dvma.c revision 1.46 1 1.46 rillig /* $NetBSD: dvma.c,v 1.46 2024/09/08 09:36:49 rillig Exp $ */
2 1.1 gwr
3 1.1 gwr /*-
4 1.1 gwr * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 1.1 gwr * All rights reserved.
6 1.1 gwr *
7 1.1 gwr * This code is derived from software contributed to The NetBSD Foundation
8 1.1 gwr * by Gordon W. Ross and Jeremy Cooper.
9 1.1 gwr *
10 1.1 gwr * Redistribution and use in source and binary forms, with or without
11 1.1 gwr * modification, are permitted provided that the following conditions
12 1.1 gwr * are met:
13 1.1 gwr * 1. Redistributions of source code must retain the above copyright
14 1.1 gwr * notice, this list of conditions and the following disclaimer.
15 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer in the
17 1.1 gwr * documentation and/or other materials provided with the distribution.
18 1.1 gwr *
19 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 gwr * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 gwr * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 gwr * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 gwr * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 gwr * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 gwr * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 gwr * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 gwr * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 gwr * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 gwr * POSSIBILITY OF SUCH DAMAGE.
30 1.1 gwr */
31 1.1 gwr
32 1.1 gwr /*
33 1.1 gwr * DVMA (Direct Virtual Memory Access - like DMA)
34 1.1 gwr *
35 1.1 gwr * In the Sun3 architecture, memory cycles initiated by secondary bus
36 1.1 gwr * masters (DVMA devices) passed through the same MMU that governed CPU
37 1.1 gwr * accesses. All DVMA devices were wired in such a way so that an offset
38 1.1 gwr * was added to the addresses they issued, causing them to access virtual
39 1.1 gwr * memory starting at address 0x0FF00000 - the offset. The task of
40 1.1 gwr * enabling a DVMA device to access main memory only involved creating
41 1.1 gwr * valid mapping in the MMU that translated these high addresses into the
42 1.1 gwr * appropriate physical addresses.
43 1.1 gwr *
44 1.1 gwr * The Sun3x presents a challenge to programming DVMA because the MMU is no
45 1.1 gwr * longer shared by both secondary bus masters and the CPU. The MC68030's
46 1.1 gwr * built-in MMU serves only to manage virtual memory accesses initiated by
47 1.1 gwr * the CPU. Secondary bus master bus accesses pass through a different MMU,
48 1.1 gwr * aptly named the 'I/O Mapper'. To enable every device driver that uses
49 1.1 gwr * DVMA to understand that these two address spaces are disconnected would
50 1.1 gwr * require a tremendous amount of code re-writing. To avoid this, we will
51 1.1 gwr * ensure that the I/O Mapper and the MC68030 MMU are programmed together,
52 1.1 gwr * so that DVMA mappings are consistent in both the CPU virtual address
53 1.1 gwr * space and secondary bus master address space - creating an environment
54 1.1 gwr * just like the Sun3 system.
55 1.1 gwr *
56 1.1 gwr * The maximum address space that any DVMA device in the Sun3x architecture
57 1.1 gwr * is capable of addressing is 24 bits wide (16 Megabytes.) We can alias
58 1.1 gwr * all of the mappings that exist in the I/O mapper by duplicating them in
59 1.1 gwr * a specially reserved section of the CPU's virtual address space, 16
60 1.1 gwr * Megabytes in size. Whenever a DVMA buffer is allocated, the allocation
61 1.1 gwr * code will enter in a mapping both in the MC68030 MMU page tables and the
62 1.1 gwr * I/O mapper.
63 1.1 gwr *
64 1.1 gwr * The address returned by the allocation routine is a virtual address that
65 1.1 gwr * the requesting driver must use to access the buffer. It is up to the
66 1.1 gwr * device driver to convert this virtual address into the appropriate slave
67 1.5 jeremy * address that its device should issue to access the buffer. (There will be
68 1.5 jeremy * routines that assist the driver in doing so.)
