locore.s revision 1.32 1 1.32 is /* $NetBSD: locore.s,v 1.32 1999/02/26 22:03:29 is Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1988 University of Utah.
5 1.1 gwr * Copyright (c) 1980, 1990, 1993
6 1.1 gwr * The Regents of the University of California. All rights reserved.
7 1.1 gwr *
8 1.1 gwr * This code is derived from software contributed to Berkeley by
9 1.1 gwr * the Systems Programming Group of the University of Utah Computer
10 1.1 gwr * Science Department.
11 1.1 gwr *
12 1.1 gwr * Redistribution and use in source and binary forms, with or without
13 1.1 gwr * modification, are permitted provided that the following conditions
14 1.1 gwr * are met:
15 1.1 gwr * 1. Redistributions of source code must retain the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer.
17 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 gwr * notice, this list of conditions and the following disclaimer in the
19 1.1 gwr * documentation and/or other materials provided with the distribution.
20 1.1 gwr * 3. All advertising materials mentioning features or use of this software
21 1.1 gwr * must display the following acknowledgement:
22 1.1 gwr * This product includes software developed by the University of
23 1.1 gwr * California, Berkeley and its contributors.
24 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
25 1.1 gwr * may be used to endorse or promote products derived from this software
26 1.1 gwr * without specific prior written permission.
27 1.1 gwr *
28 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 gwr * SUCH DAMAGE.
39 1.1 gwr *
40 1.1 gwr * from: Utah $Hdr: locore.s 1.66 92/12/22$
41 1.1 gwr * @(#)locore.s 8.6 (Berkeley) 5/27/94
42 1.1 gwr */
43 1.1 gwr
44 1.29 thorpej #include "opt_compat_netbsd.h"
45 1.27 gwr #include "opt_uvm.h"
46 1.27 gwr
47 1.1 gwr #include "assym.h"
48 1.17 thorpej #include <machine/asm.h>
49 1.1 gwr #include <machine/trap.h>
50 1.1 gwr
51 1.1 gwr | Remember this is a fun project!
52 1.1 gwr
53 1.1 gwr .data
54 1.19 jeremy GLOBAL(mon_crp)
55 1.1 gwr .long 0,0
56 1.1 gwr
57 1.1 gwr | This is for kvm_mkdb, and should be the address of the beginning
58 1.1 gwr | of the kernel text segment (not necessarily the same as kernbase).
59 1.1 gwr .text
60 1.19 jeremy GLOBAL(kernel_text)
61 1.1 gwr
62 1.1 gwr | This is the entry point, as well as the end of the temporary stack
63 1.1 gwr | used during process switch (one 8K page ending at start)
64 1.19 jeremy ASGLOBAL(tmpstk)
65 1.20 gwr ASGLOBAL(start)
66 1.19 jeremy
67 1.1 gwr | The first step, after disabling interrupts, is to map enough of the kernel
68 1.1 gwr | into high virtual address space so that we can use position dependent code.
69 1.1 gwr | This is a tricky task on the sun3x because the MMU is already enabled and
70 1.1 gwr | the ROM monitor provides no indication of where the root MMU table is mapped.
71 1.1 gwr | Therefore we must use one of the 68030's 'transparent translation' registers
72 1.1 gwr | to define a range in the address space where the MMU translation is
73 1.1 gwr | turned off. Once this is complete we can modify the MMU table directly
74 1.1 gwr | without the need for it to be mapped into virtual memory.
75 1.1 gwr | All code must be position independent until otherwise noted, as the
76 1.1 gwr | boot loader has loaded us into low memory but all the symbols in this
77 1.1 gwr | code have been linked high.
78 1.1 gwr movw #PSL_HIGHIPL, sr | no interrupts
79 1.1 gwr movl #KERNBASE, a5 | for vtop conversion
80 1.19 jeremy lea _C_LABEL(mon_crp), a0 | where to store the CRP
81 1.1 gwr subl a5, a0
82 1.1 gwr | Note: borrowing mon_crp for tt0 setup...
83 1.1 gwr movl #0x3F8107, a0@ | map the low 1GB v=p with the
84 1.14 jeremy .long 0xf0100800 | transparent translation reg0
85 1.14 jeremy | [ pmove a0@, tt0 ]
86 1.1 gwr | In order to map the kernel into high memory we will copy the root table
87 1.1 gwr | entry which maps the 16 megabytes of memory starting at 0x0 into the
88 1.1 gwr | entry which maps the 16 megabytes starting at KERNBASE.
89 1.1 gwr pmove crp, a0@ | Get monitor CPU root pointer
90 1.1 gwr movl a0@(4), a1 | 2nd word is PA of level A table
91 1.1 gwr
92 1.1 gwr movl a1, a0 | compute the descriptor address
93 1.1 gwr addl #0x3e0, a1 | for VA starting at KERNBASE
94 1.1 gwr movl a0@, a1@ | copy descriptor type
95 1.1 gwr movl a0@(4), a1@(4) | copy physical address
96 1.1 gwr
97 1.1 gwr | Kernel is now double mapped at zero and KERNBASE.
98 1.1 gwr | Force a long jump to the relocated code (high VA).
99 1.1 gwr movl #IC_CLEAR, d0 | Flush the I-cache
100 1.1 gwr movc d0, cacr
101 1.1 gwr jmp L_high_code:l | long jump
102 1.1 gwr
103 1.1 gwr L_high_code:
104 1.1 gwr | We are now running in the correctly relocated kernel, so
105 1.1 gwr | we are no longer restricted to position-independent code.
106 1.1 gwr | It is handy to leave transparent translation enabled while
107 1.20 gwr | for the low 1GB while _bootstrap() is doing its thing.
108 1.1 gwr
109 1.1 gwr | Do bootstrap stuff needed before main() gets called.
110 1.1 gwr | Our boot loader leaves a copy of the kernel's exec header
111 1.1 gwr | just before the start of the kernel text segment, so the
112 1.1 gwr | kernel can sanity-check the DDB symbols at [end...esym].
113 1.20 gwr | Pass the struct exec at tmpstk-32 to _bootstrap().
114 1.7 gwr | Also, make sure the initial frame pointer is zero so that
115 1.7 gwr | the backtrace algorithm used by KGDB terminates nicely.
116 1.19 jeremy lea _ASM_LABEL(tmpstk)-32, sp
117 1.6 gwr movl #0,a6
118 1.26 gwr jsr _C_LABEL(_bootstrap) | See locore2.c
119 1.1 gwr
120 1.1 gwr | Now turn off the transparent translation of the low 1GB.
121 1.1 gwr | (this also flushes the ATC)
122 1.1 gwr clrl sp@-
123 1.14 jeremy .long 0xf0170800 | pmove sp@,tt0
124 1.1 gwr addql #4,sp
125 1.1 gwr
126 1.20 gwr | Now that _bootstrap() is done using the PROM functions,
127 1.1 gwr | we can safely set the sfc/dfc to something != FC_CONTROL
128 1.1 gwr moveq #FC_USERD, d0 | make movs access "user data"
129 1.1 gwr movc d0, sfc | space for copyin/copyout
130 1.1 gwr movc d0, dfc
131 1.1 gwr
132 1.1 gwr | Setup process zero user/kernel stacks.
