locore.s revision 1.29 1 1.29 thorpej /* $NetBSD: locore.s,v 1.29 1998/09/30 23:01:31 thorpej Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1988 University of Utah.
5 1.1 gwr * Copyright (c) 1980, 1990, 1993
6 1.1 gwr * The Regents of the University of California. All rights reserved.
7 1.1 gwr *
8 1.1 gwr * This code is derived from software contributed to Berkeley by
9 1.1 gwr * the Systems Programming Group of the University of Utah Computer
10 1.1 gwr * Science Department.
11 1.1 gwr *
12 1.1 gwr * Redistribution and use in source and binary forms, with or without
13 1.1 gwr * modification, are permitted provided that the following conditions
14 1.1 gwr * are met:
15 1.1 gwr * 1. Redistributions of source code must retain the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer.
17 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 gwr * notice, this list of conditions and the following disclaimer in the
19 1.1 gwr * documentation and/or other materials provided with the distribution.
20 1.1 gwr * 3. All advertising materials mentioning features or use of this software
21 1.1 gwr * must display the following acknowledgement:
22 1.1 gwr * This product includes software developed by the University of
23 1.1 gwr * California, Berkeley and its contributors.
24 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
25 1.1 gwr * may be used to endorse or promote products derived from this software
26 1.1 gwr * without specific prior written permission.
27 1.1 gwr *
28 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 gwr * SUCH DAMAGE.
39 1.1 gwr *
40 1.1 gwr * from: Utah $Hdr: locore.s 1.66 92/12/22$
41 1.1 gwr * @(#)locore.s 8.6 (Berkeley) 5/27/94
42 1.1 gwr */
43 1.1 gwr
44 1.29 thorpej #include "opt_compat_netbsd.h"
45 1.27 gwr #include "opt_uvm.h"
46 1.27 gwr
47 1.1 gwr #include "assym.h"
48 1.17 thorpej #include <machine/asm.h>
49 1.1 gwr #include <machine/trap.h>
50 1.1 gwr
51 1.1 gwr | Remember this is a fun project!
52 1.1 gwr
53 1.1 gwr .data
54 1.19 jeremy GLOBAL(mon_crp)
55 1.1 gwr .long 0,0
56 1.1 gwr
57 1.1 gwr | This is for kvm_mkdb, and should be the address of the beginning
58 1.1 gwr | of the kernel text segment (not necessarily the same as kernbase).
59 1.1 gwr .text
60 1.19 jeremy GLOBAL(kernel_text)
61 1.1 gwr
62 1.1 gwr | This is the entry point, as well as the end of the temporary stack
63 1.1 gwr | used during process switch (one 8K page ending at start)
64 1.19 jeremy ASGLOBAL(tmpstk)
65 1.20 gwr ASGLOBAL(start)
66 1.19 jeremy
67 1.1 gwr | The first step, after disabling interrupts, is to map enough of the kernel
68 1.1 gwr | into high virtual address space so that we can use position dependent code.
69 1.1 gwr | This is a tricky task on the sun3x because the MMU is already enabled and
70 1.1 gwr | the ROM monitor provides no indication of where the root MMU table is mapped.
71 1.1 gwr | Therefore we must use one of the 68030's 'transparent translation' registers
72 1.1 gwr | to define a range in the address space where the MMU translation is
73 1.1 gwr | turned off. Once this is complete we can modify the MMU table directly
74 1.1 gwr | without the need for it to be mapped into virtual memory.
75 1.1 gwr | All code must be position independent until otherwise noted, as the
76 1.1 gwr | boot loader has loaded us into low memory but all the symbols in this
77 1.1 gwr | code have been linked high.
78 1.1 gwr movw #PSL_HIGHIPL, sr | no interrupts
79 1.1 gwr movl #KERNBASE, a5 | for vtop conversion
80 1.19 jeremy lea _C_LABEL(mon_crp), a0 | where to store the CRP
81 1.1 gwr subl a5, a0
82 1.1 gwr | Note: borrowing mon_crp for tt0 setup...
83 1.1 gwr movl #0x3F8107, a0@ | map the low 1GB v=p with the
84 1.14 jeremy .long 0xf0100800 | transparent translation reg0
85 1.14 jeremy | [ pmove a0@, tt0 ]
86 1.1 gwr | In order to map the kernel into high memory we will copy the root table
87 1.1 gwr | entry which maps the 16 megabytes of memory starting at 0x0 into the
88 1.1 gwr | entry which maps the 16 megabytes starting at KERNBASE.
89 1.1 gwr pmove crp, a0@ | Get monitor CPU root pointer
90 1.1 gwr movl a0@(4), a1 | 2nd word is PA of level A table
91 1.1 gwr
92 1.1 gwr movl a1, a0 | compute the descriptor address
93 1.1 gwr addl #0x3e0, a1 | for VA starting at KERNBASE
94 1.1 gwr movl a0@, a1@ | copy descriptor type
95 1.1 gwr movl a0@(4), a1@(4) | copy physical address
96 1.1 gwr
97 1.1 gwr | Kernel is now double mapped at zero and KERNBASE.
98 1.1 gwr | Force a long jump to the relocated code (high VA).
99 1.1 gwr movl #IC_CLEAR, d0 | Flush the I-cache
100 1.1 gwr movc d0, cacr
101 1.1 gwr jmp L_high_code:l | long jump
102 1.1 gwr
103 1.1 gwr L_high_code:
104 1.1 gwr | We are now running in the correctly relocated kernel, so
105 1.1 gwr | we are no longer restricted to position-independent code.
106 1.1 gwr | It is handy to leave transparent translation enabled while
107 1.20 gwr | for the low 1GB while _bootstrap() is doing its thing.
108 1.1 gwr
109 1.1 gwr | Do bootstrap stuff needed before main() gets called.
110 1.1 gwr | Our boot loader leaves a copy of the kernel's exec header
111 1.1 gwr | just before the start of the kernel text segment, so the
112 1.1 gwr | kernel can sanity-check the DDB symbols at [end...esym].
113 1.20 gwr | Pass the struct exec at tmpstk-32 to _bootstrap().
114 1.7 gwr | Also, make sure the initial frame pointer is zero so that
115 1.7 gwr | the backtrace algorithm used by KGDB terminates nicely.
116 1.19 jeremy lea _ASM_LABEL(tmpstk)-32, sp
117 1.6 gwr movl #0,a6
118 1.26 gwr jsr _C_LABEL(_bootstrap) | See locore2.c
119 1.1 gwr
120 1.1 gwr | Now turn off the transparent translation of the low 1GB.
121 1.1 gwr | (this also flushes the ATC)
122 1.1 gwr clrl sp@-
123 1.14 jeremy .long 0xf0170800 | pmove sp@,tt0
124 1.1 gwr addql #4,sp
125 1.1 gwr
126 1.20 gwr | Now that _bootstrap() is done using the PROM functions,
127 1.1 gwr | we can safely set the sfc/dfc to something != FC_CONTROL
128 1.1 gwr moveq #FC_USERD, d0 | make movs access "user data"
129 1.1 gwr movc d0, sfc | space for copyin/copyout
130 1.1 gwr movc d0, dfc
131 1.1 gwr
132 1.1 gwr | Setup process zero user/kernel stacks.
133 1.19 jeremy movl _C_LABEL(proc0paddr),a1 | get proc0 pcb addr
134 1.1 gwr lea a1@(USPACE-4),sp | set SSP to last word
135 1.1 gwr movl #USRSTACK-4,a2
136 1.1 gwr movl a2,usp | init user SP
137 1.1 gwr
138 1.20 gwr | Note curpcb was already set in _bootstrap().
