Home | History | Annotate | Line # | Download | only in sun3x
dvma.c revision 1.24
      1  1.24  thorpej /*	$NetBSD: dvma.c,v 1.24 2002/09/25 21:58:40 thorpej Exp $	*/
      2   1.1      gwr 
      3   1.1      gwr /*-
      4   1.1      gwr  * Copyright (c) 1996 The NetBSD Foundation, Inc.
      5   1.1      gwr  * All rights reserved.
      6   1.1      gwr  *
      7   1.1      gwr  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1      gwr  * by Gordon W. Ross and Jeremy Cooper.
      9   1.1      gwr  *
     10   1.1      gwr  * Redistribution and use in source and binary forms, with or without
     11   1.1      gwr  * modification, are permitted provided that the following conditions
     12   1.1      gwr  * are met:
     13   1.1      gwr  * 1. Redistributions of source code must retain the above copyright
     14   1.1      gwr  *    notice, this list of conditions and the following disclaimer.
     15   1.1      gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1      gwr  *    notice, this list of conditions and the following disclaimer in the
     17   1.1      gwr  *    documentation and/or other materials provided with the distribution.
     18   1.1      gwr  * 3. All advertising materials mentioning features or use of this software
     19   1.1      gwr  *    must display the following acknowledgement:
     20   1.1      gwr  *        This product includes software developed by the NetBSD
     21   1.1      gwr  *        Foundation, Inc. and its contributors.
     22   1.1      gwr  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1      gwr  *    contributors may be used to endorse or promote products derived
     24   1.1      gwr  *    from this software without specific prior written permission.
     25   1.1      gwr  *
     26   1.1      gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1      gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1      gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1      gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1      gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1      gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1      gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1      gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1      gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1      gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1      gwr  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1      gwr  */
     38   1.1      gwr 
     39   1.1      gwr /*
     40   1.1      gwr  * DVMA (Direct Virtual Memory Access - like DMA)
     41   1.1      gwr  *
     42   1.1      gwr  * In the Sun3 architecture, memory cycles initiated by secondary bus
     43   1.1      gwr  * masters (DVMA devices) passed through the same MMU that governed CPU
     44   1.1      gwr  * accesses.  All DVMA devices were wired in such a way so that an offset
     45   1.1      gwr  * was added to the addresses they issued, causing them to access virtual
     46   1.1      gwr  * memory starting at address 0x0FF00000 - the offset.  The task of
     47   1.1      gwr  * enabling a DVMA device to access main memory only involved creating
     48   1.1      gwr  * valid mapping in the MMU that translated these high addresses into the
     49   1.1      gwr  * appropriate physical addresses.
     50   1.1      gwr  *
     51   1.1      gwr  * The Sun3x presents a challenge to programming DVMA because the MMU is no
     52   1.1      gwr  * longer shared by both secondary bus masters and the CPU.  The MC68030's
     53   1.1      gwr  * built-in MMU serves only to manage virtual memory accesses initiated by
     54   1.1      gwr  * the CPU.  Secondary bus master bus accesses pass through a different MMU,
     55   1.1      gwr  * aptly named the 'I/O Mapper'.  To enable every device driver that uses
     56   1.1      gwr  * DVMA to understand that these two address spaces are disconnected would
     57   1.1      gwr  * require a tremendous amount of code re-writing. To avoid this, we will
     58   1.1      gwr  * ensure that the I/O Mapper and the MC68030 MMU are programmed together,
     59   1.1      gwr  * so that DVMA mappings are consistent in both the CPU virtual address
     60   1.1      gwr  * space and secondary bus master address space - creating an environment
     61   1.1      gwr  * just like the Sun3 system.
     62   1.1      gwr  *
     63   1.1      gwr  * The maximum address space that any DVMA device in the Sun3x architecture
     64   1.1      gwr  * is capable of addressing is 24 bits wide (16 Megabytes.)  We can alias
     65   1.1      gwr  * all of the mappings that exist in the I/O mapper by duplicating them in
     66   1.1      gwr  * a specially reserved section of the CPU's virtual address space, 16
     67   1.1      gwr  * Megabytes in size.  Whenever a DVMA buffer is allocated, the allocation
     68   1.1      gwr  * code will enter in a mapping both in the MC68030 MMU page tables and the
     69   1.1      gwr  * I/O mapper.