133 1.19 jeremy movl _C_LABEL(proc0paddr),a1 | get proc0 pcb addr
134 1.1 gwr lea a1@(USPACE-4),sp | set SSP to last word
135 1.1 gwr movl #USRSTACK-4,a2
136 1.1 gwr movl a2,usp | init user SP
137 1.1 gwr
138 1.20 gwr | Note curpcb was already set in _bootstrap().
139 1.1 gwr | Will do fpu initialization during autoconfig (see fpu.c)
140 1.1 gwr | The interrupt vector table and stack are now ready.
141 1.1 gwr | Interrupts will be enabled later, AFTER autoconfiguration
142 1.1 gwr | is finished, to avoid spurrious interrupts.
143 1.1 gwr
144 1.1 gwr /*
145 1.1 gwr * Final preparation for calling main.
146 1.1 gwr *
147 1.1 gwr * Create a fake exception frame that returns to user mode,
148 1.1 gwr * and save its address in p->p_md.md_regs for cpu_fork().
149 1.1 gwr * The new frames for process 1 and 2 will be adjusted by
150 1.1 gwr * cpu_set_kpc() to arrange for a call to a kernel function
151 1.1 gwr * before the new process does its rte out to user mode.
152 1.1 gwr */
153 1.6 gwr clrw sp@- | tf_format,tf_vector
154 1.6 gwr clrl sp@- | tf_pc (filled in later)
155 1.6 gwr movw #PSL_USER,sp@- | tf_sr for user mode
156 1.6 gwr clrl sp@- | tf_stackadj
157 1.6 gwr lea sp@(-64),sp | tf_regs[16]
158 1.6 gwr movl sp,a1 | a1=trapframe
159 1.19 jeremy lea _C_LABEL(proc0),a0 | proc0.p_md.md_regs =
160 1.6 gwr movl a1,a0@(P_MDREGS) | trapframe
161 1.6 gwr movl a2,a1@(FR_SP) | a2 == usp (from above)
162 1.7 gwr pea a1@ | push &trapframe
163 1.19 jeremy jbsr _C_LABEL(main) | main(&trapframe)
164 1.7 gwr addql #4,sp | help DDB backtrace
165 1.1 gwr trap #15 | should not get here
166 1.1 gwr
167 1.1 gwr | This is used by cpu_fork() to return to user mode.
168 1.1 gwr | It is called with SP pointing to a struct trapframe.
169 1.19 jeremy GLOBAL(proc_do_uret)
170 1.1 gwr movl sp@(FR_SP),a0 | grab and load
171 1.1 gwr movl a0,usp | user SP
172 1.1 gwr moveml sp@+,#0x7FFF | load most registers (all but SSP)
173 1.1 gwr addql #8,sp | pop SSP and stack adjust count
174 1.1 gwr rte
175 1.1 gwr
176 1.1 gwr /*
177 1.1 gwr * proc_trampoline:
178 1.1 gwr * This is used by cpu_set_kpc() to "push" a function call onto the
179 1.1 gwr * kernel stack of some process, very much like a signal delivery.
180 1.1 gwr * When we get here, the stack has:
181 1.1 gwr *
182 1.1 gwr * SP+8: switchframe from before cpu_set_kpc
183 1.31 thorpej * SP+4: void *arg;
184 1.1 gwr * SP: u_long func;
185 1.1 gwr *
186 1.1 gwr * On entry, the switchframe pushed by cpu_set_kpc has already been
187 1.1 gwr * popped off the stack, so all this needs to do is pop the function
188 1.1 gwr * pointer into a register, call it, then pop the arg, and finally
189 1.1 gwr * return using the switchframe that remains on the stack.
190 1.1 gwr */
191 1.19 jeremy GLOBAL(proc_trampoline)
192 1.1 gwr movl sp@+,a0 | function pointer
193 1.31 thorpej jbsr a0@ | (*func)(arg)
194 1.1 gwr addql #4,sp | toss the arg
195 1.1 gwr rts | as cpu_switch would do
196 1.1 gwr
197 1.1 gwr | That is all the assembly startup code we need on the sun3x!
198 1.1 gwr | The rest of this is like the hp300/locore.s where possible.
199 1.1 gwr
200 1.1 gwr /*
201 1.1 gwr * Trap/interrupt vector routines
202 1.1 gwr */
203 1.17 thorpej #include <m68k/m68k/trap_subr.s>
204 1.1 gwr
205 1.19 jeremy GLOBAL(buserr)
206 1.19 jeremy tstl _C_LABEL(nofault) | device probe?
207 1.19 jeremy jeq _C_LABEL(addrerr) | no, handle as usual
208 1.19 jeremy movl _C_LABEL(nofault),sp@- | yes,
209 1.19 jeremy jbsr _C_LABEL(longjmp) | longjmp(nofault)
210 1.19 jeremy GLOBAL(addrerr)
211 1.1 gwr clrl sp@- | stack adjust count
212 1.1 gwr moveml #0xFFFF,sp@- | save user registers
213 1.1 gwr movl usp,a0 | save the user SP
214 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
215 1.1 gwr lea sp@(FR_HW),a1 | grab base of HW berr frame
216 1.1 gwr moveq #0,d0
217 1.1 gwr movw a1@(10),d0 | grab SSW for fault processing
218 1.1 gwr btst #12,d0 | RB set?
219 1.1 gwr jeq LbeX0 | no, test RC
220 1.1 gwr bset #14,d0 | yes, must set FB
221 1.1 gwr movw d0,a1@(10) | for hardware too
222 1.1 gwr LbeX0:
223 1.1 gwr btst #13,d0 | RC set?
224 1.1 gwr jeq LbeX1 | no, skip
225 1.1 gwr bset #15,d0 | yes, must set FC
226 1.1 gwr movw d0,a1@(10) | for hardware too
227 1.1 gwr LbeX1:
228 1.1 gwr btst #8,d0 | data fault?
229 1.1 gwr jeq Lbe0 | no, check for hard cases
230 1.1 gwr movl a1@(16),d1 | fault address is as given in frame
231 1.1 gwr jra Lbe10 | thats it
232 1.1 gwr Lbe0:
233 1.1 gwr btst #4,a1@(6) | long (type B) stack frame?
234 1.1 gwr jne Lbe4 | yes, go handle
235 1.1 gwr movl a1@(2),d1 | no, can use save PC
236 1.1 gwr btst #14,d0 | FB set?
237 1.1 gwr jeq Lbe3 | no, try FC
238 1.1 gwr addql #4,d1 | yes, adjust address
239 1.1 gwr jra Lbe10 | done
240 1.1 gwr Lbe3:
241 1.1 gwr btst #15,d0 | FC set?
