locore.s revision 1.27 1 1.27 gwr /* $NetBSD: locore.s,v 1.27 1998/06/09 20:47:17 gwr Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1988 University of Utah.
5 1.1 gwr * Copyright (c) 1980, 1990, 1993
6 1.1 gwr * The Regents of the University of California. All rights reserved.
7 1.1 gwr *
8 1.1 gwr * This code is derived from software contributed to Berkeley by
9 1.1 gwr * the Systems Programming Group of the University of Utah Computer
10 1.1 gwr * Science Department.
11 1.1 gwr *
12 1.1 gwr * Redistribution and use in source and binary forms, with or without
13 1.1 gwr * modification, are permitted provided that the following conditions
14 1.1 gwr * are met:
15 1.1 gwr * 1. Redistributions of source code must retain the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer.
17 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 gwr * notice, this list of conditions and the following disclaimer in the
19 1.1 gwr * documentation and/or other materials provided with the distribution.
20 1.1 gwr * 3. All advertising materials mentioning features or use of this software
21 1.1 gwr * must display the following acknowledgement:
22 1.1 gwr * This product includes software developed by the University of
23 1.1 gwr * California, Berkeley and its contributors.
24 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
25 1.1 gwr * may be used to endorse or promote products derived from this software
26 1.1 gwr * without specific prior written permission.
27 1.1 gwr *
28 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 gwr * SUCH DAMAGE.
39 1.1 gwr *
40 1.1 gwr * from: Utah $Hdr: locore.s 1.66 92/12/22$
41 1.1 gwr * @(#)locore.s 8.6 (Berkeley) 5/27/94
42 1.1 gwr */
43 1.1 gwr
44 1.27 gwr #include "opt_uvm.h"
45 1.27 gwr
46 1.1 gwr #include "assym.h"
47 1.17 thorpej #include <machine/asm.h>
48 1.1 gwr #include <machine/trap.h>
49 1.1 gwr
50 1.1 gwr | Remember this is a fun project!
51 1.1 gwr
52 1.1 gwr .data
53 1.19 jeremy GLOBAL(mon_crp)
54 1.1 gwr .long 0,0
55 1.1 gwr
56 1.1 gwr | This is for kvm_mkdb, and should be the address of the beginning
57 1.1 gwr | of the kernel text segment (not necessarily the same as kernbase).
58 1.1 gwr .text
59 1.19 jeremy GLOBAL(kernel_text)
60 1.1 gwr
61 1.1 gwr | This is the entry point, as well as the end of the temporary stack
62 1.1 gwr | used during process switch (one 8K page ending at start)
63 1.19 jeremy ASGLOBAL(tmpstk)
64 1.20 gwr ASGLOBAL(start)
65 1.19 jeremy
66 1.1 gwr | The first step, after disabling interrupts, is to map enough of the kernel
67 1.1 gwr | into high virtual address space so that we can use position dependent code.
68 1.1 gwr | This is a tricky task on the sun3x because the MMU is already enabled and
69 1.1 gwr | the ROM monitor provides no indication of where the root MMU table is mapped.
70 1.1 gwr | Therefore we must use one of the 68030's 'transparent translation' registers
71 1.1 gwr | to define a range in the address space where the MMU translation is
72 1.1 gwr | turned off. Once this is complete we can modify the MMU table directly
73 1.1 gwr | without the need for it to be mapped into virtual memory.
74 1.1 gwr | All code must be position independent until otherwise noted, as the
75 1.1 gwr | boot loader has loaded us into low memory but all the symbols in this
76 1.1 gwr | code have been linked high.
77 1.1 gwr movw #PSL_HIGHIPL, sr | no interrupts
78 1.1 gwr movl #KERNBASE, a5 | for vtop conversion
79 1.19 jeremy lea _C_LABEL(mon_crp), a0 | where to store the CRP
80 1.1 gwr subl a5, a0
81 1.1 gwr | Note: borrowing mon_crp for tt0 setup...
82 1.1 gwr movl #0x3F8107, a0@ | map the low 1GB v=p with the
83 1.14 jeremy .long 0xf0100800 | transparent translation reg0
84 1.14 jeremy | [ pmove a0@, tt0 ]
85 1.1 gwr | In order to map the kernel into high memory we will copy the root table
86 1.1 gwr | entry which maps the 16 megabytes of memory starting at 0x0 into the
87 1.1 gwr | entry which maps the 16 megabytes starting at KERNBASE.
88 1.1 gwr pmove crp, a0@ | Get monitor CPU root pointer
89 1.1 gwr movl a0@(4), a1 | 2nd word is PA of level A table
90 1.1 gwr
91 1.1 gwr movl a1, a0 | compute the descriptor address
92 1.1 gwr addl #0x3e0, a1 | for VA starting at KERNBASE
93 1.1 gwr movl a0@, a1@ | copy descriptor type
94 1.1 gwr movl a0@(4), a1@(4) | copy physical address
95 1.1 gwr
96 1.1 gwr | Kernel is now double mapped at zero and KERNBASE.
97 1.1 gwr | Force a long jump to the relocated code (high VA).
98 1.1 gwr movl #IC_CLEAR, d0 | Flush the I-cache
99 1.1 gwr movc d0, cacr
100 1.1 gwr jmp L_high_code:l | long jump
101 1.1 gwr
102 1.1 gwr L_high_code:
103 1.1 gwr | We are now running in the correctly relocated kernel, so
104 1.1 gwr | we are no longer restricted to position-independent code.
105 1.1 gwr | It is handy to leave transparent translation enabled while
106 1.20 gwr | for the low 1GB while _bootstrap() is doing its thing.
107 1.1 gwr
108 1.1 gwr | Do bootstrap stuff needed before main() gets called.
109 1.1 gwr | Our boot loader leaves a copy of the kernel's exec header
110 1.1 gwr | just before the start of the kernel text segment, so the
111 1.1 gwr | kernel can sanity-check the DDB symbols at [end...esym].
112 1.20 gwr | Pass the struct exec at tmpstk-32 to _bootstrap().
113 1.7 gwr | Also, make sure the initial frame pointer is zero so that
114 1.7 gwr | the backtrace algorithm used by KGDB terminates nicely.
115 1.19 jeremy lea _ASM_LABEL(tmpstk)-32, sp
116 1.6 gwr movl #0,a6
117 1.26 gwr jsr _C_LABEL(_bootstrap) | See locore2.c
118 1.1 gwr
119 1.1 gwr | Now turn off the transparent translation of the low 1GB.
120 1.1 gwr | (this also flushes the ATC)
121 1.1 gwr clrl sp@-
122 1.14 jeremy .long 0xf0170800 | pmove sp@,tt0
123 1.1 gwr addql #4,sp
124 1.1 gwr
125 1.20 gwr | Now that _bootstrap() is done using the PROM functions,
126 1.1 gwr | we can safely set the sfc/dfc to something != FC_CONTROL
127 1.1 gwr moveq #FC_USERD, d0 | make movs access "user data"
128 1.1 gwr movc d0, sfc | space for copyin/copyout
129 1.1 gwr movc d0, dfc
130 1.1 gwr
131 1.1 gwr | Setup process zero user/kernel stacks.
132 1.19 jeremy movl _C_LABEL(proc0paddr),a1 | get proc0 pcb addr
133 1.1 gwr lea a1@(USPACE-4),sp | set SSP to last word
134 1.1 gwr movl #USRSTACK-4,a2
135 1.1 gwr movl a2,usp | init user SP
136 1.1 gwr
137 1.20 gwr | Note curpcb was already set in _bootstrap().
