dvma.c revision 1.27 1 1.27 lukem /* $NetBSD: dvma.c,v 1.27 2003/07/15 03:36:20 lukem Exp $ */
2 1.1 gwr
3 1.1 gwr /*-
4 1.1 gwr * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 1.1 gwr * All rights reserved.
6 1.1 gwr *
7 1.1 gwr * This code is derived from software contributed to The NetBSD Foundation
8 1.1 gwr * by Gordon W. Ross and Jeremy Cooper.
9 1.1 gwr *
10 1.1 gwr * Redistribution and use in source and binary forms, with or without
11 1.1 gwr * modification, are permitted provided that the following conditions
12 1.1 gwr * are met:
13 1.1 gwr * 1. Redistributions of source code must retain the above copyright
14 1.1 gwr * notice, this list of conditions and the following disclaimer.
15 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer in the
17 1.1 gwr * documentation and/or other materials provided with the distribution.
18 1.1 gwr * 3. All advertising materials mentioning features or use of this software
19 1.1 gwr * must display the following acknowledgement:
20 1.1 gwr * This product includes software developed by the NetBSD
21 1.1 gwr * Foundation, Inc. and its contributors.
22 1.1 gwr * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 gwr * contributors may be used to endorse or promote products derived
24 1.1 gwr * from this software without specific prior written permission.
25 1.1 gwr *
26 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 gwr * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 gwr * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 gwr * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 gwr * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 gwr * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 gwr * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 gwr * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 gwr * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 gwr * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 gwr * POSSIBILITY OF SUCH DAMAGE.
37 1.1 gwr */
38 1.1 gwr
39 1.1 gwr /*
40 1.1 gwr * DVMA (Direct Virtual Memory Access - like DMA)
41 1.1 gwr *
42 1.1 gwr * In the Sun3 architecture, memory cycles initiated by secondary bus
43 1.1 gwr * masters (DVMA devices) passed through the same MMU that governed CPU
44 1.1 gwr * accesses. All DVMA devices were wired in such a way so that an offset
45 1.1 gwr * was added to the addresses they issued, causing them to access virtual
46 1.1 gwr * memory starting at address 0x0FF00000 - the offset. The task of
47 1.1 gwr * enabling a DVMA device to access main memory only involved creating
48 1.1 gwr * valid mapping in the MMU that translated these high addresses into the
49 1.1 gwr * appropriate physical addresses.
50 1.1 gwr *
51 1.1 gwr * The Sun3x presents a challenge to programming DVMA because the MMU is no
52 1.1 gwr * longer shared by both secondary bus masters and the CPU. The MC68030's
53 1.1 gwr * built-in MMU serves only to manage virtual memory accesses initiated by
54 1.1 gwr * the CPU. Secondary bus master bus accesses pass through a different MMU,
55 1.1 gwr * aptly named the 'I/O Mapper'. To enable every device driver that uses
56 1.1 gwr * DVMA to understand that these two address spaces are disconnected would
57 1.1 gwr * require a tremendous amount of code re-writing. To avoid this, we will
58 1.1 gwr * ensure that the I/O Mapper and the MC68030 MMU are programmed together,
59 1.1 gwr * so that DVMA mappings are consistent in both the CPU virtual address
60 1.1 gwr * space and secondary bus master address space - creating an environment
61 1.1 gwr * just like the Sun3 system.
62 1.1 gwr *
63 1.1 gwr * The maximum address space that any DVMA device in the Sun3x architecture
64 1.1 gwr * is capable of addressing is 24 bits wide (16 Megabytes.) We can alias
65 1.1 gwr * all of the mappings that exist in the I/O mapper by duplicating them in
66 1.1 gwr * a specially reserved section of the CPU's virtual address space, 16
67 1.1 gwr * Megabytes in size. Whenever a DVMA buffer is allocated, the allocation
68 1.1 gwr * code will enter in a mapping both in the MC68030 MMU page tables and the
69 1.1 gwr * I/O mapper.
