locore.s revision 1.23 1 1.23 thorpej /* $NetBSD: locore.s,v 1.23 1998/01/02 20:10:26 thorpej Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1988 University of Utah.
5 1.1 gwr * Copyright (c) 1980, 1990, 1993
6 1.1 gwr * The Regents of the University of California. All rights reserved.
7 1.1 gwr *
8 1.1 gwr * This code is derived from software contributed to Berkeley by
9 1.1 gwr * the Systems Programming Group of the University of Utah Computer
10 1.1 gwr * Science Department.
11 1.1 gwr *
12 1.1 gwr * Redistribution and use in source and binary forms, with or without
13 1.1 gwr * modification, are permitted provided that the following conditions
14 1.1 gwr * are met:
15 1.1 gwr * 1. Redistributions of source code must retain the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer.
17 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 gwr * notice, this list of conditions and the following disclaimer in the
19 1.1 gwr * documentation and/or other materials provided with the distribution.
20 1.1 gwr * 3. All advertising materials mentioning features or use of this software
21 1.1 gwr * must display the following acknowledgement:
22 1.1 gwr * This product includes software developed by the University of
23 1.1 gwr * California, Berkeley and its contributors.
24 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
25 1.1 gwr * may be used to endorse or promote products derived from this software
26 1.1 gwr * without specific prior written permission.
27 1.1 gwr *
28 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 gwr * SUCH DAMAGE.
39 1.1 gwr *
40 1.1 gwr * from: Utah $Hdr: locore.s 1.66 92/12/22$
41 1.1 gwr * @(#)locore.s 8.6 (Berkeley) 5/27/94
42 1.1 gwr */
43 1.1 gwr
44 1.1 gwr #include "assym.h"
45 1.17 thorpej #include <machine/asm.h>
46 1.1 gwr #include <machine/trap.h>
47 1.1 gwr
48 1.1 gwr | Remember this is a fun project!
49 1.1 gwr
50 1.1 gwr .data
51 1.19 jeremy GLOBAL(mon_crp)
52 1.1 gwr .long 0,0
53 1.1 gwr
54 1.1 gwr | This is for kvm_mkdb, and should be the address of the beginning
55 1.1 gwr | of the kernel text segment (not necessarily the same as kernbase).
56 1.1 gwr .text
57 1.19 jeremy GLOBAL(kernel_text)
58 1.1 gwr
59 1.1 gwr | This is the entry point, as well as the end of the temporary stack
60 1.1 gwr | used during process switch (one 8K page ending at start)
61 1.19 jeremy ASGLOBAL(tmpstk)
62 1.20 gwr ASGLOBAL(start)
63 1.19 jeremy
64 1.1 gwr | The first step, after disabling interrupts, is to map enough of the kernel
65 1.1 gwr | into high virtual address space so that we can use position dependent code.
66 1.1 gwr | This is a tricky task on the sun3x because the MMU is already enabled and
67 1.1 gwr | the ROM monitor provides no indication of where the root MMU table is mapped.
68 1.1 gwr | Therefore we must use one of the 68030's 'transparent translation' registers
69 1.1 gwr | to define a range in the address space where the MMU translation is
70 1.1 gwr | turned off. Once this is complete we can modify the MMU table directly
71 1.1 gwr | without the need for it to be mapped into virtual memory.
72 1.1 gwr | All code must be position independent until otherwise noted, as the
73 1.1 gwr | boot loader has loaded us into low memory but all the symbols in this
74 1.1 gwr | code have been linked high.
75 1.1 gwr movw #PSL_HIGHIPL, sr | no interrupts
76 1.1 gwr movl #KERNBASE, a5 | for vtop conversion
77 1.19 jeremy lea _C_LABEL(mon_crp), a0 | where to store the CRP
78 1.1 gwr subl a5, a0
79 1.1 gwr | Note: borrowing mon_crp for tt0 setup...
80 1.1 gwr movl #0x3F8107, a0@ | map the low 1GB v=p with the
81 1.14 jeremy .long 0xf0100800 | transparent translation reg0
82 1.14 jeremy | [ pmove a0@, tt0 ]
83 1.1 gwr | In order to map the kernel into high memory we will copy the root table
84 1.1 gwr | entry which maps the 16 megabytes of memory starting at 0x0 into the
85 1.1 gwr | entry which maps the 16 megabytes starting at KERNBASE.
86 1.1 gwr pmove crp, a0@ | Get monitor CPU root pointer
87 1.1 gwr movl a0@(4), a1 | 2nd word is PA of level A table
88 1.1 gwr
89 1.1 gwr movl a1, a0 | compute the descriptor address
90 1.1 gwr addl #0x3e0, a1 | for VA starting at KERNBASE
91 1.1 gwr movl a0@, a1@ | copy descriptor type
92 1.1 gwr movl a0@(4), a1@(4) | copy physical address
93 1.1 gwr
94 1.1 gwr | Kernel is now double mapped at zero and KERNBASE.
95 1.1 gwr | Force a long jump to the relocated code (high VA).
96 1.1 gwr movl #IC_CLEAR, d0 | Flush the I-cache
97 1.1 gwr movc d0, cacr
98 1.1 gwr jmp L_high_code:l | long jump
99 1.1 gwr
100 1.1 gwr L_high_code:
101 1.1 gwr | We are now running in the correctly relocated kernel, so
102 1.1 gwr | we are no longer restricted to position-independent code.
103 1.1 gwr | It is handy to leave transparent translation enabled while
104 1.20 gwr | for the low 1GB while _bootstrap() is doing its thing.
105 1.1 gwr
106 1.1 gwr | Do bootstrap stuff needed before main() gets called.
107 1.1 gwr | Our boot loader leaves a copy of the kernel's exec header
108 1.1 gwr | just before the start of the kernel text segment, so the
109 1.1 gwr | kernel can sanity-check the DDB symbols at [end...esym].
110 1.20 gwr | Pass the struct exec at tmpstk-32 to _bootstrap().
111 1.7 gwr | Also, make sure the initial frame pointer is zero so that
112 1.7 gwr | the backtrace algorithm used by KGDB terminates nicely.
113 1.19 jeremy lea _ASM_LABEL(tmpstk)-32, sp
114 1.6 gwr movl #0,a6
115 1.19 jeremy jsr _C_LABEL(_bootstrap) | See _startup.c
116 1.1 gwr
117 1.1 gwr | Now turn off the transparent translation of the low 1GB.
118 1.1 gwr | (this also flushes the ATC)
119 1.1 gwr clrl sp@-
120 1.14 jeremy .long 0xf0170800 | pmove sp@,tt0
121 1.1 gwr addql #4,sp
122 1.1 gwr
123 1.20 gwr | Now that _bootstrap() is done using the PROM functions,
124 1.1 gwr | we can safely set the sfc/dfc to something != FC_CONTROL
125 1.1 gwr moveq #FC_USERD, d0 | make movs access "user data"
126 1.1 gwr movc d0, sfc | space for copyin/copyout
127 1.1 gwr movc d0, dfc
128 1.1 gwr
129 1.1 gwr | Setup process zero user/kernel stacks.
130 1.19 jeremy movl _C_LABEL(proc0paddr),a1 | get proc0 pcb addr
131 1.1 gwr lea a1@(USPACE-4),sp | set SSP to last word
132 1.1 gwr movl #USRSTACK-4,a2
133 1.1 gwr movl a2,usp | init user SP
134 1.1 gwr
135 1.20 gwr | Note curpcb was already set in _bootstrap().
136 1.1 gwr | Will do fpu initialization during autoconfig (see fpu.c)
137 1.1 gwr | The interrupt vector table and stack are now ready.