139 1.1 gwr | Will do fpu initialization during autoconfig (see fpu.c)
140 1.1 gwr | The interrupt vector table and stack are now ready.
141 1.1 gwr | Interrupts will be enabled later, AFTER autoconfiguration
142 1.1 gwr | is finished, to avoid spurrious interrupts.
143 1.1 gwr
144 1.1 gwr /*
145 1.1 gwr * Final preparation for calling main.
146 1.1 gwr *
147 1.1 gwr * Create a fake exception frame that returns to user mode,
148 1.1 gwr * and save its address in p->p_md.md_regs for cpu_fork().
149 1.1 gwr * The new frames for process 1 and 2 will be adjusted by
150 1.1 gwr * cpu_set_kpc() to arrange for a call to a kernel function
151 1.1 gwr * before the new process does its rte out to user mode.
152 1.1 gwr */
153 1.6 gwr clrw sp@- | tf_format,tf_vector
154 1.6 gwr clrl sp@- | tf_pc (filled in later)
155 1.6 gwr movw #PSL_USER,sp@- | tf_sr for user mode
156 1.6 gwr clrl sp@- | tf_stackadj
157 1.6 gwr lea sp@(-64),sp | tf_regs[16]
158 1.6 gwr movl sp,a1 | a1=trapframe
159 1.19 jeremy lea _C_LABEL(proc0),a0 | proc0.p_md.md_regs =
160 1.6 gwr movl a1,a0@(P_MDREGS) | trapframe
161 1.6 gwr movl a2,a1@(FR_SP) | a2 == usp (from above)
162 1.7 gwr pea a1@ | push &trapframe
163 1.19 jeremy jbsr _C_LABEL(main) | main(&trapframe)
164 1.7 gwr addql #4,sp | help DDB backtrace
165 1.1 gwr trap #15 | should not get here
166 1.1 gwr
167 1.1 gwr | This is used by cpu_fork() to return to user mode.
168 1.1 gwr | It is called with SP pointing to a struct trapframe.
169 1.19 jeremy GLOBAL(proc_do_uret)
170 1.1 gwr movl sp@(FR_SP),a0 | grab and load
171 1.1 gwr movl a0,usp | user SP
172 1.1 gwr moveml sp@+,#0x7FFF | load most registers (all but SSP)
173 1.1 gwr addql #8,sp | pop SSP and stack adjust count
174 1.1 gwr rte
175 1.1 gwr
176 1.1 gwr /*
177 1.1 gwr * proc_trampoline:
178 1.1 gwr * This is used by cpu_set_kpc() to "push" a function call onto the
179 1.1 gwr * kernel stack of some process, very much like a signal delivery.
180 1.1 gwr * When we get here, the stack has:
181 1.1 gwr *
182 1.1 gwr * SP+8: switchframe from before cpu_set_kpc
183 1.1 gwr * SP+4: void *proc;
184 1.1 gwr * SP: u_long func;
185 1.1 gwr *
186 1.1 gwr * On entry, the switchframe pushed by cpu_set_kpc has already been
187 1.1 gwr * popped off the stack, so all this needs to do is pop the function
188 1.1 gwr * pointer into a register, call it, then pop the arg, and finally
189 1.1 gwr * return using the switchframe that remains on the stack.
190 1.1 gwr */
191 1.19 jeremy GLOBAL(proc_trampoline)
192 1.1 gwr movl sp@+,a0 | function pointer
193 1.1 gwr jbsr a0@ | (*func)(procp)
194 1.1 gwr addql #4,sp | toss the arg
195 1.1 gwr rts | as cpu_switch would do
196 1.1 gwr
197 1.1 gwr | That is all the assembly startup code we need on the sun3x!
198 1.1 gwr | The rest of this is like the hp300/locore.s where possible.
199 1.1 gwr
200 1.1 gwr /*
201 1.1 gwr * Trap/interrupt vector routines
202 1.1 gwr */
203 1.17 thorpej #include <m68k/m68k/trap_subr.s>
204 1.1 gwr
205 1.19 jeremy GLOBAL(buserr)
206 1.19 jeremy tstl _C_LABEL(nofault) | device probe?
207 1.19 jeremy jeq _C_LABEL(addrerr) | no, handle as usual
208 1.19 jeremy movl _C_LABEL(nofault),sp@- | yes,
209 1.19 jeremy jbsr _C_LABEL(longjmp) | longjmp(nofault)
210 1.19 jeremy GLOBAL(addrerr)
211 1.1 gwr clrl sp@- | stack adjust count
212 1.1 gwr moveml #0xFFFF,sp@- | save user registers
213 1.1 gwr movl usp,a0 | save the user SP
214 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
215 1.1 gwr lea sp@(FR_HW),a1 | grab base of HW berr frame
216 1.1 gwr moveq #0,d0
217 1.1 gwr movw a1@(10),d0 | grab SSW for fault processing
218 1.1 gwr btst #12,d0 | RB set?
219 1.1 gwr jeq LbeX0 | no, test RC
220 1.1 gwr bset #14,d0 | yes, must set FB
221 1.1 gwr movw d0,a1@(10) | for hardware too
222 1.1 gwr LbeX0:
223 1.1 gwr btst #13,d0 | RC set?
224 1.1 gwr jeq LbeX1 | no, skip
225 1.1 gwr bset #15,d0 | yes, must set FC
226 1.1 gwr movw d0,a1@(10) | for hardware too
227 1.1 gwr LbeX1:
228 1.1 gwr btst #8,d0 | data fault?
229 1.1 gwr jeq Lbe0 | no, check for hard cases
230 1.1 gwr movl a1@(16),d1 | fault address is as given in frame
231 1.1 gwr jra Lbe10 | thats it
232 1.1 gwr Lbe0:
233 1.1 gwr btst #4,a1@(6) | long (type B) stack frame?
234 1.1 gwr jne Lbe4 | yes, go handle
235 1.1 gwr movl a1@(2),d1 | no, can use save PC
236 1.1 gwr btst #14,d0 | FB set?
237 1.1 gwr jeq Lbe3 | no, try FC
238 1.1 gwr addql #4,d1 | yes, adjust address
239 1.1 gwr jra Lbe10 | done
240 1.1 gwr Lbe3:
241 1.1 gwr btst #15,d0 | FC set?
242 1.1 gwr jeq Lbe10 | no, done
243 1.1 gwr addql #2,d1 | yes, adjust address
244 1.1 gwr jra Lbe10 | done
245 1.1 gwr Lbe4:
246 1.1 gwr movl a1@(36),d1 | long format, use stage B address
247 1.1 gwr btst #15,d0 | FC set?
248 1.1 gwr jeq Lbe10 | no, all done
249 1.1 gwr subql #2,d1 | yes, adjust address
250 1.1 gwr Lbe10:
251 1.1 gwr movl d1,sp@- | push fault VA
252 1.1 gwr movl d0,sp@- | and padded SSW
253 1.1 gwr movw a1@(6),d0 | get frame format/vector offset
254 1.1 gwr andw #0x0FFF,d0 | clear out frame format
255 1.1 gwr cmpw #12,d0 | address error vector?
256 1.1 gwr jeq Lisaerr | yes, go to it
257 1.1 gwr
258 1.1 gwr /* MMU-specific code to determine reason for bus error. */
259 1.1 gwr movl d1,a0 | fault address
260 1.1 gwr movl sp@,d0 | function code from ssw
261 1.1 gwr btst #8,d0 | data fault?