69 1.1 gwr */
70 1.27 lukem
71 1.27 lukem #include <sys/cdefs.h>
72 1.46 rillig __KERNEL_RCSID(0, "$NetBSD: dvma.c,v 1.46 2024/09/08 09:36:49 rillig Exp $");
73 1.10 gwr
74 1.1 gwr #include <sys/param.h>
75 1.1 gwr #include <sys/systm.h>
76 1.1 gwr #include <sys/device.h>
77 1.1 gwr #include <sys/proc.h>
78 1.44 thorpej #include <sys/vmem.h>
79 1.1 gwr #include <sys/buf.h>
80 1.1 gwr #include <sys/vnode.h>
81 1.1 gwr #include <sys/core.h>
82 1.1 gwr #include <sys/exec.h>
83 1.1 gwr
84 1.10 gwr #include <uvm/uvm_extern.h>
85 1.10 gwr
86 1.31 tsutsui #define _SUN68K_BUS_DMA_PRIVATE
87 1.1 gwr #include <machine/autoconf.h>
88 1.31 tsutsui #include <machine/bus.h>
89 1.1 gwr #include <machine/cpu.h>
90 1.9 gwr #include <machine/dvma.h>
91 1.1 gwr #include <machine/pmap.h>
92 1.9 gwr
93 1.9 gwr #include <sun3/sun3/machdep.h>
94 1.1 gwr
95 1.9 gwr #include <sun3/sun3x/enable.h>
96 1.9 gwr #include <sun3/sun3x/iommu.h>
97 1.1 gwr
98 1.1 gwr /*
99 1.46 rillig * Use a vmem arena to manage DVMA scratch-memory pages.
100 1.9 gwr * Note: SunOS says last three pages are reserved (PROM?)
101 1.9 gwr * Note: need a separate map (sub-map?) for last 1MB for
102 1.9 gwr * use by VME slave interface.
103 1.1 gwr */
104 1.44 thorpej vmem_t *dvma_arena;
105 1.1 gwr
106 1.42 tsutsui void
107 1.28 chs dvma_init(void)
108 1.1 gwr {
109 1.1 gwr
110 1.1 gwr /*
111 1.44 thorpej * Create the vmem arena for DVMA pages.
112 1.1 gwr */
113 1.44 thorpej dvma_arena = vmem_create("dvma", DVMA_MAP_BASE, DVMA_MAP_AVAIL,
114 1.44 thorpej PAGE_SIZE, /* quantum */
115 1.44 thorpej NULL, /* importfn */
116 1.44 thorpej NULL, /* releasefn */
117 1.44 thorpej NULL, /* source */
118 1.44 thorpej 0, /* qcache_max */
119 1.44 thorpej VM_SLEEP,
120 1.44 thorpej IPL_VM);
121 1.1 gwr
122 1.1 gwr /*
123 1.1 gwr * Enable DVMA in the System Enable register.
124 1.1 gwr * Note: This is only necessary for VME slave accesses.
125 1.1 gwr * On-board devices are always capable of DVMA.
126 1.1 gwr */
127 1.8 gwr *enable_reg |= ENA_SDVMA;
128 1.1 gwr }
129 1.1 gwr
130 1.1 gwr
131 1.1 gwr /*
132 1.1 gwr * Given a DVMA address, return the physical address that
133 1.1 gwr * would be used by some OTHER bus-master besides the CPU.
134 1.1 gwr * (Examples: on-board ie/le, VME xy board).
135 1.1 gwr */
136 1.42 tsutsui u_long
137 1.28 chs dvma_kvtopa(void *kva, int bustype)
138 1.1 gwr {
139 1.1 gwr u_long addr, mask;
140 1.1 gwr
141 1.1 gwr addr = (u_long)kva;
142 1.8 gwr if ((addr & DVMA_MAP_BASE) != DVMA_MAP_BASE)
143 1.25 provos panic("dvma_kvtopa: bad dmva addr=0x%lx", addr);
144 1.1 gwr
145 1.6 gwr switch (bustype) {
146 1.6 gwr case BUS_OBIO:
147 1.6 gwr case BUS_OBMEM:
148 1.8 gwr mask = DVMA_OBIO_SLAVE_MASK;
149 1.8 gwr break;
150 1.8 gwr default: /* VME bus device. */
151 1.8 gwr mask = DVMA_VME_SLAVE_MASK;
152 1.6 gwr break;
153 1.6 gwr }
154 1.1 gwr
155 1.32 tsutsui return addr & mask;
156 1.1 gwr }
157 1.1 gwr
158 1.1 gwr
159 1.1 gwr /*
160 1.1 gwr * Map a range [va, va+len] of wired virtual addresses in the given map
161 1.1 gwr * to a kernel address in DVMA space.