242 1.1 gwr jeq Lbe10 | no, done
243 1.1 gwr addql #2,d1 | yes, adjust address
244 1.1 gwr jra Lbe10 | done
245 1.1 gwr Lbe4:
246 1.1 gwr movl a1@(36),d1 | long format, use stage B address
247 1.1 gwr btst #15,d0 | FC set?
248 1.1 gwr jeq Lbe10 | no, all done
249 1.1 gwr subql #2,d1 | yes, adjust address
250 1.1 gwr Lbe10:
251 1.1 gwr movl d1,sp@- | push fault VA
252 1.1 gwr movl d0,sp@- | and padded SSW
253 1.1 gwr movw a1@(6),d0 | get frame format/vector offset
254 1.1 gwr andw #0x0FFF,d0 | clear out frame format
255 1.1 gwr cmpw #12,d0 | address error vector?
256 1.1 gwr jeq Lisaerr | yes, go to it
257 1.1 gwr
258 1.1 gwr /* MMU-specific code to determine reason for bus error. */
259 1.1 gwr movl d1,a0 | fault address
260 1.1 gwr movl sp@,d0 | function code from ssw
261 1.1 gwr btst #8,d0 | data fault?
262 1.1 gwr jne Lbe10a
263 1.1 gwr movql #1,d0 | user program access FC
264 1.1 gwr | (we dont separate data/program)
265 1.1 gwr btst #5,a1@ | supervisor mode?
266 1.1 gwr jeq Lbe10a | if no, done
267 1.1 gwr movql #5,d0 | else supervisor program access
268 1.1 gwr Lbe10a:
269 1.1 gwr ptestr d0,a0@,#7 | do a table search
270 1.1 gwr pmove psr,sp@ | save result
271 1.1 gwr movb sp@,d1
272 1.1 gwr btst #2,d1 | invalid? (incl. limit viol and berr)
273 1.1 gwr jeq Lmightnotbemerr | no -> wp check
274 1.1 gwr btst #7,d1 | is it MMU table berr?
275 1.1 gwr jeq Lismerr | no, must be fast
276 1.1 gwr jra Lisberr1 | real bus err needs not be fast
277 1.1 gwr Lmightnotbemerr:
278 1.1 gwr btst #3,d1 | write protect bit set?
279 1.1 gwr jeq Lisberr1 | no, must be bus error
280 1.1 gwr movl sp@,d0 | ssw into low word of d0
281 1.1 gwr andw #0xc0,d0 | write protect is set on page:
282 1.1 gwr cmpw #0x40,d0 | was it read cycle?
283 1.1 gwr jeq Lisberr1 | yes, was not WPE, must be bus err
284 1.1 gwr /* End of MMU-specific bus error code. */
285 1.1 gwr
286 1.1 gwr Lismerr:
287 1.1 gwr movl #T_MMUFLT,sp@- | show that we are an MMU fault
288 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
289 1.1 gwr Lisaerr:
290 1.1 gwr movl #T_ADDRERR,sp@- | mark address error
291 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
292 1.1 gwr Lisberr1:
293 1.1 gwr clrw sp@ | re-clear pad word
294 1.1 gwr Lisberr:
295 1.1 gwr movl #T_BUSERR,sp@- | mark bus error
296 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
297 1.1 gwr
298 1.1 gwr /*
299 1.1 gwr * FP exceptions.
300 1.1 gwr */
301 1.19 jeremy GLOBAL(fpfline)
302 1.1 gwr clrl sp@- | stack adjust count
303 1.1 gwr moveml #0xFFFF,sp@- | save registers
304 1.1 gwr moveq #T_FPEMULI,d0 | denote as FP emulation trap
305 1.19 jeremy jra _ASM_LABEL(fault) | do it
306 1.1 gwr
307 1.19 jeremy GLOBAL(fpunsupp)
308 1.1 gwr clrl sp@- | stack adjust count
309 1.1 gwr moveml #0xFFFF,sp@- | save registers
310 1.1 gwr moveq #T_FPEMULD,d0 | denote as FP emulation trap
311 1.19 jeremy jra _ASM_LABEL(fault) | do it
312 1.1 gwr
313 1.1 gwr /*
314 1.1 gwr * Handles all other FP coprocessor exceptions.
315 1.1 gwr * Note that since some FP exceptions generate mid-instruction frames
316 1.1 gwr * and may cause signal delivery, we need to test for stack adjustment
317 1.1 gwr * after the trap call.
318 1.1 gwr */
319 1.19 jeremy GLOBAL(fpfault)
320 1.1 gwr clrl sp@- | stack adjust count
321 1.1 gwr moveml #0xFFFF,sp@- | save user registers
322 1.1 gwr movl usp,a0 | and save
323 1.1 gwr movl a0,sp@(FR_SP) | the user stack pointer
324 1.1 gwr clrl sp@- | no VA arg
325 1.19 jeremy movl _C_LABEL(curpcb),a0 | current pcb
326 1.1 gwr lea a0@(PCB_FPCTX),a0 | address of FP savearea
327 1.1 gwr fsave a0@ | save state
328 1.1 gwr tstb a0@ | null state frame?
329 1.1 gwr jeq Lfptnull | yes, safe
330 1.1 gwr clrw d0 | no, need to tweak BIU
331 1.1 gwr movb a0@(1),d0 | get frame size
332 1.1 gwr bset #3,a0@(0,d0:w) | set exc_pend bit of BIU
333 1.1 gwr Lfptnull:
334 1.1 gwr fmovem fpsr,sp@- | push fpsr as code argument
335 1.1 gwr frestore a0@ | restore state
336 1.1 gwr movl #T_FPERR,sp@- | push type arg
337 1.17 thorpej jra _ASM_LABEL(faultstkadj) | call trap and deal with stack cleanup
338 1.1 gwr
339 1.1 gwr /*
340 1.1 gwr * Other exceptions only cause four and six word stack frame and require
341 1.1 gwr * no post-trap stack adjustment.