262 1.1 gwr jne Lbe10a
263 1.1 gwr movql #1,d0 | user program access FC
264 1.1 gwr | (we dont separate data/program)
265 1.1 gwr btst #5,a1@ | supervisor mode?
266 1.1 gwr jeq Lbe10a | if no, done
267 1.1 gwr movql #5,d0 | else supervisor program access
268 1.1 gwr Lbe10a:
269 1.1 gwr ptestr d0,a0@,#7 | do a table search
270 1.1 gwr pmove psr,sp@ | save result
271 1.1 gwr movb sp@,d1
272 1.1 gwr btst #2,d1 | invalid? (incl. limit viol and berr)
273 1.1 gwr jeq Lmightnotbemerr | no -> wp check
274 1.1 gwr btst #7,d1 | is it MMU table berr?
275 1.1 gwr jeq Lismerr | no, must be fast
276 1.1 gwr jra Lisberr1 | real bus err needs not be fast
277 1.1 gwr Lmightnotbemerr:
278 1.1 gwr btst #3,d1 | write protect bit set?
279 1.1 gwr jeq Lisberr1 | no, must be bus error
280 1.1 gwr movl sp@,d0 | ssw into low word of d0
281 1.1 gwr andw #0xc0,d0 | write protect is set on page:
282 1.1 gwr cmpw #0x40,d0 | was it read cycle?
283 1.1 gwr jeq Lisberr1 | yes, was not WPE, must be bus err
284 1.1 gwr /* End of MMU-specific bus error code. */
285 1.1 gwr
286 1.1 gwr Lismerr:
287 1.1 gwr movl #T_MMUFLT,sp@- | show that we are an MMU fault
288 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
289 1.1 gwr Lisaerr:
290 1.1 gwr movl #T_ADDRERR,sp@- | mark address error
291 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
292 1.1 gwr Lisberr1:
293 1.1 gwr clrw sp@ | re-clear pad word
294 1.1 gwr Lisberr:
295 1.1 gwr movl #T_BUSERR,sp@- | mark bus error
296 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
297 1.1 gwr
298 1.1 gwr /*
299 1.1 gwr * FP exceptions.
300 1.1 gwr */
301 1.19 jeremy GLOBAL(fpfline)
302 1.1 gwr clrl sp@- | stack adjust count
303 1.1 gwr moveml #0xFFFF,sp@- | save registers
304 1.1 gwr moveq #T_FPEMULI,d0 | denote as FP emulation trap
305 1.19 jeremy jra _ASM_LABEL(fault) | do it
306 1.1 gwr
307 1.19 jeremy GLOBAL(fpunsupp)
308 1.1 gwr clrl sp@- | stack adjust count
309 1.1 gwr moveml #0xFFFF,sp@- | save registers
310 1.1 gwr moveq #T_FPEMULD,d0 | denote as FP emulation trap
311 1.19 jeremy jra _ASM_LABEL(fault) | do it
312 1.1 gwr
313 1.1 gwr /*
314 1.1 gwr * Handles all other FP coprocessor exceptions.
315 1.1 gwr * Note that since some FP exceptions generate mid-instruction frames
316 1.1 gwr * and may cause signal delivery, we need to test for stack adjustment
317 1.1 gwr * after the trap call.
318 1.1 gwr */
319 1.19 jeremy GLOBAL(fpfault)
320 1.1 gwr clrl sp@- | stack adjust count
321 1.1 gwr moveml #0xFFFF,sp@- | save user registers
322 1.1 gwr movl usp,a0 | and save
323 1.1 gwr movl a0,sp@(FR_SP) | the user stack pointer
324 1.1 gwr clrl sp@- | no VA arg
325 1.19 jeremy movl _C_LABEL(curpcb),a0 | current pcb
326 1.1 gwr lea a0@(PCB_FPCTX),a0 | address of FP savearea
327 1.1 gwr fsave a0@ | save state
328 1.1 gwr tstb a0@ | null state frame?
329 1.1 gwr jeq Lfptnull | yes, safe
330 1.1 gwr clrw d0 | no, need to tweak BIU
331 1.1 gwr movb a0@(1),d0 | get frame size
332 1.1 gwr bset #3,a0@(0,d0:w) | set exc_pend bit of BIU
333 1.1 gwr Lfptnull:
334 1.1 gwr fmovem fpsr,sp@- | push fpsr as code argument
335 1.1 gwr frestore a0@ | restore state
336 1.1 gwr movl #T_FPERR,sp@- | push type arg
337 1.17 thorpej jra _ASM_LABEL(faultstkadj) | call trap and deal with stack cleanup
338 1.1 gwr
339 1.1 gwr /*
340 1.1 gwr * Other exceptions only cause four and six word stack frame and require
341 1.1 gwr * no post-trap stack adjustment.
342 1.1 gwr */
343 1.19 jeremy GLOBAL(badtrap)
344 1.1 gwr clrl sp@- | stack adjust count
345 1.1 gwr moveml #0xFFFF,sp@- | save std frame regs
346 1.19 jeremy jbsr _C_LABEL(straytrap) | report
347 1.1 gwr moveml sp@+,#0xFFFF | restore regs
348 1.1 gwr addql #4, sp | stack adjust count
349 1.19 jeremy jra _ASM_LABEL(rei) | all done
350 1.1 gwr
351 1.1 gwr /*
352 1.1 gwr * Trap 0 is for system calls
353 1.1 gwr */
354 1.19 jeremy GLOBAL(trap0)
355 1.1 gwr clrl sp@- | stack adjust count
356 1.1 gwr moveml #0xFFFF,sp@- | save user registers
357 1.1 gwr movl usp,a0 | save the user SP
358 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
359 1.1 gwr movl d0,sp@- | push syscall number
360 1.19 jeremy jbsr _C_LABEL(syscall) | handle it
361 1.1 gwr addql #4,sp | pop syscall arg
362 1.1 gwr movl sp@(FR_SP),a0 | grab and restore
363 1.1 gwr movl a0,usp | user SP
364 1.1 gwr moveml sp@+,#0x7FFF | restore most registers
365 1.1 gwr addql #8,sp | pop SP and stack adjust
366 1.19 jeremy jra _ASM_LABEL(rei) | all done
367 1.1 gwr
368 1.1 gwr /*
369 1.11 gwr * Trap 1 action depends on the emulation type:
370 1.11 gwr * NetBSD: sigreturn "syscall"
371 1.11 gwr * HPUX: user breakpoint
372 1.1 gwr */
373 1.19 jeremy GLOBAL(trap1)
374 1.1 gwr #if 0 /* COMPAT_HPUX */
375 1.1 gwr /* If process is HPUX, this is a user breakpoint. */
376 1.19 jeremy jne _C_LABEL(trap15) | HPUX user breakpoint
377 1.1 gwr #endif
378 1.19 jeremy jra _ASM_LABEL(sigreturn) | NetBSD
379 1.1 gwr
380 1.1 gwr /*
381 1.11 gwr * Trap 2 action depends on the emulation type:
382 1.11 gwr * NetBSD: user breakpoint -- See XXX below...
383 1.11 gwr * SunOS: cache flush
384 1.11 gwr * HPUX: sigreturn
385 1.1 gwr */
386 1.19 jeremy GLOBAL(trap2)
387 1.1 gwr #if 0 /* COMPAT_HPUX */
388 1.11 gwr /* If process is HPUX, this is a sigreturn call */
389 1.19 jeremy jne _ASM_LABEL(sigreturn)
390 1.1 gwr #endif
391 1.19 jeremy jra _C_LABEL(trap15) | NetBSD user breakpoint
392 1.11 gwr | XXX - Make NetBSD use trap 15 for breakpoints?