162 1.1 gwr */
163 1.1 gwr void *
164 1.28 chs dvma_mapin(void *kmem_va, int len, int canwait)
165 1.1 gwr {
166 1.37 christos void *dvma_addr;
167 1.44 thorpej vaddr_t kva;
168 1.44 thorpej vmem_addr_t tva;
169 1.44 thorpej int npf, error;
170 1.13 thorpej paddr_t pa;
171 1.24 thorpej long off;
172 1.43 christos bool rv __debugused;
173 1.1 gwr
174 1.21 tsutsui kva = (vaddr_t)kmem_va;
175 1.44 thorpej KASSERT(kva >= VM_MIN_KERNEL_ADDRESS);
176 1.1 gwr
177 1.3 jeremy /*
178 1.3 jeremy * Calculate the offset of the data buffer from a page boundary.
179 1.3 jeremy */
180 1.21 tsutsui off = kva & PGOFSET;
181 1.3 jeremy kva -= off; /* Truncate starting address to nearest page. */
182 1.3 jeremy len = round_page(len + off); /* Round the buffer length to pages. */
183 1.3 jeremy npf = btoc(len); /* Determine the number of pages to be mapped. */
184 1.1 gwr
185 1.24 thorpej /*
186 1.24 thorpej * Try to allocate DVMA space of the appropriate size
187 1.24 thorpej * in which to do a transfer.
188 1.24 thorpej */
189 1.44 thorpej const vm_flag_t vmflags = VM_INSTANTFIT |
190 1.44 thorpej (canwait ? VM_SLEEP : VM_NOSLEEP);
191 1.44 thorpej
192 1.44 thorpej error = vmem_xalloc(dvma_arena, len,
193 1.44 thorpej 0, /* alignment */
194 1.44 thorpej 0, /* phase */
195 1.44 thorpej 0, /* nocross */
196 1.44 thorpej VMEM_ADDR_MIN, /* minaddr */
197 1.44 thorpej VMEM_ADDR_MAX, /* maxaddr */
198 1.44 thorpej vmflags,
199 1.44 thorpej &tva);
200 1.24 thorpej if (error)
201 1.32 tsutsui return NULL;
202 1.42 tsutsui
203 1.42 tsutsui /*
204 1.3 jeremy * Tva is the starting page to which the data buffer will be double
205 1.3 jeremy * mapped. Dvma_addr is the starting address of the buffer within
206 1.3 jeremy * that page and is the return value of the function.
207 1.3 jeremy */
208 1.32 tsutsui dvma_addr = (void *)(tva + off);
209 1.1 gwr
210 1.32 tsutsui for (; npf--; kva += PAGE_SIZE, tva += PAGE_SIZE) {
211 1.3 jeremy /*
212 1.3 jeremy * Retrieve the physical address of each page in the buffer
213 1.3 jeremy * and enter mappings into the I/O MMU so they may be seen
214 1.3 jeremy * by external bus masters and into the special DVMA space
215 1.3 jeremy * in the MC68030 MMU so they may be seen by the CPU.
216 1.3 jeremy */
217 1.13 thorpej rv = pmap_extract(pmap_kernel(), kva, &pa);
218 1.3 jeremy #ifdef DEBUG
219 1.36 thorpej if (rv == false)
220 1.1 gwr panic("dvma_mapin: null page frame");
221 1.20 simonb #endif /* DEBUG */
222 1.1 gwr
223 1.7 gwr iommu_enter((tva & IOMMU_VA_MASK), pa);
224 1.39 he pmap_kenter_pa(tva,
225 1.39 he pa | PMAP_NC, VM_PROT_READ | VM_PROT_WRITE, 0);
226 1.1 gwr }
227 1.22 chris pmap_update(pmap_kernel());
228 1.1 gwr
229 1.32 tsutsui return dvma_addr;
230 1.1 gwr }
231 1.1 gwr
232 1.1 gwr /*
233 1.1 gwr * Remove double map of `va' in DVMA space at `kva'.
234 1.3 jeremy *
235 1.3 jeremy * TODO - This function might be the perfect place to handle the
236 1.3 jeremy * synchronization between the DVMA cache and central RAM
237 1.3 jeremy * on the 3/470.