138 1.1 gwr | Will do fpu initialization during autoconfig (see fpu.c)
139 1.1 gwr | The interrupt vector table and stack are now ready.
140 1.1 gwr | Interrupts will be enabled later, AFTER autoconfiguration
141 1.1 gwr | is finished, to avoid spurrious interrupts.
142 1.1 gwr
143 1.1 gwr /*
144 1.1 gwr * Final preparation for calling main.
145 1.1 gwr *
146 1.1 gwr * Create a fake exception frame that returns to user mode,
147 1.1 gwr * and save its address in p->p_md.md_regs for cpu_fork().
148 1.1 gwr * The new frames for process 1 and 2 will be adjusted by
149 1.1 gwr * cpu_set_kpc() to arrange for a call to a kernel function
150 1.1 gwr * before the new process does its rte out to user mode.
151 1.1 gwr */
152 1.6 gwr clrw sp@- | tf_format,tf_vector
153 1.6 gwr clrl sp@- | tf_pc (filled in later)
154 1.6 gwr movw #PSL_USER,sp@- | tf_sr for user mode
155 1.6 gwr clrl sp@- | tf_stackadj
156 1.6 gwr lea sp@(-64),sp | tf_regs[16]
157 1.6 gwr movl sp,a1 | a1=trapframe
158 1.19 jeremy lea _C_LABEL(proc0),a0 | proc0.p_md.md_regs =
159 1.6 gwr movl a1,a0@(P_MDREGS) | trapframe
160 1.6 gwr movl a2,a1@(FR_SP) | a2 == usp (from above)
161 1.7 gwr pea a1@ | push &trapframe
162 1.19 jeremy jbsr _C_LABEL(main) | main(&trapframe)
163 1.7 gwr addql #4,sp | help DDB backtrace
164 1.1 gwr trap #15 | should not get here
165 1.1 gwr
166 1.1 gwr | This is used by cpu_fork() to return to user mode.
167 1.1 gwr | It is called with SP pointing to a struct trapframe.
168 1.19 jeremy GLOBAL(proc_do_uret)
169 1.1 gwr movl sp@(FR_SP),a0 | grab and load
170 1.1 gwr movl a0,usp | user SP
171 1.1 gwr moveml sp@+,#0x7FFF | load most registers (all but SSP)
172 1.1 gwr addql #8,sp | pop SSP and stack adjust count
173 1.1 gwr rte
174 1.1 gwr
175 1.1 gwr /*
176 1.1 gwr * proc_trampoline:
177 1.1 gwr * This is used by cpu_set_kpc() to "push" a function call onto the
178 1.1 gwr * kernel stack of some process, very much like a signal delivery.
179 1.1 gwr * When we get here, the stack has:
180 1.1 gwr *
181 1.1 gwr * SP+8: switchframe from before cpu_set_kpc
182 1.1 gwr * SP+4: void *proc;
183 1.1 gwr * SP: u_long func;
184 1.1 gwr *
185 1.1 gwr * On entry, the switchframe pushed by cpu_set_kpc has already been
186 1.1 gwr * popped off the stack, so all this needs to do is pop the function
187 1.1 gwr * pointer into a register, call it, then pop the arg, and finally
188 1.1 gwr * return using the switchframe that remains on the stack.
189 1.1 gwr */
190 1.19 jeremy GLOBAL(proc_trampoline)
191 1.1 gwr movl sp@+,a0 | function pointer
192 1.1 gwr jbsr a0@ | (*func)(procp)
193 1.1 gwr addql #4,sp | toss the arg
194 1.1 gwr rts | as cpu_switch would do
195 1.1 gwr
196 1.1 gwr | That is all the assembly startup code we need on the sun3x!
197 1.1 gwr | The rest of this is like the hp300/locore.s where possible.
198 1.1 gwr
199 1.1 gwr /*
200 1.1 gwr * Trap/interrupt vector routines
201 1.1 gwr */
202 1.17 thorpej #include <m68k/m68k/trap_subr.s>
203 1.1 gwr
204 1.19 jeremy GLOBAL(buserr)
205 1.19 jeremy tstl _C_LABEL(nofault) | device probe?
206 1.19 jeremy jeq _C_LABEL(addrerr) | no, handle as usual
207 1.19 jeremy movl _C_LABEL(nofault),sp@- | yes,
208 1.19 jeremy jbsr _C_LABEL(longjmp) | longjmp(nofault)
209 1.19 jeremy GLOBAL(addrerr)
210 1.1 gwr clrl sp@- | stack adjust count
211 1.1 gwr moveml #0xFFFF,sp@- | save user registers
212 1.1 gwr movl usp,a0 | save the user SP
213 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
214 1.1 gwr lea sp@(FR_HW),a1 | grab base of HW berr frame
215 1.1 gwr moveq #0,d0
216 1.1 gwr movw a1@(10),d0 | grab SSW for fault processing
217 1.1 gwr btst #12,d0 | RB set?
218 1.1 gwr jeq LbeX0 | no, test RC
219 1.1 gwr bset #14,d0 | yes, must set FB
220 1.1 gwr movw d0,a1@(10) | for hardware too
221 1.1 gwr LbeX0:
222 1.1 gwr btst #13,d0 | RC set?
223 1.1 gwr jeq LbeX1 | no, skip
224 1.1 gwr bset #15,d0 | yes, must set FC
225 1.1 gwr movw d0,a1@(10) | for hardware too
226 1.1 gwr LbeX1:
227 1.1 gwr btst #8,d0 | data fault?
228 1.1 gwr jeq Lbe0 | no, check for hard cases
229 1.1 gwr movl a1@(16),d1 | fault address is as given in frame
230 1.1 gwr jra Lbe10 | thats it
231 1.1 gwr Lbe0:
232 1.1 gwr btst #4,a1@(6) | long (type B) stack frame?
233 1.1 gwr jne Lbe4 | yes, go handle
234 1.1 gwr movl a1@(2),d1 | no, can use save PC
235 1.1 gwr btst #14,d0 | FB set?
236 1.1 gwr jeq Lbe3 | no, try FC
237 1.1 gwr addql #4,d1 | yes, adjust address
238 1.1 gwr jra Lbe10 | done
239 1.1 gwr Lbe3:
240 1.1 gwr btst #15,d0 | FC set?
241 1.1 gwr jeq Lbe10 | no, done
242 1.1 gwr addql #2,d1 | yes, adjust address
243 1.1 gwr jra Lbe10 | done
244 1.1 gwr Lbe4:
245 1.1 gwr movl a1@(36),d1 | long format, use stage B address
246 1.1 gwr btst #15,d0 | FC set?
247 1.1 gwr jeq Lbe10 | no, all done
248 1.1 gwr subql #2,d1 | yes, adjust address
249 1.1 gwr Lbe10:
250 1.1 gwr movl d1,sp@- | push fault VA
251 1.1 gwr movl d0,sp@- | and padded SSW
252 1.1 gwr movw a1@(6),d0 | get frame format/vector offset
253 1.1 gwr andw #0x0FFF,d0 | clear out frame format
254 1.1 gwr cmpw #12,d0 | address error vector?
255 1.1 gwr jeq Lisaerr | yes, go to it
256 1.1 gwr
257 1.1 gwr /* MMU-specific code to determine reason for bus error. */
258 1.1 gwr movl d1,a0 | fault address
259 1.1 gwr movl sp@,d0 | function code from ssw
260 1.1 gwr btst #8,d0 | data fault?
261 1.1 gwr jne Lbe10a
262 1.1 gwr movql #1,d0 | user program access FC
263 1.1 gwr | (we dont separate data/program)
264 1.1 gwr btst #5,a1@ | supervisor mode?