138 1.1 gwr | Interrupts will be enabled later, AFTER autoconfiguration
139 1.1 gwr | is finished, to avoid spurrious interrupts.
140 1.1 gwr
141 1.1 gwr /*
142 1.1 gwr * Final preparation for calling main.
143 1.1 gwr *
144 1.1 gwr * Create a fake exception frame that returns to user mode,
145 1.1 gwr * and save its address in p->p_md.md_regs for cpu_fork().
146 1.1 gwr * The new frames for process 1 and 2 will be adjusted by
147 1.1 gwr * cpu_set_kpc() to arrange for a call to a kernel function
148 1.1 gwr * before the new process does its rte out to user mode.
149 1.1 gwr */
150 1.6 gwr clrw sp@- | tf_format,tf_vector
151 1.6 gwr clrl sp@- | tf_pc (filled in later)
152 1.6 gwr movw #PSL_USER,sp@- | tf_sr for user mode
153 1.6 gwr clrl sp@- | tf_stackadj
154 1.6 gwr lea sp@(-64),sp | tf_regs[16]
155 1.6 gwr movl sp,a1 | a1=trapframe
156 1.19 jeremy lea _C_LABEL(proc0),a0 | proc0.p_md.md_regs =
157 1.6 gwr movl a1,a0@(P_MDREGS) | trapframe
158 1.6 gwr movl a2,a1@(FR_SP) | a2 == usp (from above)
159 1.7 gwr pea a1@ | push &trapframe
160 1.19 jeremy jbsr _C_LABEL(main) | main(&trapframe)
161 1.7 gwr addql #4,sp | help DDB backtrace
162 1.1 gwr trap #15 | should not get here
163 1.1 gwr
164 1.1 gwr | This is used by cpu_fork() to return to user mode.
165 1.1 gwr | It is called with SP pointing to a struct trapframe.
166 1.19 jeremy GLOBAL(proc_do_uret)
167 1.1 gwr movl sp@(FR_SP),a0 | grab and load
168 1.1 gwr movl a0,usp | user SP
169 1.1 gwr moveml sp@+,#0x7FFF | load most registers (all but SSP)
170 1.1 gwr addql #8,sp | pop SSP and stack adjust count
171 1.1 gwr rte
172 1.1 gwr
173 1.1 gwr /*
174 1.1 gwr * proc_trampoline:
175 1.1 gwr * This is used by cpu_set_kpc() to "push" a function call onto the
176 1.1 gwr * kernel stack of some process, very much like a signal delivery.
177 1.1 gwr * When we get here, the stack has:
178 1.1 gwr *
179 1.1 gwr * SP+8: switchframe from before cpu_set_kpc
180 1.1 gwr * SP+4: void *proc;
181 1.1 gwr * SP: u_long func;
182 1.1 gwr *
183 1.1 gwr * On entry, the switchframe pushed by cpu_set_kpc has already been
184 1.1 gwr * popped off the stack, so all this needs to do is pop the function
185 1.1 gwr * pointer into a register, call it, then pop the arg, and finally
186 1.1 gwr * return using the switchframe that remains on the stack.
187 1.1 gwr */
188 1.19 jeremy GLOBAL(proc_trampoline)
189 1.1 gwr movl sp@+,a0 | function pointer
190 1.1 gwr jbsr a0@ | (*func)(procp)
191 1.1 gwr addql #4,sp | toss the arg
192 1.1 gwr rts | as cpu_switch would do
193 1.1 gwr
194 1.1 gwr | That is all the assembly startup code we need on the sun3x!
195 1.1 gwr | The rest of this is like the hp300/locore.s where possible.
196 1.1 gwr
197 1.1 gwr /*
198 1.1 gwr * Trap/interrupt vector routines
199 1.1 gwr */
200 1.17 thorpej #include <m68k/m68k/trap_subr.s>
201 1.1 gwr
202 1.19 jeremy GLOBAL(buserr)
203 1.19 jeremy tstl _C_LABEL(nofault) | device probe?
204 1.19 jeremy jeq _C_LABEL(addrerr) | no, handle as usual
205 1.19 jeremy movl _C_LABEL(nofault),sp@- | yes,
206 1.19 jeremy jbsr _C_LABEL(longjmp) | longjmp(nofault)
207 1.19 jeremy GLOBAL(addrerr)
208 1.1 gwr clrl sp@- | stack adjust count
209 1.1 gwr moveml #0xFFFF,sp@- | save user registers
210 1.1 gwr movl usp,a0 | save the user SP
211 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
212 1.1 gwr lea sp@(FR_HW),a1 | grab base of HW berr frame
213 1.1 gwr moveq #0,d0
214 1.1 gwr movw a1@(10),d0 | grab SSW for fault processing
215 1.1 gwr btst #12,d0 | RB set?
216 1.1 gwr jeq LbeX0 | no, test RC
217 1.1 gwr bset #14,d0 | yes, must set FB
218 1.1 gwr movw d0,a1@(10) | for hardware too
219 1.1 gwr LbeX0:
220 1.1 gwr btst #13,d0 | RC set?
221 1.1 gwr jeq LbeX1 | no, skip
222 1.1 gwr bset #15,d0 | yes, must set FC
223 1.1 gwr movw d0,a1@(10) | for hardware too
224 1.1 gwr LbeX1:
225 1.1 gwr btst #8,d0 | data fault?
226 1.1 gwr jeq Lbe0 | no, check for hard cases
227 1.1 gwr movl a1@(16),d1 | fault address is as given in frame
228 1.1 gwr jra Lbe10 | thats it
229 1.1 gwr Lbe0:
230 1.1 gwr btst #4,a1@(6) | long (type B) stack frame?
231 1.1 gwr jne Lbe4 | yes, go handle
232 1.1 gwr movl a1@(2),d1 | no, can use save PC
233 1.1 gwr btst #14,d0 | FB set?
234 1.1 gwr jeq Lbe3 | no, try FC
235 1.1 gwr addql #4,d1 | yes, adjust address
236 1.1 gwr jra Lbe10 | done
237 1.1 gwr Lbe3:
238 1.1 gwr btst #15,d0 | FC set?
239 1.1 gwr jeq Lbe10 | no, done
240 1.1 gwr addql #2,d1 | yes, adjust address
241 1.1 gwr jra Lbe10 | done
242 1.1 gwr Lbe4:
243 1.1 gwr movl a1@(36),d1 | long format, use stage B address
244 1.1 gwr btst #15,d0 | FC set?
245 1.1 gwr jeq Lbe10 | no, all done
246 1.1 gwr subql #2,d1 | yes, adjust address
247 1.1 gwr Lbe10:
248 1.1 gwr movl d1,sp@- | push fault VA
249 1.1 gwr movl d0,sp@- | and padded SSW
250 1.1 gwr movw a1@(6),d0 | get frame format/vector offset
251 1.1 gwr andw #0x0FFF,d0 | clear out frame format
252 1.1 gwr cmpw #12,d0 | address error vector?
253 1.1 gwr jeq Lisaerr | yes, go to it
254 1.1 gwr
255 1.1 gwr /* MMU-specific code to determine reason for bus error. */
256 1.1 gwr movl d1,a0 | fault address
257 1.1 gwr movl sp@,d0 | function code from ssw
258 1.1 gwr btst #8,d0 | data fault?
259 1.1 gwr jne Lbe10a
260 1.1 gwr movql #1,d0 | user program access FC
261 1.1 gwr | (we dont separate data/program)
262 1.1 gwr btst #5,a1@ | supervisor mode?