393 1.11 gwr | XXX - That way, we can allow this cache flush...
394 1.11 gwr | XXX SunOS trap #2 (and NetBSD?)
395 1.11 gwr | Flush on-chip cache (leave it enabled)
396 1.11 gwr | movl #CACHE_CLR,d0
397 1.11 gwr | movc d0,cacr
398 1.11 gwr | rte
399 1.11 gwr
400 1.11 gwr /*
401 1.11 gwr * Trap 12 is the entry point for the cachectl "syscall"
402 1.11 gwr * cachectl(command, addr, length)
403 1.11 gwr * command in d0, addr in a1, length in d1
404 1.11 gwr */
405 1.19 jeremy GLOBAL(trap12)
406 1.11 gwr movl d1,sp@- | push length
407 1.11 gwr movl a1,sp@- | push addr
408 1.11 gwr movl d0,sp@- | push command
409 1.19 jeremy jbsr _C_LABEL(cachectl) | do it
410 1.11 gwr lea sp@(12),sp | pop args
411 1.19 jeremy jra _ASM_LABEL(rei) | all done
412 1.1 gwr
413 1.1 gwr /*
414 1.1 gwr * Trace (single-step) trap. Kernel-mode is special.
415 1.1 gwr * User mode traps are simply passed on to trap().
416 1.1 gwr */
417 1.19 jeremy GLOBAL(trace)
418 1.1 gwr clrl sp@- | stack adjust count
419 1.1 gwr moveml #0xFFFF,sp@-
420 1.1 gwr moveq #T_TRACE,d0
421 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
422 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
423 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
424 1.1 gwr
425 1.1 gwr /*
426 1.1 gwr * Trap 15 is used for:
427 1.1 gwr * - GDB breakpoints (in user programs)
428 1.1 gwr * - KGDB breakpoints (in the kernel)
429 1.1 gwr * - trace traps for SUN binaries (not fully supported yet)
430 1.11 gwr * User mode traps are simply passed to trap().
431 1.1 gwr */
432 1.19 jeremy GLOBAL(trap15)
433 1.1 gwr clrl sp@- | stack adjust count
434 1.1 gwr moveml #0xFFFF,sp@-
435 1.1 gwr moveq #T_TRAP15,d0
436 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
437 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
438 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
439 1.1 gwr
440 1.19 jeremy ASLOCAL(kbrkpt)
441 1.11 gwr | Kernel-mode breakpoint or trace trap. (d0=trap_type)
442 1.1 gwr | Save the system sp rather than the user sp.
443 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
444 1.1 gwr lea sp@(FR_SIZE),a6 | Save stack pointer
445 1.1 gwr movl a6,sp@(FR_SP) | from before trap
446 1.1 gwr
447 1.1 gwr | If we are not on tmpstk switch to it.
448 1.1 gwr | (so debugger can change the stack pointer)
449 1.1 gwr movl a6,d1
450 1.19 jeremy cmpl #_ASM_LABEL(tmpstk),d1
451 1.1 gwr jls Lbrkpt2 | already on tmpstk
452 1.1 gwr | Copy frame to the temporary stack
453 1.1 gwr movl sp,a0 | a0=src
454 1.19 jeremy lea _ASM_LABEL(tmpstk)-96,a1 | a1=dst
455 1.1 gwr movl a1,sp | sp=new frame
456 1.1 gwr moveq #FR_SIZE,d1
457 1.1 gwr Lbrkpt1:
458 1.1 gwr movl a0@+,a1@+
459 1.1 gwr subql #4,d1
460 1.1 gwr bgt Lbrkpt1
461 1.1 gwr
462 1.1 gwr Lbrkpt2:
463 1.11 gwr | Call the trap handler for the kernel debugger.
464 1.6 gwr | Do not call trap() to handle it, so that we can
465 1.1 gwr | set breakpoints in trap() if we want. We know
466 1.1 gwr | the trap type is either T_TRACE or T_BREAKPOINT.
467 1.6 gwr movl d0,sp@- | push trap type
468 1.19 jeremy jbsr _C_LABEL(trap_kdebug)
469 1.6 gwr addql #4,sp | pop args
470 1.6 gwr
471 1.1 gwr | The stack pointer may have been modified, or
472 1.1 gwr | data below it modified (by kgdb push call),
473 1.1 gwr | so push the hardware frame at the current sp
474 1.1 gwr | before restoring registers and returning.
475 1.1 gwr movl sp@(FR_SP),a0 | modified sp
476 1.1 gwr lea sp@(FR_SIZE),a1 | end of our frame
477 1.1 gwr movl a1@-,a0@- | copy 2 longs with
478 1.1 gwr movl a1@-,a0@- | ... predecrement
479 1.1 gwr movl a0,sp@(FR_SP) | sp = h/w frame
480 1.1 gwr moveml sp@+,#0x7FFF | restore all but sp
481 1.1 gwr movl sp@,sp | ... and sp
482 1.1 gwr rte | all done
483 1.1 gwr
484 1.11 gwr /* Use common m68k sigreturn */
485 1.11 gwr #include <m68k/m68k/sigreturn.s>
486 1.1 gwr
487 1.1 gwr /*
488 1.1 gwr * Interrupt handlers. Most are auto-vectored,
489 1.1 gwr * and hard-wired the same way on all sun3 models.
490 1.1 gwr * Format in the stack is:
491 1.1 gwr * d0,d1,a0,a1, sr, pc, vo
492 1.1 gwr */
493 1.1 gwr
494 1.1 gwr #define INTERRUPT_SAVEREG \
495 1.1 gwr moveml #0xC0C0,sp@-
496 1.1 gwr
497 1.1 gwr #define INTERRUPT_RESTORE \
498 1.1 gwr moveml sp@+,#0x0303
499 1.1 gwr
500 1.1 gwr /*
501 1.1 gwr * This is the common auto-vector interrupt handler,
502 1.1 gwr * for which the CPU provides the vector=0x18+level.
503 1.1 gwr * These are installed in the interrupt vector table.
504 1.1 gwr */
505 1.1 gwr .align 2
506 1.19 jeremy GLOBAL(_isr_autovec)
507 1.1 gwr INTERRUPT_SAVEREG
508 1.19 jeremy jbsr _C_LABEL(isr_autovec)
509 1.1 gwr INTERRUPT_RESTORE
510 1.19 jeremy jra _ASM_LABEL(rei)
511 1.1 gwr
512 1.1 gwr /* clock: see clock.c */
513 1.1 gwr .align 2
514 1.19 jeremy GLOBAL(_isr_clock)
515 1.1 gwr INTERRUPT_SAVEREG
516 1.19 jeremy jbsr _C_LABEL(clock_intr)
517 1.1 gwr INTERRUPT_RESTORE
518 1.19 jeremy jra _ASM_LABEL(rei)
519 1.1 gwr
520 1.1 gwr | Handler for all vectored interrupts (i.e. VME interrupts)
521 1.1 gwr .align 2
522 1.19 jeremy GLOBAL(_isr_vectored)
523 1.1 gwr INTERRUPT_SAVEREG
524 1.19 jeremy jbsr _C_LABEL(isr_vectored)
525 1.1 gwr INTERRUPT_RESTORE
526 1.19 jeremy jra _ASM_LABEL(rei)
527 1.1 gwr
528 1.1 gwr #undef INTERRUPT_SAVEREG
529 1.1 gwr #undef INTERRUPT_RESTORE
530 1.1 gwr
531 1.1 gwr /* interrupt counters (needed by vmstat) */
532 1.19 jeremy GLOBAL(intrnames)
533 1.1 gwr .asciz "spur" | 0
534 1.1 gwr .asciz "lev1" | 1
535 1.1 gwr .asciz "lev2" | 2
536 1.1 gwr .asciz "lev3" | 3
537 1.1 gwr .asciz "lev4" | 4
538 1.1 gwr .asciz "clock" | 5
539 1.1 gwr .asciz "lev6" | 6
540 1.1 gwr .asciz "nmi" | 7
541 1.19 jeremy GLOBAL(eintrnames)
542 1.1 gwr
543 1.1 gwr .data
544 1.1 gwr .even
545 1.19 jeremy GLOBAL(intrcnt)
546 1.1 gwr .long 0,0,0,0,0,0,0,0,0,0
547 1.19 jeremy GLOBAL(eintrcnt)
548 1.1 gwr .text
549 1.1 gwr
550 1.1 gwr /*
551 1.1 gwr * Emulation of VAX REI instruction.