265 1.1 gwr jeq Lbe10a | if no, done
266 1.1 gwr movql #5,d0 | else supervisor program access
267 1.1 gwr Lbe10a:
268 1.1 gwr ptestr d0,a0@,#7 | do a table search
269 1.1 gwr pmove psr,sp@ | save result
270 1.1 gwr movb sp@,d1
271 1.1 gwr btst #2,d1 | invalid? (incl. limit viol and berr)
272 1.1 gwr jeq Lmightnotbemerr | no -> wp check
273 1.1 gwr btst #7,d1 | is it MMU table berr?
274 1.1 gwr jeq Lismerr | no, must be fast
275 1.1 gwr jra Lisberr1 | real bus err needs not be fast
276 1.1 gwr Lmightnotbemerr:
277 1.1 gwr btst #3,d1 | write protect bit set?
278 1.1 gwr jeq Lisberr1 | no, must be bus error
279 1.1 gwr movl sp@,d0 | ssw into low word of d0
280 1.1 gwr andw #0xc0,d0 | write protect is set on page:
281 1.1 gwr cmpw #0x40,d0 | was it read cycle?
282 1.1 gwr jeq Lisberr1 | yes, was not WPE, must be bus err
283 1.1 gwr /* End of MMU-specific bus error code. */
284 1.1 gwr
285 1.1 gwr Lismerr:
286 1.1 gwr movl #T_MMUFLT,sp@- | show that we are an MMU fault
287 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
288 1.1 gwr Lisaerr:
289 1.1 gwr movl #T_ADDRERR,sp@- | mark address error
290 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
291 1.1 gwr Lisberr1:
292 1.1 gwr clrw sp@ | re-clear pad word
293 1.1 gwr Lisberr:
294 1.1 gwr movl #T_BUSERR,sp@- | mark bus error
295 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
296 1.1 gwr
297 1.1 gwr /*
298 1.1 gwr * FP exceptions.
299 1.1 gwr */
300 1.19 jeremy GLOBAL(fpfline)
301 1.1 gwr clrl sp@- | stack adjust count
302 1.1 gwr moveml #0xFFFF,sp@- | save registers
303 1.1 gwr moveq #T_FPEMULI,d0 | denote as FP emulation trap
304 1.19 jeremy jra _ASM_LABEL(fault) | do it
305 1.1 gwr
306 1.19 jeremy GLOBAL(fpunsupp)
307 1.1 gwr clrl sp@- | stack adjust count
308 1.1 gwr moveml #0xFFFF,sp@- | save registers
309 1.1 gwr moveq #T_FPEMULD,d0 | denote as FP emulation trap
310 1.19 jeremy jra _ASM_LABEL(fault) | do it
311 1.1 gwr
312 1.1 gwr /*
313 1.1 gwr * Handles all other FP coprocessor exceptions.
314 1.1 gwr * Note that since some FP exceptions generate mid-instruction frames
315 1.1 gwr * and may cause signal delivery, we need to test for stack adjustment
316 1.1 gwr * after the trap call.
317 1.1 gwr */
318 1.19 jeremy GLOBAL(fpfault)
319 1.1 gwr clrl sp@- | stack adjust count
320 1.1 gwr moveml #0xFFFF,sp@- | save user registers
321 1.1 gwr movl usp,a0 | and save
322 1.1 gwr movl a0,sp@(FR_SP) | the user stack pointer
323 1.1 gwr clrl sp@- | no VA arg
324 1.19 jeremy movl _C_LABEL(curpcb),a0 | current pcb
325 1.1 gwr lea a0@(PCB_FPCTX),a0 | address of FP savearea
326 1.1 gwr fsave a0@ | save state
327 1.1 gwr tstb a0@ | null state frame?
328 1.1 gwr jeq Lfptnull | yes, safe
329 1.1 gwr clrw d0 | no, need to tweak BIU
330 1.1 gwr movb a0@(1),d0 | get frame size
331 1.1 gwr bset #3,a0@(0,d0:w) | set exc_pend bit of BIU
332 1.1 gwr Lfptnull:
333 1.1 gwr fmovem fpsr,sp@- | push fpsr as code argument
334 1.1 gwr frestore a0@ | restore state
335 1.1 gwr movl #T_FPERR,sp@- | push type arg
336 1.17 thorpej jra _ASM_LABEL(faultstkadj) | call trap and deal with stack cleanup
337 1.1 gwr
338 1.1 gwr /*
339 1.1 gwr * Other exceptions only cause four and six word stack frame and require
340 1.1 gwr * no post-trap stack adjustment.
341 1.1 gwr */
342 1.19 jeremy GLOBAL(badtrap)
343 1.1 gwr clrl sp@- | stack adjust count
344 1.1 gwr moveml #0xFFFF,sp@- | save std frame regs
345 1.19 jeremy jbsr _C_LABEL(straytrap) | report
346 1.1 gwr moveml sp@+,#0xFFFF | restore regs
347 1.1 gwr addql #4, sp | stack adjust count
348 1.19 jeremy jra _ASM_LABEL(rei) | all done
349 1.1 gwr
350 1.1 gwr /*
351 1.1 gwr * Trap 0 is for system calls
352 1.1 gwr */
353 1.19 jeremy GLOBAL(trap0)
354 1.1 gwr clrl sp@- | stack adjust count
355 1.1 gwr moveml #0xFFFF,sp@- | save user registers
356 1.1 gwr movl usp,a0 | save the user SP
357 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
358 1.1 gwr movl d0,sp@- | push syscall number
359 1.19 jeremy jbsr _C_LABEL(syscall) | handle it
360 1.1 gwr addql #4,sp | pop syscall arg
361 1.1 gwr movl sp@(FR_SP),a0 | grab and restore
362 1.1 gwr movl a0,usp | user SP
363 1.1 gwr moveml sp@+,#0x7FFF | restore most registers
364 1.1 gwr addql #8,sp | pop SP and stack adjust
365 1.19 jeremy jra _ASM_LABEL(rei) | all done
366 1.1 gwr
367 1.1 gwr /*
368 1.11 gwr * Trap 1 action depends on the emulation type:
369 1.11 gwr * NetBSD: sigreturn "syscall"
370 1.11 gwr * HPUX: user breakpoint
371 1.1 gwr */
372 1.19 jeremy GLOBAL(trap1)
373 1.1 gwr #if 0 /* COMPAT_HPUX */
374 1.1 gwr /* If process is HPUX, this is a user breakpoint. */
375 1.19 jeremy jne _C_LABEL(trap15) | HPUX user breakpoint
376 1.1 gwr #endif
377 1.19 jeremy jra _ASM_LABEL(sigreturn) | NetBSD
378 1.1 gwr
379 1.1 gwr /*
380 1.11 gwr * Trap 2 action depends on the emulation type:
381 1.11 gwr * NetBSD: user breakpoint -- See XXX below...
382 1.11 gwr * SunOS: cache flush
383 1.11 gwr * HPUX: sigreturn
384 1.1 gwr */
385 1.19 jeremy GLOBAL(trap2)
386 1.1 gwr #if 0 /* COMPAT_HPUX */
387 1.11 gwr /* If process is HPUX, this is a sigreturn call */
388 1.19 jeremy jne _ASM_LABEL(sigreturn)
389 1.1 gwr #endif
390 1.19 jeremy jra _C_LABEL(trap15) | NetBSD user breakpoint
391 1.11 gwr | XXX - Make NetBSD use trap 15 for breakpoints?