342 1.1 gwr */
343 1.19 jeremy GLOBAL(badtrap)
344 1.1 gwr clrl sp@- | stack adjust count
345 1.1 gwr moveml #0xFFFF,sp@- | save std frame regs
346 1.19 jeremy jbsr _C_LABEL(straytrap) | report
347 1.1 gwr moveml sp@+,#0xFFFF | restore regs
348 1.1 gwr addql #4, sp | stack adjust count
349 1.19 jeremy jra _ASM_LABEL(rei) | all done
350 1.1 gwr
351 1.1 gwr /*
352 1.1 gwr * Trap 0 is for system calls
353 1.1 gwr */
354 1.19 jeremy GLOBAL(trap0)
355 1.1 gwr clrl sp@- | stack adjust count
356 1.1 gwr moveml #0xFFFF,sp@- | save user registers
357 1.1 gwr movl usp,a0 | save the user SP
358 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
359 1.1 gwr movl d0,sp@- | push syscall number
360 1.19 jeremy jbsr _C_LABEL(syscall) | handle it
361 1.1 gwr addql #4,sp | pop syscall arg
362 1.1 gwr movl sp@(FR_SP),a0 | grab and restore
363 1.1 gwr movl a0,usp | user SP
364 1.1 gwr moveml sp@+,#0x7FFF | restore most registers
365 1.1 gwr addql #8,sp | pop SP and stack adjust
366 1.19 jeremy jra _ASM_LABEL(rei) | all done
367 1.11 gwr
368 1.11 gwr /*
369 1.11 gwr * Trap 12 is the entry point for the cachectl "syscall"
370 1.11 gwr * cachectl(command, addr, length)
371 1.11 gwr * command in d0, addr in a1, length in d1
372 1.11 gwr */
373 1.19 jeremy GLOBAL(trap12)
374 1.32 is movl _C_LABEL(curproc),sp@- | push curproc pointer
375 1.11 gwr movl d1,sp@- | push length
376 1.11 gwr movl a1,sp@- | push addr
377 1.11 gwr movl d0,sp@- | push command
378 1.32 is jbsr _C_LABEL(cachectl1) | do it
379 1.32 is lea sp@(16),sp | pop args
380 1.19 jeremy jra _ASM_LABEL(rei) | all done
381 1.1 gwr
382 1.1 gwr /*
383 1.1 gwr * Trace (single-step) trap. Kernel-mode is special.
384 1.1 gwr * User mode traps are simply passed on to trap().
385 1.1 gwr */
386 1.19 jeremy GLOBAL(trace)
387 1.1 gwr clrl sp@- | stack adjust count
388 1.1 gwr moveml #0xFFFF,sp@-
389 1.1 gwr moveq #T_TRACE,d0
390 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
391 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
392 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
393 1.1 gwr
394 1.1 gwr /*
395 1.1 gwr * Trap 15 is used for:
396 1.1 gwr * - GDB breakpoints (in user programs)
397 1.1 gwr * - KGDB breakpoints (in the kernel)
398 1.1 gwr * - trace traps for SUN binaries (not fully supported yet)
399 1.11 gwr * User mode traps are simply passed to trap().
400 1.1 gwr */
401 1.19 jeremy GLOBAL(trap15)
402 1.1 gwr clrl sp@- | stack adjust count
403 1.1 gwr moveml #0xFFFF,sp@-
404 1.1 gwr moveq #T_TRAP15,d0
405 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
406 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
407 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
408 1.1 gwr
409 1.19 jeremy ASLOCAL(kbrkpt)
410 1.11 gwr | Kernel-mode breakpoint or trace trap. (d0=trap_type)
411 1.1 gwr | Save the system sp rather than the user sp.
412 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
413 1.1 gwr lea sp@(FR_SIZE),a6 | Save stack pointer
414 1.1 gwr movl a6,sp@(FR_SP) | from before trap
415 1.1 gwr
416 1.1 gwr | If we are not on tmpstk switch to it.
417 1.1 gwr | (so debugger can change the stack pointer)
418 1.1 gwr movl a6,d1
419 1.19 jeremy cmpl #_ASM_LABEL(tmpstk),d1
420 1.1 gwr jls Lbrkpt2 | already on tmpstk
421 1.1 gwr | Copy frame to the temporary stack
422 1.1 gwr movl sp,a0 | a0=src
423 1.19 jeremy lea _ASM_LABEL(tmpstk)-96,a1 | a1=dst
424 1.1 gwr movl a1,sp | sp=new frame
425 1.1 gwr moveq #FR_SIZE,d1
426 1.1 gwr Lbrkpt1:
427 1.1 gwr movl a0@+,a1@+
428 1.1 gwr subql #4,d1
429 1.1 gwr bgt Lbrkpt1
430 1.1 gwr
431 1.1 gwr Lbrkpt2:
432 1.11 gwr | Call the trap handler for the kernel debugger.
433 1.6 gwr | Do not call trap() to handle it, so that we can
434 1.1 gwr | set breakpoints in trap() if we want. We know
435 1.1 gwr | the trap type is either T_TRACE or T_BREAKPOINT.
436 1.6 gwr movl d0,sp@- | push trap type
437 1.19 jeremy jbsr _C_LABEL(trap_kdebug)
438 1.6 gwr addql #4,sp | pop args
439 1.6 gwr
440 1.1 gwr | The stack pointer may have been modified, or
441 1.1 gwr | data below it modified (by kgdb push call),
442 1.1 gwr | so push the hardware frame at the current sp
443 1.1 gwr | before restoring registers and returning.
444 1.1 gwr movl sp@(FR_SP),a0 | modified sp
445 1.1 gwr lea sp@(FR_SIZE),a1 | end of our frame
446 1.1 gwr movl a1@-,a0@- | copy 2 longs with
447 1.1 gwr movl a1@-,a0@- | ... predecrement
448 1.1 gwr movl a0,sp@(FR_SP) | sp = h/w frame
449 1.1 gwr moveml sp@+,#0x7FFF | restore all but sp
450 1.1 gwr movl sp@,sp | ... and sp
451 1.1 gwr rte | all done
452 1.1 gwr
453 1.11 gwr /* Use common m68k sigreturn */
454 1.11 gwr #include <m68k/m68k/sigreturn.s>
455 1.1 gwr
456 1.1 gwr /*
457 1.1 gwr * Interrupt handlers. Most are auto-vectored,
458 1.1 gwr * and hard-wired the same way on all sun3 models.
459 1.1 gwr * Format in the stack is:
460 1.1 gwr * d0,d1,a0,a1, sr, pc, vo
461 1.1 gwr */
462 1.1 gwr
463 1.1 gwr #define INTERRUPT_SAVEREG \
464 1.1 gwr moveml #0xC0C0,sp@-
465 1.1 gwr
466 1.1 gwr #define INTERRUPT_RESTORE \
467 1.1 gwr moveml sp@+,#0x0303
468 1.1 gwr
469 1.1 gwr /*
470 1.1 gwr * This is the common auto-vector interrupt handler,
471 1.1 gwr * for which the CPU provides the vector=0x18+level.
472 1.1 gwr * These are installed in the interrupt vector table.