552 1.1 gwr *
553 1.1 gwr * This code is (mostly) un-altered from the hp300 code,
554 1.1 gwr * except that sun machines do not need a simulated SIR
555 1.1 gwr * because they have a real software interrupt register.
556 1.1 gwr *
557 1.1 gwr * This code deals with checking for and servicing ASTs
558 1.1 gwr * (profiling, scheduling) and software interrupts (network, softclock).
559 1.1 gwr * We check for ASTs first, just like the VAX. To avoid excess overhead
560 1.1 gwr * the T_ASTFLT handling code will also check for software interrupts so we
561 1.1 gwr * do not have to do it here. After identifying that we need an AST we
562 1.1 gwr * drop the IPL to allow device interrupts.
563 1.1 gwr *
564 1.1 gwr * This code is complicated by the fact that sendsig may have been called
565 1.1 gwr * necessitating a stack cleanup.
566 1.1 gwr */
567 1.1 gwr
568 1.19 jeremy ASGLOBAL(rei)
569 1.1 gwr #ifdef DIAGNOSTIC
570 1.19 jeremy tstl _C_LABEL(panicstr) | have we paniced?
571 1.1 gwr jne Ldorte | yes, do not make matters worse
572 1.1 gwr #endif
573 1.19 jeremy tstl _C_LABEL(astpending) | AST pending?
574 1.1 gwr jeq Ldorte | no, done
575 1.1 gwr Lrei1:
576 1.1 gwr btst #5,sp@ | yes, are we returning to user mode?
577 1.1 gwr jne Ldorte | no, done
578 1.1 gwr movw #PSL_LOWIPL,sr | lower SPL
579 1.1 gwr clrl sp@- | stack adjust
580 1.1 gwr moveml #0xFFFF,sp@- | save all registers
581 1.1 gwr movl usp,a1 | including
582 1.1 gwr movl a1,sp@(FR_SP) | the users SP
583 1.1 gwr clrl sp@- | VA == none
584 1.1 gwr clrl sp@- | code == none
585 1.1 gwr movl #T_ASTFLT,sp@- | type == async system trap
586 1.19 jeremy jbsr _C_LABEL(trap) | go handle it
587 1.1 gwr lea sp@(12),sp | pop value args
588 1.1 gwr movl sp@(FR_SP),a0 | restore user SP
589 1.1 gwr movl a0,usp | from save area
590 1.1 gwr movw sp@(FR_ADJ),d0 | need to adjust stack?
591 1.1 gwr jne Laststkadj | yes, go to it
592 1.1 gwr moveml sp@+,#0x7FFF | no, restore most user regs
593 1.1 gwr addql #8,sp | toss SP and stack adjust
594 1.1 gwr rte | and do real RTE
595 1.1 gwr Laststkadj:
596 1.1 gwr lea sp@(FR_HW),a1 | pointer to HW frame
597 1.1 gwr addql #8,a1 | source pointer
598 1.1 gwr movl a1,a0 | source
599 1.1 gwr addw d0,a0 | + hole size = dest pointer
600 1.1 gwr movl a1@-,a0@- | copy
601 1.1 gwr movl a1@-,a0@- | 8 bytes
602 1.1 gwr movl a0,sp@(FR_SP) | new SSP
603 1.1 gwr moveml sp@+,#0x7FFF | restore user registers
604 1.1 gwr movl sp@,sp | and our SP
605 1.1 gwr Ldorte:
606 1.1 gwr rte | real return
607 1.1 gwr
608 1.1 gwr /*
609 1.1 gwr * Initialization is at the beginning of this file, because the
610 1.1 gwr * kernel entry point needs to be at zero for compatibility with
611 1.1 gwr * the Sun boot loader. This works on Sun machines because the
612 1.1 gwr * interrupt vector table for reset is NOT at address zero.
613 1.1 gwr * (The MMU has a "boot" bit that forces access to the PROM)
614 1.1 gwr */
615 1.1 gwr
616 1.1 gwr /*
617 1.16 thorpej * Use common m68k sigcode.
618 1.1 gwr */
619 1.16 thorpej #include <m68k/m68k/sigcode.s>
620 1.16 thorpej
621 1.1 gwr .text
622 1.1 gwr
623 1.1 gwr /*
624 1.1 gwr * Primitives
625 1.1 gwr */
626 1.1 gwr
627 1.1 gwr /*
628 1.12 thorpej * Use common m68k support routines.
629 1.1 gwr */
630 1.12 thorpej #include <m68k/m68k/support.s>
631 1.1 gwr
632 1.19 jeremy BSS(want_resched,4)
633 1.1 gwr
634 1.1 gwr /*
635 1.15 thorpej * Use common m68k process manipulation routines.
636 1.1 gwr */
637 1.15 thorpej #include <m68k/m68k/proc_subr.s>
638 1.1 gwr
639 1.1 gwr | Message for Lbadsw panic
640 1.1 gwr Lsw0:
641 1.1 gwr .asciz "cpu_switch"
642 1.1 gwr .even
643 1.1 gwr
644 1.1 gwr .data
645 1.19 jeremy GLOBAL(masterpaddr) | XXX compatibility (debuggers)
646 1.19 jeremy GLOBAL(curpcb)
647 1.1 gwr .long 0
648 1.19 jeremy ASBSS(nullpcb,SIZEOF_PCB)
649 1.1 gwr .text
650 1.1 gwr
651 1.1 gwr /*
652 1.1 gwr * At exit of a process, do a cpu_switch for the last time.
653 1.28 thorpej * Switch to a safe stack and PCB, and select a new process to run. The
654 1.28 thorpej * old stack and u-area will be freed by the reaper.
655 1.1 gwr */
656 1.1 gwr ENTRY(switch_exit)
657 1.1 gwr movl sp@(4),a0 | struct proc *p
658 1.19 jeremy | save state into garbage pcb
659 1.19 jeremy movl #_ASM_LABEL(nullpcb),_C_LABEL(curpcb)
660 1.19 jeremy lea _ASM_LABEL(tmpstk),sp | goto a tmp stack
661 1.1 gwr
662 1.28 thorpej /* Schedule the vmspace and stack to be freed. */
663 1.28 thorpej movl a0,sp@- | exit2(p)
664 1.28 thorpej jbsr _C_LABEL(exit2)
665 1.28 thorpej
666 1.28 thorpej /* Don't pop the proc; pass it to cpu_switch(). */
667 1.1 gwr
668 1.19 jeremy jra _C_LABEL(cpu_switch)
669 1.1 gwr
670 1.1 gwr /*
671 1.1 gwr * When no processes are on the runq, cpu_switch() branches to idle
672 1.1 gwr * to wait for something to come ready.
