dvma.c revision 1.46 1 /* $NetBSD: dvma.c,v 1.46 2024/09/08 09:36:49 rillig Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross and Jeremy Cooper.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * DVMA (Direct Virtual Memory Access - like DMA)
34 *
35 * In the Sun3 architecture, memory cycles initiated by secondary bus
36 * masters (DVMA devices) passed through the same MMU that governed CPU
37 * accesses. All DVMA devices were wired in such a way so that an offset
38 * was added to the addresses they issued, causing them to access virtual
39 * memory starting at address 0x0FF00000 - the offset. The task of
40 * enabling a DVMA device to access main memory only involved creating
41 * valid mapping in the MMU that translated these high addresses into the
42 * appropriate physical addresses.
43 *
44 * The Sun3x presents a challenge to programming DVMA because the MMU is no
45 * longer shared by both secondary bus masters and the CPU. The MC68030's
46 * built-in MMU serves only to manage virtual memory accesses initiated by
47 * the CPU. Secondary bus master bus accesses pass through a different MMU,
48 * aptly named the 'I/O Mapper'. To enable every device driver that uses
49 * DVMA to understand that these two address spaces are disconnected would
50 * require a tremendous amount of code re-writing. To avoid this, we will
51 * ensure that the I/O Mapper and the MC68030 MMU are programmed together,
52 * so that DVMA mappings are consistent in both the CPU virtual address
53 * space and secondary bus master address space - creating an environment
54 * just like the Sun3 system.
55 *
56 * The maximum address space that any DVMA device in the Sun3x architecture
57 * is capable of addressing is 24 bits wide (16 Megabytes.) We can alias
58 * all of the mappings that exist in the I/O mapper by duplicating them in
59 * a specially reserved section of the CPU's virtual address space, 16
60 * Megabytes in size. Whenever a DVMA buffer is allocated, the allocation
61 * code will enter in a mapping both in the MC68030 MMU page tables and the
62 * I/O mapper.
63 *
64 * The address returned by the allocation routine is a virtual address that
65 * the requesting driver must use to access the buffer. It is up to the
66 * device driver to convert this virtual address into the appropriate slave
67 * address that its device should issue to access the buffer. (There will be
68 * routines that assist the driver in doing so.)
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: dvma.c,v 1.46 2024/09/08 09:36:49 rillig Exp $");
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/vmem.h>
79 #include <sys/buf.h>
80 #include <sys/vnode.h>
81 #include <sys/core.h>
82 #include <sys/exec.h>
83
84 #include <uvm/uvm_extern.h>
85
86 #define _SUN68K_BUS_DMA_PRIVATE
87 #include <machine/autoconf.h>
88 #include <machine/bus.h>
89 #include <machine/cpu.h>
90 #include <machine/dvma.h>
91 #include <machine/pmap.h>
92
93 #include <sun3/sun3/machdep.h>
94
95 #include <sun3/sun3x/enable.h>
96 #include <sun3/sun3x/iommu.h>
97
98 /*
99 * Use a vmem arena to manage DVMA scratch-memory pages.
100 * Note: SunOS says last three pages are reserved (PROM?)
101 * Note: need a separate map (sub-map?) for last 1MB for
102 * use by VME slave interface.
103 */
104 vmem_t *dvma_arena;
105
106 void
107 dvma_init(void)
108 {
109
110 /*
111 * Create the vmem arena for DVMA pages.
112 */
113 dvma_arena = vmem_create("dvma", DVMA_MAP_BASE, DVMA_MAP_AVAIL,
114 PAGE_SIZE, /* quantum */
115 NULL, /* importfn */
116 NULL, /* releasefn */
117 NULL, /* source */
118 0, /* qcache_max */
119 VM_SLEEP,
120 IPL_VM);
121
122 /*
123 * Enable DVMA in the System Enable register.
124 * Note: This is only necessary for VME slave accesses.
125 * On-board devices are always capable of DVMA.
126 */
127 *enable_reg |= ENA_SDVMA;
128 }
129
130
131 /*
132 * Given a DVMA address, return the physical address that
133 * would be used by some OTHER bus-master besides the CPU.
134 * (Examples: on-board ie/le, VME xy board).
