Home | History | Annotate | Line # | Download | only in sun3x
dvma.c revision 1.26.2.1
      1  1.26.2.1    skrll /*	$NetBSD: dvma.c,v 1.26.2.1 2004/08/03 10:42:12 skrll Exp $	*/
      2       1.1      gwr 
      3       1.1      gwr /*-
      4       1.1      gwr  * Copyright (c) 1996 The NetBSD Foundation, Inc.
      5       1.1      gwr  * All rights reserved.
      6       1.1      gwr  *
      7       1.1      gwr  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1      gwr  * by Gordon W. Ross and Jeremy Cooper.
      9       1.1      gwr  *
     10       1.1      gwr  * Redistribution and use in source and binary forms, with or without
     11       1.1      gwr  * modification, are permitted provided that the following conditions
     12       1.1      gwr  * are met:
     13       1.1      gwr  * 1. Redistributions of source code must retain the above copyright
     14       1.1      gwr  *    notice, this list of conditions and the following disclaimer.
     15       1.1      gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1      gwr  *    notice, this list of conditions and the following disclaimer in the
     17       1.1      gwr  *    documentation and/or other materials provided with the distribution.
     18       1.1      gwr  * 3. All advertising materials mentioning features or use of this software
     19       1.1      gwr  *    must display the following acknowledgement:
     20       1.1      gwr  *        This product includes software developed by the NetBSD
     21       1.1      gwr  *        Foundation, Inc. and its contributors.
     22       1.1      gwr  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1      gwr  *    contributors may be used to endorse or promote products derived
     24       1.1      gwr  *    from this software without specific prior written permission.
     25       1.1      gwr  *
     26       1.1      gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1      gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1      gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1      gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1      gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1      gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1      gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1      gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1      gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1      gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1      gwr  * POSSIBILITY OF SUCH DAMAGE.
     37       1.1      gwr  */
     38       1.1      gwr 
     39       1.1      gwr /*
     40       1.1      gwr  * DVMA (Direct Virtual Memory Access - like DMA)
     41       1.1      gwr  *
     42       1.1      gwr  * In the Sun3 architecture, memory cycles initiated by secondary bus
     43       1.1      gwr  * masters (DVMA devices) passed through the same MMU that governed CPU
     44       1.1      gwr  * accesses.  All DVMA devices were wired in such a way so that an offset
     45       1.1      gwr  * was added to the addresses they issued, causing them to access virtual
     46       1.1      gwr  * memory starting at address 0x0FF00000 - the offset.  The task of
     47       1.1      gwr  * enabling a DVMA device to access main memory only involved creating
     48       1.1      gwr  * valid mapping in the MMU that translated these high addresses into the
     49       1.1      gwr  * appropriate physical addresses.
     50       1.1      gwr  *
     51       1.1      gwr  * The Sun3x presents a challenge to programming DVMA because the MMU is no
     52       1.1      gwr  * longer shared by both secondary bus masters and the CPU.  The MC68030's
     53       1.1      gwr  * built-in MMU serves only to manage virtual memory accesses initiated by
     54       1.1      gwr  * the CPU.  Secondary bus master bus accesses pass through a different MMU,
     55       1.1      gwr  * aptly named the 'I/O Mapper'.  To enable every device driver that uses
     56       1.1      gwr  * DVMA to understand that these two address spaces are disconnected would
     57       1.1      gwr  * require a tremendous amount of code re-writing. To avoid this, we will
     58       1.1      gwr  * ensure that the I/O Mapper and the MC68030 MMU are programmed together,
     59       1.1      gwr  * so that DVMA mappings are consistent in both the CPU virtual address
     60       1.1      gwr  * space and secondary bus master address space - creating an environment
     61       1.1      gwr  * just like the Sun3 system.
     62       1.1      gwr  *
     63       1.1      gwr  * The maximum address space that any DVMA device in the Sun3x architecture
     64       1.1      gwr  * is capable of addressing is 24 bits wide (16 Megabytes.)  We can alias
     65       1.1      gwr  * all of the mappings that exist in the I/O mapper by duplicating them in
     66       1.1      gwr  * a specially reserved section of the CPU's virtual address space, 16
     67       1.1      gwr  * Megabytes in size.  Whenever a DVMA buffer is allocated, the allocation
     68       1.1      gwr  * code will enter in a mapping both in the MC68030 MMU page tables and the
     69       1.1      gwr  * I/O mapper.
