Home | History | Annotate | Line # | Download | only in sun3x
dvma.c revision 1.8.4.1
      1  1.8.4.1     gwr /*	$NetBSD: dvma.c,v 1.8.4.1 1998/01/27 19:51:18 gwr Exp $	*/
      2      1.1     gwr 
      3      1.1     gwr /*-
      4      1.1     gwr  * Copyright (c) 1996 The NetBSD Foundation, Inc.
      5      1.1     gwr  * All rights reserved.
      6      1.1     gwr  *
      7      1.1     gwr  * This code is derived from software contributed to The NetBSD Foundation
      8      1.1     gwr  * by Gordon W. Ross and Jeremy Cooper.
      9      1.1     gwr  *
     10      1.1     gwr  * Redistribution and use in source and binary forms, with or without
     11      1.1     gwr  * modification, are permitted provided that the following conditions
     12      1.1     gwr  * are met:
     13      1.1     gwr  * 1. Redistributions of source code must retain the above copyright
     14      1.1     gwr  *    notice, this list of conditions and the following disclaimer.
     15      1.1     gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.1     gwr  *    notice, this list of conditions and the following disclaimer in the
     17      1.1     gwr  *    documentation and/or other materials provided with the distribution.
     18      1.1     gwr  * 3. All advertising materials mentioning features or use of this software
     19      1.1     gwr  *    must display the following acknowledgement:
     20      1.1     gwr  *        This product includes software developed by the NetBSD
     21      1.1     gwr  *        Foundation, Inc. and its contributors.
     22      1.1     gwr  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23      1.1     gwr  *    contributors may be used to endorse or promote products derived
     24      1.1     gwr  *    from this software without specific prior written permission.
     25      1.1     gwr  *
     26      1.1     gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27      1.1     gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28      1.1     gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29      1.1     gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30      1.1     gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31      1.1     gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32      1.1     gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33      1.1     gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34      1.1     gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35      1.1     gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36      1.1     gwr  * POSSIBILITY OF SUCH DAMAGE.
     37      1.1     gwr  */
     38      1.1     gwr 
     39      1.1     gwr /*
     40      1.1     gwr  * DVMA (Direct Virtual Memory Access - like DMA)
     41      1.1     gwr  *
     42      1.1     gwr  * In the Sun3 architecture, memory cycles initiated by secondary bus
     43      1.1     gwr  * masters (DVMA devices) passed through the same MMU that governed CPU
     44      1.1     gwr  * accesses.  All DVMA devices were wired in such a way so that an offset
     45      1.1     gwr  * was added to the addresses they issued, causing them to access virtual
     46      1.1     gwr  * memory starting at address 0x0FF00000 - the offset.  The task of
     47      1.1     gwr  * enabling a DVMA device to access main memory only involved creating
     48      1.1     gwr  * valid mapping in the MMU that translated these high addresses into the
     49      1.1     gwr  * appropriate physical addresses.
     50      1.1     gwr  *
     51      1.1     gwr  * The Sun3x presents a challenge to programming DVMA because the MMU is no
     52      1.1     gwr  * longer shared by both secondary bus masters and the CPU.  The MC68030's
     53      1.1     gwr  * built-in MMU serves only to manage virtual memory accesses initiated by
     54      1.1     gwr  * the CPU.  Secondary bus master bus accesses pass through a different MMU,
     55      1.1     gwr  * aptly named the 'I/O Mapper'.  To enable every device driver that uses
     56      1.1     gwr  * DVMA to understand that these two address spaces are disconnected would
     57      1.1     gwr  * require a tremendous amount of code re-writing. To avoid this, we will
     58      1.1     gwr  * ensure that the I/O Mapper and the MC68030 MMU are programmed together,
     59      1.1     gwr  * so that DVMA mappings are consistent in both the CPU virtual address
     60      1.1     gwr  * space and secondary bus master address space - creating an environment
     61      1.1     gwr  * just like the Sun3 system.
     62      1.1     gwr  *
     63      1.1     gwr  * The maximum address space that any DVMA device in the Sun3x architecture
     64      1.1     gwr  * is capable of addressing is 24 bits wide (16 Megabytes.)  We can alias
     65      1.1     gwr  * all of the mappings that exist in the I/O mapper by duplicating them in
     66      1.1     gwr  * a specially reserved section of the CPU's virtual address space, 16
     67      1.1     gwr  * Megabytes in size.  Whenever a DVMA buffer is allocated, the allocation
     68      1.1     gwr  * code will enter in a mapping both in the MC68030 MMU page tables and the
     69      1.1     gwr  * I/O mapper.