392 1.11 gwr | XXX - That way, we can allow this cache flush...
393 1.11 gwr | XXX SunOS trap #2 (and NetBSD?)
394 1.11 gwr | Flush on-chip cache (leave it enabled)
395 1.11 gwr | movl #CACHE_CLR,d0
396 1.11 gwr | movc d0,cacr
397 1.11 gwr | rte
398 1.11 gwr
399 1.11 gwr /*
400 1.11 gwr * Trap 12 is the entry point for the cachectl "syscall"
401 1.11 gwr * cachectl(command, addr, length)
402 1.11 gwr * command in d0, addr in a1, length in d1
403 1.11 gwr */
404 1.19 jeremy GLOBAL(trap12)
405 1.11 gwr movl d1,sp@- | push length
406 1.11 gwr movl a1,sp@- | push addr
407 1.11 gwr movl d0,sp@- | push command
408 1.19 jeremy jbsr _C_LABEL(cachectl) | do it
409 1.11 gwr lea sp@(12),sp | pop args
410 1.19 jeremy jra _ASM_LABEL(rei) | all done
411 1.1 gwr
412 1.1 gwr /*
413 1.1 gwr * Trace (single-step) trap. Kernel-mode is special.
414 1.1 gwr * User mode traps are simply passed on to trap().
415 1.1 gwr */
416 1.19 jeremy GLOBAL(trace)
417 1.1 gwr clrl sp@- | stack adjust count
418 1.1 gwr moveml #0xFFFF,sp@-
419 1.1 gwr moveq #T_TRACE,d0
420 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
421 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
422 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
423 1.1 gwr
424 1.1 gwr /*
425 1.1 gwr * Trap 15 is used for:
426 1.1 gwr * - GDB breakpoints (in user programs)
427 1.1 gwr * - KGDB breakpoints (in the kernel)
428 1.1 gwr * - trace traps for SUN binaries (not fully supported yet)
429 1.11 gwr * User mode traps are simply passed to trap().
430 1.1 gwr */
431 1.19 jeremy GLOBAL(trap15)
432 1.1 gwr clrl sp@- | stack adjust count
433 1.1 gwr moveml #0xFFFF,sp@-
434 1.1 gwr moveq #T_TRAP15,d0
435 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
436 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
437 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
438 1.1 gwr
439 1.19 jeremy ASLOCAL(kbrkpt)
440 1.11 gwr | Kernel-mode breakpoint or trace trap. (d0=trap_type)
441 1.1 gwr | Save the system sp rather than the user sp.
442 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
443 1.1 gwr lea sp@(FR_SIZE),a6 | Save stack pointer
444 1.1 gwr movl a6,sp@(FR_SP) | from before trap
445 1.1 gwr
446 1.1 gwr | If we are not on tmpstk switch to it.
447 1.1 gwr | (so debugger can change the stack pointer)
448 1.1 gwr movl a6,d1
449 1.19 jeremy cmpl #_ASM_LABEL(tmpstk),d1
450 1.1 gwr jls Lbrkpt2 | already on tmpstk
451 1.1 gwr | Copy frame to the temporary stack
452 1.1 gwr movl sp,a0 | a0=src
453 1.19 jeremy lea _ASM_LABEL(tmpstk)-96,a1 | a1=dst
454 1.1 gwr movl a1,sp | sp=new frame
455 1.1 gwr moveq #FR_SIZE,d1
456 1.1 gwr Lbrkpt1:
457 1.1 gwr movl a0@+,a1@+
458 1.1 gwr subql #4,d1
459 1.1 gwr bgt Lbrkpt1
460 1.1 gwr
461 1.1 gwr Lbrkpt2:
462 1.11 gwr | Call the trap handler for the kernel debugger.
463 1.6 gwr | Do not call trap() to handle it, so that we can
464 1.1 gwr | set breakpoints in trap() if we want. We know
465 1.1 gwr | the trap type is either T_TRACE or T_BREAKPOINT.
466 1.6 gwr movl d0,sp@- | push trap type
467 1.19 jeremy jbsr _C_LABEL(trap_kdebug)
468 1.6 gwr addql #4,sp | pop args
469 1.6 gwr
470 1.1 gwr | The stack pointer may have been modified, or
471 1.1 gwr | data below it modified (by kgdb push call),
472 1.1 gwr | so push the hardware frame at the current sp
473 1.1 gwr | before restoring registers and returning.
474 1.1 gwr movl sp@(FR_SP),a0 | modified sp
475 1.1 gwr lea sp@(FR_SIZE),a1 | end of our frame
476 1.1 gwr movl a1@-,a0@- | copy 2 longs with
477 1.1 gwr movl a1@-,a0@- | ... predecrement
478 1.1 gwr movl a0,sp@(FR_SP) | sp = h/w frame
479 1.1 gwr moveml sp@+,#0x7FFF | restore all but sp
480 1.1 gwr movl sp@,sp | ... and sp
481 1.1 gwr rte | all done
482 1.1 gwr
483 1.11 gwr /* Use common m68k sigreturn */
484 1.11 gwr #include <m68k/m68k/sigreturn.s>
485 1.1 gwr
486 1.1 gwr /*
487 1.1 gwr * Interrupt handlers. Most are auto-vectored,
488 1.1 gwr * and hard-wired the same way on all sun3 models.
489 1.1 gwr * Format in the stack is:
490 1.1 gwr * d0,d1,a0,a1, sr, pc, vo
491 1.1 gwr */
492 1.1 gwr
493 1.1 gwr #define INTERRUPT_SAVEREG \
494 1.1 gwr moveml #0xC0C0,sp@-
495 1.1 gwr
496 1.1 gwr #define INTERRUPT_RESTORE \
497 1.1 gwr moveml sp@+,#0x0303
498 1.1 gwr
499 1.1 gwr /*
500 1.1 gwr * This is the common auto-vector interrupt handler,
501 1.1 gwr * for which the CPU provides the vector=0x18+level.
502 1.1 gwr * These are installed in the interrupt vector table.
503 1.1 gwr */
504 1.1 gwr .align 2
505 1.19 jeremy GLOBAL(_isr_autovec)
506 1.1 gwr INTERRUPT_SAVEREG
507 1.19 jeremy jbsr _C_LABEL(isr_autovec)
508 1.1 gwr INTERRUPT_RESTORE
509 1.19 jeremy jra _ASM_LABEL(rei)
510 1.1 gwr
511 1.1 gwr /* clock: see clock.c */
512 1.1 gwr .align 2
513 1.19 jeremy GLOBAL(_isr_clock)
514 1.1 gwr INTERRUPT_SAVEREG
515 1.19 jeremy jbsr _C_LABEL(clock_intr)
516 1.1 gwr INTERRUPT_RESTORE
517 1.19 jeremy jra _ASM_LABEL(rei)
518 1.1 gwr
519 1.1 gwr | Handler for all vectored interrupts (i.e. VME interrupts)
520 1.1 gwr .align 2
521 1.19 jeremy GLOBAL(_isr_vectored)
522 1.1 gwr INTERRUPT_SAVEREG
523 1.19 jeremy jbsr _C_LABEL(isr_vectored)
524 1.1 gwr INTERRUPT_RESTORE
525 1.19 jeremy jra _ASM_LABEL(rei)
526 1.1 gwr
527 1.1 gwr #undef INTERRUPT_SAVEREG
528 1.1 gwr #undef INTERRUPT_RESTORE
529 1.1 gwr
530 1.1 gwr /* interrupt counters (needed by vmstat) */
531 1.19 jeremy GLOBAL(intrnames)
532 1.1 gwr .asciz "spur" | 0
533 1.1 gwr .asciz "lev1" | 1
534 1.1 gwr .asciz "lev2" | 2
535 1.1 gwr .asciz "lev3" | 3
536 1.1 gwr .asciz "lev4" | 4
537 1.1 gwr .asciz "clock" | 5
538 1.1 gwr .asciz "lev6" | 6
539 1.1 gwr .asciz "nmi" | 7
540 1.19 jeremy GLOBAL(eintrnames)
541 1.1 gwr
542 1.1 gwr .data
543 1.1 gwr .even
544 1.19 jeremy GLOBAL(intrcnt)
545 1.1 gwr .long 0,0,0,0,0,0,0,0,0,0
546 1.19 jeremy GLOBAL(eintrcnt)
547 1.1 gwr .text
548 1.1 gwr
549 1.1 gwr /*
550 1.1 gwr * Emulation of VAX REI instruction.