70 1.1 gwr *
71 1.1 gwr * The address returned by the allocation routine is a virtual address that
72 1.1 gwr * the requesting driver must use to access the buffer. It is up to the
73 1.1 gwr * device driver to convert this virtual address into the appropriate slave
74 1.5 jeremy * address that its device should issue to access the buffer. (There will be
75 1.5 jeremy * routines that assist the driver in doing so.)
76 1.1 gwr */
77 1.27 lukem
78 1.27 lukem #include <sys/cdefs.h>
79 1.27 lukem __KERNEL_RCSID(0, "$NetBSD: dvma.c,v 1.27 2003/07/15 03:36:20 lukem Exp $");
80 1.10 gwr
81 1.1 gwr #include <sys/param.h>
82 1.1 gwr #include <sys/systm.h>
83 1.1 gwr #include <sys/device.h>
84 1.1 gwr #include <sys/proc.h>
85 1.1 gwr #include <sys/malloc.h>
86 1.24 thorpej #include <sys/extent.h>
87 1.1 gwr #include <sys/buf.h>
88 1.1 gwr #include <sys/vnode.h>
89 1.1 gwr #include <sys/user.h>
90 1.1 gwr #include <sys/core.h>
91 1.1 gwr #include <sys/exec.h>
92 1.1 gwr
93 1.10 gwr #include <uvm/uvm_extern.h>
94 1.10 gwr
95 1.1 gwr #include <machine/autoconf.h>
96 1.1 gwr #include <machine/cpu.h>
97 1.9 gwr #include <machine/dvma.h>
98 1.1 gwr #include <machine/pmap.h>
99 1.9 gwr
100 1.9 gwr #include <sun3/sun3/machdep.h>
101 1.1 gwr
102 1.9 gwr #include <sun3/sun3x/enable.h>
103 1.9 gwr #include <sun3/sun3x/iommu.h>
104 1.1 gwr
105 1.1 gwr /*
106 1.24 thorpej * Use an extent map to manage DVMA scratch-memory pages.
107 1.9 gwr * Note: SunOS says last three pages are reserved (PROM?)
108 1.9 gwr * Note: need a separate map (sub-map?) for last 1MB for
109 1.9 gwr * use by VME slave interface.
110 1.1 gwr */
111 1.1 gwr
112 1.1 gwr /* Number of slots in dvmamap. */
113 1.24 thorpej struct extent *dvma_extent;
114 1.1 gwr
115 1.1 gwr void
116 1.1 gwr dvma_init()
117 1.1 gwr {
118 1.1 gwr
119 1.1 gwr /*
120 1.24 thorpej * Create the extent map for DVMA pages.
121 1.1 gwr */
122 1.24 thorpej dvma_extent = extent_create("dvma", DVMA_MAP_BASE,
123 1.24 thorpej DVMA_MAP_BASE + (DVMA_MAP_AVAIL - 1), M_DEVBUF,
124 1.24 thorpej NULL, 0, EX_NOCOALESCE|EX_NOWAIT);
125 1.1 gwr
126 1.1 gwr /*
127 1.1 gwr * Enable DVMA in the System Enable register.
128 1.1 gwr * Note: This is only necessary for VME slave accesses.
129 1.1 gwr * On-board devices are always capable of DVMA.
130 1.1 gwr */
131 1.8 gwr *enable_reg |= ENA_SDVMA;
132 1.1 gwr }
133 1.1 gwr
134 1.1 gwr
135 1.1 gwr /*
136 1.1 gwr * Given a DVMA address, return the physical address that
137 1.1 gwr * would be used by some OTHER bus-master besides the CPU.
138 1.1 gwr * (Examples: on-board ie/le, VME xy board).