     70   1.1      gwr  *
     71   1.1      gwr  * The address returned by the allocation routine is a virtual address that
     72   1.1      gwr  * the requesting driver must use to access the buffer.  It is up to the
     73   1.1      gwr  * device driver to convert this virtual address into the appropriate slave
     74   1.5   jeremy  * address that its device should issue to access the buffer.  (There will be
     75   1.5   jeremy  * routines that assist the driver in doing so.)
     76   1.1      gwr  */
     77  1.10      gwr 
     78   1.1      gwr #include <sys/param.h>
     79   1.1      gwr #include <sys/systm.h>
     80   1.1      gwr #include <sys/device.h>
     81   1.1      gwr #include <sys/proc.h>
     82   1.1      gwr #include <sys/malloc.h>
     83  1.24  thorpej #include <sys/extent.h>
     84   1.1      gwr #include <sys/buf.h>
     85   1.1      gwr #include <sys/vnode.h>
     86   1.1      gwr #include <sys/user.h>
     87   1.1      gwr #include <sys/core.h>
     88   1.1      gwr #include <sys/exec.h>
     89   1.1      gwr 
     90  1.10      gwr #include <uvm/uvm_extern.h>
     91  1.10      gwr 
     92   1.1      gwr #include <machine/autoconf.h>
     93   1.1      gwr #include <machine/cpu.h>
     94   1.9      gwr #include <machine/dvma.h>
     95   1.1      gwr #include <machine/pmap.h>
     96   1.9      gwr 
     97   1.9      gwr #include <sun3/sun3/machdep.h>
     98   1.1      gwr 
     99   1.9      gwr #include <sun3/sun3x/enable.h>
    100   1.9      gwr #include <sun3/sun3x/iommu.h>
    101   1.1      gwr 
    102   1.1      gwr /*
    103  1.24  thorpej  * Use an extent map to manage DVMA scratch-memory pages.
    104   1.9      gwr  * Note: SunOS says last three pages are reserved (PROM?)
    105   1.9      gwr  * Note: need a separate map (sub-map?) for last 1MB for
    106   1.9      gwr  *       use by VME slave interface.
    107   1.1      gwr  */
    108   1.1      gwr 
    109   1.1      gwr /* Number of slots in dvmamap. */
    110  1.24  thorpej struct extent *dvma_extent;
    111   1.1      gwr 
    112   1.1      gwr void
    113   1.1      gwr dvma_init()
    114   1.1      gwr {
    115   1.1      gwr 
    116   1.1      gwr 	/*
    117  1.24  thorpej 	 * Create the extent map for DVMA pages.
    118   1.1      gwr 	 */
    119  1.24  thorpej 	dvma_extent = extent_create("dvma", DVMA_MAP_BASE,
    120  1.24  thorpej 	    DVMA_MAP_BASE + (DVMA_MAP_AVAIL - 1), M_DEVBUF,
    121  1.24  thorpej 	    NULL, 0, EX_NOCOALESCE|EX_NOWAIT);
    122   1.1      gwr 
    123   1.1      gwr 	/*
    124   1.1      gwr 	 * Enable DVMA in the System Enable register.
    125   1.1      gwr 	 * Note:  This is only necessary for VME slave accesses.
    126   1.1      gwr 	 *        On-board devices are always capable of DVMA.
    127   1.1      gwr 	 */
    128   1.8      gwr 	*enable_reg |= ENA_SDVMA;
    129   1.1      gwr }
    130   1.1      gwr 
    131   1.1      gwr 
    132   1.1      gwr /*
    133   1.1      gwr  * Given a DVMA address, return the physical address that
    134   1.1      gwr  * would be used by some OTHER bus-master besides the CPU.
    135   1.1      gwr  * (Examples: on-board ie/le, VME xy board).