473 1.1 gwr */
474 1.1 gwr .align 2
475 1.19 jeremy GLOBAL(_isr_autovec)
476 1.1 gwr INTERRUPT_SAVEREG
477 1.19 jeremy jbsr _C_LABEL(isr_autovec)
478 1.1 gwr INTERRUPT_RESTORE
479 1.19 jeremy jra _ASM_LABEL(rei)
480 1.1 gwr
481 1.1 gwr /* clock: see clock.c */
482 1.1 gwr .align 2
483 1.19 jeremy GLOBAL(_isr_clock)
484 1.1 gwr INTERRUPT_SAVEREG
485 1.19 jeremy jbsr _C_LABEL(clock_intr)
486 1.1 gwr INTERRUPT_RESTORE
487 1.19 jeremy jra _ASM_LABEL(rei)
488 1.1 gwr
489 1.1 gwr | Handler for all vectored interrupts (i.e. VME interrupts)
490 1.1 gwr .align 2
491 1.19 jeremy GLOBAL(_isr_vectored)
492 1.1 gwr INTERRUPT_SAVEREG
493 1.19 jeremy jbsr _C_LABEL(isr_vectored)
494 1.1 gwr INTERRUPT_RESTORE
495 1.19 jeremy jra _ASM_LABEL(rei)
496 1.1 gwr
497 1.1 gwr #undef INTERRUPT_SAVEREG
498 1.1 gwr #undef INTERRUPT_RESTORE
499 1.1 gwr
500 1.1 gwr /* interrupt counters (needed by vmstat) */
501 1.19 jeremy GLOBAL(intrnames)
502 1.1 gwr .asciz "spur" | 0
503 1.1 gwr .asciz "lev1" | 1
504 1.1 gwr .asciz "lev2" | 2
505 1.1 gwr .asciz "lev3" | 3
506 1.1 gwr .asciz "lev4" | 4
507 1.1 gwr .asciz "clock" | 5
508 1.1 gwr .asciz "lev6" | 6
509 1.1 gwr .asciz "nmi" | 7
510 1.19 jeremy GLOBAL(eintrnames)
511 1.1 gwr
512 1.1 gwr .data
513 1.1 gwr .even
514 1.19 jeremy GLOBAL(intrcnt)
515 1.1 gwr .long 0,0,0,0,0,0,0,0,0,0
516 1.19 jeremy GLOBAL(eintrcnt)
517 1.1 gwr .text
518 1.1 gwr
519 1.1 gwr /*
520 1.1 gwr * Emulation of VAX REI instruction.
521 1.1 gwr *
522 1.1 gwr * This code is (mostly) un-altered from the hp300 code,
523 1.1 gwr * except that sun machines do not need a simulated SIR
524 1.1 gwr * because they have a real software interrupt register.
525 1.1 gwr *
526 1.1 gwr * This code deals with checking for and servicing ASTs
527 1.1 gwr * (profiling, scheduling) and software interrupts (network, softclock).
528 1.1 gwr * We check for ASTs first, just like the VAX. To avoid excess overhead
529 1.1 gwr * the T_ASTFLT handling code will also check for software interrupts so we
530 1.1 gwr * do not have to do it here. After identifying that we need an AST we
531 1.1 gwr * drop the IPL to allow device interrupts.
532 1.1 gwr *
533 1.1 gwr * This code is complicated by the fact that sendsig may have been called
534 1.1 gwr * necessitating a stack cleanup.
535 1.1 gwr */
536 1.1 gwr
537 1.19 jeremy ASGLOBAL(rei)
538 1.1 gwr #ifdef DIAGNOSTIC
539 1.19 jeremy tstl _C_LABEL(panicstr) | have we paniced?
540 1.1 gwr jne Ldorte | yes, do not make matters worse
541 1.1 gwr #endif
542 1.19 jeremy tstl _C_LABEL(astpending) | AST pending?
543 1.1 gwr jeq Ldorte | no, done
544 1.1 gwr Lrei1:
545 1.1 gwr btst #5,sp@ | yes, are we returning to user mode?
546 1.1 gwr jne Ldorte | no, done
547 1.1 gwr movw #PSL_LOWIPL,sr | lower SPL
548 1.1 gwr clrl sp@- | stack adjust
549 1.1 gwr moveml #0xFFFF,sp@- | save all registers
550 1.1 gwr movl usp,a1 | including
551 1.1 gwr movl a1,sp@(FR_SP) | the users SP
552 1.1 gwr clrl sp@- | VA == none
553 1.1 gwr clrl sp@- | code == none
554 1.1 gwr movl #T_ASTFLT,sp@- | type == async system trap
555 1.19 jeremy jbsr _C_LABEL(trap) | go handle it
556 1.1 gwr lea sp@(12),sp | pop value args
557 1.1 gwr movl sp@(FR_SP),a0 | restore user SP
558 1.1 gwr movl a0,usp | from save area
559 1.1 gwr movw sp@(FR_ADJ),d0 | need to adjust stack?
560 1.1 gwr jne Laststkadj | yes, go to it
561 1.1 gwr moveml sp@+,#0x7FFF | no, restore most user regs
562 1.1 gwr addql #8,sp | toss SP and stack adjust
563 1.1 gwr rte | and do real RTE
564 1.1 gwr Laststkadj:
565 1.1 gwr lea sp@(FR_HW),a1 | pointer to HW frame
566 1.1 gwr addql #8,a1 | source pointer
567 1.1 gwr movl a1,a0 | source
568 1.1 gwr addw d0,a0 | + hole size = dest pointer
569 1.1 gwr movl a1@-,a0@- | copy
570 1.1 gwr movl a1@-,a0@- | 8 bytes
571 1.1 gwr movl a0,sp@(FR_SP) | new SSP
572 1.1 gwr moveml sp@+,#0x7FFF | restore user registers
573 1.1 gwr movl sp@,sp | and our SP
574 1.1 gwr Ldorte:
575 1.1 gwr rte | real return
576 1.1 gwr
577 1.1 gwr /*
578 1.1 gwr * Initialization is at the beginning of this file, because the
579 1.1 gwr * kernel entry point needs to be at zero for compatibility with
580 1.1 gwr * the Sun boot loader. This works on Sun machines because the
581 1.1 gwr * interrupt vector table for reset is NOT at address zero.
582 1.1 gwr * (The MMU has a "boot" bit that forces access to the PROM)
583 1.1 gwr */
584 1.1 gwr
585 1.1 gwr /*
586 1.16 thorpej * Use common m68k sigcode.
587 1.1 gwr */
588 1.16 thorpej #include <m68k/m68k/sigcode.s>
589 1.16 thorpej
590 1.1 gwr .text
591 1.1 gwr
592 1.1 gwr /*
593 1.1 gwr * Primitives
594 1.1 gwr */
595 1.1 gwr
596 1.1 gwr /*
597 1.12 thorpej * Use common m68k support routines.
598 1.1 gwr */
599 1.12 thorpej #include <m68k/m68k/support.s>
600 1.1 gwr
601 1.19 jeremy BSS(want_resched,4)
602 1.1 gwr
603 1.1 gwr /*
604 1.15 thorpej * Use common m68k process manipulation routines.
605 1.1 gwr */
606 1.15 thorpej #include <m68k/m68k/proc_subr.s>
607 1.1 gwr
608 1.1 gwr | Message for Lbadsw panic
609 1.1 gwr Lsw0:
610 1.1 gwr .asciz "cpu_switch"
611 1.1 gwr .even
612 1.1 gwr
613 1.1 gwr .data
614 1.19 jeremy GLOBAL(masterpaddr) | XXX compatibility (debuggers)
615 1.19 jeremy GLOBAL(curpcb)
616 1.1 gwr .long 0
617 1.19 jeremy ASBSS(nullpcb,SIZEOF_PCB)
618 1.1 gwr .text
619 1.1 gwr
620 1.1 gwr /*
621 1.1 gwr * At exit of a process, do a cpu_switch for the last time.