263 1.1 gwr jeq Lbe10a | if no, done
264 1.1 gwr movql #5,d0 | else supervisor program access
265 1.1 gwr Lbe10a:
266 1.1 gwr ptestr d0,a0@,#7 | do a table search
267 1.1 gwr pmove psr,sp@ | save result
268 1.1 gwr movb sp@,d1
269 1.1 gwr btst #2,d1 | invalid? (incl. limit viol and berr)
270 1.1 gwr jeq Lmightnotbemerr | no -> wp check
271 1.1 gwr btst #7,d1 | is it MMU table berr?
272 1.1 gwr jeq Lismerr | no, must be fast
273 1.1 gwr jra Lisberr1 | real bus err needs not be fast
274 1.1 gwr Lmightnotbemerr:
275 1.1 gwr btst #3,d1 | write protect bit set?
276 1.1 gwr jeq Lisberr1 | no, must be bus error
277 1.1 gwr movl sp@,d0 | ssw into low word of d0
278 1.1 gwr andw #0xc0,d0 | write protect is set on page:
279 1.1 gwr cmpw #0x40,d0 | was it read cycle?
280 1.1 gwr jeq Lisberr1 | yes, was not WPE, must be bus err
281 1.1 gwr /* End of MMU-specific bus error code. */
282 1.1 gwr
283 1.1 gwr Lismerr:
284 1.1 gwr movl #T_MMUFLT,sp@- | show that we are an MMU fault
285 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
286 1.1 gwr Lisaerr:
287 1.1 gwr movl #T_ADDRERR,sp@- | mark address error
288 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
289 1.1 gwr Lisberr1:
290 1.1 gwr clrw sp@ | re-clear pad word
291 1.1 gwr Lisberr:
292 1.1 gwr movl #T_BUSERR,sp@- | mark bus error
293 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
294 1.1 gwr
295 1.1 gwr /*
296 1.1 gwr * FP exceptions.
297 1.1 gwr */
298 1.19 jeremy GLOBAL(fpfline)
299 1.1 gwr clrl sp@- | stack adjust count
300 1.1 gwr moveml #0xFFFF,sp@- | save registers
301 1.1 gwr moveq #T_FPEMULI,d0 | denote as FP emulation trap
302 1.19 jeremy jra _ASM_LABEL(fault) | do it
303 1.1 gwr
304 1.19 jeremy GLOBAL(fpunsupp)
305 1.1 gwr clrl sp@- | stack adjust count
306 1.1 gwr moveml #0xFFFF,sp@- | save registers
307 1.1 gwr moveq #T_FPEMULD,d0 | denote as FP emulation trap
308 1.19 jeremy jra _ASM_LABEL(fault) | do it
309 1.1 gwr
310 1.1 gwr /*
311 1.1 gwr * Handles all other FP coprocessor exceptions.
312 1.1 gwr * Note that since some FP exceptions generate mid-instruction frames
313 1.1 gwr * and may cause signal delivery, we need to test for stack adjustment
314 1.1 gwr * after the trap call.
315 1.1 gwr */
316 1.19 jeremy GLOBAL(fpfault)
317 1.1 gwr clrl sp@- | stack adjust count
318 1.1 gwr moveml #0xFFFF,sp@- | save user registers
319 1.1 gwr movl usp,a0 | and save
320 1.1 gwr movl a0,sp@(FR_SP) | the user stack pointer
321 1.1 gwr clrl sp@- | no VA arg
322 1.19 jeremy movl _C_LABEL(curpcb),a0 | current pcb
323 1.1 gwr lea a0@(PCB_FPCTX),a0 | address of FP savearea
324 1.1 gwr fsave a0@ | save state
325 1.1 gwr tstb a0@ | null state frame?
326 1.1 gwr jeq Lfptnull | yes, safe
327 1.1 gwr clrw d0 | no, need to tweak BIU
328 1.1 gwr movb a0@(1),d0 | get frame size
329 1.1 gwr bset #3,a0@(0,d0:w) | set exc_pend bit of BIU
330 1.1 gwr Lfptnull:
331 1.1 gwr fmovem fpsr,sp@- | push fpsr as code argument
332 1.1 gwr frestore a0@ | restore state
333 1.1 gwr movl #T_FPERR,sp@- | push type arg
334 1.17 thorpej jra _ASM_LABEL(faultstkadj) | call trap and deal with stack cleanup
335 1.1 gwr
336 1.1 gwr /*
337 1.1 gwr * Other exceptions only cause four and six word stack frame and require
338 1.1 gwr * no post-trap stack adjustment.
339 1.1 gwr */
340 1.19 jeremy GLOBAL(badtrap)
341 1.1 gwr clrl sp@- | stack adjust count
342 1.1 gwr moveml #0xFFFF,sp@- | save std frame regs
343 1.19 jeremy jbsr _C_LABEL(straytrap) | report
344 1.1 gwr moveml sp@+,#0xFFFF | restore regs
345 1.1 gwr addql #4, sp | stack adjust count
346 1.19 jeremy jra _ASM_LABEL(rei) | all done
347 1.1 gwr
348 1.1 gwr /*
349 1.1 gwr * Trap 0 is for system calls
350 1.1 gwr */
351 1.19 jeremy GLOBAL(trap0)
352 1.1 gwr clrl sp@- | stack adjust count
353 1.1 gwr moveml #0xFFFF,sp@- | save user registers
354 1.1 gwr movl usp,a0 | save the user SP
355 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
356 1.1 gwr movl d0,sp@- | push syscall number
357 1.19 jeremy jbsr _C_LABEL(syscall) | handle it
358 1.1 gwr addql #4,sp | pop syscall arg
359 1.1 gwr movl sp@(FR_SP),a0 | grab and restore
360 1.1 gwr movl a0,usp | user SP
361 1.1 gwr moveml sp@+,#0x7FFF | restore most registers
362 1.1 gwr addql #8,sp | pop SP and stack adjust
363 1.19 jeremy jra _ASM_LABEL(rei) | all done
364 1.1 gwr
365 1.1 gwr /*
366 1.11 gwr * Trap 1 action depends on the emulation type:
367 1.11 gwr * NetBSD: sigreturn "syscall"
368 1.11 gwr * HPUX: user breakpoint
369 1.1 gwr */
370 1.19 jeremy GLOBAL(trap1)
371 1.1 gwr #if 0 /* COMPAT_HPUX */
372 1.1 gwr /* If process is HPUX, this is a user breakpoint. */
373 1.19 jeremy jne _C_LABEL(trap15) | HPUX user breakpoint
374 1.1 gwr #endif
375 1.19 jeremy jra _ASM_LABEL(sigreturn) | NetBSD
376 1.1 gwr
377 1.1 gwr /*
378 1.11 gwr * Trap 2 action depends on the emulation type:
379 1.11 gwr * NetBSD: user breakpoint -- See XXX below...
380 1.11 gwr * SunOS: cache flush
381 1.11 gwr * HPUX: sigreturn
382 1.1 gwr */
383 1.19 jeremy GLOBAL(trap2)
384 1.1 gwr #if 0 /* COMPAT_HPUX */
385 1.11 gwr /* If process is HPUX, this is a sigreturn call */
386 1.19 jeremy jne _ASM_LABEL(sigreturn)
387 1.1 gwr #endif
388 1.19 jeremy jra _C_LABEL(trap15) | NetBSD user breakpoint
389 1.11 gwr | XXX - Make NetBSD use trap 15 for breakpoints?
390 1.11 gwr | XXX - That way, we can allow this cache flush...