551 1.1 gwr *
552 1.1 gwr * This code is (mostly) un-altered from the hp300 code,
553 1.1 gwr * except that sun machines do not need a simulated SIR
554 1.1 gwr * because they have a real software interrupt register.
555 1.1 gwr *
556 1.1 gwr * This code deals with checking for and servicing ASTs
557 1.1 gwr * (profiling, scheduling) and software interrupts (network, softclock).
558 1.1 gwr * We check for ASTs first, just like the VAX. To avoid excess overhead
559 1.1 gwr * the T_ASTFLT handling code will also check for software interrupts so we
560 1.1 gwr * do not have to do it here. After identifying that we need an AST we
561 1.1 gwr * drop the IPL to allow device interrupts.
562 1.1 gwr *
563 1.1 gwr * This code is complicated by the fact that sendsig may have been called
564 1.1 gwr * necessitating a stack cleanup.
565 1.1 gwr */
566 1.1 gwr
567 1.19 jeremy ASGLOBAL(rei)
568 1.1 gwr #ifdef DIAGNOSTIC
569 1.19 jeremy tstl _C_LABEL(panicstr) | have we paniced?
570 1.1 gwr jne Ldorte | yes, do not make matters worse
571 1.1 gwr #endif
572 1.19 jeremy tstl _C_LABEL(astpending) | AST pending?
573 1.1 gwr jeq Ldorte | no, done
574 1.1 gwr Lrei1:
575 1.1 gwr btst #5,sp@ | yes, are we returning to user mode?
576 1.1 gwr jne Ldorte | no, done
577 1.1 gwr movw #PSL_LOWIPL,sr | lower SPL
578 1.1 gwr clrl sp@- | stack adjust
579 1.1 gwr moveml #0xFFFF,sp@- | save all registers
580 1.1 gwr movl usp,a1 | including
581 1.1 gwr movl a1,sp@(FR_SP) | the users SP
582 1.1 gwr clrl sp@- | VA == none
583 1.1 gwr clrl sp@- | code == none
584 1.1 gwr movl #T_ASTFLT,sp@- | type == async system trap
585 1.19 jeremy jbsr _C_LABEL(trap) | go handle it
586 1.1 gwr lea sp@(12),sp | pop value args
587 1.1 gwr movl sp@(FR_SP),a0 | restore user SP
588 1.1 gwr movl a0,usp | from save area
589 1.1 gwr movw sp@(FR_ADJ),d0 | need to adjust stack?
590 1.1 gwr jne Laststkadj | yes, go to it
591 1.1 gwr moveml sp@+,#0x7FFF | no, restore most user regs
592 1.1 gwr addql #8,sp | toss SP and stack adjust
593 1.1 gwr rte | and do real RTE
594 1.1 gwr Laststkadj:
595 1.1 gwr lea sp@(FR_HW),a1 | pointer to HW frame
596 1.1 gwr addql #8,a1 | source pointer
597 1.1 gwr movl a1,a0 | source
598 1.1 gwr addw d0,a0 | + hole size = dest pointer
599 1.1 gwr movl a1@-,a0@- | copy
600 1.1 gwr movl a1@-,a0@- | 8 bytes
601 1.1 gwr movl a0,sp@(FR_SP) | new SSP
602 1.1 gwr moveml sp@+,#0x7FFF | restore user registers
603 1.1 gwr movl sp@,sp | and our SP
604 1.1 gwr Ldorte:
605 1.1 gwr rte | real return
606 1.1 gwr
607 1.1 gwr /*
608 1.1 gwr * Initialization is at the beginning of this file, because the
609 1.1 gwr * kernel entry point needs to be at zero for compatibility with
610 1.1 gwr * the Sun boot loader. This works on Sun machines because the
611 1.1 gwr * interrupt vector table for reset is NOT at address zero.
612 1.1 gwr * (The MMU has a "boot" bit that forces access to the PROM)
613 1.1 gwr */
614 1.1 gwr
615 1.1 gwr /*
616 1.16 thorpej * Use common m68k sigcode.
617 1.1 gwr */
618 1.16 thorpej #include <m68k/m68k/sigcode.s>
619 1.16 thorpej
620 1.1 gwr .text
621 1.1 gwr
622 1.1 gwr /*
623 1.1 gwr * Primitives
624 1.1 gwr */
625 1.1 gwr
626 1.1 gwr /*
627 1.12 thorpej * Use common m68k support routines.
628 1.1 gwr */
629 1.12 thorpej #include <m68k/m68k/support.s>
630 1.1 gwr
631 1.19 jeremy BSS(want_resched,4)
632 1.1 gwr
633 1.1 gwr /*
634 1.15 thorpej * Use common m68k process manipulation routines.
635 1.1 gwr */
636 1.15 thorpej #include <m68k/m68k/proc_subr.s>
637 1.1 gwr
638 1.1 gwr | Message for Lbadsw panic
639 1.1 gwr Lsw0:
640 1.1 gwr .asciz "cpu_switch"
641 1.1 gwr .even
642 1.1 gwr
643 1.1 gwr .data
644 1.19 jeremy GLOBAL(masterpaddr) | XXX compatibility (debuggers)
645 1.19 jeremy GLOBAL(curpcb)
646 1.1 gwr .long 0
647 1.19 jeremy ASBSS(nullpcb,SIZEOF_PCB)
648 1.1 gwr .text
649 1.1 gwr
650 1.1 gwr /*
651 1.1 gwr * At exit of a process, do a cpu_switch for the last time.
652 1.1 gwr * Switch to a safe stack and PCB, and deallocate the process's resources.
653 1.1 gwr * The ipl is high enough to prevent the memory from being reallocated.
654 1.1 gwr */
655 1.1 gwr ENTRY(switch_exit)
656 1.1 gwr movl sp@(4),a0 | struct proc *p
657 1.19 jeremy | save state into garbage pcb
658 1.19 jeremy movl #_ASM_LABEL(nullpcb),_C_LABEL(curpcb)
659 1.19 jeremy lea _ASM_LABEL(tmpstk),sp | goto a tmp stack
660 1.1 gwr movl a0,sp@- | pass proc ptr down
661 1.1 gwr
662 1.1 gwr /* Free old process's u-area. */
663 1.1 gwr movl #USPACE,sp@- | size of u-area
664 1.1 gwr movl a0@(P_ADDR),sp@- | address of process's u-area
665 1.19 jeremy movl _C_LABEL(kernel_map),sp@- | map it was allocated in
666 1.27 gwr #if defined(UVM)
667 1.27 gwr jbsr _C_LABEL(uvm_km_free) | deallocate it
668 1.27 gwr #else
669 1.19 jeremy jbsr _C_LABEL(kmem_free) | deallocate it
670 1.27 gwr #endif
671 1.1 gwr lea sp@(12),sp | pop args
672 1.1 gwr
673 1.19 jeremy jra _C_LABEL(cpu_switch)
674 1.1 gwr
675 1.1 gwr /*
676 1.1 gwr * When no processes are on the runq, cpu_switch() branches to idle
677 1.1 gwr * to wait for something to come ready.
