with zscngetc()...
1370 */
1371 static int
1372 zs_kgdb_getc(void *arg)
1373 {
1374 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1375
1376 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1377 continue;
1378 return (zc->zc_data);
1379 }
1380
1381 /*
1382 * Put a character to the given kgdb channel. Called at splhigh().
1383 */
1384 static void
1385 zs_kgdb_putc(void *arg, int c)
1386 {
1387 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1388
1389 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1390 continue;
1391 zc->zc_data = c;
1392 }
1393
1394 /*
1395 * Set up for kgdb; called at boot time before configuration.
1396 * KGDB interrupts will be enabled later when zs0 is configured.
1397 */
1398 void
1399 zs_kgdb_init()
1400 {
1401 volatile struct zsdevice *addr;
1402 volatile struct zschan *zc;
1403 int unit, zs;
1404
1405 if (major(kgdb_dev) != ZSMAJOR)
1406 return;
1407 unit = minor(kgdb_dev);
1408 /*
1409 * Unit must be 0 or 1 (zs0).
1410 */
1411 if ((unsigned)unit >= ZS_KBD) {
1412 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1413 return;
1414 }
1415 zs = unit >> 1;
1416 unit &= 1;
1417
1418 if (zsaddr[0] == NULL)
1419 panic("kbdb_attach: zs0 not yet mapped");
1420 addr = zsaddr[0];
1421
1422 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1423 zs_kgdb_savedspeed = zs_getspeed(zc);
1424 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1425 zs, unit + 'a', kgdb_rate);
1426 zs_reset(zc, 1, kgdb_rate);
1427 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1428 }
1429 #endif /* KGDB */
1430