238 1.1 gwr */
239 1.42 tsutsui void
240 1.28 chs dvma_mapout(void *dvma_addr, int len)
241 1.1 gwr {
242 1.1 gwr u_long kva;
243 1.44 thorpej int off;
244 1.1 gwr
245 1.1 gwr kva = (u_long)dvma_addr;
246 1.1 gwr off = (int)kva & PGOFSET;
247 1.1 gwr kva -= off;
248 1.1 gwr len = round_page(len + off);
249 1.1 gwr
250 1.7 gwr iommu_remove((kva & IOMMU_VA_MASK), len);
251 1.23 chs pmap_kremove(kva, len);
252 1.22 chris pmap_update(pmap_kernel());
253 1.1 gwr
254 1.44 thorpej vmem_xfree(dvma_arena, kva, len);
255 1.4 gwr }
256 1.4 gwr
257 1.4 gwr /*
258 1.4 gwr * Allocate actual memory pages in DVMA space.
259 1.4 gwr * (For sun3 compatibility - the ie driver.)
260 1.4 gwr */
261 1.4 gwr void *
262 1.28 chs dvma_malloc(size_t bytes)
263 1.4 gwr {
264 1.4 gwr void *new_mem, *dvma_mem;
265 1.21 tsutsui vsize_t new_size;
266 1.4 gwr
267 1.32 tsutsui if (bytes == 0)
268 1.4 gwr return NULL;
269 1.4 gwr new_size = m68k_round_page(bytes);
270 1.32 tsutsui new_mem = (void *)uvm_km_alloc(kernel_map, new_size, 0, UVM_KMF_WIRED);
271 1.32 tsutsui if (new_mem == 0)
272 1.4 gwr return NULL;
273 1.4 gwr dvma_mem = dvma_mapin(new_mem, new_size, 1);
274 1.32 tsutsui return dvma_mem;
275 1.9 gwr }
276 1.9 gwr
277 1.9 gwr /*
278 1.9 gwr * Free pages from dvma_malloc()
279 1.9 gwr */
280 1.42 tsutsui void
281 1.28 chs dvma_free(void *addr, size_t size)
282 1.9 gwr {
283 1.21 tsutsui vsize_t sz = m68k_round_page(size);
284 1.9 gwr
285 1.9 gwr dvma_mapout(addr, sz);
286 1.9 gwr /* XXX: need kmem address to free it...
287 1.9 gwr Oh well, we never call this anyway. */
288 1.1 gwr }
289 1.31 tsutsui
290 1.42 tsutsui int
291 1.31 tsutsui _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map, bus_dma_segment_t *segs,
292 1.31 tsutsui int nsegs, bus_size_t size, int flags)
293 1.31 tsutsui {
294 1.31 tsutsui
295 1.31 tsutsui panic("_bus_dmamap_load_raw(): not implemented yet.");
296 1.31 tsutsui }
297 1.31 tsutsui
298 1.31 tsutsui int
299 1.31 tsutsui _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
300 1.31 tsutsui bus_size_t buflen, struct proc *p, int flags)
301 1.31 tsutsui {
302 1.44 thorpej vaddr_t kva;
303 1.44 thorpej vmem_addr_t dva;
304 1.33 tsutsui vsize_t off, sgsize;
305 1.33 tsutsui paddr_t pa;
306 1.33 tsutsui pmap_t pmap;
307 1.44 thorpej int error, rv __diagused;
308 1.33 tsutsui
309 1.33 tsutsui /*
310 1.33 tsutsui * Make sure that on error condition we return "no valid mappings".