     70      1.1     gwr  *
     71      1.1     gwr  * The address returned by the allocation routine is a virtual address that
     72      1.1     gwr  * the requesting driver must use to access the buffer.  It is up to the
     73      1.1     gwr  * device driver to convert this virtual address into the appropriate slave
     74      1.5  jeremy  * address that its device should issue to access the buffer.  (There will be
     75      1.5  jeremy  * routines that assist the driver in doing so.)
     76      1.1     gwr  */
     77      1.1     gwr #include <sys/param.h>
     78      1.1     gwr #include <sys/systm.h>
     79      1.1     gwr #include <sys/device.h>
     80      1.1     gwr #include <sys/proc.h>
     81      1.1     gwr #include <sys/malloc.h>
     82      1.1     gwr #include <sys/map.h>
     83      1.1     gwr #include <sys/buf.h>
     84      1.1     gwr #include <sys/vnode.h>
     85      1.1     gwr #include <sys/user.h>
     86      1.1     gwr #include <sys/core.h>
     87      1.1     gwr #include <sys/exec.h>
     88      1.1     gwr 
     89      1.1     gwr #include <vm/vm.h>
     90      1.1     gwr #include <vm/vm_kern.h>
     91      1.1     gwr #include <vm/vm_map.h>
     92      1.1     gwr 
     93      1.1     gwr #include <machine/autoconf.h>
     94      1.1     gwr #include <machine/cpu.h>
     95      1.1     gwr #include <machine/dvma.h>
     96  1.8.4.1     gwr #include <machine/pmap.h>
     97  1.8.4.1     gwr /* #include <machine/reg.h> */
     98  1.8.4.1     gwr 
     99  1.8.4.1     gwr #include <sun3/sun3/machdep.h>
    100      1.1     gwr 
    101  1.8.4.1     gwr #include <sun3/sun3x/enable.h>
    102  1.8.4.1     gwr #include <sun3/sun3x/iommu.h>
    103      1.1     gwr 
    104      1.1     gwr /*
    105      1.1     gwr  * Use a resource map to manage DVMA scratch-memory pages.
    106  1.8.4.1     gwr  * Note: SunOS says last three pages are reserved (PROM?)
    107  1.8.4.1     gwr  * Note: need a separate map (sub-map?) for last 1MB for
    108  1.8.4.1     gwr  *       use by VME slave interface.
    109      1.1     gwr  */
    110      1.1     gwr 
    111      1.1     gwr /* Number of slots in dvmamap. */
    112      1.8     gwr int dvma_max_segs = btoc(DVMA_MAP_SIZE);
    113      1.1     gwr struct map *dvmamap;
    114      1.1     gwr 
    115      1.1     gwr void
    116      1.1     gwr dvma_init()
    117      1.1     gwr {
    118      1.1     gwr 
    119      1.1     gwr 	/*
    120      1.1     gwr 	 * Create the resource map for DVMA pages.
    121      1.1     gwr 	 */
    122      1.1     gwr 	dvmamap = malloc((sizeof(struct map) * dvma_max_segs),
    123      1.1     gwr 					 M_DEVBUF, M_WAITOK);
    124      1.1     gwr 
    125      1.8     gwr 	rminit(dvmamap, btoc(DVMA_MAP_AVAIL), btoc(DVMA_MAP_BASE),
    126      1.1     gwr 		   "dvmamap", dvma_max_segs);
    127      1.1     gwr 
    128      1.1     gwr 	/*
    129      1.1     gwr 	 * Enable DVMA in the System Enable register.
    130      1.1     gwr 	 * Note:  This is only necessary for VME slave accesses.
    131      1.1     gwr 	 *        On-board devices are always capable of DVMA.
    132      1.1     gwr 	 */
    133      1.8     gwr 	*enable_reg |= ENA_SDVMA;
    134      1.1     gwr }
    135      1.1     gwr 
    136      1.1     gwr 
    137      1.1     gwr /*
    138      1.1     gwr  * Given a DVMA address, return the physical address that
    139      1.1     gwr  * would be used by some OTHER bus-master besides the CPU.
    140      1.1     gwr  * (Examples: on-board ie/le, VME xy board).
    141      1.1     gwr  */
    142      1.1     gwr u_long
    143      1.1     gwr dvma_kvtopa(kva, bustype)
    144      1.1     gwr 	void * kva;
    145      1.1     gwr 	int bustype;
    146      1.1     gwr {
    147      1.1     gwr 	u_long addr, mask;
    148      1.1     gwr 
    149      1.1     gwr 	addr = (u_long)kva;
    150      1.8     gwr 	if ((addr & DVMA_MAP_BASE) != DVMA_MAP_BASE)
    151      1.1     gwr 		panic("dvma_kvtopa: bad dmva addr=0x%x\n", addr);
    152      1.1     gwr 
    153      1.6     gwr 	switch (bustype) {
    154      1.6     gwr 	case BUS_OBIO:
    155      1.6     gwr 	case BUS_OBMEM:
    156      1.8     gwr 		mask = DVMA_OBIO_SLAVE_MASK;
    157      1.8     gwr 		break;
    158      1.8     gwr 	default:	/* VME bus device. */
    159      1.8     gwr 		mask = DVMA_VME_SLAVE_MASK;
    160      1.6     gwr 		break;
    161      1.6     gwr 	}
    162      1.1     gwr 
    163      1.1     gwr 	return(addr & mask);
    164      1.1     gwr }
    165      1.1     gwr 
    166      1.1     gwr 
    167      1.1     gwr /*
    168      1.1     gwr  * Map a range [va, va+len] of wired virtual addresses in the given map
    169      1.1     gwr  * to a kernel address in DVMA space.