135 */
136 u_long
137 dvma_kvtopa(void *kva, int bustype)
138 {
139 u_long addr, mask;
140
141 addr = (u_long)kva;
142 if ((addr & DVMA_MAP_BASE) != DVMA_MAP_BASE)
143 panic("dvma_kvtopa: bad dmva addr=0x%lx", addr);
144
145 switch (bustype) {
146 case BUS_OBIO:
147 case BUS_OBMEM:
148 mask = DVMA_OBIO_SLAVE_MASK;
149 break;
150 default: /* VME bus device. */
151 mask = DVMA_VME_SLAVE_MASK;
152 break;
153 }
154
155 return addr & mask;
156 }
157
158
159 /*
160 * Map a range [va, va+len] of wired virtual addresses in the given map
161 * to a kernel address in DVMA space.
162 */
163 void *
164 dvma_mapin(void *kmem_va, int len, int canwait)
165 {
166 void *dvma_addr;
167 vaddr_t kva;
168 vmem_addr_t tva;
169 int npf, error;
170 paddr_t pa;
171 long off;
172 bool rv __debugused;
173
174 kva = (vaddr_t)kmem_va;
175 KASSERT(kva >= VM_MIN_KERNEL_ADDRESS);
176
177 /*
178 * Calculate the offset of the data buffer from a page boundary.
179 */
180 off = kva & PGOFSET;
181 kva -= off; /* Truncate starting address to nearest page. */
182 len = round_page(len + off); /* Round the buffer length to pages. */
183 npf = btoc(len); /* Determine the number of pages to be mapped. */
184
185 /*
186 * Try to allocate DVMA space of the appropriate size
187 * in which to do a transfer.
188 */
189 const vm_flag_t vmflags = VM_INSTANTFIT |
190 (canwait ? VM_SLEEP : VM_NOSLEEP);
191
192 error = vmem_xalloc(dvma_arena, len,
193 0, /* alignment */
194 0, /* phase */
195 0, /* nocross */
196 VMEM_ADDR_MIN, /* minaddr */
197 VMEM_ADDR_MAX, /* maxaddr */
198 vmflags,
199 &tva);
200 if (error)
201 return NULL;
202
203 /*
204 * Tva is the starting page to which the data buffer will be double
205 * mapped. Dvma_addr is the starting address of the buffer within
206 * that page and is the return value of the function.
207 */
208 dvma_addr = (void *)(tva + off);
209
210 for (; npf--; kva += PAGE_SIZE, tva += PAGE_SIZE) {
211 /*
212 * Retrieve the physical address of each page in the buffer
213 * and enter mappings into the I/O MMU so they may be seen
214 * by external bus masters and into the special DVMA space
215 * in the MC68030 MMU so they may be seen by the CPU.
216 */
217 rv = pmap_extract(pmap_kernel(), kva, &pa);
218 #ifdef DEBUG
219 if (rv == false)
220 panic("dvma_mapin: null page frame");
221 #endif /* DEBUG */
222
223 iommu_enter((tva & IOMMU_VA_MASK), pa);
224 pmap_kenter_pa(tva,
225 pa | PMAP_NC, VM_PROT_READ | VM_PROT_WRITE, 0);
226 }
227 pmap_update(pmap_kernel());
228
229 return dvma_addr;
230 }
231
232 /*
233 * Remove double map of `va' in DVMA space at `kva'.
234 *
235 * TODO - This function might be the perfect place to handle the
236 * synchronization between the DVMA cache and central RAM
237 * on the 3/470.
238 */
239 void
240 dvma_mapout(void *dvma_addr, int len)
241 {
242 u_long kva;
243 int off;
244
245 kva = (u_long)dvma_addr;
246 off = (int)kva & PGOFSET;
247 kva -= off;
248 len = round_page(len + off);
249
250 iommu_remove((kva & IOMMU_VA_MASK), len);
251 pmap_kremove(kva, len);
252 pmap_update(pmap_kernel());
253
254 vmem_xfree(dvma_arena, kva, len);
255 }
256
257 /*
258 * Allocate actual memory pages in DVMA space.
259 * (For sun3 compatibility - the ie driver.)