622 1.28 thorpej * Switch to a safe stack and PCB, and select a new process to run. The
623 1.28 thorpej * old stack and u-area will be freed by the reaper.
624 1.1 gwr */
625 1.1 gwr ENTRY(switch_exit)
626 1.1 gwr movl sp@(4),a0 | struct proc *p
627 1.19 jeremy | save state into garbage pcb
628 1.19 jeremy movl #_ASM_LABEL(nullpcb),_C_LABEL(curpcb)
629 1.19 jeremy lea _ASM_LABEL(tmpstk),sp | goto a tmp stack
630 1.1 gwr
631 1.28 thorpej /* Schedule the vmspace and stack to be freed. */
632 1.28 thorpej movl a0,sp@- | exit2(p)
633 1.28 thorpej jbsr _C_LABEL(exit2)
634 1.28 thorpej
635 1.28 thorpej /* Don't pop the proc; pass it to cpu_switch(). */
636 1.1 gwr
637 1.19 jeremy jra _C_LABEL(cpu_switch)
638 1.1 gwr
639 1.1 gwr /*
640 1.1 gwr * When no processes are on the runq, cpu_switch() branches to idle
641 1.1 gwr * to wait for something to come ready.
642 1.1 gwr */
643 1.1 gwr .data
644 1.19 jeremy GLOBAL(Idle_count)
645 1.1 gwr .long 0
646 1.1 gwr .text
647 1.1 gwr
648 1.1 gwr Lidle:
649 1.1 gwr stop #PSL_LOWIPL
650 1.19 jeremy GLOBAL(_Idle) | See clock.c
651 1.1 gwr movw #PSL_HIGHIPL,sr
652 1.19 jeremy addql #1, _C_LABEL(Idle_count)
653 1.19 jeremy tstl _C_LABEL(whichqs)
654 1.1 gwr jeq Lidle
655 1.1 gwr movw #PSL_LOWIPL,sr
656 1.1 gwr jra Lsw1
657 1.1 gwr
658 1.1 gwr Lbadsw:
659 1.1 gwr movl #Lsw0,sp@-
660 1.19 jeremy jbsr _C_LABEL(panic)
661 1.1 gwr /*NOTREACHED*/
662 1.1 gwr
663 1.1 gwr /*
664 1.1 gwr * cpu_switch()
665 1.1 gwr * Hacked for sun3
666 1.1 gwr * XXX - Arg 1 is a proc pointer (curproc) but this doesn't use it.
667 1.1 gwr * XXX - Sould we use p->p_addr instead of curpcb? -gwr
668 1.1 gwr */
669 1.1 gwr ENTRY(cpu_switch)
670 1.19 jeremy movl _C_LABEL(curpcb),a1 | current pcb
671 1.1 gwr movw sr,a1@(PCB_PS) | save sr before changing ipl
672 1.1 gwr #ifdef notyet
673 1.19 jeremy movl _C_LABEL(curproc),sp@- | remember last proc running
674 1.1 gwr #endif
675 1.19 jeremy clrl _C_LABEL(curproc)
676 1.1 gwr
677 1.1 gwr Lsw1:
678 1.1 gwr /*
679 1.1 gwr * Find the highest-priority queue that isn't empty,
680 1.1 gwr * then take the first proc from that queue.
681 1.1 gwr */
682 1.1 gwr clrl d0
683 1.19 jeremy lea _C_LABEL(whichqs),a0
684 1.1 gwr movl a0@,d1
685 1.1 gwr Lswchk:
686 1.1 gwr btst d0,d1
687 1.1 gwr jne Lswfnd
688 1.1 gwr addqb #1,d0
689 1.1 gwr cmpb #32,d0
690 1.1 gwr jne Lswchk
691 1.19 jeremy jra _C_LABEL(_Idle)
692 1.1 gwr Lswfnd:
693 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
694 1.1 gwr movl a0@,d1 | and check again...
695 1.1 gwr bclr d0,d1
696 1.1 gwr jeq Lsw1 | proc moved, rescan
697 1.1 gwr movl d1,a0@ | update whichqs
698 1.1 gwr moveq #1,d1 | double check for higher priority
699 1.1 gwr lsll d0,d1 | process (which may have snuck in
700 1.1 gwr subql #1,d1 | while we were finding this one)
701 1.1 gwr andl a0@,d1
702 1.1 gwr jeq Lswok | no one got in, continue
703 1.1 gwr movl a0@,d1
704 1.1 gwr bset d0,d1 | otherwise put this one back
705 1.1 gwr movl d1,a0@
706 1.1 gwr jra Lsw1 | and rescan
707 1.1 gwr Lswok:
708 1.1 gwr movl d0,d1
709 1.1 gwr lslb #3,d1 | convert queue number to index
710 1.1 gwr addl #_qs,d1 | locate queue (q)
711 1.1 gwr movl d1,a1
712 1.1 gwr cmpl a1@(P_FORW),a1 | anyone on queue?
713 1.1 gwr jeq Lbadsw | no, panic
714 1.1 gwr movl a1@(P_FORW),a0 | p = q->p_forw
715 1.1 gwr movl a0@(P_FORW),a1@(P_FORW) | q->p_forw = p->p_forw
716 1.1 gwr movl a0@(P_FORW),a1 | q = p->p_forw
717 1.1 gwr movl a0@(P_BACK),a1@(P_BACK) | q->p_back = p->p_back
718 1.1 gwr cmpl a0@(P_FORW),d1 | anyone left on queue?
719 1.1 gwr jeq Lsw2 | no, skip
720 1.19 jeremy movl _C_LABEL(whichqs),d1
721 1.1 gwr bset d0,d1 | yes, reset bit
722 1.19 jeremy movl d1,_C_LABEL(whichqs)
723 1.1 gwr Lsw2:
724 1.19 jeremy movl a0,_C_LABEL(curproc)
725 1.19 jeremy clrl _C_LABEL(want_resched)
726 1.1 gwr #ifdef notyet
727 1.1 gwr movl sp@+,a1 | XXX - Make this work!
728 1.1 gwr cmpl a0,a1 | switching to same proc?
729 1.1 gwr jeq Lswdone | yes, skip save and restore
730 1.1 gwr #endif
731 1.1 gwr /*
732 1.1 gwr * Save state of previous process in its pcb.
733 1.1 gwr */
734 1.19 jeremy movl _C_LABEL(curpcb),a1
735 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
736 1.1 gwr movl usp,a2 | grab USP (a2 has been saved)
737 1.1 gwr movl a2,a1@(PCB_USP) | and save it
738 1.1 gwr
739 1.19 jeremy tstl _C_LABEL(fputype) | Do we have an fpu?
740 1.1 gwr jeq Lswnofpsave | No? Then don't try save.
741 1.1 gwr lea a1@(PCB_FPCTX),a2 | pointer to FP save area
742 1.1 gwr fsave a2@ | save FP state
743 1.1 gwr tstb a2@ | null state frame?
