dvma.c revision 1.10 1 /* $NetBSD: dvma.c,v 1.10 1998/06/09 20:47:17 gwr Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross and Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * DVMA (Direct Virtual Memory Access - like DMA)
41 *
42 * In the Sun3 architecture, memory cycles initiated by secondary bus
43 * masters (DVMA devices) passed through the same MMU that governed CPU
44 * accesses. All DVMA devices were wired in such a way so that an offset
45 * was added to the addresses they issued, causing them to access virtual
46 * memory starting at address 0x0FF00000 - the offset. The task of
47 * enabling a DVMA device to access main memory only involved creating
48 * valid mapping in the MMU that translated these high addresses into the
49 * appropriate physical addresses.
50 *
51 * The Sun3x presents a challenge to programming DVMA because the MMU is no
52 * longer shared by both secondary bus masters and the CPU. The MC68030's
53 * built-in MMU serves only to manage virtual memory accesses initiated by
54 * the CPU. Secondary bus master bus accesses pass through a different MMU,
55 * aptly named the 'I/O Mapper'. To enable every device driver that uses
56 * DVMA to understand that these two address spaces are disconnected would
57 * require a tremendous amount of code re-writing. To avoid this, we will
58 * ensure that the I/O Mapper and the MC68030 MMU are programmed together,
59 * so that DVMA mappings are consistent in both the CPU virtual address
60 * space and secondary bus master address space - creating an environment
61 * just like the Sun3 system.
62 *
63 * The maximum address space that any DVMA device in the Sun3x architecture
64 * is capable of addressing is 24 bits wide (16 Megabytes.) We can alias
65 * all of the mappings that exist in the I/O mapper by duplicating them in
66 * a specially reserved section of the CPU's virtual address space, 16
67 * Megabytes in size. Whenever a DVMA buffer is allocated, the allocation
68 * code will enter in a mapping both in the MC68030 MMU page tables and the
69 * I/O mapper.
70 *
71 * The address returned by the allocation routine is a virtual address that
72 * the requesting driver must use to access the buffer. It is up to the
73 * device driver to convert this virtual address into the appropriate slave
74 * address that its device should issue to access the buffer. (There will be
75 * routines that assist the driver in doing so.)
76 */
77
78 #include "opt_uvm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/proc.h>
84 #include <sys/malloc.h>
85 #include <sys/map.h>
86 #include <sys/buf.h>
87 #include <sys/vnode.h>
88 #include <sys/user.h>
89 #include <sys/core.h>
90 #include <sys/exec.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_map.h>
95
96 #if defined(UVM)
97 #include <uvm/uvm_extern.h>
98 /* XXX - Gratuitous name changes... */
99 #define kmem_alloc uvm_km_alloc
100 #define kmem_free uvm_km_free
101 #endif
102
103 #include <machine/autoconf.h>
104 #include <machine/cpu.h>
105 #include <machine/dvma.h>
106 #include <machine/pmap.h>
107
108 #include <sun3/sun3/machdep.h>
109
110 #include <sun3/sun3x/enable.h>
111 #include <sun3/sun3x/iommu.h>
112
113 /*
114 * Use a resource map to manage DVMA scratch-memory pages.
115 * Note: SunOS says last three pages are reserved (PROM?)
116 * Note: need a separate map (sub-map?) for last 1MB for
117 * use by VME slave interface.
118 */
119
120 /* Number of slots in dvmamap. */
121 int dvma_max_segs = btoc(DVMA_MAP_SIZE);
122 struct map *dvmamap;
123
124 void
125 dvma_init()
126 {
127
128 /*
129 * Create the resource map for DVMA pages.
130 */
131 dvmamap = malloc((sizeof(struct map) * dvma_max_segs),
132 M_DEVBUF, M_WAITOK);
133
134 rminit(dvmamap, btoc(DVMA_MAP_AVAIL), btoc(DVMA_MAP_BASE),
135 "dvmamap", dvma_max_segs);
136
137 /*
138 * Enable DVMA in the System Enable register.
139 * Note: This is only necessary for VME slave accesses.
140 * On-board devices are always capable of DVMA.
141 */
142 *enable_reg |= ENA_SDVMA;
143 }
144
145
146 /*
147 * Given a DVMA address, return the physical address that
148 * would be used by some OTHER bus-master besides the CPU.
149 * (Examples: on-board ie/le, VME xy board).
150 */
151 u_long
152 dvma_kvtopa(kva, bustype)
153 void * kva;
154 int bustype;
155 {
156 u_long addr, mask;
157
158 addr = (u_long)kva;
159 if ((addr & DVMA_MAP_BASE) != DVMA_MAP_BASE)
160 panic("dvma_kvtopa: bad dmva addr=0x%x\n", addr);
161
162 switch (bustype) {
163 case BUS_OBIO:
164 case BUS_OBMEM:
165 mask = DVMA_OBIO_SLAVE_MASK;
166 break;
167 default: /* VME bus device. */
168 mask = DVMA_VME_SLAVE_MASK;
169 break;
170 }
171
172 return(addr & mask);
173 }
174
175
176 /*
177 * Map a range [va, va+len] of wired virtual addresses in the given map
178 * to a kernel address in DVMA space.
