Home | History | Annotate | Line # | Download | only in sun3x
dvma.c revision 1.24
      1 /*	$NetBSD: dvma.c,v 1.24 2002/09/25 21:58:40 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Gordon W. Ross and Jeremy Cooper.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * DVMA (Direct Virtual Memory Access - like DMA)
     41  *
     42  * In the Sun3 architecture, memory cycles initiated by secondary bus
     43  * masters (DVMA devices) passed through the same MMU that governed CPU
     44  * accesses.  All DVMA devices were wired in such a way so that an offset
     45  * was added to the addresses they issued, causing them to access virtual
     46  * memory starting at address 0x0FF00000 - the offset.  The task of
     47  * enabling a DVMA device to access main memory only involved creating
     48  * valid mapping in the MMU that translated these high addresses into the
     49  * appropriate physical addresses.
     50  *
     51  * The Sun3x presents a challenge to programming DVMA because the MMU is no
     52  * longer shared by both secondary bus masters and the CPU.  The MC68030's
     53  * built-in MMU serves only to manage virtual memory accesses initiated by
     54  * the CPU.  Secondary bus master bus accesses pass through a different MMU,
     55  * aptly named the 'I/O Mapper'.  To enable every device driver that uses
     56  * DVMA to understand that these two address spaces are disconnected would
     57  * require a tremendous amount of code re-writing. To avoid this, we will
     58  * ensure that the I/O Mapper and the MC68030 MMU are programmed together,
     59  * so that DVMA mappings are consistent in both the CPU virtual address
     60  * space and secondary bus master address space - creating an environment
     61  * just like the Sun3 system.
     62  *
     63  * The maximum address space that any DVMA device in the Sun3x architecture
     64  * is capable of addressing is 24 bits wide (16 Megabytes.)  We can alias
     65  * all of the mappings that exist in the I/O mapper by duplicating them in
     66  * a specially reserved section of the CPU's virtual address space, 16
     67  * Megabytes in size.  Whenever a DVMA buffer is allocated, the allocation
     68  * code will enter in a mapping both in the MC68030 MMU page tables and the
     69  * I/O mapper.
     70  *
     71  * The address returned by the allocation routine is a virtual address that
     72  * the requesting driver must use to access the buffer.  It is up to the
     73  * device driver to convert this virtual address into the appropriate slave
     74  * address that its device should issue to access the buffer.  (There will be
     75  * routines that assist the driver in doing so.)
     76  */
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/device.h>
     81 #include <sys/proc.h>
     82 #include <sys/malloc.h>
     83 #include <sys/extent.h>
     84 #include <sys/buf.h>
     85 #include <sys/vnode.h>
     86 #include <sys/user.h>
     87 #include <sys/core.h>
     88 #include <sys/exec.h>
     89 
     90 #include <uvm/uvm_extern.h>
     91 
     92 #include <machine/autoconf.h>
     93 #include <machine/cpu.h>
     94 #include <machine/dvma.h>
     95 #include <machine/pmap.h>
     96 
     97 #include <sun3/sun3/machdep.h>
     98 
     99 #include <sun3/sun3x/enable.h>
    100 #include <sun3/sun3x/iommu.h>
    101 
    102 /*
    103  * Use an extent map to manage DVMA scratch-memory pages.
    104  * Note: SunOS says last three pages are reserved (PROM?)
    105  * Note: need a separate map (sub-map?) for last 1MB for
    106  *       use by VME slave interface.
    107  */
    108 
    109 /* Number of slots in dvmamap. */
    110 struct extent *dvma_extent;
    111 
    112 void
    113 dvma_init()
    114 {
    115 
    116 	/*
    117 	 * Create the extent map for DVMA pages.
    118 	 */
    119 	dvma_extent = extent_create("dvma", DVMA_MAP_BASE,
    120 	    DVMA_MAP_BASE + (DVMA_MAP_AVAIL - 1), M_DEVBUF,
    121 	    NULL, 0, EX_NOCOALESCE|EX_NOWAIT);
    122 
    123 	/*
    124 	 * Enable DVMA in the System Enable register.
    125 	 * Note:  This is only necessary for VME slave accesses.
    126 	 *        On-board devices are always capable of DVMA.
    127 	 */
    128 	*enable_reg |= ENA_SDVMA;
    129 }
    130 
    131 
    132 /*
    133  * Given a DVMA address, return the physical address that
    134  * would be used by some OTHER bus-master besides the CPU.
    135  * (Examples: on-board ie/le, VME xy board).
    136  */
    137 u_long
    138 dvma_kvtopa(kva, bustype)
    139 	void * kva;
    140 	int bustype;
    141 {
    142 	u_long addr, mask;
    143 
    144 	addr = (u_long)kva;
    145 	if ((addr & DVMA_MAP_BASE) != DVMA_MAP_BASE)
    146 		panic("dvma_kvtopa: bad dmva addr=0x%lx\n", addr);
    147 
    148 	switch (bustype) {
    149 	case BUS_OBIO:
    150 	case BUS_OBMEM:
    151 		mask = DVMA_OBIO_SLAVE_MASK;
    152 		break;
    153 	default:	/* VME bus device. */
    154 		mask = DVMA_VME_SLAVE_MASK;
    155 		break;
    156 	}
    157 
    158 	return(addr & mask);
    159 }
    160 
    161 
    162 /*
    163  * Map a range [va, va+len] of wired virtual addresses in the given map
    164  * to a kernel address in DVMA space.