     70       1.1      gwr  *
     71       1.1      gwr  * The address returned by the allocation routine is a virtual address that
     72       1.1      gwr  * the requesting driver must use to access the buffer.  It is up to the
     73       1.1      gwr  * device driver to convert this virtual address into the appropriate slave
     74       1.5   jeremy  * address that its device should issue to access the buffer.  (There will be
     75       1.5   jeremy  * routines that assist the driver in doing so.)
     76       1.1      gwr  */
     77      1.10      gwr 
     78  1.26.2.1    skrll #include <sys/cdefs.h>
     79  1.26.2.1    skrll __KERNEL_RCSID(0, "$NetBSD: dvma.c,v 1.26.2.1 2004/08/03 10:42:12 skrll Exp $");
     80  1.26.2.1    skrll 
     81       1.1      gwr #include <sys/param.h>
     82       1.1      gwr #include <sys/systm.h>
     83       1.1      gwr #include <sys/device.h>
     84       1.1      gwr #include <sys/proc.h>
     85       1.1      gwr #include <sys/malloc.h>
     86      1.24  thorpej #include <sys/extent.h>
     87       1.1      gwr #include <sys/buf.h>
     88       1.1      gwr #include <sys/vnode.h>
     89       1.1      gwr #include <sys/user.h>
     90       1.1      gwr #include <sys/core.h>
     91       1.1      gwr #include <sys/exec.h>
     92       1.1      gwr 
     93      1.10      gwr #include <uvm/uvm_extern.h>
     94      1.10      gwr 
     95       1.1      gwr #include <machine/autoconf.h>
     96       1.1      gwr #include <machine/cpu.h>
     97       1.9      gwr #include <machine/dvma.h>
     98       1.1      gwr #include <machine/pmap.h>
     99       1.9      gwr 
    100       1.9      gwr #include <sun3/sun3/machdep.h>
    101       1.1      gwr 
    102       1.9      gwr #include <sun3/sun3x/enable.h>
    103       1.9      gwr #include <sun3/sun3x/iommu.h>
    104       1.1      gwr 
    105       1.1      gwr /*
    106      1.24  thorpej  * Use an extent map to manage DVMA scratch-memory pages.
    107       1.9      gwr  * Note: SunOS says last three pages are reserved (PROM?)
    108       1.9      gwr  * Note: need a separate map (sub-map?) for last 1MB for
    109       1.9      gwr  *       use by VME slave interface.
    110       1.1      gwr  */
    111       1.1      gwr 
    112       1.1      gwr /* Number of slots in dvmamap. */
    113      1.24  thorpej struct extent *dvma_extent;
    114       1.1      gwr 
    115       1.1      gwr void
    116       1.1      gwr dvma_init()
    117       1.1      gwr {
    118       1.1      gwr 
    119       1.1      gwr 	/*
    120      1.24  thorpej 	 * Create the extent map for DVMA pages.
    121       1.1      gwr 	 */
    122      1.24  thorpej 	dvma_extent = extent_create("dvma", DVMA_MAP_BASE,
    123      1.24  thorpej 	    DVMA_MAP_BASE + (DVMA_MAP_AVAIL - 1), M_DEVBUF,
    124      1.24  thorpej 	    NULL, 0, EX_NOCOALESCE|EX_NOWAIT);
    125       1.1      gwr 
    126       1.1      gwr 	/*
    127       1.1      gwr 	 * Enable DVMA in the System Enable register.
    128       1.1      gwr 	 * Note:  This is only necessary for VME slave accesses.
    129       1.1      gwr 	 *        On-board devices are always capable of DVMA.
    130       1.1      gwr 	 */
    131       1.8      gwr 	*enable_reg |= ENA_SDVMA;
    132       1.1      gwr }
    133       1.1      gwr 
    134       1.1      gwr 
    135       1.1      gwr /*
    136       1.1      gwr  * Given a DVMA address, return the physical address that
    137       1.1      gwr  * would be used by some OTHER bus-master besides the CPU.
    138       1.1      gwr  * (Examples: on-board ie/le, VME xy board).