391 1.11 gwr | XXX SunOS trap #2 (and NetBSD?)
392 1.11 gwr | Flush on-chip cache (leave it enabled)
393 1.11 gwr | movl #CACHE_CLR,d0
394 1.11 gwr | movc d0,cacr
395 1.11 gwr | rte
396 1.11 gwr
397 1.11 gwr /*
398 1.11 gwr * Trap 12 is the entry point for the cachectl "syscall"
399 1.11 gwr * cachectl(command, addr, length)
400 1.11 gwr * command in d0, addr in a1, length in d1
401 1.11 gwr */
402 1.19 jeremy GLOBAL(trap12)
403 1.11 gwr movl d1,sp@- | push length
404 1.11 gwr movl a1,sp@- | push addr
405 1.11 gwr movl d0,sp@- | push command
406 1.19 jeremy jbsr _C_LABEL(cachectl) | do it
407 1.11 gwr lea sp@(12),sp | pop args
408 1.19 jeremy jra _ASM_LABEL(rei) | all done
409 1.1 gwr
410 1.1 gwr /*
411 1.1 gwr * Trace (single-step) trap. Kernel-mode is special.
412 1.1 gwr * User mode traps are simply passed on to trap().
413 1.1 gwr */
414 1.19 jeremy GLOBAL(trace)
415 1.1 gwr clrl sp@- | stack adjust count
416 1.1 gwr moveml #0xFFFF,sp@-
417 1.1 gwr moveq #T_TRACE,d0
418 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
419 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
420 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
421 1.1 gwr
422 1.1 gwr /*
423 1.1 gwr * Trap 15 is used for:
424 1.1 gwr * - GDB breakpoints (in user programs)
425 1.1 gwr * - KGDB breakpoints (in the kernel)
426 1.1 gwr * - trace traps for SUN binaries (not fully supported yet)
427 1.11 gwr * User mode traps are simply passed to trap().
428 1.1 gwr */
429 1.19 jeremy GLOBAL(trap15)
430 1.1 gwr clrl sp@- | stack adjust count
431 1.1 gwr moveml #0xFFFF,sp@-
432 1.1 gwr moveq #T_TRAP15,d0
433 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
434 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
435 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
436 1.1 gwr
437 1.19 jeremy ASLOCAL(kbrkpt)
438 1.11 gwr | Kernel-mode breakpoint or trace trap. (d0=trap_type)
439 1.1 gwr | Save the system sp rather than the user sp.
440 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
441 1.1 gwr lea sp@(FR_SIZE),a6 | Save stack pointer
442 1.1 gwr movl a6,sp@(FR_SP) | from before trap
443 1.1 gwr
444 1.1 gwr | If we are not on tmpstk switch to it.
445 1.1 gwr | (so debugger can change the stack pointer)
446 1.1 gwr movl a6,d1
447 1.19 jeremy cmpl #_ASM_LABEL(tmpstk),d1
448 1.1 gwr jls Lbrkpt2 | already on tmpstk
449 1.1 gwr | Copy frame to the temporary stack
450 1.1 gwr movl sp,a0 | a0=src
451 1.19 jeremy lea _ASM_LABEL(tmpstk)-96,a1 | a1=dst
452 1.1 gwr movl a1,sp | sp=new frame
453 1.1 gwr moveq #FR_SIZE,d1
454 1.1 gwr Lbrkpt1:
455 1.1 gwr movl a0@+,a1@+
456 1.1 gwr subql #4,d1
457 1.1 gwr bgt Lbrkpt1
458 1.1 gwr
459 1.1 gwr Lbrkpt2:
460 1.11 gwr | Call the trap handler for the kernel debugger.
461 1.6 gwr | Do not call trap() to handle it, so that we can
462 1.1 gwr | set breakpoints in trap() if we want. We know
463 1.1 gwr | the trap type is either T_TRACE or T_BREAKPOINT.
464 1.6 gwr movl d0,sp@- | push trap type
465 1.19 jeremy jbsr _C_LABEL(trap_kdebug)
466 1.6 gwr addql #4,sp | pop args
467 1.6 gwr
468 1.1 gwr | The stack pointer may have been modified, or
469 1.1 gwr | data below it modified (by kgdb push call),
470 1.1 gwr | so push the hardware frame at the current sp
471 1.1 gwr | before restoring registers and returning.
472 1.1 gwr movl sp@(FR_SP),a0 | modified sp
473 1.1 gwr lea sp@(FR_SIZE),a1 | end of our frame
474 1.1 gwr movl a1@-,a0@- | copy 2 longs with
475 1.1 gwr movl a1@-,a0@- | ... predecrement
476 1.1 gwr movl a0,sp@(FR_SP) | sp = h/w frame
477 1.1 gwr moveml sp@+,#0x7FFF | restore all but sp
478 1.1 gwr movl sp@,sp | ... and sp
479 1.1 gwr rte | all done
480 1.1 gwr
481 1.11 gwr /* Use common m68k sigreturn */
482 1.11 gwr #include <m68k/m68k/sigreturn.s>
483 1.1 gwr
484 1.1 gwr /*
485 1.1 gwr * Interrupt handlers. Most are auto-vectored,
486 1.1 gwr * and hard-wired the same way on all sun3 models.
487 1.1 gwr * Format in the stack is:
488 1.1 gwr * d0,d1,a0,a1, sr, pc, vo
489 1.1 gwr */
490 1.1 gwr
491 1.1 gwr #define INTERRUPT_SAVEREG \
492 1.1 gwr moveml #0xC0C0,sp@-
493 1.1 gwr
494 1.1 gwr #define INTERRUPT_RESTORE \
495 1.1 gwr moveml sp@+,#0x0303
496 1.1 gwr
497 1.1 gwr /*
498 1.1 gwr * This is the common auto-vector interrupt handler,
499 1.1 gwr * for which the CPU provides the vector=0x18+level.
500 1.1 gwr * These are installed in the interrupt vector table.
501 1.1 gwr */
502 1.1 gwr .align 2
503 1.19 jeremy GLOBAL(_isr_autovec)
504 1.1 gwr INTERRUPT_SAVEREG
505 1.19 jeremy jbsr _C_LABEL(isr_autovec)
506 1.1 gwr INTERRUPT_RESTORE
507 1.19 jeremy jra _ASM_LABEL(rei)
508 1.1 gwr
509 1.1 gwr /* clock: see clock.c */
510 1.1 gwr .align 2
511 1.19 jeremy GLOBAL(_isr_clock)
512 1.1 gwr INTERRUPT_SAVEREG
513 1.19 jeremy jbsr _C_LABEL(clock_intr)
514 1.1 gwr INTERRUPT_RESTORE
515 1.19 jeremy jra _ASM_LABEL(rei)
516 1.1 gwr
517 1.1 gwr | Handler for all vectored interrupts (i.e. VME interrupts)
518 1.1 gwr .align 2
519 1.19 jeremy GLOBAL(_isr_vectored)
520 1.1 gwr INTERRUPT_SAVEREG
521 1.19 jeremy jbsr _C_LABEL(isr_vectored)
522 1.1 gwr INTERRUPT_RESTORE
523 1.19 jeremy jra _ASM_LABEL(rei)
524 1.1 gwr
525 1.1 gwr #undef INTERRUPT_SAVEREG
526 1.1 gwr #undef INTERRUPT_RESTORE
527 1.1 gwr
528 1.1 gwr /* interrupt counters (needed by vmstat) */
529 1.19 jeremy GLOBAL(intrnames)
530 1.1 gwr .asciz "spur" | 0
531 1.1 gwr .asciz "lev1" | 1
532 1.1 gwr .asciz "lev2" | 2
533 1.1 gwr .asciz "lev3" | 3
534 1.1 gwr .asciz "lev4" | 4
535 1.1 gwr .asciz "clock" | 5
536 1.1 gwr .asciz "lev6" | 6
537 1.1 gwr .asciz "nmi" | 7
538 1.19 jeremy GLOBAL(eintrnames)
539 1.1 gwr
540 1.1 gwr .data
541 1.1 gwr .even
542 1.19 jeremy GLOBAL(intrcnt)
543 1.1 gwr .long 0,0,0,0,0,0,0,0,0,0
544 1.19 jeremy GLOBAL(eintrcnt)
545 1.1 gwr .text
546 1.1 gwr
547 1.1 gwr /*
548 1.1 gwr * Emulation of VAX REI instruction.