260 */
261 void *
262 dvma_malloc(size_t bytes)
263 {
264 void *new_mem, *dvma_mem;
265 vsize_t new_size;
266
267 if (bytes == 0)
268 return NULL;
269 new_size = m68k_round_page(bytes);
270 new_mem = (void *)uvm_km_alloc(kernel_map, new_size, 0, UVM_KMF_WIRED);
271 if (new_mem == 0)
272 return NULL;
273 dvma_mem = dvma_mapin(new_mem, new_size, 1);
274 return dvma_mem;
275 }
276
277 /*
278 * Free pages from dvma_malloc()
279 */
280 void
281 dvma_free(void *addr, size_t size)
282 {
283 vsize_t sz = m68k_round_page(size);
284
285 dvma_mapout(addr, sz);
286 /* XXX: need kmem address to free it...
287 Oh well, we never call this anyway. */
288 }
289
290 int
291 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map, bus_dma_segment_t *segs,
292 int nsegs, bus_size_t size, int flags)
293 {
294
295 panic("_bus_dmamap_load_raw(): not implemented yet.");
296 }
297
298 int
299 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
300 bus_size_t buflen, struct proc *p, int flags)
301 {
302 vaddr_t kva;
303 vmem_addr_t dva;
304 vsize_t off, sgsize;
305 paddr_t pa;
306 pmap_t pmap;
307 int error, rv __diagused;
308
309 /*
310 * Make sure that on error condition we return "no valid mappings".
311 */
312 map->dm_nsegs = 0;
313 map->dm_mapsize = 0;
314
315 if (buflen > map->_dm_size)
316 return EINVAL;
317
318 kva = (vaddr_t)buf;
319 off = kva & PGOFSET;
320 sgsize = round_page(off + buflen);
321
322 /* Try to allocate DVMA space. */
323 const vm_flag_t vmflags = VM_INSTANTFIT |
324 ((flags & BUS_DMA_NOWAIT) ? VM_NOSLEEP : VM_SLEEP);
325
326 error = vmem_xalloc(dvma_arena, sgsize,
327 0, /* alignment */
328 0, /* phase */
329 0, /* nocross */
330 VMEM_ADDR_MIN, /* minaddr */
331 VMEM_ADDR_MAX, /* maxaddr */
332 vmflags,
333 &dva);
334 if (error)
335 return ENOMEM;
336
337 /* Fill in the segment. */
338 map->dm_segs[0].ds_addr = dva + off;
339 map->dm_segs[0].ds_len = buflen;
340 map->dm_segs[0]._ds_va = dva;
341 map->dm_segs[0]._ds_sgsize = sgsize;
342
343 /*
344 * Now map the DVMA addresses we allocated to point to the
345 * pages of the caller's buffer.
346 */
347 if (p != NULL)
348 pmap = p->p_vmspace->vm_map.pmap;
349 else
350 pmap = pmap_kernel();
351
352 while (sgsize > 0) {
353 rv = pmap_extract(pmap, kva, &pa);
354 #ifdef DIAGNOSTIC
355 if (rv == false)
356 panic("%s: unmapped VA", __func__);
357 #endif
358 iommu_enter((dva & IOMMU_VA_MASK), pa);
359 pmap_kenter_pa(dva,
360 pa | PMAP_NC, VM_PROT_READ | VM_PROT_WRITE, 0);
361 kva += PAGE_SIZE;
362 dva += PAGE_SIZE;
363 sgsize -= PAGE_SIZE;
364 }
365
366 map->dm_nsegs = 1;
367 map->dm_mapsize = map->dm_segs[0].ds_len;
368
369 return 0;
370 }
371
372 void
373 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
374 {
375 bus_dma_segment_t *segs;
376 vaddr_t dva;
377 vsize_t sgsize;
378
379 #ifdef DIAGNOSTIC
380 if (map->dm_nsegs != 1)
381 panic("%s: invalid nsegs = %d", __func__, map->dm_nsegs);
382 #endif
383
384 segs = map->dm_segs;
385 dva = segs[0]._ds_va & ~PGOFSET;
386 sgsize = segs[0]._ds_sgsize;
387
388 /* Unmap the DVMA addresses. */
389 iommu_remove((dva & IOMMU_VA_MASK), sgsize);
390 pmap_kremove(dva, sgsize);
391 pmap_update(pmap_kernel());
392
393 /* Free the DVMA addresses. */
394 vmem_xfree(dvma_arena, dva, sgsize);
395
396 /* Mark the mappings as invalid. */
397 map->dm_mapsize = 0;
398 map->dm_nsegs = 0;
399 }
400