    136   1.1      gwr  */
    137   1.1      gwr u_long
    138   1.1      gwr dvma_kvtopa(kva, bustype)
    139   1.1      gwr 	void * kva;
    140   1.1      gwr 	int bustype;
    141   1.1      gwr {
    142   1.1      gwr 	u_long addr, mask;
    143   1.1      gwr 
    144   1.1      gwr 	addr = (u_long)kva;
    145   1.8      gwr 	if ((addr & DVMA_MAP_BASE) != DVMA_MAP_BASE)
    146  1.17  tsutsui 		panic("dvma_kvtopa: bad dmva addr=0x%lx\n", addr);
    147   1.1      gwr 
    148   1.6      gwr 	switch (bustype) {
    149   1.6      gwr 	case BUS_OBIO:
    150   1.6      gwr 	case BUS_OBMEM:
    151   1.8      gwr 		mask = DVMA_OBIO_SLAVE_MASK;
    152   1.8      gwr 		break;
    153   1.8      gwr 	default:	/* VME bus device. */
    154   1.8      gwr 		mask = DVMA_VME_SLAVE_MASK;
    155   1.6      gwr 		break;
    156   1.6      gwr 	}
    157   1.1      gwr 
    158   1.1      gwr 	return(addr & mask);
    159   1.1      gwr }
    160   1.1      gwr 
    161   1.1      gwr 
    162   1.1      gwr /*
    163   1.1      gwr  * Map a range [va, va+len] of wired virtual addresses in the given map
    164   1.1      gwr  * to a kernel address in DVMA space.
    165   1.1      gwr  */
    166   1.1      gwr void *
    167   1.1      gwr dvma_mapin(kmem_va, len, canwait)
    168   1.3   jeremy 	void *  kmem_va;
    169   1.3   jeremy 	int     len, canwait;
    170   1.1      gwr {
    171   1.1      gwr 	void * dvma_addr;
    172  1.21  tsutsui 	vaddr_t kva, tva;
    173  1.24  thorpej 	int npf, s, error;
    174  1.13  thorpej 	paddr_t pa;
    175  1.24  thorpej 	long off;
    176  1.13  thorpej 	boolean_t rv;
    177   1.1      gwr 
    178  1.21  tsutsui 	kva = (vaddr_t)kmem_va;
    179   1.3   jeremy #ifdef	DIAGNOSTIC
    180   1.3   jeremy 	/*
    181   1.3   jeremy 	 * Addresses below VM_MIN_KERNEL_ADDRESS are not part of the kernel
    182   1.3   jeremy 	 * map and should not participate in DVMA.
    183   1.3   jeremy 	 */
    184   1.1      gwr 	if (kva < VM_MIN_KERNEL_ADDRESS)
    185   1.1      gwr 		panic("dvma_mapin: bad kva");
    186   1.3   jeremy #endif
    187   1.1      gwr 
    188   1.3   jeremy 	/*
    189   1.3   jeremy 	 * Calculate the offset of the data buffer from a page boundary.
    190   1.3   jeremy 	 */
    191  1.21  tsutsui 	off = kva & PGOFSET;
    192   1.3   jeremy 	kva -= off;	/* Truncate starting address to nearest page. */
    193   1.3   jeremy 	len = round_page(len + off); /* Round the buffer length to pages. */
    194   1.3   jeremy 	npf = btoc(len); /* Determine the number of pages to be mapped. */
    195   1.1      gwr 
    196  1.24  thorpej 	/*
    197  1.24  thorpej 	 * Try to allocate DVMA space of the appropriate size
    198  1.24  thorpej 	 * in which to do a transfer.
    199  1.24  thorpej 	 */
    200  1.18  thorpej 	s = splvm();
    201  1.24  thorpej 	error = extent_alloc(dvma_extent, len, PAGE_SIZE, 0,
    202  1.24  thorpej 	    EX_FAST | EX_NOWAIT | (canwait ? EX_WAITSPACE : 0), &tva);
    203   1.1      gwr 	splx(s);
    204  1.24  thorpej 	if (error)
    205  1.24  thorpej 		return (NULL);
    206   1.3   jeremy 
    207   1.3   jeremy 	/*
    208   1.3   jeremy 	 * Tva is the starting page to which the data buffer will be double
    209   1.3   jeremy 	 * mapped.  Dvma_addr is the starting address of the buffer within
    210   1.3   jeremy 	 * that page and is the return value of the function.
    211   1.3   jeremy 	 */
    212   1.1      gwr 	dvma_addr = (void *) (tva + off);
    213   1.1      gwr 
    214   1.3   jeremy 	for (;npf--; kva += NBPG, tva += NBPG) {
    215   1.3   jeremy 		/*
    216   1.3   jeremy 		 * Retrieve the physical address of each page in the buffer
    217   1.3   jeremy 		 * and enter mappings into the I/O MMU so they may be seen
    218   1.3   jeremy 		 * by external bus masters and into the special DVMA space
    219   1.3   jeremy 		 * in the MC68030 MMU so they may be seen by the CPU.