549 1.1 gwr *
550 1.1 gwr * This code is (mostly) un-altered from the hp300 code,
551 1.1 gwr * except that sun machines do not need a simulated SIR
552 1.1 gwr * because they have a real software interrupt register.
553 1.1 gwr *
554 1.1 gwr * This code deals with checking for and servicing ASTs
555 1.1 gwr * (profiling, scheduling) and software interrupts (network, softclock).
556 1.1 gwr * We check for ASTs first, just like the VAX. To avoid excess overhead
557 1.1 gwr * the T_ASTFLT handling code will also check for software interrupts so we
558 1.1 gwr * do not have to do it here. After identifying that we need an AST we
559 1.1 gwr * drop the IPL to allow device interrupts.
560 1.1 gwr *
561 1.1 gwr * This code is complicated by the fact that sendsig may have been called
562 1.1 gwr * necessitating a stack cleanup.
563 1.1 gwr */
564 1.1 gwr
565 1.19 jeremy ASGLOBAL(rei)
566 1.1 gwr #ifdef DIAGNOSTIC
567 1.19 jeremy tstl _C_LABEL(panicstr) | have we paniced?
568 1.1 gwr jne Ldorte | yes, do not make matters worse
569 1.1 gwr #endif
570 1.19 jeremy tstl _C_LABEL(astpending) | AST pending?
571 1.1 gwr jeq Ldorte | no, done
572 1.1 gwr Lrei1:
573 1.1 gwr btst #5,sp@ | yes, are we returning to user mode?
574 1.1 gwr jne Ldorte | no, done
575 1.1 gwr movw #PSL_LOWIPL,sr | lower SPL
576 1.1 gwr clrl sp@- | stack adjust
577 1.1 gwr moveml #0xFFFF,sp@- | save all registers
578 1.1 gwr movl usp,a1 | including
579 1.1 gwr movl a1,sp@(FR_SP) | the users SP
580 1.1 gwr clrl sp@- | VA == none
581 1.1 gwr clrl sp@- | code == none
582 1.1 gwr movl #T_ASTFLT,sp@- | type == async system trap
583 1.19 jeremy jbsr _C_LABEL(trap) | go handle it
584 1.1 gwr lea sp@(12),sp | pop value args
585 1.1 gwr movl sp@(FR_SP),a0 | restore user SP
586 1.1 gwr movl a0,usp | from save area
587 1.1 gwr movw sp@(FR_ADJ),d0 | need to adjust stack?
588 1.1 gwr jne Laststkadj | yes, go to it
589 1.1 gwr moveml sp@+,#0x7FFF | no, restore most user regs
590 1.1 gwr addql #8,sp | toss SP and stack adjust
591 1.1 gwr rte | and do real RTE
592 1.1 gwr Laststkadj:
593 1.1 gwr lea sp@(FR_HW),a1 | pointer to HW frame
594 1.1 gwr addql #8,a1 | source pointer
595 1.1 gwr movl a1,a0 | source
596 1.1 gwr addw d0,a0 | + hole size = dest pointer
597 1.1 gwr movl a1@-,a0@- | copy
598 1.1 gwr movl a1@-,a0@- | 8 bytes
599 1.1 gwr movl a0,sp@(FR_SP) | new SSP
600 1.1 gwr moveml sp@+,#0x7FFF | restore user registers
601 1.1 gwr movl sp@,sp | and our SP
602 1.1 gwr Ldorte:
603 1.1 gwr rte | real return
604 1.1 gwr
605 1.1 gwr /*
606 1.1 gwr * Initialization is at the beginning of this file, because the
607 1.1 gwr * kernel entry point needs to be at zero for compatibility with
608 1.1 gwr * the Sun boot loader. This works on Sun machines because the
609 1.1 gwr * interrupt vector table for reset is NOT at address zero.
610 1.1 gwr * (The MMU has a "boot" bit that forces access to the PROM)
611 1.1 gwr */
612 1.1 gwr
613 1.1 gwr /*
614 1.16 thorpej * Use common m68k sigcode.
615 1.1 gwr */
616 1.16 thorpej #include <m68k/m68k/sigcode.s>
617 1.16 thorpej
618 1.1 gwr .text
619 1.1 gwr
620 1.1 gwr /*
621 1.1 gwr * Primitives
622 1.1 gwr */
623 1.1 gwr
624 1.1 gwr /*
625 1.12 thorpej * Use common m68k support routines.
626 1.1 gwr */
627 1.12 thorpej #include <m68k/m68k/support.s>
628 1.1 gwr
629 1.19 jeremy BSS(want_resched,4)
630 1.1 gwr
631 1.1 gwr /*
632 1.15 thorpej * Use common m68k process manipulation routines.
633 1.1 gwr */
634 1.15 thorpej #include <m68k/m68k/proc_subr.s>
635 1.1 gwr
636 1.1 gwr | Message for Lbadsw panic
637 1.1 gwr Lsw0:
638 1.1 gwr .asciz "cpu_switch"
639 1.1 gwr .even
640 1.1 gwr
641 1.1 gwr .data
642 1.19 jeremy GLOBAL(masterpaddr) | XXX compatibility (debuggers)
643 1.19 jeremy GLOBAL(curpcb)
644 1.1 gwr .long 0
645 1.19 jeremy ASBSS(nullpcb,SIZEOF_PCB)
646 1.1 gwr .text
647 1.1 gwr
648 1.1 gwr /*
649 1.1 gwr * At exit of a process, do a cpu_switch for the last time.
650 1.1 gwr * Switch to a safe stack and PCB, and deallocate the process's resources.
651 1.1 gwr * The ipl is high enough to prevent the memory from being reallocated.
652 1.1 gwr */
653 1.1 gwr ENTRY(switch_exit)
654 1.1 gwr movl sp@(4),a0 | struct proc *p
655 1.19 jeremy | save state into garbage pcb
656 1.19 jeremy movl #_ASM_LABEL(nullpcb),_C_LABEL(curpcb)
657 1.19 jeremy lea _ASM_LABEL(tmpstk),sp | goto a tmp stack
658 1.1 gwr movl a0,sp@- | pass proc ptr down
659 1.1 gwr
660 1.1 gwr /* Free old process's u-area. */
661 1.1 gwr movl #USPACE,sp@- | size of u-area
662 1.1 gwr movl a0@(P_ADDR),sp@- | address of process's u-area
663 1.19 jeremy movl _C_LABEL(kernel_map),sp@- | map it was allocated in
664 1.19 jeremy jbsr _C_LABEL(kmem_free) | deallocate it
665 1.1 gwr lea sp@(12),sp | pop args
666 1.1 gwr
667 1.19 jeremy jra _C_LABEL(cpu_switch)
668 1.1 gwr
669 1.1 gwr /*
670 1.1 gwr * When no processes are on the runq, cpu_switch() branches to idle
671 1.1 gwr * to wait for something to come ready.