673 1.1 gwr */
674 1.1 gwr .data
675 1.19 jeremy GLOBAL(Idle_count)
676 1.1 gwr .long 0
677 1.1 gwr .text
678 1.1 gwr
679 1.1 gwr Lidle:
680 1.1 gwr stop #PSL_LOWIPL
681 1.19 jeremy GLOBAL(_Idle) | See clock.c
682 1.1 gwr movw #PSL_HIGHIPL,sr
683 1.19 jeremy addql #1, _C_LABEL(Idle_count)
684 1.19 jeremy tstl _C_LABEL(whichqs)
685 1.1 gwr jeq Lidle
686 1.1 gwr movw #PSL_LOWIPL,sr
687 1.1 gwr jra Lsw1
688 1.1 gwr
689 1.1 gwr Lbadsw:
690 1.1 gwr movl #Lsw0,sp@-
691 1.19 jeremy jbsr _C_LABEL(panic)
692 1.1 gwr /*NOTREACHED*/
693 1.1 gwr
694 1.1 gwr /*
695 1.1 gwr * cpu_switch()
696 1.1 gwr * Hacked for sun3
697 1.1 gwr * XXX - Arg 1 is a proc pointer (curproc) but this doesn't use it.
698 1.1 gwr * XXX - Sould we use p->p_addr instead of curpcb? -gwr
699 1.1 gwr */
700 1.1 gwr ENTRY(cpu_switch)
701 1.19 jeremy movl _C_LABEL(curpcb),a1 | current pcb
702 1.1 gwr movw sr,a1@(PCB_PS) | save sr before changing ipl
703 1.1 gwr #ifdef notyet
704 1.19 jeremy movl _C_LABEL(curproc),sp@- | remember last proc running
705 1.1 gwr #endif
706 1.19 jeremy clrl _C_LABEL(curproc)
707 1.1 gwr
708 1.1 gwr Lsw1:
709 1.1 gwr /*
710 1.1 gwr * Find the highest-priority queue that isn't empty,
711 1.1 gwr * then take the first proc from that queue.
712 1.1 gwr */
713 1.1 gwr clrl d0
714 1.19 jeremy lea _C_LABEL(whichqs),a0
715 1.1 gwr movl a0@,d1
716 1.1 gwr Lswchk:
717 1.1 gwr btst d0,d1
718 1.1 gwr jne Lswfnd
719 1.1 gwr addqb #1,d0
720 1.1 gwr cmpb #32,d0
721 1.1 gwr jne Lswchk
722 1.19 jeremy jra _C_LABEL(_Idle)
723 1.1 gwr Lswfnd:
724 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
725 1.1 gwr movl a0@,d1 | and check again...
726 1.1 gwr bclr d0,d1
727 1.1 gwr jeq Lsw1 | proc moved, rescan
728 1.1 gwr movl d1,a0@ | update whichqs
729 1.1 gwr moveq #1,d1 | double check for higher priority
730 1.1 gwr lsll d0,d1 | process (which may have snuck in
731 1.1 gwr subql #1,d1 | while we were finding this one)
732 1.1 gwr andl a0@,d1
733 1.1 gwr jeq Lswok | no one got in, continue
734 1.1 gwr movl a0@,d1
735 1.1 gwr bset d0,d1 | otherwise put this one back
736 1.1 gwr movl d1,a0@
737 1.1 gwr jra Lsw1 | and rescan
738 1.1 gwr Lswok:
739 1.1 gwr movl d0,d1
740 1.1 gwr lslb #3,d1 | convert queue number to index
741 1.1 gwr addl #_qs,d1 | locate queue (q)
742 1.1 gwr movl d1,a1
743 1.1 gwr cmpl a1@(P_FORW),a1 | anyone on queue?
744 1.1 gwr jeq Lbadsw | no, panic
745 1.1 gwr movl a1@(P_FORW),a0 | p = q->p_forw
746 1.1 gwr movl a0@(P_FORW),a1@(P_FORW) | q->p_forw = p->p_forw
747 1.1 gwr movl a0@(P_FORW),a1 | q = p->p_forw
748 1.1 gwr movl a0@(P_BACK),a1@(P_BACK) | q->p_back = p->p_back
749 1.1 gwr cmpl a0@(P_FORW),d1 | anyone left on queue?
750 1.1 gwr jeq Lsw2 | no, skip
751 1.19 jeremy movl _C_LABEL(whichqs),d1
752 1.1 gwr bset d0,d1 | yes, reset bit
753 1.19 jeremy movl d1,_C_LABEL(whichqs)
754 1.1 gwr Lsw2:
755 1.19 jeremy movl a0,_C_LABEL(curproc)
756 1.19 jeremy clrl _C_LABEL(want_resched)
757 1.1 gwr #ifdef notyet
758 1.1 gwr movl sp@+,a1 | XXX - Make this work!
759 1.1 gwr cmpl a0,a1 | switching to same proc?
760 1.1 gwr jeq Lswdone | yes, skip save and restore
761 1.1 gwr #endif
762 1.1 gwr /*
763 1.1 gwr * Save state of previous process in its pcb.
764 1.1 gwr */
765 1.19 jeremy movl _C_LABEL(curpcb),a1
766 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
767 1.1 gwr movl usp,a2 | grab USP (a2 has been saved)
768 1.1 gwr movl a2,a1@(PCB_USP) | and save it
769 1.1 gwr
770 1.19 jeremy tstl _C_LABEL(fputype) | Do we have an fpu?
771 1.1 gwr jeq Lswnofpsave | No? Then don't try save.
772 1.1 gwr lea a1@(PCB_FPCTX),a2 | pointer to FP save area
773 1.1 gwr fsave a2@ | save FP state
774 1.1 gwr tstb a2@ | null state frame?
775 1.1 gwr jeq Lswnofpsave | yes, all done
776 1.1 gwr fmovem fp0-fp7,a2@(FPF_REGS) | save FP general regs
777 1.1 gwr fmovem fpcr/fpsr/fpi,a2@(FPF_FPCR) | save FP control regs
778 1.1 gwr Lswnofpsave:
779 1.1 gwr
780 1.6 gwr /*
781 1.6 gwr * Now that we have saved all the registers that must be
782 1.6 gwr * preserved, we are free to use those registers until
783 1.6 gwr * we load the registers for the switched-to process.
784 1.6 gwr * In this section, keep: a0=curproc, a1=curpcb
785 1.6 gwr */
786 1.6 gwr
787 1.1 gwr #ifdef DIAGNOSTIC
788 1.1 gwr tstl a0@(P_WCHAN)
789 1.1 gwr jne Lbadsw
790 1.1 gwr cmpb #SRUN,a0@(P_STAT)
791 1.1 gwr jne Lbadsw
792 1.1 gwr #endif
793 1.1 gwr clrl a0@(P_BACK) | clear back link
794 1.1 gwr movl a0@(P_ADDR),a1 | get p_addr
795 1.19 jeremy movl a1,_C_LABEL(curpcb)
796 1.1 gwr
797 1.8 gwr /*
798 1.8 gwr * Load the new VM context (new MMU root pointer)
799 1.8 gwr */
800 1.8 gwr movl a0@(P_VMSPACE),a2 | vm = p->p_vmspace
801 1.8 gwr #ifdef DIAGNOSTIC
802 1.20 gwr tstl a2 | vm == VM_MAP_NULL?