139 1.1 gwr */
140 1.1 gwr u_long
141 1.1 gwr dvma_kvtopa(kva, bustype)
142 1.1 gwr void * kva;
143 1.1 gwr int bustype;
144 1.1 gwr {
145 1.1 gwr u_long addr, mask;
146 1.1 gwr
147 1.1 gwr addr = (u_long)kva;
148 1.8 gwr if ((addr & DVMA_MAP_BASE) != DVMA_MAP_BASE)
149 1.25 provos panic("dvma_kvtopa: bad dmva addr=0x%lx", addr);
150 1.1 gwr
151 1.6 gwr switch (bustype) {
152 1.6 gwr case BUS_OBIO:
153 1.6 gwr case BUS_OBMEM:
154 1.8 gwr mask = DVMA_OBIO_SLAVE_MASK;
155 1.8 gwr break;
156 1.8 gwr default: /* VME bus device. */
157 1.8 gwr mask = DVMA_VME_SLAVE_MASK;
158 1.6 gwr break;
159 1.6 gwr }
160 1.1 gwr
161 1.1 gwr return(addr & mask);
162 1.1 gwr }
163 1.1 gwr
164 1.1 gwr
165 1.1 gwr /*
166 1.1 gwr * Map a range [va, va+len] of wired virtual addresses in the given map
167 1.1 gwr * to a kernel address in DVMA space.
168 1.1 gwr */
169 1.1 gwr void *
170 1.1 gwr dvma_mapin(kmem_va, len, canwait)
171 1.3 jeremy void * kmem_va;
172 1.3 jeremy int len, canwait;
173 1.1 gwr {
174 1.1 gwr void * dvma_addr;
175 1.21 tsutsui vaddr_t kva, tva;
176 1.24 thorpej int npf, s, error;
177 1.13 thorpej paddr_t pa;
178 1.24 thorpej long off;
179 1.13 thorpej boolean_t rv;
180 1.1 gwr
181 1.21 tsutsui kva = (vaddr_t)kmem_va;
182 1.3 jeremy #ifdef DIAGNOSTIC
183 1.3 jeremy /*
184 1.3 jeremy * Addresses below VM_MIN_KERNEL_ADDRESS are not part of the kernel
185 1.3 jeremy * map and should not participate in DVMA.
186 1.3 jeremy */
187 1.1 gwr if (kva < VM_MIN_KERNEL_ADDRESS)
188 1.1 gwr panic("dvma_mapin: bad kva");
189 1.3 jeremy #endif
190 1.1 gwr
191 1.3 jeremy /*
192 1.3 jeremy * Calculate the offset of the data buffer from a page boundary.
193 1.3 jeremy */
194 1.21 tsutsui off = kva & PGOFSET;
195 1.3 jeremy kva -= off; /* Truncate starting address to nearest page. */
196 1.3 jeremy len = round_page(len + off); /* Round the buffer length to pages. */
197 1.3 jeremy npf = btoc(len); /* Determine the number of pages to be mapped. */
198 1.1 gwr
199 1.24 thorpej /*
200 1.24 thorpej * Try to allocate DVMA space of the appropriate size
201 1.24 thorpej * in which to do a transfer.
202 1.24 thorpej */
203 1.18 thorpej s = splvm();
204 1.24 thorpej error = extent_alloc(dvma_extent, len, PAGE_SIZE, 0,
205 1.24 thorpej EX_FAST | EX_NOWAIT | (canwait ? EX_WAITSPACE : 0), &tva);
206 1.1 gwr splx(s);
207 1.24 thorpej if (error)
208 1.24 thorpej return (NULL);
209 1.3 jeremy
210 1.3 jeremy /*
211 1.3 jeremy * Tva is the starting page to which the data buffer will be double
212 1.3 jeremy * mapped. Dvma_addr is the starting address of the buffer within
213 1.3 jeremy * that page and is the return value of the function.
214 1.3 jeremy */
215 1.1 gwr dvma_addr = (void *) (tva + off);
216 1.1 gwr
217 1.26 thorpej for (;npf--; kva += PAGE_SIZE, tva += PAGE_SIZE) {
218 1.3 jeremy /*
219 1.3 jeremy * Retrieve the physical address of each page in the buffer
220 1.3 jeremy * and enter mappings into the I/O MMU so they may be seen
221 1.3 jeremy * by external bus masters and into the special DVMA space
222 1.3 jeremy * in the MC68030 MMU so they may be seen by the CPU.