672 1.1 gwr */
673 1.1 gwr .data
674 1.19 jeremy GLOBAL(Idle_count)
675 1.1 gwr .long 0
676 1.1 gwr .text
677 1.1 gwr
678 1.1 gwr Lidle:
679 1.1 gwr stop #PSL_LOWIPL
680 1.19 jeremy GLOBAL(_Idle) | See clock.c
681 1.1 gwr movw #PSL_HIGHIPL,sr
682 1.19 jeremy addql #1, _C_LABEL(Idle_count)
683 1.19 jeremy tstl _C_LABEL(whichqs)
684 1.1 gwr jeq Lidle
685 1.1 gwr movw #PSL_LOWIPL,sr
686 1.1 gwr jra Lsw1
687 1.1 gwr
688 1.1 gwr Lbadsw:
689 1.1 gwr movl #Lsw0,sp@-
690 1.19 jeremy jbsr _C_LABEL(panic)
691 1.1 gwr /*NOTREACHED*/
692 1.1 gwr
693 1.1 gwr /*
694 1.1 gwr * cpu_switch()
695 1.1 gwr * Hacked for sun3
696 1.1 gwr * XXX - Arg 1 is a proc pointer (curproc) but this doesn't use it.
697 1.1 gwr * XXX - Sould we use p->p_addr instead of curpcb? -gwr
698 1.1 gwr */
699 1.1 gwr ENTRY(cpu_switch)
700 1.19 jeremy movl _C_LABEL(curpcb),a1 | current pcb
701 1.1 gwr movw sr,a1@(PCB_PS) | save sr before changing ipl
702 1.1 gwr #ifdef notyet
703 1.19 jeremy movl _C_LABEL(curproc),sp@- | remember last proc running
704 1.1 gwr #endif
705 1.19 jeremy clrl _C_LABEL(curproc)
706 1.1 gwr
707 1.1 gwr Lsw1:
708 1.1 gwr /*
709 1.1 gwr * Find the highest-priority queue that isn't empty,
710 1.1 gwr * then take the first proc from that queue.
711 1.1 gwr */
712 1.1 gwr clrl d0
713 1.19 jeremy lea _C_LABEL(whichqs),a0
714 1.1 gwr movl a0@,d1
715 1.1 gwr Lswchk:
716 1.1 gwr btst d0,d1
717 1.1 gwr jne Lswfnd
718 1.1 gwr addqb #1,d0
719 1.1 gwr cmpb #32,d0
720 1.1 gwr jne Lswchk
721 1.19 jeremy jra _C_LABEL(_Idle)
722 1.1 gwr Lswfnd:
723 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
724 1.1 gwr movl a0@,d1 | and check again...
725 1.1 gwr bclr d0,d1
726 1.1 gwr jeq Lsw1 | proc moved, rescan
727 1.1 gwr movl d1,a0@ | update whichqs
728 1.1 gwr moveq #1,d1 | double check for higher priority
729 1.1 gwr lsll d0,d1 | process (which may have snuck in
730 1.1 gwr subql #1,d1 | while we were finding this one)
731 1.1 gwr andl a0@,d1
732 1.1 gwr jeq Lswok | no one got in, continue
733 1.1 gwr movl a0@,d1
734 1.1 gwr bset d0,d1 | otherwise put this one back
735 1.1 gwr movl d1,a0@
736 1.1 gwr jra Lsw1 | and rescan
737 1.1 gwr Lswok:
738 1.1 gwr movl d0,d1
739 1.1 gwr lslb #3,d1 | convert queue number to index
740 1.1 gwr addl #_qs,d1 | locate queue (q)
741 1.1 gwr movl d1,a1
742 1.1 gwr cmpl a1@(P_FORW),a1 | anyone on queue?
743 1.1 gwr jeq Lbadsw | no, panic
744 1.1 gwr movl a1@(P_FORW),a0 | p = q->p_forw
745 1.1 gwr movl a0@(P_FORW),a1@(P_FORW) | q->p_forw = p->p_forw
746 1.1 gwr movl a0@(P_FORW),a1 | q = p->p_forw
747 1.1 gwr movl a0@(P_BACK),a1@(P_BACK) | q->p_back = p->p_back
748 1.1 gwr cmpl a0@(P_FORW),d1 | anyone left on queue?
749 1.1 gwr jeq Lsw2 | no, skip
750 1.19 jeremy movl _C_LABEL(whichqs),d1
751 1.1 gwr bset d0,d1 | yes, reset bit
752 1.19 jeremy movl d1,_C_LABEL(whichqs)
753 1.1 gwr Lsw2:
754 1.19 jeremy movl a0,_C_LABEL(curproc)
755 1.19 jeremy clrl _C_LABEL(want_resched)
756 1.1 gwr #ifdef notyet
757 1.1 gwr movl sp@+,a1 | XXX - Make this work!
758 1.1 gwr cmpl a0,a1 | switching to same proc?
759 1.1 gwr jeq Lswdone | yes, skip save and restore
760 1.1 gwr #endif
761 1.1 gwr /*
762 1.1 gwr * Save state of previous process in its pcb.
763 1.1 gwr */
764 1.19 jeremy movl _C_LABEL(curpcb),a1
765 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
766 1.1 gwr movl usp,a2 | grab USP (a2 has been saved)
767 1.1 gwr movl a2,a1@(PCB_USP) | and save it
768 1.1 gwr
769 1.19 jeremy tstl _C_LABEL(fputype) | Do we have an fpu?
770 1.1 gwr jeq Lswnofpsave | No? Then don't try save.
771 1.1 gwr lea a1@(PCB_FPCTX),a2 | pointer to FP save area
772 1.1 gwr fsave a2@ | save FP state
773 1.1 gwr tstb a2@ | null state frame?
774 1.1 gwr jeq Lswnofpsave | yes, all done
775 1.1 gwr fmovem fp0-fp7,a2@(FPF_REGS) | save FP general regs
776 1.1 gwr fmovem fpcr/fpsr/fpi,a2@(FPF_FPCR) | save FP control regs
777 1.1 gwr Lswnofpsave:
778 1.1 gwr
779 1.6 gwr /*
780 1.6 gwr * Now that we have saved all the registers that must be
781 1.6 gwr * preserved, we are free to use those registers until
782 1.6 gwr * we load the registers for the switched-to process.
783 1.6 gwr * In this section, keep: a0=curproc, a1=curpcb
784 1.6 gwr */
785 1.6 gwr
786 1.1 gwr #ifdef DIAGNOSTIC
787 1.1 gwr tstl a0@(P_WCHAN)
788 1.1 gwr jne Lbadsw
789 1.1 gwr cmpb #SRUN,a0@(P_STAT)
790 1.1 gwr jne Lbadsw
791 1.1 gwr #endif
792 1.1 gwr clrl a0@(P_BACK) | clear back link
793 1.1 gwr movl a0@(P_ADDR),a1 | get p_addr
794 1.19 jeremy movl a1,_C_LABEL(curpcb)
795 1.1 gwr
796 1.8 gwr /*
797 1.8 gwr * Load the new VM context (new MMU root pointer)
798 1.8 gwr */
799 1.8 gwr movl a0@(P_VMSPACE),a2 | vm = p->p_vmspace
800 1.8 gwr #ifdef DIAGNOSTIC
801 1.20 gwr tstl a2 | vm == VM_MAP_NULL?