744 1.1 gwr jeq Lswnofpsave | yes, all done
745 1.1 gwr fmovem fp0-fp7,a2@(FPF_REGS) | save FP general regs
746 1.1 gwr fmovem fpcr/fpsr/fpi,a2@(FPF_FPCR) | save FP control regs
747 1.1 gwr Lswnofpsave:
748 1.1 gwr
749 1.6 gwr /*
750 1.6 gwr * Now that we have saved all the registers that must be
751 1.6 gwr * preserved, we are free to use those registers until
752 1.6 gwr * we load the registers for the switched-to process.
753 1.6 gwr * In this section, keep: a0=curproc, a1=curpcb
754 1.6 gwr */
755 1.6 gwr
756 1.1 gwr #ifdef DIAGNOSTIC
757 1.1 gwr tstl a0@(P_WCHAN)
758 1.1 gwr jne Lbadsw
759 1.1 gwr cmpb #SRUN,a0@(P_STAT)
760 1.1 gwr jne Lbadsw
761 1.1 gwr #endif
762 1.1 gwr clrl a0@(P_BACK) | clear back link
763 1.1 gwr movl a0@(P_ADDR),a1 | get p_addr
764 1.19 jeremy movl a1,_C_LABEL(curpcb)
765 1.1 gwr
766 1.8 gwr /*
767 1.8 gwr * Load the new VM context (new MMU root pointer)
768 1.8 gwr */
769 1.8 gwr movl a0@(P_VMSPACE),a2 | vm = p->p_vmspace
770 1.8 gwr #ifdef DIAGNOSTIC
771 1.20 gwr tstl a2 | vm == VM_MAP_NULL?
772 1.8 gwr jeq Lbadsw | panic
773 1.8 gwr #endif
774 1.8 gwr #ifdef PMAP_DEBUG
775 1.25 gwr /* When debugging just call _pmap_switch(). */
776 1.25 gwr movl a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
777 1.25 gwr pea a2@ | push pmap
778 1.25 gwr jbsr _C_LABEL(_pmap_switch) | _pmap_switch(pmap)
779 1.8 gwr addql #4,sp
780 1.19 jeremy movl _C_LABEL(curpcb),a1 | restore p_addr
781 1.8 gwr #else
782 1.25 gwr /* Otherwise, use this inline version. */
783 1.20 gwr lea _C_LABEL(kernel_crp), a3 | our CPU Root Ptr. (CRP)
784 1.20 gwr movl a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
785 1.8 gwr movl a2@(PM_A_PHYS),d0 | phys = pmap->pm_a_phys
786 1.9 jeremy cmpl a3@(4),d0 | == kernel_crp.rp_addr ?
787 1.8 gwr jeq Lsame_mmuctx | skip loadcrp/flush
788 1.8 gwr /* OK, it is a new MMU context. Load it up. */
789 1.9 jeremy movl d0,a3@(4)
790 1.1 gwr movl #CACHE_CLR,d0
791 1.1 gwr movc d0,cacr | invalidate cache(s)
792 1.1 gwr pflusha | flush entire TLB
793 1.8 gwr pmove a3@,crp | load new user root pointer
794 1.8 gwr Lsame_mmuctx:
795 1.8 gwr #endif
796 1.1 gwr
797 1.6 gwr /*
798 1.6 gwr * Reload the registers for the new process.
799 1.6 gwr * After this point we can only use d0,d1,a0,a1
800 1.6 gwr */
801 1.6 gwr moveml a1@(PCB_REGS),#0xFCFC | reload registers
802 1.1 gwr movl a1@(PCB_USP),a0
803 1.1 gwr movl a0,usp | and USP
804 1.1 gwr
805 1.19 jeremy tstl _C_LABEL(fputype) | If we don't have an fpu,
806 1.1 gwr jeq Lres_skip | don't try to restore it.
807 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
808 1.1 gwr tstb a0@ | null state frame?
809 1.1 gwr jeq Lresfprest | yes, easy
810 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
811 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
812 1.1 gwr Lresfprest:
813 1.1 gwr frestore a0@ | restore state
814 1.1 gwr Lres_skip:
815 1.1 gwr movw a1@(PCB_PS),d0 | no, restore PS
816 1.1 gwr #ifdef DIAGNOSTIC
817 1.1 gwr btst #13,d0 | supervisor mode?
818 1.1 gwr jeq Lbadsw | no? panic!
819 1.1 gwr #endif
820 1.1 gwr movw d0,sr | OK, restore PS
821 1.1 gwr moveq #1,d0 | return 1 (for alternate returns)
822 1.1 gwr rts
823 1.1 gwr
824 1.1 gwr /*
825 1.1 gwr * savectx(pcb)
826 1.1 gwr * Update pcb, saving current processor state.
827 1.1 gwr */
828 1.1 gwr ENTRY(savectx)
829 1.1 gwr movl sp@(4),a1
830 1.1 gwr movw sr,a1@(PCB_PS)
831 1.1 gwr movl usp,a0 | grab USP
832 1.1 gwr movl a0,a1@(PCB_USP) | and save it
833 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
834 1.1 gwr
835 1.19 jeremy tstl _C_LABEL(fputype) | Do we have FPU?
836 1.1 gwr jeq Lsavedone | No? Then don't save state.
837 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
838 1.1 gwr fsave a0@ | save FP state
839 1.1 gwr tstb a0@ | null state frame?
840 1.1 gwr jeq Lsavedone | yes, all done
841 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
842 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
843 1.1 gwr Lsavedone:
844 1.1 gwr moveq #0,d0 | return 0
845 1.1 gwr rts
846 1.1 gwr
847 1.20 gwr /* suline() */
848 1.1 gwr
849 1.1 gwr #ifdef DEBUG
850 1.1 gwr .data
851 1.19 jeremy ASGLOBAL(fulltflush)
852 1.1 gwr .long 0
853 1.19 jeremy ASGLOBAL(fullcflush)
854 1.1 gwr .long 0
855 1.1 gwr .text
856 1.1 gwr #endif
857 1.1 gwr
858 1.1 gwr /*
859 1.1 gwr * Invalidate entire TLB.