    139       1.1      gwr  */
    140       1.1      gwr u_long
    141       1.1      gwr dvma_kvtopa(kva, bustype)
    142       1.1      gwr 	void * kva;
    143       1.1      gwr 	int bustype;
    144       1.1      gwr {
    145       1.1      gwr 	u_long addr, mask;
    146       1.1      gwr 
    147       1.1      gwr 	addr = (u_long)kva;
    148       1.8      gwr 	if ((addr & DVMA_MAP_BASE) != DVMA_MAP_BASE)
    149      1.25   provos 		panic("dvma_kvtopa: bad dmva addr=0x%lx", addr);
    150       1.1      gwr 
    151       1.6      gwr 	switch (bustype) {
    152       1.6      gwr 	case BUS_OBIO:
    153       1.6      gwr 	case BUS_OBMEM:
    154       1.8      gwr 		mask = DVMA_OBIO_SLAVE_MASK;
    155       1.8      gwr 		break;
    156       1.8      gwr 	default:	/* VME bus device. */
    157       1.8      gwr 		mask = DVMA_VME_SLAVE_MASK;
    158       1.6      gwr 		break;
    159       1.6      gwr 	}
    160       1.1      gwr 
    161       1.1      gwr 	return(addr & mask);
    162       1.1      gwr }
    163       1.1      gwr 
    164       1.1      gwr 
    165       1.1      gwr /*
    166       1.1      gwr  * Map a range [va, va+len] of wired virtual addresses in the given map
    167       1.1      gwr  * to a kernel address in DVMA space.
    168       1.1      gwr  */
    169       1.1      gwr void *
    170       1.1      gwr dvma_mapin(kmem_va, len, canwait)
    171       1.3   jeremy 	void *  kmem_va;
    172       1.3   jeremy 	int     len, canwait;
    173       1.1      gwr {
    174       1.1      gwr 	void * dvma_addr;
    175      1.21  tsutsui 	vaddr_t kva, tva;
    176      1.24  thorpej 	int npf, s, error;
    177      1.13  thorpej 	paddr_t pa;
    178      1.24  thorpej 	long off;
    179      1.13  thorpej 	boolean_t rv;
    180       1.1      gwr 
    181      1.21  tsutsui 	kva = (vaddr_t)kmem_va;
    182       1.3   jeremy #ifdef	DIAGNOSTIC
    183       1.3   jeremy 	/*
    184       1.3   jeremy 	 * Addresses below VM_MIN_KERNEL_ADDRESS are not part of the kernel
    185       1.3   jeremy 	 * map and should not participate in DVMA.
    186       1.3   jeremy 	 */
    187       1.1      gwr 	if (kva < VM_MIN_KERNEL_ADDRESS)
    188       1.1      gwr 		panic("dvma_mapin: bad kva");
    189       1.3   jeremy #endif
    190       1.1      gwr 
    191       1.3   jeremy 	/*
    192       1.3   jeremy 	 * Calculate the offset of the data buffer from a page boundary.
    193       1.3   jeremy 	 */
    194      1.21  tsutsui 	off = kva & PGOFSET;
    195       1.3   jeremy 	kva -= off;	/* Truncate starting address to nearest page. */
    196       1.3   jeremy 	len = round_page(len + off); /* Round the buffer length to pages. */
    197       1.3   jeremy 	npf = btoc(len); /* Determine the number of pages to be mapped. */
    198       1.1      gwr 
    199      1.24  thorpej 	/*
    200      1.24  thorpej 	 * Try to allocate DVMA space of the appropriate size
    201      1.24  thorpej 	 * in which to do a transfer.
    202      1.24  thorpej 	 */
    203      1.18  thorpej 	s = splvm();
    204      1.24  thorpej 	error = extent_alloc(dvma_extent, len, PAGE_SIZE, 0,
    205      1.24  thorpej 	    EX_FAST | EX_NOWAIT | (canwait ? EX_WAITSPACE : 0), &tva);
    206       1.1      gwr 	splx(s);
    207      1.24  thorpej 	if (error)
    208      1.24  thorpej 		return (NULL);
    209       1.3   jeremy 
    210       1.3   jeremy 	/*
    211       1.3   jeremy 	 * Tva is the starting page to which the data buffer will be double
    212       1.3   jeremy 	 * mapped.  Dvma_addr is the starting address of the buffer within
    213       1.3   jeremy 	 * that page and is the return value of the function.
    214       1.3   jeremy 	 */
    215       1.1      gwr 	dvma_addr = (void *) (tva + off);
    216       1.1      gwr 
    217      1.26  thorpej 	for (;npf--; kva += PAGE_SIZE, tva += PAGE_SIZE) {
    218       1.3   jeremy 		/*
    219       1.3   jeremy 		 * Retrieve the physical address of each page in the buffer
    220       1.3   jeremy 		 * and enter mappings into the I/O MMU so they may be seen
    221       1.3   jeremy 		 * by external bus masters and into the special DVMA space
    222       1.3   jeremy 		 * in the MC68030 MMU so they may be seen by the CPU.