803 1.8 gwr jeq Lbadsw | panic
804 1.8 gwr #endif
805 1.8 gwr #ifdef PMAP_DEBUG
806 1.25 gwr /* When debugging just call _pmap_switch(). */
807 1.25 gwr movl a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
808 1.25 gwr pea a2@ | push pmap
809 1.25 gwr jbsr _C_LABEL(_pmap_switch) | _pmap_switch(pmap)
810 1.8 gwr addql #4,sp
811 1.19 jeremy movl _C_LABEL(curpcb),a1 | restore p_addr
812 1.8 gwr #else
813 1.25 gwr /* Otherwise, use this inline version. */
814 1.20 gwr lea _C_LABEL(kernel_crp), a3 | our CPU Root Ptr. (CRP)
815 1.20 gwr movl a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
816 1.8 gwr movl a2@(PM_A_PHYS),d0 | phys = pmap->pm_a_phys
817 1.9 jeremy cmpl a3@(4),d0 | == kernel_crp.rp_addr ?
818 1.8 gwr jeq Lsame_mmuctx | skip loadcrp/flush
819 1.8 gwr /* OK, it is a new MMU context. Load it up. */
820 1.9 jeremy movl d0,a3@(4)
821 1.1 gwr movl #CACHE_CLR,d0
822 1.1 gwr movc d0,cacr | invalidate cache(s)
823 1.1 gwr pflusha | flush entire TLB
824 1.8 gwr pmove a3@,crp | load new user root pointer
825 1.8 gwr Lsame_mmuctx:
826 1.8 gwr #endif
827 1.1 gwr
828 1.6 gwr /*
829 1.6 gwr * Reload the registers for the new process.
830 1.6 gwr * After this point we can only use d0,d1,a0,a1
831 1.6 gwr */
832 1.6 gwr moveml a1@(PCB_REGS),#0xFCFC | reload registers
833 1.1 gwr movl a1@(PCB_USP),a0
834 1.1 gwr movl a0,usp | and USP
835 1.1 gwr
836 1.19 jeremy tstl _C_LABEL(fputype) | If we don't have an fpu,
837 1.1 gwr jeq Lres_skip | don't try to restore it.
838 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
839 1.1 gwr tstb a0@ | null state frame?
840 1.1 gwr jeq Lresfprest | yes, easy
841 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
842 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
843 1.1 gwr Lresfprest:
844 1.1 gwr frestore a0@ | restore state
845 1.1 gwr Lres_skip:
846 1.1 gwr movw a1@(PCB_PS),d0 | no, restore PS
847 1.1 gwr #ifdef DIAGNOSTIC
848 1.1 gwr btst #13,d0 | supervisor mode?
849 1.1 gwr jeq Lbadsw | no? panic!
850 1.1 gwr #endif
851 1.1 gwr movw d0,sr | OK, restore PS
852 1.1 gwr moveq #1,d0 | return 1 (for alternate returns)
853 1.1 gwr rts
854 1.1 gwr
855 1.1 gwr /*
856 1.1 gwr * savectx(pcb)
857 1.1 gwr * Update pcb, saving current processor state.
858 1.1 gwr */
859 1.1 gwr ENTRY(savectx)
860 1.1 gwr movl sp@(4),a1
861 1.1 gwr movw sr,a1@(PCB_PS)
862 1.1 gwr movl usp,a0 | grab USP
863 1.1 gwr movl a0,a1@(PCB_USP) | and save it
864 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
865 1.1 gwr
866 1.19 jeremy tstl _C_LABEL(fputype) | Do we have FPU?
867 1.1 gwr jeq Lsavedone | No? Then don't save state.
868 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
869 1.1 gwr fsave a0@ | save FP state
870 1.1 gwr tstb a0@ | null state frame?
871 1.1 gwr jeq Lsavedone | yes, all done
872 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
873 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
874 1.1 gwr Lsavedone:
875 1.1 gwr moveq #0,d0 | return 0
876 1.1 gwr rts
877 1.1 gwr
878 1.20 gwr /* suline() */
879 1.1 gwr
880 1.1 gwr #ifdef DEBUG
881 1.1 gwr .data
882 1.19 jeremy ASGLOBAL(fulltflush)
883 1.1 gwr .long 0
884 1.19 jeremy ASGLOBAL(fullcflush)
885 1.1 gwr .long 0
886 1.1 gwr .text
887 1.1 gwr #endif
888 1.1 gwr
889 1.1 gwr /*
890 1.1 gwr * Invalidate entire TLB.
891 1.1 gwr */
892 1.1 gwr ENTRY(TBIA)
893 1.19 jeremy _C_LABEL(_TBIA):
894 1.1 gwr pflusha
895 1.1 gwr movl #DC_CLEAR,d0
896 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
897 1.1 gwr rts
898 1.1 gwr
899 1.1 gwr /*
900 1.1 gwr * Invalidate any TLB entry for given VA (TB Invalidate Single)
901 1.1 gwr */
902 1.1 gwr ENTRY(TBIS)
903 1.1 gwr #ifdef DEBUG
904 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
905 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush entire TLB
906 1.1 gwr #endif
907 1.1 gwr movl sp@(4),a0
908 1.1 gwr pflush #0,#0,a0@ | flush address from both sides
909 1.1 gwr movl #DC_CLEAR,d0
910 1.1 gwr movc d0,cacr | invalidate on-chip data cache
911 1.1 gwr rts
912 1.1 gwr
913 1.1 gwr /*
914 1.1 gwr * Invalidate supervisor side of TLB
915 1.1 gwr */
916 1.1 gwr ENTRY(TBIAS)
917 1.1 gwr #ifdef DEBUG
918 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
919 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
920 1.1 gwr #endif
921 1.1 gwr pflush #4,#4 | flush supervisor TLB entries
922 1.1 gwr movl #DC_CLEAR,d0
923 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
924 1.1 gwr rts
925 1.1 gwr
926 1.1 gwr /*
927 1.1 gwr * Invalidate user side of TLB
928 1.1 gwr */
929 1.1 gwr ENTRY(TBIAU)
930 1.1 gwr #ifdef DEBUG
931 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
932 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
933 1.1 gwr #endif
934 1.1 gwr pflush #0,#4 | flush user TLB entries
935 1.1 gwr movl #DC_CLEAR,d0
936 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
937 1.1 gwr rts
938 1.1 gwr
939 1.1 gwr /*
940 1.1 gwr * Invalidate instruction cache
941 1.1 gwr */
942 1.1 gwr ENTRY(ICIA)
943 1.1 gwr movl #IC_CLEAR,d0
944 1.1 gwr movc d0,cacr | invalidate i-cache
945 1.1 gwr rts
946 1.1 gwr
947 1.1 gwr /*
948 1.1 gwr * Invalidate data cache.
949 1.1 gwr * NOTE: we do not flush 68030 on-chip cache as there are no aliasing
950 1.1 gwr * problems with DC_WA. The only cases we have to worry about are context
951 1.1 gwr * switch and TLB changes, both of which are handled "in-line" in resume
952 1.1 gwr * and TBI*.
953 1.1 gwr */
954 1.1 gwr ENTRY(DCIA)
955 1.1 gwr __DCIA:
956 1.1 gwr rts
957 1.1 gwr
958 1.1 gwr ENTRY(DCIS)
959 1.1 gwr __DCIS:
960 1.1 gwr rts
961 1.1 gwr
962 1.1 gwr /*
963 1.1 gwr * Invalidate data cache.