802 1.8 gwr jeq Lbadsw | panic
803 1.8 gwr #endif
804 1.8 gwr #ifdef PMAP_DEBUG
805 1.8 gwr /*
806 1.8 gwr * Just call pmap_activate() for now. Later on,
807 1.8 gwr * use the in-line version below (for speed).
808 1.8 gwr */
809 1.23 thorpej pea a0@ | push proc
810 1.23 thorpej jbsr _C_LABEL(pmap_activate) | pmap_activate(p)
811 1.8 gwr addql #4,sp
812 1.19 jeremy movl _C_LABEL(curpcb),a1 | restore p_addr
813 1.8 gwr #else
814 1.8 gwr /* XXX - Later, use this inline version. */
815 1.1 gwr /* Just load the new CPU Root Pointer (MMU) */
816 1.20 gwr lea _C_LABEL(kernel_crp), a3 | our CPU Root Ptr. (CRP)
817 1.20 gwr movl a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
818 1.8 gwr movl a2@(PM_A_PHYS),d0 | phys = pmap->pm_a_phys
819 1.9 jeremy cmpl a3@(4),d0 | == kernel_crp.rp_addr ?
820 1.8 gwr jeq Lsame_mmuctx | skip loadcrp/flush
821 1.8 gwr /* OK, it is a new MMU context. Load it up. */
822 1.9 jeremy movl d0,a3@(4)
823 1.1 gwr movl #CACHE_CLR,d0
824 1.1 gwr movc d0,cacr | invalidate cache(s)
825 1.1 gwr pflusha | flush entire TLB
826 1.8 gwr pmove a3@,crp | load new user root pointer
827 1.8 gwr Lsame_mmuctx:
828 1.8 gwr #endif
829 1.1 gwr
830 1.6 gwr /*
831 1.6 gwr * Reload the registers for the new process.
832 1.6 gwr * After this point we can only use d0,d1,a0,a1
833 1.6 gwr */
834 1.6 gwr moveml a1@(PCB_REGS),#0xFCFC | reload registers
835 1.1 gwr movl a1@(PCB_USP),a0
836 1.1 gwr movl a0,usp | and USP
837 1.1 gwr
838 1.19 jeremy tstl _C_LABEL(fputype) | If we don't have an fpu,
839 1.1 gwr jeq Lres_skip | don't try to restore it.
840 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
841 1.1 gwr tstb a0@ | null state frame?
842 1.1 gwr jeq Lresfprest | yes, easy
843 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
844 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
845 1.1 gwr Lresfprest:
846 1.1 gwr frestore a0@ | restore state
847 1.1 gwr Lres_skip:
848 1.1 gwr movw a1@(PCB_PS),d0 | no, restore PS
849 1.1 gwr #ifdef DIAGNOSTIC
850 1.1 gwr btst #13,d0 | supervisor mode?
851 1.1 gwr jeq Lbadsw | no? panic!
852 1.1 gwr #endif
853 1.1 gwr movw d0,sr | OK, restore PS
854 1.1 gwr moveq #1,d0 | return 1 (for alternate returns)
855 1.1 gwr rts
856 1.1 gwr
857 1.1 gwr /*
858 1.1 gwr * savectx(pcb)
859 1.1 gwr * Update pcb, saving current processor state.
860 1.1 gwr */
861 1.1 gwr ENTRY(savectx)
862 1.1 gwr movl sp@(4),a1
863 1.1 gwr movw sr,a1@(PCB_PS)
864 1.1 gwr movl usp,a0 | grab USP
865 1.1 gwr movl a0,a1@(PCB_USP) | and save it
866 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
867 1.1 gwr
868 1.19 jeremy tstl _C_LABEL(fputype) | Do we have FPU?
869 1.1 gwr jeq Lsavedone | No? Then don't save state.
870 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
871 1.1 gwr fsave a0@ | save FP state
872 1.1 gwr tstb a0@ | null state frame?
873 1.1 gwr jeq Lsavedone | yes, all done
874 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
875 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
876 1.1 gwr Lsavedone:
877 1.1 gwr moveq #0,d0 | return 0
878 1.1 gwr rts
879 1.1 gwr
880 1.20 gwr /* suline() */
881 1.1 gwr
882 1.1 gwr #ifdef DEBUG
883 1.1 gwr .data
884 1.19 jeremy ASGLOBAL(fulltflush)
885 1.1 gwr .long 0
886 1.19 jeremy ASGLOBAL(fullcflush)
887 1.1 gwr .long 0
888 1.1 gwr .text
889 1.1 gwr #endif
890 1.1 gwr
891 1.1 gwr /*
892 1.1 gwr * Invalidate entire TLB.
893 1.1 gwr */
894 1.1 gwr ENTRY(TBIA)
895 1.19 jeremy _C_LABEL(_TBIA):
896 1.1 gwr pflusha
897 1.1 gwr movl #DC_CLEAR,d0
898 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
899 1.1 gwr rts
900 1.1 gwr
901 1.1 gwr /*
902 1.1 gwr * Invalidate any TLB entry for given VA (TB Invalidate Single)
903 1.1 gwr */
904 1.1 gwr ENTRY(TBIS)
905 1.1 gwr #ifdef DEBUG
906 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
907 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush entire TLB
908 1.1 gwr #endif
909 1.1 gwr movl sp@(4),a0
910 1.1 gwr pflush #0,#0,a0@ | flush address from both sides
911 1.1 gwr movl #DC_CLEAR,d0
912 1.1 gwr movc d0,cacr | invalidate on-chip data cache
913 1.1 gwr rts
914 1.1 gwr
915 1.1 gwr /*
916 1.1 gwr * Invalidate supervisor side of TLB
917 1.1 gwr */
918 1.1 gwr ENTRY(TBIAS)
919 1.1 gwr #ifdef DEBUG
920 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
921 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
922 1.1 gwr #endif
923 1.1 gwr pflush #4,#4 | flush supervisor TLB entries
924 1.1 gwr movl #DC_CLEAR,d0
925 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
926 1.1 gwr rts
927 1.1 gwr
928 1.1 gwr /*
929 1.1 gwr * Invalidate user side of TLB
930 1.1 gwr */
931 1.1 gwr ENTRY(TBIAU)
932 1.1 gwr #ifdef DEBUG
933 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
934 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
935 1.1 gwr #endif
936 1.1 gwr pflush #0,#4 | flush user TLB entries
937 1.1 gwr movl #DC_CLEAR,d0
938 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
939 1.1 gwr rts
940 1.1 gwr
941 1.1 gwr /*
942 1.1 gwr * Invalidate instruction cache
943 1.1 gwr */
944 1.1 gwr ENTRY(ICIA)
945 1.1 gwr movl #IC_CLEAR,d0
946 1.1 gwr movc d0,cacr | invalidate i-cache
947 1.1 gwr rts
948 1.1 gwr
949 1.1 gwr /*
950 1.1 gwr * Invalidate data cache.
951 1.1 gwr * NOTE: we do not flush 68030 on-chip cache as there are no aliasing
952 1.1 gwr * problems with DC_WA. The only cases we have to worry about are context
953 1.1 gwr * switch and TLB changes, both of which are handled "in-line" in resume
954 1.1 gwr * and TBI*.
955 1.1 gwr */
956 1.1 gwr ENTRY(DCIA)
957 1.1 gwr __DCIA:
958 1.1 gwr rts
959 1.1 gwr
960 1.1 gwr ENTRY(DCIS)
961 1.1 gwr __DCIS:
962 1.1 gwr rts
963 1.1 gwr
964 1.1 gwr /*
965 1.1 gwr * Invalidate data cache.