678 1.1 gwr */
679 1.1 gwr .data
680 1.19 jeremy GLOBAL(Idle_count)
681 1.1 gwr .long 0
682 1.1 gwr .text
683 1.1 gwr
684 1.1 gwr Lidle:
685 1.1 gwr stop #PSL_LOWIPL
686 1.19 jeremy GLOBAL(_Idle) | See clock.c
687 1.1 gwr movw #PSL_HIGHIPL,sr
688 1.19 jeremy addql #1, _C_LABEL(Idle_count)
689 1.19 jeremy tstl _C_LABEL(whichqs)
690 1.1 gwr jeq Lidle
691 1.1 gwr movw #PSL_LOWIPL,sr
692 1.1 gwr jra Lsw1
693 1.1 gwr
694 1.1 gwr Lbadsw:
695 1.1 gwr movl #Lsw0,sp@-
696 1.19 jeremy jbsr _C_LABEL(panic)
697 1.1 gwr /*NOTREACHED*/
698 1.1 gwr
699 1.1 gwr /*
700 1.1 gwr * cpu_switch()
701 1.1 gwr * Hacked for sun3
702 1.1 gwr * XXX - Arg 1 is a proc pointer (curproc) but this doesn't use it.
703 1.1 gwr * XXX - Sould we use p->p_addr instead of curpcb? -gwr
704 1.1 gwr */
705 1.1 gwr ENTRY(cpu_switch)
706 1.19 jeremy movl _C_LABEL(curpcb),a1 | current pcb
707 1.1 gwr movw sr,a1@(PCB_PS) | save sr before changing ipl
708 1.1 gwr #ifdef notyet
709 1.19 jeremy movl _C_LABEL(curproc),sp@- | remember last proc running
710 1.1 gwr #endif
711 1.19 jeremy clrl _C_LABEL(curproc)
712 1.1 gwr
713 1.1 gwr Lsw1:
714 1.1 gwr /*
715 1.1 gwr * Find the highest-priority queue that isn't empty,
716 1.1 gwr * then take the first proc from that queue.
717 1.1 gwr */
718 1.1 gwr clrl d0
719 1.19 jeremy lea _C_LABEL(whichqs),a0
720 1.1 gwr movl a0@,d1
721 1.1 gwr Lswchk:
722 1.1 gwr btst d0,d1
723 1.1 gwr jne Lswfnd
724 1.1 gwr addqb #1,d0
725 1.1 gwr cmpb #32,d0
726 1.1 gwr jne Lswchk
727 1.19 jeremy jra _C_LABEL(_Idle)
728 1.1 gwr Lswfnd:
729 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
730 1.1 gwr movl a0@,d1 | and check again...
731 1.1 gwr bclr d0,d1
732 1.1 gwr jeq Lsw1 | proc moved, rescan
733 1.1 gwr movl d1,a0@ | update whichqs
734 1.1 gwr moveq #1,d1 | double check for higher priority
735 1.1 gwr lsll d0,d1 | process (which may have snuck in
736 1.1 gwr subql #1,d1 | while we were finding this one)
737 1.1 gwr andl a0@,d1
738 1.1 gwr jeq Lswok | no one got in, continue
739 1.1 gwr movl a0@,d1
740 1.1 gwr bset d0,d1 | otherwise put this one back
741 1.1 gwr movl d1,a0@
742 1.1 gwr jra Lsw1 | and rescan
743 1.1 gwr Lswok:
744 1.1 gwr movl d0,d1
745 1.1 gwr lslb #3,d1 | convert queue number to index
746 1.1 gwr addl #_qs,d1 | locate queue (q)
747 1.1 gwr movl d1,a1
748 1.1 gwr cmpl a1@(P_FORW),a1 | anyone on queue?
749 1.1 gwr jeq Lbadsw | no, panic
750 1.1 gwr movl a1@(P_FORW),a0 | p = q->p_forw
751 1.1 gwr movl a0@(P_FORW),a1@(P_FORW) | q->p_forw = p->p_forw
752 1.1 gwr movl a0@(P_FORW),a1 | q = p->p_forw
753 1.1 gwr movl a0@(P_BACK),a1@(P_BACK) | q->p_back = p->p_back
754 1.1 gwr cmpl a0@(P_FORW),d1 | anyone left on queue?
755 1.1 gwr jeq Lsw2 | no, skip
756 1.19 jeremy movl _C_LABEL(whichqs),d1
757 1.1 gwr bset d0,d1 | yes, reset bit
758 1.19 jeremy movl d1,_C_LABEL(whichqs)
759 1.1 gwr Lsw2:
760 1.19 jeremy movl a0,_C_LABEL(curproc)
761 1.19 jeremy clrl _C_LABEL(want_resched)
762 1.1 gwr #ifdef notyet
763 1.1 gwr movl sp@+,a1 | XXX - Make this work!
764 1.1 gwr cmpl a0,a1 | switching to same proc?
765 1.1 gwr jeq Lswdone | yes, skip save and restore
766 1.1 gwr #endif
767 1.1 gwr /*
768 1.1 gwr * Save state of previous process in its pcb.
769 1.1 gwr */
770 1.19 jeremy movl _C_LABEL(curpcb),a1
771 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
772 1.1 gwr movl usp,a2 | grab USP (a2 has been saved)
773 1.1 gwr movl a2,a1@(PCB_USP) | and save it
774 1.1 gwr
775 1.19 jeremy tstl _C_LABEL(fputype) | Do we have an fpu?
776 1.1 gwr jeq Lswnofpsave | No? Then don't try save.
777 1.1 gwr lea a1@(PCB_FPCTX),a2 | pointer to FP save area
778 1.1 gwr fsave a2@ | save FP state
779 1.1 gwr tstb a2@ | null state frame?
780 1.1 gwr jeq Lswnofpsave | yes, all done
781 1.1 gwr fmovem fp0-fp7,a2@(FPF_REGS) | save FP general regs
782 1.1 gwr fmovem fpcr/fpsr/fpi,a2@(FPF_FPCR) | save FP control regs
783 1.1 gwr Lswnofpsave:
784 1.1 gwr
785 1.6 gwr /*
786 1.6 gwr * Now that we have saved all the registers that must be
787 1.6 gwr * preserved, we are free to use those registers until
788 1.6 gwr * we load the registers for the switched-to process.
789 1.6 gwr * In this section, keep: a0=curproc, a1=curpcb
790 1.6 gwr */
791 1.6 gwr
792 1.1 gwr #ifdef DIAGNOSTIC
793 1.1 gwr tstl a0@(P_WCHAN)
794 1.1 gwr jne Lbadsw
795 1.1 gwr cmpb #SRUN,a0@(P_STAT)
796 1.1 gwr jne Lbadsw
797 1.1 gwr #endif
798 1.1 gwr clrl a0@(P_BACK) | clear back link
799 1.1 gwr movl a0@(P_ADDR),a1 | get p_addr
800 1.19 jeremy movl a1,_C_LABEL(curpcb)
801 1.1 gwr
802 1.8 gwr /*
803 1.8 gwr * Load the new VM context (new MMU root pointer)
804 1.8 gwr */
805 1.8 gwr movl a0@(P_VMSPACE),a2 | vm = p->p_vmspace
806 1.8 gwr #ifdef DIAGNOSTIC
807 1.20 gwr tstl a2 | vm == VM_MAP_NULL?