    165  */
    166 void *
    167 dvma_mapin(kmem_va, len, canwait)
    168 	void *  kmem_va;
    169 	int     len, canwait;
    170 {
    171 	void * dvma_addr;
    172 	vaddr_t kva, tva;
    173 	int npf, s, error;
    174 	paddr_t pa;
    175 	long off;
    176 	boolean_t rv;
    177 
    178 	kva = (vaddr_t)kmem_va;
    179 #ifdef	DIAGNOSTIC
    180 	/*
    181 	 * Addresses below VM_MIN_KERNEL_ADDRESS are not part of the kernel
    182 	 * map and should not participate in DVMA.
    183 	 */
    184 	if (kva < VM_MIN_KERNEL_ADDRESS)
    185 		panic("dvma_mapin: bad kva");
    186 #endif
    187 
    188 	/*
    189 	 * Calculate the offset of the data buffer from a page boundary.
    190 	 */
    191 	off = kva & PGOFSET;
    192 	kva -= off;	/* Truncate starting address to nearest page. */
    193 	len = round_page(len + off); /* Round the buffer length to pages. */
    194 	npf = btoc(len); /* Determine the number of pages to be mapped. */
    195 
    196 	/*
    197 	 * Try to allocate DVMA space of the appropriate size
    198 	 * in which to do a transfer.
    199 	 */
    200 	s = splvm();
    201 	error = extent_alloc(dvma_extent, len, PAGE_SIZE, 0,
    202 	    EX_FAST | EX_NOWAIT | (canwait ? EX_WAITSPACE : 0), &tva);
    203 	splx(s);
    204 	if (error)
    205 		return (NULL);
    206 
    207 	/*
    208 	 * Tva is the starting page to which the data buffer will be double
    209 	 * mapped.  Dvma_addr is the starting address of the buffer within
    210 	 * that page and is the return value of the function.
    211 	 */
    212 	dvma_addr = (void *) (tva + off);
    213 
    214 	for (;npf--; kva += NBPG, tva += NBPG) {
    215 		/*
    216 		 * Retrieve the physical address of each page in the buffer
    217 		 * and enter mappings into the I/O MMU so they may be seen
    218 		 * by external bus masters and into the special DVMA space
    219 		 * in the MC68030 MMU so they may be seen by the CPU.
    220 		 */
    221 		rv = pmap_extract(pmap_kernel(), kva, &pa);
    222 #ifdef	DEBUG
    223 		if (rv == FALSE)
    224 			panic("dvma_mapin: null page frame");
    225 #endif	/* DEBUG */
    226 
    227 		iommu_enter((tva & IOMMU_VA_MASK), pa);
    228 		pmap_kenter_pa(tva, pa | PMAP_NC, VM_PROT_READ | VM_PROT_WRITE);
    229 	}
    230 	pmap_update(pmap_kernel());
    231 
    232 	return (dvma_addr);
    233 }
    234 
    235 /*
    236  * Remove double map of `va' in DVMA space at `kva'.
    237  *
    238  * TODO - This function might be the perfect place to handle the
    239  *       synchronization between the DVMA cache and central RAM
    240  *       on the 3/470.
    241  */
    242 void
    243 dvma_mapout(dvma_addr, len)
    244 	void *dvma_addr;
    245 	int len;
    246 {
    247 	u_long kva;
    248 	int s, off;
    249 
    250 	kva = (u_long)dvma_addr;
    251 	off = (int)kva & PGOFSET;
    252 	kva -= off;
    253 	len = round_page(len + off);
    254 
    255 	iommu_remove((kva & IOMMU_VA_MASK), len);
    256 	pmap_kremove(kva, len);
    257 	pmap_update(pmap_kernel());
    258 
    259 	s = splvm();
    260 	if (extent_free(dvma_extent, kva, len, EX_NOWAIT | EX_MALLOCOK))
    261 		panic("dvma_mapout: unable to free region: 0x%lx,0x%x",
    262 		    kva, len);
    263 	splx(s);
    264 }
    265 
    266 /*
    267  * Allocate actual memory pages in DVMA space.
    268  * (For sun3 compatibility - the ie driver.)
    269  */
    270 void *
    271 dvma_malloc(bytes)
    272 	size_t bytes;
    273 {
    274 	void *new_mem, *dvma_mem;
    275 	vsize_t new_size;
    276 
    277 	if (!bytes)
    278 		return NULL;
    279 	new_size = m68k_round_page(bytes);
    280 	new_mem = (void*)uvm_km_alloc(kernel_map, new_size);
    281 	if (!new_mem)
    282 		return NULL;
    283 	dvma_mem = dvma_mapin(new_mem, new_size, 1);
    284 	return (dvma_mem);
    285 }
    286 
    287 /*
    288  * Free pages from dvma_malloc()
    289  */
    290 void
    291 dvma_free(addr, size)
    292 	void *addr;
    293 	size_t size;
    294 {
    295 	vsize_t sz = m68k_round_page(size);
    296 
    297 	dvma_mapout(addr, sz);
    298 	/* XXX: need kmem address to free it...
    299 	   Oh well, we never call this anyway. */
    300 }
    301