    220   1.3   jeremy 		 */
    221  1.13  thorpej 		rv = pmap_extract(pmap_kernel(), kva, &pa);
    222   1.3   jeremy #ifdef	DEBUG
    223  1.13  thorpej 		if (rv == FALSE)
    224   1.1      gwr 			panic("dvma_mapin: null page frame");
    225  1.20   simonb #endif	/* DEBUG */
    226   1.1      gwr 
    227   1.7      gwr 		iommu_enter((tva & IOMMU_VA_MASK), pa);
    228  1.23      chs 		pmap_kenter_pa(tva, pa | PMAP_NC, VM_PROT_READ | VM_PROT_WRITE);
    229   1.1      gwr 	}
    230  1.22    chris 	pmap_update(pmap_kernel());
    231   1.1      gwr 
    232   1.1      gwr 	return (dvma_addr);
    233   1.1      gwr }
    234   1.1      gwr 
    235   1.1      gwr /*
    236   1.1      gwr  * Remove double map of `va' in DVMA space at `kva'.
    237   1.3   jeremy  *
    238   1.3   jeremy  * TODO - This function might be the perfect place to handle the
    239   1.3   jeremy  *       synchronization between the DVMA cache and central RAM
    240   1.3   jeremy  *       on the 3/470.
    241   1.1      gwr  */
    242   1.1      gwr void
    243   1.1      gwr dvma_mapout(dvma_addr, len)
    244  1.24  thorpej 	void *dvma_addr;
    245  1.24  thorpej 	int len;
    246   1.1      gwr {
    247   1.1      gwr 	u_long kva;
    248   1.1      gwr 	int s, off;
    249   1.1      gwr 
    250   1.1      gwr 	kva = (u_long)dvma_addr;
    251   1.1      gwr 	off = (int)kva & PGOFSET;
    252   1.1      gwr 	kva -= off;
    253   1.1      gwr 	len = round_page(len + off);
    254   1.1      gwr 
    255   1.7      gwr 	iommu_remove((kva & IOMMU_VA_MASK), len);
    256  1.23      chs 	pmap_kremove(kva, len);
    257  1.22    chris 	pmap_update(pmap_kernel());
    258   1.1      gwr 
    259  1.18  thorpej 	s = splvm();
    260  1.24  thorpej 	if (extent_free(dvma_extent, kva, len, EX_NOWAIT | EX_MALLOCOK))
    261  1.24  thorpej 		panic("dvma_mapout: unable to free region: 0x%lx,0x%x",
    262  1.24  thorpej 		    kva, len);
    263   1.1      gwr 	splx(s);
    264   1.4      gwr }
    265   1.4      gwr 
    266   1.4      gwr /*
    267   1.4      gwr  * Allocate actual memory pages in DVMA space.
    268   1.4      gwr  * (For sun3 compatibility - the ie driver.)
    269   1.4      gwr  */
    270   1.4      gwr void *
    271   1.4      gwr dvma_malloc(bytes)
    272   1.4      gwr 	size_t bytes;
    273   1.4      gwr {
    274   1.4      gwr 	void *new_mem, *dvma_mem;
    275  1.21  tsutsui 	vsize_t new_size;
    276   1.4      gwr 
    277   1.4      gwr 	if (!bytes)
    278   1.4      gwr 		return NULL;
    279   1.4      gwr 	new_size = m68k_round_page(bytes);
    280  1.11      mrg 	new_mem = (void*)uvm_km_alloc(kernel_map, new_size);
    281  1.11      mrg 	if (!new_mem)
    282   1.4      gwr 		return NULL;
    283   1.4      gwr 	dvma_mem = dvma_mapin(new_mem, new_size, 1);
    284   1.4      gwr 	return (dvma_mem);
    285   1.9      gwr }
    286   1.9      gwr 
    287   1.9      gwr /*
    288   1.9      gwr  * Free pages from dvma_malloc()
    289   1.9      gwr  */
    290   1.9      gwr void
    291   1.9      gwr dvma_free(addr, size)
    292   1.9      gwr 	void *addr;
    293   1.9      gwr 	size_t size;
    294   1.9      gwr {
    295  1.21  tsutsui 	vsize_t sz = m68k_round_page(size);
    296   1.9      gwr 
    297   1.9      gwr 	dvma_mapout(addr, sz);
    298   1.9      gwr 	/* XXX: need kmem address to free it...
    299   1.9      gwr 	   Oh well, we never call this anyway. */
    300   1.1      gwr }
    301