    170      1.1     gwr  */
    171      1.1     gwr void *
    172      1.1     gwr dvma_mapin(kmem_va, len, canwait)
    173      1.3  jeremy 	void *  kmem_va;
    174      1.3  jeremy 	int     len, canwait;
    175      1.1     gwr {
    176      1.1     gwr 	void * dvma_addr;
    177      1.1     gwr 	vm_offset_t kva, tva;
    178      1.1     gwr 	register int npf, s;
    179      1.1     gwr 	register vm_offset_t pa;
    180      1.1     gwr 	long off, pn;
    181      1.1     gwr 
    182      1.1     gwr 	kva = (u_long)kmem_va;
    183      1.3  jeremy #ifdef	DIAGNOSTIC
    184      1.3  jeremy 	/*
    185      1.3  jeremy 	 * Addresses below VM_MIN_KERNEL_ADDRESS are not part of the kernel
    186      1.3  jeremy 	 * map and should not participate in DVMA.
    187      1.3  jeremy 	 */
    188      1.1     gwr 	if (kva < VM_MIN_KERNEL_ADDRESS)
    189      1.1     gwr 		panic("dvma_mapin: bad kva");
    190      1.3  jeremy #endif
    191      1.1     gwr 
    192      1.3  jeremy 	/*
    193      1.3  jeremy 	 * Calculate the offset of the data buffer from a page boundary.
    194      1.3  jeremy 	 */
    195      1.1     gwr 	off = (int)kva & PGOFSET;
    196      1.3  jeremy 	kva -= off;	/* Truncate starting address to nearest page. */
    197      1.3  jeremy 	len = round_page(len + off); /* Round the buffer length to pages. */
    198      1.3  jeremy 	npf = btoc(len); /* Determine the number of pages to be mapped. */
    199      1.1     gwr 
    200      1.1     gwr 	s = splimp();
    201      1.1     gwr 	for (;;) {
    202      1.3  jeremy 		/*
    203      1.3  jeremy 		 * Try to allocate DVMA space of the appropriate size
    204      1.3  jeremy 		 * in which to do a transfer.
    205      1.3  jeremy 		 */
    206      1.1     gwr 		pn = rmalloc(dvmamap, npf);
    207      1.1     gwr 
    208      1.1     gwr 		if (pn != 0)
    209      1.1     gwr 			break;
    210      1.1     gwr 		if (canwait) {
    211      1.1     gwr 			(void)tsleep(dvmamap, PRIBIO+1, "physio", 0);
    212      1.1     gwr 			continue;
    213      1.1     gwr 		}
    214      1.1     gwr 		splx(s);
    215      1.1     gwr 		return NULL;
    216      1.1     gwr 	}
    217      1.1     gwr 	splx(s);
    218      1.1     gwr 
    219      1.3  jeremy 
    220      1.3  jeremy 	/*
    221      1.3  jeremy 	 * Tva is the starting page to which the data buffer will be double
    222      1.3  jeremy 	 * mapped.  Dvma_addr is the starting address of the buffer within
    223      1.3  jeremy 	 * that page and is the return value of the function.
    224      1.3  jeremy 	 */
    225      1.1     gwr 	tva = ctob(pn);
    226      1.1     gwr 	dvma_addr = (void *) (tva + off);
    227      1.1     gwr 
    228      1.3  jeremy 	for (;npf--; kva += NBPG, tva += NBPG) {
    229      1.3  jeremy 		/*
    230      1.3  jeremy 		 * Retrieve the physical address of each page in the buffer
    231      1.3  jeremy 		 * and enter mappings into the I/O MMU so they may be seen
    232      1.3  jeremy 		 * by external bus masters and into the special DVMA space
    233      1.3  jeremy 		 * in the MC68030 MMU so they may be seen by the CPU.