223 1.3 jeremy */
224 1.13 thorpej rv = pmap_extract(pmap_kernel(), kva, &pa);
225 1.3 jeremy #ifdef DEBUG
226 1.13 thorpej if (rv == FALSE)
227 1.1 gwr panic("dvma_mapin: null page frame");
228 1.20 simonb #endif /* DEBUG */
229 1.1 gwr
230 1.7 gwr iommu_enter((tva & IOMMU_VA_MASK), pa);
231 1.23 chs pmap_kenter_pa(tva, pa | PMAP_NC, VM_PROT_READ | VM_PROT_WRITE);
232 1.1 gwr }
233 1.22 chris pmap_update(pmap_kernel());
234 1.1 gwr
235 1.1 gwr return (dvma_addr);
236 1.1 gwr }
237 1.1 gwr
238 1.1 gwr /*
239 1.1 gwr * Remove double map of `va' in DVMA space at `kva'.
240 1.3 jeremy *
241 1.3 jeremy * TODO - This function might be the perfect place to handle the
242 1.3 jeremy * synchronization between the DVMA cache and central RAM
243 1.3 jeremy * on the 3/470.
244 1.1 gwr */
245 1.1 gwr void
246 1.1 gwr dvma_mapout(dvma_addr, len)
247 1.24 thorpej void *dvma_addr;
248 1.24 thorpej int len;
249 1.1 gwr {
250 1.1 gwr u_long kva;
251 1.1 gwr int s, off;
252 1.1 gwr
253 1.1 gwr kva = (u_long)dvma_addr;
254 1.1 gwr off = (int)kva & PGOFSET;
255 1.1 gwr kva -= off;
256 1.1 gwr len = round_page(len + off);
257 1.1 gwr
258 1.7 gwr iommu_remove((kva & IOMMU_VA_MASK), len);
259 1.23 chs pmap_kremove(kva, len);
260 1.22 chris pmap_update(pmap_kernel());
261 1.1 gwr
262 1.18 thorpej s = splvm();
263 1.24 thorpej if (extent_free(dvma_extent, kva, len, EX_NOWAIT | EX_MALLOCOK))
264 1.24 thorpej panic("dvma_mapout: unable to free region: 0x%lx,0x%x",
265 1.24 thorpej kva, len);
266 1.1 gwr splx(s);
267 1.4 gwr }
268 1.4 gwr
269 1.4 gwr /*
270 1.4 gwr * Allocate actual memory pages in DVMA space.
271 1.4 gwr * (For sun3 compatibility - the ie driver.)
272 1.4 gwr */
273 1.4 gwr void *
274 1.4 gwr dvma_malloc(bytes)
275 1.4 gwr size_t bytes;
276 1.4 gwr {
277 1.4 gwr void *new_mem, *dvma_mem;
278 1.21 tsutsui vsize_t new_size;
279 1.4 gwr
280 1.4 gwr if (!bytes)
281 1.4 gwr return NULL;
282 1.4 gwr new_size = m68k_round_page(bytes);
283 1.11 mrg new_mem = (void*)uvm_km_alloc(kernel_map, new_size);
284 1.11 mrg if (!new_mem)
285 1.4 gwr return NULL;
286 1.4 gwr dvma_mem = dvma_mapin(new_mem, new_size, 1);
287 1.4 gwr return (dvma_mem);
288 1.9 gwr }
289 1.9 gwr
290 1.9 gwr /*
291 1.9 gwr * Free pages from dvma_malloc()
292 1.9 gwr */
293 1.9 gwr void
294 1.9 gwr dvma_free(addr, size)
295 1.9 gwr void *addr;
296 1.9 gwr size_t size;
297 1.9 gwr {
298 1.21 tsutsui vsize_t sz = m68k_round_page(size);
299 1.9 gwr
300 1.9 gwr dvma_mapout(addr, sz);
301 1.9 gwr /* XXX: need kmem address to free it...
302 1.9 gwr Oh well, we never call this anyway. */
303 1.1 gwr }
304