179 */
180 void *
181 dvma_mapin(kmem_va, len, canwait)
182 void * kmem_va;
183 int len, canwait;
184 {
185 void * dvma_addr;
186 vm_offset_t kva, tva;
187 register int npf, s;
188 register vm_offset_t pa;
189 long off, pn;
190
191 kva = (u_long)kmem_va;
192 #ifdef DIAGNOSTIC
193 /*
194 * Addresses below VM_MIN_KERNEL_ADDRESS are not part of the kernel
195 * map and should not participate in DVMA.
196 */
197 if (kva < VM_MIN_KERNEL_ADDRESS)
198 panic("dvma_mapin: bad kva");
199 #endif
200
201 /*
202 * Calculate the offset of the data buffer from a page boundary.
203 */
204 off = (int)kva & PGOFSET;
205 kva -= off; /* Truncate starting address to nearest page. */
206 len = round_page(len + off); /* Round the buffer length to pages. */
207 npf = btoc(len); /* Determine the number of pages to be mapped. */
208
209 s = splimp();
210 for (;;) {
211 /*
212 * Try to allocate DVMA space of the appropriate size
213 * in which to do a transfer.
214 */
215 pn = rmalloc(dvmamap, npf);
216
217 if (pn != 0)
218 break;
219 if (canwait) {
220 (void)tsleep(dvmamap, PRIBIO+1, "physio", 0);
221 continue;
222 }
223 splx(s);
224 return NULL;
225 }
226 splx(s);
227
228
229 /*
230 * Tva is the starting page to which the data buffer will be double
231 * mapped. Dvma_addr is the starting address of the buffer within
232 * that page and is the return value of the function.
233 */
234 tva = ctob(pn);
235 dvma_addr = (void *) (tva + off);
236
237 for (;npf--; kva += NBPG, tva += NBPG) {
238 /*
239 * Retrieve the physical address of each page in the buffer
240 * and enter mappings into the I/O MMU so they may be seen
241 * by external bus masters and into the special DVMA space
242 * in the MC68030 MMU so they may be seen by the CPU.
243 */
244 pa = pmap_extract(pmap_kernel(), kva);
245 #ifdef DEBUG
246 if (pa == 0)
247 panic("dvma_mapin: null page frame");
248 #endif DEBUG
249
250 iommu_enter((tva & IOMMU_VA_MASK), pa);
251 pmap_enter(pmap_kernel(), tva, pa | PMAP_NC,
252 VM_PROT_READ|VM_PROT_WRITE, 1);
253 }
254
255 return (dvma_addr);
256 }
257
258 /*
259 * Remove double map of `va' in DVMA space at `kva'.
260 *
261 * TODO - This function might be the perfect place to handle the
262 * synchronization between the DVMA cache and central RAM
263 * on the 3/470.
264 */
265 void
266 dvma_mapout(dvma_addr, len)
267 void * dvma_addr;
268 int len;
269 {
270 u_long kva;
271 int s, off;
272
273 kva = (u_long)dvma_addr;
274 off = (int)kva & PGOFSET;
275 kva -= off;
276 len = round_page(len + off);
277
278 iommu_remove((kva & IOMMU_VA_MASK), len);
279
280 /*
281 * XXX - don't call pmap_remove() with DVMA space yet.
282 * XXX It cannot (currently) handle the removal
283 * XXX of address ranges which do not participate in the
284 * XXX PV system by virtue of their _virtual_ addresses.
285 * XXX DVMA is one of these special address spaces.
286 */
287 #ifdef DVMA_ON_PVLIST
288 pmap_remove(pmap_kernel(), kva, kva + len);
289 #endif /* DVMA_ON_PVLIST */
290
291 s = splimp();
292 rmfree(dvmamap, btoc(len), btoc(kva));
293 wakeup(dvmamap);
294 splx(s);
295 }
296
297 /*
298 * Allocate actual memory pages in DVMA space.
299 * (For sun3 compatibility - the ie driver.)
300 */
301 void *
302 dvma_malloc(bytes)
303 size_t bytes;
304 {
305 void *new_mem, *dvma_mem;
306 vm_size_t new_size;
307
308 if (!bytes)
309 return NULL;
310 new_size = m68k_round_page(bytes);
311 new_mem = (void*)kmem_alloc(kernel_map, new_size);
312 if (!new_mem)
313 return NULL;
314 dvma_mem = dvma_mapin(new_mem, new_size, 1);
315 return (dvma_mem);
316 }
317
318 /*
319 * Free pages from dvma_malloc()
320 */
321 void
322 dvma_free(addr, size)
323 void *addr;
324 size_t size;
325 {
326 vm_size_t sz = m68k_round_page(size);
327
328 dvma_mapout(addr, sz);
329 /* XXX: need kmem address to free it...
330 Oh well, we never call this anyway. */
331 }
332