808 1.8 gwr jeq Lbadsw | panic
809 1.8 gwr #endif
810 1.8 gwr #ifdef PMAP_DEBUG
811 1.25 gwr /* When debugging just call _pmap_switch(). */
812 1.25 gwr movl a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
813 1.25 gwr pea a2@ | push pmap
814 1.25 gwr jbsr _C_LABEL(_pmap_switch) | _pmap_switch(pmap)
815 1.8 gwr addql #4,sp
816 1.19 jeremy movl _C_LABEL(curpcb),a1 | restore p_addr
817 1.8 gwr #else
818 1.25 gwr /* Otherwise, use this inline version. */
819 1.20 gwr lea _C_LABEL(kernel_crp), a3 | our CPU Root Ptr. (CRP)
820 1.20 gwr movl a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
821 1.8 gwr movl a2@(PM_A_PHYS),d0 | phys = pmap->pm_a_phys
822 1.9 jeremy cmpl a3@(4),d0 | == kernel_crp.rp_addr ?
823 1.8 gwr jeq Lsame_mmuctx | skip loadcrp/flush
824 1.8 gwr /* OK, it is a new MMU context. Load it up. */
825 1.9 jeremy movl d0,a3@(4)
826 1.1 gwr movl #CACHE_CLR,d0
827 1.1 gwr movc d0,cacr | invalidate cache(s)
828 1.1 gwr pflusha | flush entire TLB
829 1.8 gwr pmove a3@,crp | load new user root pointer
830 1.8 gwr Lsame_mmuctx:
831 1.8 gwr #endif
832 1.1 gwr
833 1.6 gwr /*
834 1.6 gwr * Reload the registers for the new process.
835 1.6 gwr * After this point we can only use d0,d1,a0,a1
836 1.6 gwr */
837 1.6 gwr moveml a1@(PCB_REGS),#0xFCFC | reload registers
838 1.1 gwr movl a1@(PCB_USP),a0
839 1.1 gwr movl a0,usp | and USP
840 1.1 gwr
841 1.19 jeremy tstl _C_LABEL(fputype) | If we don't have an fpu,
842 1.1 gwr jeq Lres_skip | don't try to restore it.
843 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
844 1.1 gwr tstb a0@ | null state frame?
845 1.1 gwr jeq Lresfprest | yes, easy
846 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
847 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
848 1.1 gwr Lresfprest:
849 1.1 gwr frestore a0@ | restore state
850 1.1 gwr Lres_skip:
851 1.1 gwr movw a1@(PCB_PS),d0 | no, restore PS
852 1.1 gwr #ifdef DIAGNOSTIC
853 1.1 gwr btst #13,d0 | supervisor mode?
854 1.1 gwr jeq Lbadsw | no? panic!
855 1.1 gwr #endif
856 1.1 gwr movw d0,sr | OK, restore PS
857 1.1 gwr moveq #1,d0 | return 1 (for alternate returns)
858 1.1 gwr rts
859 1.1 gwr
860 1.1 gwr /*
861 1.1 gwr * savectx(pcb)
862 1.1 gwr * Update pcb, saving current processor state.
863 1.1 gwr */
864 1.1 gwr ENTRY(savectx)
865 1.1 gwr movl sp@(4),a1
866 1.1 gwr movw sr,a1@(PCB_PS)
867 1.1 gwr movl usp,a0 | grab USP
868 1.1 gwr movl a0,a1@(PCB_USP) | and save it
869 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
870 1.1 gwr
871 1.19 jeremy tstl _C_LABEL(fputype) | Do we have FPU?
872 1.1 gwr jeq Lsavedone | No? Then don't save state.
873 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
874 1.1 gwr fsave a0@ | save FP state
875 1.1 gwr tstb a0@ | null state frame?
876 1.1 gwr jeq Lsavedone | yes, all done
877 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
878 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
879 1.1 gwr Lsavedone:
880 1.1 gwr moveq #0,d0 | return 0
881 1.1 gwr rts
882 1.1 gwr
883 1.20 gwr /* suline() */
884 1.1 gwr
885 1.1 gwr #ifdef DEBUG
886 1.1 gwr .data
887 1.19 jeremy ASGLOBAL(fulltflush)
888 1.1 gwr .long 0
889 1.19 jeremy ASGLOBAL(fullcflush)
890 1.1 gwr .long 0
891 1.1 gwr .text
892 1.1 gwr #endif
893 1.1 gwr
894 1.1 gwr /*
895 1.1 gwr * Invalidate entire TLB.
896 1.1 gwr */
897 1.1 gwr ENTRY(TBIA)
898 1.19 jeremy _C_LABEL(_TBIA):
899 1.1 gwr pflusha
900 1.1 gwr movl #DC_CLEAR,d0
901 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
902 1.1 gwr rts
903 1.1 gwr
904 1.1 gwr /*
905 1.1 gwr * Invalidate any TLB entry for given VA (TB Invalidate Single)
906 1.1 gwr */
907 1.1 gwr ENTRY(TBIS)
908 1.1 gwr #ifdef DEBUG
909 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
910 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush entire TLB
911 1.1 gwr #endif
912 1.1 gwr movl sp@(4),a0
913 1.1 gwr pflush #0,#0,a0@ | flush address from both sides
914 1.1 gwr movl #DC_CLEAR,d0
915 1.1 gwr movc d0,cacr | invalidate on-chip data cache
916 1.1 gwr rts
917 1.1 gwr
918 1.1 gwr /*
919 1.1 gwr * Invalidate supervisor side of TLB
920 1.1 gwr */
921 1.1 gwr ENTRY(TBIAS)
922 1.1 gwr #ifdef DEBUG
923 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
924 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
925 1.1 gwr #endif
926 1.1 gwr pflush #4,#4 | flush supervisor TLB entries
927 1.1 gwr movl #DC_CLEAR,d0
928 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
929 1.1 gwr rts
930 1.1 gwr
931 1.1 gwr /*
932 1.1 gwr * Invalidate user side of TLB
933 1.1 gwr */
934 1.1 gwr ENTRY(TBIAU)
935 1.1 gwr #ifdef DEBUG
936 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
937 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
938 1.1 gwr #endif
939 1.1 gwr pflush #0,#4 | flush user TLB entries
940 1.1 gwr movl #DC_CLEAR,d0
941 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
942 1.1 gwr rts
943 1.1 gwr
944 1.1 gwr /*
945 1.1 gwr * Invalidate instruction cache
946 1.1 gwr */
947 1.1 gwr ENTRY(ICIA)
948 1.1 gwr movl #IC_CLEAR,d0
949 1.1 gwr movc d0,cacr | invalidate i-cache
950 1.1 gwr rts
951 1.1 gwr
952 1.1 gwr /*
953 1.1 gwr * Invalidate data cache.
954 1.1 gwr * NOTE: we do not flush 68030 on-chip cache as there are no aliasing
955 1.1 gwr * problems with DC_WA. The only cases we have to worry about are context
956 1.1 gwr * switch and TLB changes, both of which are handled "in-line" in resume
957 1.1 gwr * and TBI*.
958 1.1 gwr */
959 1.1 gwr ENTRY(DCIA)
960 1.1 gwr __DCIA:
961 1.1 gwr rts
962 1.1 gwr
963 1.1 gwr ENTRY(DCIS)
964 1.1 gwr __DCIS:
965 1.1 gwr rts
966 1.1 gwr
967 1.1 gwr /*
968 1.1 gwr * Invalidate data cache.