964 1.1 gwr */
965 1.1 gwr ENTRY(DCIU)
966 1.11 gwr movl #DC_CLEAR,d0
967 1.11 gwr movc d0,cacr | invalidate on-chip d-cache
968 1.1 gwr rts
969 1.1 gwr
970 1.1 gwr /* ICPL, ICPP, DCPL, DCPP, DCPA, DCFL, DCFP */
971 1.1 gwr
972 1.1 gwr ENTRY(PCIA)
973 1.1 gwr movl #DC_CLEAR,d0
974 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
975 1.1 gwr rts
976 1.1 gwr
977 1.1 gwr ENTRY(ecacheon)
978 1.1 gwr rts
979 1.1 gwr
980 1.1 gwr ENTRY(ecacheoff)
981 1.1 gwr rts
982 1.1 gwr
983 1.1 gwr /*
984 1.1 gwr * Get callers current SP value.
985 1.1 gwr * Note that simply taking the address of a local variable in a C function
986 1.1 gwr * doesn't work because callee saved registers may be outside the stack frame
987 1.1 gwr * defined by A6 (e.g. GCC generated code).
988 1.20 gwr *
989 1.1 gwr * [I don't think the ENTRY() macro will do the right thing with this -- glass]
990 1.1 gwr */
991 1.19 jeremy GLOBAL(getsp)
992 1.1 gwr movl sp,d0 | get current SP
993 1.1 gwr addql #4,d0 | compensate for return address
994 1.1 gwr rts
995 1.1 gwr
996 1.1 gwr ENTRY(getsfc)
997 1.1 gwr movc sfc,d0
998 1.1 gwr rts
999 1.1 gwr
1000 1.1 gwr ENTRY(getdfc)
1001 1.1 gwr movc dfc,d0
1002 1.1 gwr rts
1003 1.1 gwr
1004 1.1 gwr ENTRY(getvbr)
1005 1.1 gwr movc vbr, d0
1006 1.1 gwr rts
1007 1.1 gwr
1008 1.1 gwr ENTRY(setvbr)
1009 1.1 gwr movl sp@(4), d0
1010 1.1 gwr movc d0, vbr
1011 1.1 gwr rts
1012 1.1 gwr
1013 1.1 gwr /*
1014 1.1 gwr * Load a new CPU Root Pointer (CRP) into the MMU.
1015 1.2 gwr * void loadcrp(struct mmu_rootptr *);
1016 1.1 gwr */
1017 1.1 gwr ENTRY(loadcrp)
1018 1.1 gwr movl sp@(4),a0 | arg1: &CRP
1019 1.1 gwr movl #CACHE_CLR,d0
1020 1.1 gwr movc d0,cacr | invalidate cache(s)
1021 1.1 gwr pflusha | flush entire TLB
1022 1.1 gwr pmove a0@,crp | load new user root pointer
1023 1.10 gwr rts
1024 1.10 gwr
1025 1.10 gwr /*
1026 1.10 gwr * Get the physical address of the PTE for a given VA.
1027 1.10 gwr */
1028 1.10 gwr ENTRY(ptest_addr)
1029 1.10 gwr movl sp@(4),a0 | VA
1030 1.10 gwr ptestr #5,a0@,#7,a1 | a1 = addr of PTE
1031 1.10 gwr movl a1,d0
1032 1.1 gwr rts
1033 1.1 gwr
1034 1.1 gwr /*
1035 1.1 gwr * Set processor priority level calls. Most are implemented with
1036 1.1 gwr * inline asm expansions. However, we need one instantiation here
1037 1.1 gwr * in case some non-optimized code makes external references.
1038 1.21 gwr * Most places will use the inlined functions param.h supplies.
1039 1.1 gwr */
1040 1.1 gwr
1041 1.21 gwr ENTRY(_getsr)
1042 1.21 gwr clrl d0
1043 1.21 gwr movw sr,d0
1044 1.21 gwr rts
1045 1.21 gwr
1046 1.1 gwr ENTRY(_spl)
1047 1.1 gwr clrl d0
1048 1.1 gwr movw sr,d0
1049 1.21 gwr movl sp@(4),d1
1050 1.1 gwr movw d1,sr
1051 1.1 gwr rts
1052 1.1 gwr
1053 1.21 gwr ENTRY(_splraise)
1054 1.21 gwr clrl d0
1055 1.21 gwr movw sr,d0
1056 1.21 gwr movl d0,d1
1057 1.21 gwr andl #PSL_HIGHIPL,d1 | old &= PSL_HIGHIPL
1058 1.21 gwr cmpl sp@(4),d1 | (old - new)
1059 1.21 gwr bge Lsplr
1060 1.21 gwr movl sp@(4),d1
1061 1.21 gwr movw d1,sr
1062 1.21 gwr Lsplr:
1063 1.1 gwr rts
1064 1.1 gwr
1065 1.1 gwr /*
1066 1.1 gwr * Save and restore 68881 state.
1067 1.1 gwr */
1068 1.1 gwr ENTRY(m68881_save)
1069 1.1 gwr movl sp@(4),a0 | save area pointer
1070 1.1 gwr fsave a0@ | save state
1071 1.1 gwr tstb a0@ | null state frame?
1072 1.1 gwr jeq Lm68881sdone | yes, all done
1073 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
1074 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
1075 1.1 gwr Lm68881sdone:
1076 1.1 gwr rts
1077 1.1 gwr
1078 1.1 gwr ENTRY(m68881_restore)
1079 1.1 gwr movl sp@(4),a0 | save area pointer
1080 1.1 gwr tstb a0@ | null state frame?
1081 1.1 gwr jeq Lm68881rdone | yes, easy
1082 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
1083 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
1084 1.1 gwr Lm68881rdone:
1085 1.1 gwr frestore a0@ | restore state
1086 1.1 gwr rts
1087 1.1 gwr
1088 1.1 gwr /*
1089 1.1 gwr * _delay(unsigned N)
1090 1.1 gwr * Delay for at least (N/256) microseconds.
1091 1.1 gwr * This routine depends on the variable: delay_divisor
1092 1.1 gwr * which should be set based on the CPU clock rate.
1093 1.26 gwr * XXX: Currently this is set based on the CPU model,
1094 1.26 gwr * XXX: but this should be determined at run time...
1095 1.1 gwr */
1096 1.19 jeremy GLOBAL(_delay)
1097 1.1 gwr | d0 = arg = (usecs << 8)
1098 1.1 gwr movl sp@(4),d0
1099 1.1 gwr | d1 = delay_divisor;
1100 1.19 jeremy movl _C_LABEL(delay_divisor),d1
1101 1.1 gwr L_delay:
1102 1.1 gwr subl d1,d0
1103 1.1 gwr jgt L_delay
1104 1.1 gwr rts
1105 1.1 gwr
1106 1.1 gwr
1107 1.1 gwr | Define some addresses, mostly so DDB can print useful info.
1108 1.24 gwr | Not using _C_LABEL() here because these symbols are never
1109 1.24 gwr | referenced by any C code, and if the leading underscore
1110 1.24 gwr | ever goes away, these lines turn into syntax errors...
1111 1.24 gwr .set _KERNBASE,KERNBASE
1112 1.26 gwr .set _MONSTART,SUN3X_MONSTART
1113 1.26 gwr .set _PROM_BASE,SUN3X_PROM_BASE
1114 1.26 gwr .set _MONEND,SUN3X_MONEND
1115 1.1 gwr
1116 1.1 gwr |The end!
1117