    223       1.3   jeremy 		 */
    224      1.13  thorpej 		rv = pmap_extract(pmap_kernel(), kva, &pa);
    225       1.3   jeremy #ifdef	DEBUG
    226      1.13  thorpej 		if (rv == FALSE)
    227       1.1      gwr 			panic("dvma_mapin: null page frame");
    228      1.20   simonb #endif	/* DEBUG */
    229       1.1      gwr 
    230       1.7      gwr 		iommu_enter((tva & IOMMU_VA_MASK), pa);
    231      1.23      chs 		pmap_kenter_pa(tva, pa | PMAP_NC, VM_PROT_READ | VM_PROT_WRITE);
    232       1.1      gwr 	}
    233      1.22    chris 	pmap_update(pmap_kernel());
    234       1.1      gwr 
    235       1.1      gwr 	return (dvma_addr);
    236       1.1      gwr }
    237       1.1      gwr 
    238       1.1      gwr /*
    239       1.1      gwr  * Remove double map of `va' in DVMA space at `kva'.
    240       1.3   jeremy  *
    241       1.3   jeremy  * TODO - This function might be the perfect place to handle the
    242       1.3   jeremy  *       synchronization between the DVMA cache and central RAM
    243       1.3   jeremy  *       on the 3/470.
    244       1.1      gwr  */
    245       1.1      gwr void
    246       1.1      gwr dvma_mapout(dvma_addr, len)
    247      1.24  thorpej 	void *dvma_addr;
    248      1.24  thorpej 	int len;
    249       1.1      gwr {
    250       1.1      gwr 	u_long kva;
    251       1.1      gwr 	int s, off;
    252       1.1      gwr 
    253       1.1      gwr 	kva = (u_long)dvma_addr;
    254       1.1      gwr 	off = (int)kva & PGOFSET;
    255       1.1      gwr 	kva -= off;
    256       1.1      gwr 	len = round_page(len + off);
    257       1.1      gwr 
    258       1.7      gwr 	iommu_remove((kva & IOMMU_VA_MASK), len);
    259      1.23      chs 	pmap_kremove(kva, len);
    260      1.22    chris 	pmap_update(pmap_kernel());
    261       1.1      gwr 
    262      1.18  thorpej 	s = splvm();
    263      1.24  thorpej 	if (extent_free(dvma_extent, kva, len, EX_NOWAIT | EX_MALLOCOK))
    264      1.24  thorpej 		panic("dvma_mapout: unable to free region: 0x%lx,0x%x",
    265      1.24  thorpej 		    kva, len);
    266       1.1      gwr 	splx(s);
    267       1.4      gwr }
    268       1.4      gwr 
    269       1.4      gwr /*
    270       1.4      gwr  * Allocate actual memory pages in DVMA space.
    271       1.4      gwr  * (For sun3 compatibility - the ie driver.)
    272       1.4      gwr  */
    273       1.4      gwr void *
    274       1.4      gwr dvma_malloc(bytes)
    275       1.4      gwr 	size_t bytes;
    276       1.4      gwr {
    277       1.4      gwr 	void *new_mem, *dvma_mem;
    278      1.21  tsutsui 	vsize_t new_size;
    279       1.4      gwr 
    280       1.4      gwr 	if (!bytes)
    281       1.4      gwr 		return NULL;
    282       1.4      gwr 	new_size = m68k_round_page(bytes);
    283      1.11      mrg 	new_mem = (void*)uvm_km_alloc(kernel_map, new_size);
    284      1.11      mrg 	if (!new_mem)
    285       1.4      gwr 		return NULL;
    286       1.4      gwr 	dvma_mem = dvma_mapin(new_mem, new_size, 1);
    287       1.4      gwr 	return (dvma_mem);
    288       1.9      gwr }
    289       1.9      gwr 
    290       1.9      gwr /*
    291       1.9      gwr  * Free pages from dvma_malloc()
    292       1.9      gwr  */
    293       1.9      gwr void
    294       1.9      gwr dvma_free(addr, size)
    295       1.9      gwr 	void *addr;
    296       1.9      gwr 	size_t size;
    297       1.9      gwr {
    298      1.21  tsutsui 	vsize_t sz = m68k_round_page(size);
    299       1.9      gwr 
    300       1.9      gwr 	dvma_mapout(addr, sz);
    301       1.9      gwr 	/* XXX: need kmem address to free it...
    302       1.9      gwr 	   Oh well, we never call this anyway. */
    303       1.1      gwr }
    304