969 1.1 gwr */
970 1.1 gwr ENTRY(DCIU)
971 1.11 gwr movl #DC_CLEAR,d0
972 1.11 gwr movc d0,cacr | invalidate on-chip d-cache
973 1.1 gwr rts
974 1.1 gwr
975 1.1 gwr /* ICPL, ICPP, DCPL, DCPP, DCPA, DCFL, DCFP */
976 1.1 gwr
977 1.1 gwr ENTRY(PCIA)
978 1.1 gwr movl #DC_CLEAR,d0
979 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
980 1.1 gwr rts
981 1.1 gwr
982 1.1 gwr ENTRY(ecacheon)
983 1.1 gwr rts
984 1.1 gwr
985 1.1 gwr ENTRY(ecacheoff)
986 1.1 gwr rts
987 1.1 gwr
988 1.1 gwr /*
989 1.1 gwr * Get callers current SP value.
990 1.1 gwr * Note that simply taking the address of a local variable in a C function
991 1.1 gwr * doesn't work because callee saved registers may be outside the stack frame
992 1.1 gwr * defined by A6 (e.g. GCC generated code).
993 1.20 gwr *
994 1.1 gwr * [I don't think the ENTRY() macro will do the right thing with this -- glass]
995 1.1 gwr */
996 1.19 jeremy GLOBAL(getsp)
997 1.1 gwr movl sp,d0 | get current SP
998 1.1 gwr addql #4,d0 | compensate for return address
999 1.1 gwr rts
1000 1.1 gwr
1001 1.1 gwr ENTRY(getsfc)
1002 1.1 gwr movc sfc,d0
1003 1.1 gwr rts
1004 1.1 gwr
1005 1.1 gwr ENTRY(getdfc)
1006 1.1 gwr movc dfc,d0
1007 1.1 gwr rts
1008 1.1 gwr
1009 1.1 gwr ENTRY(getvbr)
1010 1.1 gwr movc vbr, d0
1011 1.1 gwr rts
1012 1.1 gwr
1013 1.1 gwr ENTRY(setvbr)
1014 1.1 gwr movl sp@(4), d0
1015 1.1 gwr movc d0, vbr
1016 1.1 gwr rts
1017 1.1 gwr
1018 1.1 gwr /*
1019 1.1 gwr * Load a new CPU Root Pointer (CRP) into the MMU.
1020 1.2 gwr * void loadcrp(struct mmu_rootptr *);
1021 1.1 gwr */
1022 1.1 gwr ENTRY(loadcrp)
1023 1.1 gwr movl sp@(4),a0 | arg1: &CRP
1024 1.1 gwr movl #CACHE_CLR,d0
1025 1.1 gwr movc d0,cacr | invalidate cache(s)
1026 1.1 gwr pflusha | flush entire TLB
1027 1.1 gwr pmove a0@,crp | load new user root pointer
1028 1.10 gwr rts
1029 1.10 gwr
1030 1.10 gwr /*
1031 1.10 gwr * Get the physical address of the PTE for a given VA.
1032 1.10 gwr */
1033 1.10 gwr ENTRY(ptest_addr)
1034 1.10 gwr movl sp@(4),a0 | VA
1035 1.10 gwr ptestr #5,a0@,#7,a1 | a1 = addr of PTE
1036 1.10 gwr movl a1,d0
1037 1.1 gwr rts
1038 1.1 gwr
1039 1.1 gwr /*
1040 1.1 gwr * Set processor priority level calls. Most are implemented with
1041 1.1 gwr * inline asm expansions. However, we need one instantiation here
1042 1.1 gwr * in case some non-optimized code makes external references.
1043 1.21 gwr * Most places will use the inlined functions param.h supplies.
1044 1.1 gwr */
1045 1.1 gwr
1046 1.21 gwr ENTRY(_getsr)
1047 1.21 gwr clrl d0
1048 1.21 gwr movw sr,d0
1049 1.21 gwr rts
1050 1.21 gwr
1051 1.1 gwr ENTRY(_spl)
1052 1.1 gwr clrl d0
1053 1.1 gwr movw sr,d0
1054 1.21 gwr movl sp@(4),d1
1055 1.1 gwr movw d1,sr
1056 1.1 gwr rts
1057 1.1 gwr
1058 1.21 gwr ENTRY(_splraise)
1059 1.21 gwr clrl d0
1060 1.21 gwr movw sr,d0
1061 1.21 gwr movl d0,d1
1062 1.21 gwr andl #PSL_HIGHIPL,d1 | old &= PSL_HIGHIPL
1063 1.21 gwr cmpl sp@(4),d1 | (old - new)
1064 1.21 gwr bge Lsplr
1065 1.21 gwr movl sp@(4),d1
1066 1.21 gwr movw d1,sr
1067 1.21 gwr Lsplr:
1068 1.1 gwr rts
1069 1.1 gwr
1070 1.1 gwr /*
1071 1.1 gwr * Save and restore 68881 state.
1072 1.1 gwr */
1073 1.1 gwr ENTRY(m68881_save)
1074 1.1 gwr movl sp@(4),a0 | save area pointer
1075 1.1 gwr fsave a0@ | save state
1076 1.1 gwr tstb a0@ | null state frame?
1077 1.1 gwr jeq Lm68881sdone | yes, all done
1078 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
1079 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
1080 1.1 gwr Lm68881sdone:
1081 1.1 gwr rts
1082 1.1 gwr
1083 1.1 gwr ENTRY(m68881_restore)
1084 1.1 gwr movl sp@(4),a0 | save area pointer
1085 1.1 gwr tstb a0@ | null state frame?
1086 1.1 gwr jeq Lm68881rdone | yes, easy
1087 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
1088 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
1089 1.1 gwr Lm68881rdone:
1090 1.1 gwr frestore a0@ | restore state
1091 1.1 gwr rts
1092 1.1 gwr
1093 1.1 gwr /*
1094 1.1 gwr * _delay(unsigned N)
1095 1.1 gwr * Delay for at least (N/256) microseconds.
1096 1.1 gwr * This routine depends on the variable: delay_divisor
1097 1.1 gwr * which should be set based on the CPU clock rate.
1098 1.26 gwr * XXX: Currently this is set based on the CPU model,
1099 1.26 gwr * XXX: but this should be determined at run time...
1100 1.1 gwr */
1101 1.19 jeremy GLOBAL(_delay)
1102 1.1 gwr | d0 = arg = (usecs << 8)
1103 1.1 gwr movl sp@(4),d0
1104 1.1 gwr | d1 = delay_divisor;
1105 1.19 jeremy movl _C_LABEL(delay_divisor),d1
1106 1.1 gwr L_delay:
1107 1.1 gwr subl d1,d0
1108 1.1 gwr jgt L_delay
1109 1.1 gwr rts
1110 1.1 gwr
1111 1.1 gwr
1112 1.1 gwr | Define some addresses, mostly so DDB can print useful info.
1113 1.24 gwr | Not using _C_LABEL() here because these symbols are never
1114 1.24 gwr | referenced by any C code, and if the leading underscore
1115 1.24 gwr | ever goes away, these lines turn into syntax errors...
1116 1.24 gwr .set _KERNBASE,KERNBASE
1117 1.26 gwr .set _MONSTART,SUN3X_MONSTART
1118 1.26 gwr .set _PROM_BASE,SUN3X_PROM_BASE
1119 1.26 gwr .set _MONEND,SUN3X_MONEND
1120 1.1 gwr
1121 1.1 gwr |The end!
1122