311 1.33 tsutsui */
312 1.33 tsutsui map->dm_nsegs = 0;
313 1.33 tsutsui map->dm_mapsize = 0;
314 1.33 tsutsui
315 1.33 tsutsui if (buflen > map->_dm_size)
316 1.33 tsutsui return EINVAL;
317 1.33 tsutsui
318 1.33 tsutsui kva = (vaddr_t)buf;
319 1.33 tsutsui off = kva & PGOFSET;
320 1.33 tsutsui sgsize = round_page(off + buflen);
321 1.31 tsutsui
322 1.33 tsutsui /* Try to allocate DVMA space. */
323 1.44 thorpej const vm_flag_t vmflags = VM_INSTANTFIT |
324 1.44 thorpej ((flags & BUS_DMA_NOWAIT) ? VM_NOSLEEP : VM_SLEEP);
325 1.44 thorpej
326 1.44 thorpej error = vmem_xalloc(dvma_arena, sgsize,
327 1.44 thorpej 0, /* alignment */
328 1.44 thorpej 0, /* phase */
329 1.44 thorpej 0, /* nocross */
330 1.44 thorpej VMEM_ADDR_MIN, /* minaddr */
331 1.44 thorpej VMEM_ADDR_MAX, /* maxaddr */
332 1.44 thorpej vmflags,
333 1.44 thorpej &dva);
334 1.33 tsutsui if (error)
335 1.33 tsutsui return ENOMEM;
336 1.33 tsutsui
337 1.33 tsutsui /* Fill in the segment. */
338 1.33 tsutsui map->dm_segs[0].ds_addr = dva + off;
339 1.33 tsutsui map->dm_segs[0].ds_len = buflen;
340 1.33 tsutsui map->dm_segs[0]._ds_va = dva;
341 1.33 tsutsui map->dm_segs[0]._ds_sgsize = sgsize;
342 1.33 tsutsui
343 1.33 tsutsui /*
344 1.33 tsutsui * Now map the DVMA addresses we allocated to point to the
345 1.33 tsutsui * pages of the caller's buffer.
346 1.33 tsutsui */
347 1.33 tsutsui if (p != NULL)
348 1.33 tsutsui pmap = p->p_vmspace->vm_map.pmap;
349 1.33 tsutsui else
350 1.33 tsutsui pmap = pmap_kernel();
351 1.33 tsutsui
352 1.33 tsutsui while (sgsize > 0) {
353 1.33 tsutsui rv = pmap_extract(pmap, kva, &pa);
354 1.33 tsutsui #ifdef DIAGNOSTIC
355 1.36 thorpej if (rv == false)
356 1.33 tsutsui panic("%s: unmapped VA", __func__);
357 1.33 tsutsui #endif
358 1.33 tsutsui iommu_enter((dva & IOMMU_VA_MASK), pa);
359 1.39 he pmap_kenter_pa(dva,
360 1.39 he pa | PMAP_NC, VM_PROT_READ | VM_PROT_WRITE, 0);
361 1.33 tsutsui kva += PAGE_SIZE;
362 1.33 tsutsui dva += PAGE_SIZE;
363 1.33 tsutsui sgsize -= PAGE_SIZE;
364 1.33 tsutsui }
365 1.33 tsutsui
366 1.33 tsutsui map->dm_nsegs = 1;
367 1.33 tsutsui map->dm_mapsize = map->dm_segs[0].ds_len;
368 1.33 tsutsui
369 1.33 tsutsui return 0;
370 1.31 tsutsui }
371 1.31 tsutsui
372 1.42 tsutsui void
373 1.31 tsutsui _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
374 1.31 tsutsui {
375 1.33 tsutsui bus_dma_segment_t *segs;
376 1.33 tsutsui vaddr_t dva;
377 1.33 tsutsui vsize_t sgsize;
378 1.33 tsutsui
379 1.33 tsutsui #ifdef DIAGNOSTIC
380 1.33 tsutsui if (map->dm_nsegs != 1)
381 1.34 tsutsui panic("%s: invalid nsegs = %d", __func__, map->dm_nsegs);
382 1.33 tsutsui #endif
383 1.33 tsutsui
384 1.33 tsutsui segs = map->dm_segs;
385 1.33 tsutsui dva = segs[0]._ds_va & ~PGOFSET;
386 1.33 tsutsui sgsize = segs[0]._ds_sgsize;
387 1.33 tsutsui
388 1.33 tsutsui /* Unmap the DVMA addresses. */
389 1.33 tsutsui iommu_remove((dva & IOMMU_VA_MASK), sgsize);
390 1.33 tsutsui pmap_kremove(dva, sgsize);
391 1.33 tsutsui pmap_update(pmap_kernel());
392 1.33 tsutsui
393 1.33 tsutsui /* Free the DVMA addresses. */
394 1.44 thorpej vmem_xfree(dvma_arena, dva, sgsize);
395 1.31 tsutsui
396 1.33 tsutsui /* Mark the mappings as invalid. */
397 1.33 tsutsui map->dm_mapsize = 0;
398 1.33 tsutsui map->dm_nsegs = 0;
399 1.31 tsutsui }
400