966 1.1 gwr */
967 1.1 gwr ENTRY(DCIU)
968 1.11 gwr movl #DC_CLEAR,d0
969 1.11 gwr movc d0,cacr | invalidate on-chip d-cache
970 1.1 gwr rts
971 1.1 gwr
972 1.1 gwr /* ICPL, ICPP, DCPL, DCPP, DCPA, DCFL, DCFP */
973 1.1 gwr
974 1.1 gwr ENTRY(PCIA)
975 1.1 gwr movl #DC_CLEAR,d0
976 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
977 1.1 gwr rts
978 1.1 gwr
979 1.1 gwr ENTRY(ecacheon)
980 1.1 gwr rts
981 1.1 gwr
982 1.1 gwr ENTRY(ecacheoff)
983 1.1 gwr rts
984 1.1 gwr
985 1.1 gwr /*
986 1.1 gwr * Get callers current SP value.
987 1.1 gwr * Note that simply taking the address of a local variable in a C function
988 1.1 gwr * doesn't work because callee saved registers may be outside the stack frame
989 1.1 gwr * defined by A6 (e.g. GCC generated code).
990 1.20 gwr *
991 1.1 gwr * [I don't think the ENTRY() macro will do the right thing with this -- glass]
992 1.1 gwr */
993 1.19 jeremy GLOBAL(getsp)
994 1.1 gwr movl sp,d0 | get current SP
995 1.1 gwr addql #4,d0 | compensate for return address
996 1.1 gwr rts
997 1.1 gwr
998 1.1 gwr ENTRY(getsfc)
999 1.1 gwr movc sfc,d0
1000 1.1 gwr rts
1001 1.1 gwr
1002 1.1 gwr ENTRY(getdfc)
1003 1.1 gwr movc dfc,d0
1004 1.1 gwr rts
1005 1.1 gwr
1006 1.1 gwr ENTRY(getvbr)
1007 1.1 gwr movc vbr, d0
1008 1.1 gwr rts
1009 1.1 gwr
1010 1.1 gwr ENTRY(setvbr)
1011 1.1 gwr movl sp@(4), d0
1012 1.1 gwr movc d0, vbr
1013 1.1 gwr rts
1014 1.1 gwr
1015 1.1 gwr /*
1016 1.1 gwr * Load a new CPU Root Pointer (CRP) into the MMU.
1017 1.2 gwr * void loadcrp(struct mmu_rootptr *);
1018 1.1 gwr */
1019 1.1 gwr ENTRY(loadcrp)
1020 1.1 gwr movl sp@(4),a0 | arg1: &CRP
1021 1.1 gwr movl #CACHE_CLR,d0
1022 1.1 gwr movc d0,cacr | invalidate cache(s)
1023 1.1 gwr pflusha | flush entire TLB
1024 1.1 gwr pmove a0@,crp | load new user root pointer
1025 1.10 gwr rts
1026 1.10 gwr
1027 1.10 gwr /*
1028 1.10 gwr * Get the physical address of the PTE for a given VA.
1029 1.10 gwr */
1030 1.10 gwr ENTRY(ptest_addr)
1031 1.10 gwr movl sp@(4),a0 | VA
1032 1.10 gwr ptestr #5,a0@,#7,a1 | a1 = addr of PTE
1033 1.10 gwr movl a1,d0
1034 1.1 gwr rts
1035 1.1 gwr
1036 1.1 gwr /*
1037 1.1 gwr * Set processor priority level calls. Most are implemented with
1038 1.1 gwr * inline asm expansions. However, we need one instantiation here
1039 1.1 gwr * in case some non-optimized code makes external references.
1040 1.21 gwr * Most places will use the inlined functions param.h supplies.
1041 1.1 gwr */
1042 1.1 gwr
1043 1.21 gwr ENTRY(_getsr)
1044 1.21 gwr clrl d0
1045 1.21 gwr movw sr,d0
1046 1.21 gwr rts
1047 1.21 gwr
1048 1.1 gwr ENTRY(_spl)
1049 1.1 gwr clrl d0
1050 1.1 gwr movw sr,d0
1051 1.21 gwr movl sp@(4),d1
1052 1.1 gwr movw d1,sr
1053 1.1 gwr rts
1054 1.1 gwr
1055 1.21 gwr ENTRY(_splraise)
1056 1.21 gwr clrl d0
1057 1.21 gwr movw sr,d0
1058 1.21 gwr movl d0,d1
1059 1.21 gwr andl #PSL_HIGHIPL,d1 | old &= PSL_HIGHIPL
1060 1.21 gwr cmpl sp@(4),d1 | (old - new)
1061 1.21 gwr bge Lsplr
1062 1.21 gwr movl sp@(4),d1
1063 1.21 gwr movw d1,sr
1064 1.21 gwr Lsplr:
1065 1.1 gwr rts
1066 1.1 gwr
1067 1.1 gwr /*
1068 1.1 gwr * Save and restore 68881 state.
1069 1.1 gwr */
1070 1.1 gwr ENTRY(m68881_save)
1071 1.1 gwr movl sp@(4),a0 | save area pointer
1072 1.1 gwr fsave a0@ | save state
1073 1.1 gwr tstb a0@ | null state frame?
1074 1.1 gwr jeq Lm68881sdone | yes, all done
1075 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
1076 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
1077 1.1 gwr Lm68881sdone:
1078 1.1 gwr rts
1079 1.1 gwr
1080 1.1 gwr ENTRY(m68881_restore)
1081 1.1 gwr movl sp@(4),a0 | save area pointer
1082 1.1 gwr tstb a0@ | null state frame?
1083 1.1 gwr jeq Lm68881rdone | yes, easy
1084 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
1085 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
1086 1.1 gwr Lm68881rdone:
1087 1.1 gwr frestore a0@ | restore state
1088 1.1 gwr rts
1089 1.1 gwr
1090 1.1 gwr /*
1091 1.1 gwr * _delay(unsigned N)
1092 1.1 gwr * Delay for at least (N/256) microseconds.
1093 1.1 gwr * This routine depends on the variable: delay_divisor
1094 1.1 gwr * which should be set based on the CPU clock rate.
1095 1.1 gwr * XXX: Currently this is set in sun3_startup.c based on the
1096 1.1 gwr * XXX: CPU model but this should be determined at run time...
1097 1.1 gwr */
1098 1.19 jeremy GLOBAL(_delay)
1099 1.1 gwr | d0 = arg = (usecs << 8)
1100 1.1 gwr movl sp@(4),d0
1101 1.1 gwr | d1 = delay_divisor;
1102 1.19 jeremy movl _C_LABEL(delay_divisor),d1
1103 1.1 gwr L_delay:
1104 1.1 gwr subl d1,d0
1105 1.1 gwr jgt L_delay
1106 1.1 gwr rts
1107 1.1 gwr
1108 1.1 gwr
1109 1.1 gwr | Define some addresses, mostly so DDB can print useful info.
1110 1.19 jeremy .globl _C_LABEL(kernbase)
1111 1.19 jeremy .set _C_LABEL(kernbase),KERNBASE
1112 1.19 jeremy .globl _C_LABEL(dvma_base)
1113 1.19 jeremy .set _C_LABEL(dvma_base),DVMA_SPACE_START
1114 1.22 gwr .globl _C_LABEL(monstart)
1115 1.22 gwr .set _C_LABEL(monstart),MONSTART
1116 1.19 jeremy .globl _C_LABEL(prom_base)
1117 1.19 jeremy .set _C_LABEL(prom_base),PROM_BASE
1118 1.1 gwr
1119 1.1 gwr |The end!
1120