    234      1.3  jeremy 		 */
    235      1.1     gwr 		pa = pmap_extract(pmap_kernel(), kva);
    236      1.3  jeremy #ifdef	DEBUG
    237      1.1     gwr 		if (pa == 0)
    238      1.1     gwr 			panic("dvma_mapin: null page frame");
    239      1.3  jeremy #endif	DEBUG
    240      1.1     gwr 
    241      1.7     gwr 		iommu_enter((tva & IOMMU_VA_MASK), pa);
    242      1.1     gwr 		pmap_enter(pmap_kernel(), tva, pa | PMAP_NC,
    243      1.1     gwr 			VM_PROT_READ|VM_PROT_WRITE, 1);
    244      1.1     gwr 	}
    245      1.1     gwr 
    246      1.1     gwr 	return (dvma_addr);
    247      1.1     gwr }
    248      1.1     gwr 
    249      1.1     gwr /*
    250      1.1     gwr  * Remove double map of `va' in DVMA space at `kva'.
    251      1.3  jeremy  *
    252      1.3  jeremy  * TODO - This function might be the perfect place to handle the
    253      1.3  jeremy  *       synchronization between the DVMA cache and central RAM
    254      1.3  jeremy  *       on the 3/470.
    255      1.1     gwr  */
    256      1.1     gwr void
    257      1.1     gwr dvma_mapout(dvma_addr, len)
    258      1.1     gwr 	void *	dvma_addr;
    259      1.1     gwr 	int		len;
    260      1.1     gwr {
    261      1.1     gwr 	u_long kva;
    262      1.1     gwr 	int s, off;
    263      1.1     gwr 
    264      1.1     gwr 	kva = (u_long)dvma_addr;
    265      1.1     gwr 	off = (int)kva & PGOFSET;
    266      1.1     gwr 	kva -= off;
    267      1.1     gwr 	len = round_page(len + off);
    268      1.1     gwr 
    269      1.7     gwr 	iommu_remove((kva & IOMMU_VA_MASK), len);
    270      1.1     gwr 
    271      1.3  jeremy 	/*
    272      1.3  jeremy 	 * XXX - don't call pmap_remove() with DVMA space yet.
    273      1.3  jeremy 	 * XXX   It cannot (currently) handle the removal
    274      1.3  jeremy 	 * XXX   of address ranges which do not participate in the
    275      1.3  jeremy 	 * XXX   PV system by virtue of their _virtual_ addresses.
    276      1.3  jeremy 	 * XXX   DVMA is one of these special address spaces.
    277      1.3  jeremy 	 */
    278      1.3  jeremy #ifdef	DVMA_ON_PVLIST
    279      1.1     gwr 	pmap_remove(pmap_kernel(), kva, kva + len);
    280      1.3  jeremy #endif	/* DVMA_ON_PVLIST */
    281      1.1     gwr 
    282      1.1     gwr 	s = splimp();
    283      1.1     gwr 	rmfree(dvmamap, btoc(len), btoc(kva));
    284      1.1     gwr 	wakeup(dvmamap);
    285      1.1     gwr 	splx(s);
    286      1.4     gwr }
    287      1.4     gwr 
    288      1.4     gwr /*
    289      1.4     gwr  * Allocate actual memory pages in DVMA space.
    290      1.4     gwr  * (For sun3 compatibility - the ie driver.)
    291      1.4     gwr  */
    292      1.4     gwr void *
    293      1.4     gwr dvma_malloc(bytes)
    294      1.4     gwr 	size_t bytes;
    295      1.4     gwr {
    296      1.4     gwr 	void *new_mem, *dvma_mem;
    297      1.4     gwr 	vm_size_t new_size;
    298      1.4     gwr 
    299      1.4     gwr 	if (!bytes)
    300      1.4     gwr 		return NULL;
    301      1.4     gwr 	new_size = m68k_round_page(bytes);
    302      1.4     gwr 	new_mem = (void*)kmem_alloc(kernel_map, new_size);
    303      1.4     gwr     if (!new_mem)
    304      1.4     gwr 		return NULL;
    305      1.4     gwr 	dvma_mem = dvma_mapin(new_mem, new_size, 1);
    306      1.4     gwr 	return (dvma_mem);
    307  1.8.4.1     gwr }
    308  1.8.4.1     gwr 
    309  1.8.4.1     gwr /*
    310  1.8.4.1     gwr  * Free pages from dvma_malloc()
    311  1.8.4.1     gwr  */
    312  1.8.4.1     gwr void
    313  1.8.4.1     gwr dvma_free(addr, size)
    314  1.8.4.1     gwr 	void *addr;
    315  1.8.4.1     gwr 	size_t size;
    316  1.8.4.1     gwr {
    317  1.8.4.1     gwr 	vm_size_t sz = m68k_round_page(size);
    318  1.8.4.1     gwr 
    319  1.8.4.1     gwr 	dvma_mapout(addr, sz);
    320  1.8.4.1     gwr 	/* XXX: need kmem address to free it...
    321  1.8.4.1     gwr 	   Oh well, we never call this anyway. */
    322      1.1     gwr }
    323