860 1.1 gwr */
861 1.1 gwr ENTRY(TBIA)
862 1.19 jeremy _C_LABEL(_TBIA):
863 1.1 gwr pflusha
864 1.1 gwr movl #DC_CLEAR,d0
865 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
866 1.1 gwr rts
867 1.1 gwr
868 1.1 gwr /*
869 1.1 gwr * Invalidate any TLB entry for given VA (TB Invalidate Single)
870 1.1 gwr */
871 1.1 gwr ENTRY(TBIS)
872 1.1 gwr #ifdef DEBUG
873 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
874 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush entire TLB
875 1.1 gwr #endif
876 1.1 gwr movl sp@(4),a0
877 1.1 gwr pflush #0,#0,a0@ | flush address from both sides
878 1.1 gwr movl #DC_CLEAR,d0
879 1.1 gwr movc d0,cacr | invalidate on-chip data cache
880 1.1 gwr rts
881 1.1 gwr
882 1.1 gwr /*
883 1.1 gwr * Invalidate supervisor side of TLB
884 1.1 gwr */
885 1.1 gwr ENTRY(TBIAS)
886 1.1 gwr #ifdef DEBUG
887 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
888 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
889 1.1 gwr #endif
890 1.1 gwr pflush #4,#4 | flush supervisor TLB entries
891 1.1 gwr movl #DC_CLEAR,d0
892 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
893 1.1 gwr rts
894 1.1 gwr
895 1.1 gwr /*
896 1.1 gwr * Invalidate user side of TLB
897 1.1 gwr */
898 1.1 gwr ENTRY(TBIAU)
899 1.1 gwr #ifdef DEBUG
900 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
901 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
902 1.1 gwr #endif
903 1.1 gwr pflush #0,#4 | flush user TLB entries
904 1.1 gwr movl #DC_CLEAR,d0
905 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
906 1.1 gwr rts
907 1.1 gwr
908 1.1 gwr /*
909 1.1 gwr * Invalidate instruction cache
910 1.1 gwr */
911 1.1 gwr ENTRY(ICIA)
912 1.1 gwr movl #IC_CLEAR,d0
913 1.1 gwr movc d0,cacr | invalidate i-cache
914 1.1 gwr rts
915 1.1 gwr
916 1.1 gwr /*
917 1.1 gwr * Invalidate data cache.
918 1.1 gwr * NOTE: we do not flush 68030 on-chip cache as there are no aliasing
919 1.1 gwr * problems with DC_WA. The only cases we have to worry about are context
920 1.1 gwr * switch and TLB changes, both of which are handled "in-line" in resume
921 1.1 gwr * and TBI*.
922 1.1 gwr */
923 1.1 gwr ENTRY(DCIA)
924 1.1 gwr __DCIA:
925 1.1 gwr rts
926 1.1 gwr
927 1.1 gwr ENTRY(DCIS)
928 1.1 gwr __DCIS:
929 1.1 gwr rts
930 1.1 gwr
931 1.1 gwr /*
932 1.1 gwr * Invalidate data cache.
933 1.1 gwr */
934 1.1 gwr ENTRY(DCIU)
935 1.11 gwr movl #DC_CLEAR,d0
936 1.11 gwr movc d0,cacr | invalidate on-chip d-cache
937 1.1 gwr rts
938 1.1 gwr
939 1.1 gwr /* ICPL, ICPP, DCPL, DCPP, DCPA, DCFL, DCFP */
940 1.1 gwr
941 1.1 gwr ENTRY(PCIA)
942 1.1 gwr movl #DC_CLEAR,d0
943 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
944 1.1 gwr rts
945 1.1 gwr
946 1.1 gwr ENTRY(ecacheon)
947 1.1 gwr rts
948 1.1 gwr
949 1.1 gwr ENTRY(ecacheoff)
950 1.1 gwr rts
951 1.1 gwr
952 1.1 gwr /*
953 1.1 gwr * Get callers current SP value.
954 1.1 gwr * Note that simply taking the address of a local variable in a C function
955 1.1 gwr * doesn't work because callee saved registers may be outside the stack frame
956 1.1 gwr * defined by A6 (e.g. GCC generated code).
957 1.20 gwr *
958 1.1 gwr * [I don't think the ENTRY() macro will do the right thing with this -- glass]
959 1.1 gwr */
960 1.19 jeremy GLOBAL(getsp)
961 1.1 gwr movl sp,d0 | get current SP
962 1.1 gwr addql #4,d0 | compensate for return address
963 1.1 gwr rts
964 1.1 gwr
965 1.1 gwr ENTRY(getsfc)
966 1.1 gwr movc sfc,d0
967 1.1 gwr rts
968 1.1 gwr
969 1.1 gwr ENTRY(getdfc)
970 1.1 gwr movc dfc,d0
971 1.1 gwr rts
972 1.1 gwr
973 1.1 gwr ENTRY(getvbr)
974 1.1 gwr movc vbr, d0
975 1.1 gwr rts
976 1.1 gwr
977 1.1 gwr ENTRY(setvbr)
978 1.1 gwr movl sp@(4), d0
979 1.1 gwr movc d0, vbr
980 1.1 gwr rts
981 1.1 gwr
982 1.1 gwr /*
983 1.1 gwr * Load a new CPU Root Pointer (CRP) into the MMU.
984 1.2 gwr * void loadcrp(struct mmu_rootptr *);
985 1.1 gwr */
986 1.1 gwr ENTRY(loadcrp)
987 1.1 gwr movl sp@(4),a0 | arg1: &CRP
988 1.1 gwr movl #CACHE_CLR,d0
989 1.1 gwr movc d0,cacr | invalidate cache(s)
990 1.1 gwr pflusha | flush entire TLB
991 1.1 gwr pmove a0@,crp | load new user root pointer
992 1.10 gwr rts
993 1.10 gwr
994 1.10 gwr /*
995 1.10 gwr * Get the physical address of the PTE for a given VA.
996 1.10 gwr */
997 1.10 gwr ENTRY(ptest_addr)
998 1.10 gwr movl sp@(4),a0 | VA
999 1.10 gwr ptestr #5,a0@,#7,a1 | a1 = addr of PTE
1000 1.10 gwr movl a1,d0
1001 1.1 gwr rts
1002 1.1 gwr
1003 1.1 gwr /*
1004 1.1 gwr * Set processor priority level calls. Most are implemented with
1005 1.1 gwr * inline asm expansions. However, we need one instantiation here
1006 1.1 gwr * in case some non-optimized code makes external references.
1007 1.21 gwr * Most places will use the inlined functions param.h supplies.
1008 1.1 gwr */
1009 1.1 gwr
1010 1.21 gwr ENTRY(_getsr)
1011 1.21 gwr clrl d0
1012 1.21 gwr movw sr,d0
1013 1.21 gwr rts
1014 1.21 gwr
1015 1.1 gwr ENTRY(_spl)
1016 1.1 gwr clrl d0
1017 1.1 gwr movw sr,d0
1018 1.21 gwr movl sp@(4),d1
1019 1.1 gwr movw d1,sr
1020 1.1 gwr rts
1021 1.1 gwr
1022 1.21 gwr ENTRY(_splraise)
1023 1.21 gwr clrl d0
1024 1.21 gwr movw sr,d0
1025 1.21 gwr movl d0,d1
1026 1.21 gwr andl #PSL_HIGHIPL,d1 | old &= PSL_HIGHIPL
1027 1.21 gwr cmpl sp@(4),d1 | (old - new)
1028 1.21 gwr bge Lsplr
1029 1.21 gwr movl sp@(4),d1
1030 1.21 gwr movw d1,sr
1031 1.21 gwr Lsplr:
1032 1.1 gwr rts
1033 1.1 gwr
1034 1.1 gwr /*
1035 1.1 gwr * Save and restore 68881 state.
1036 1.1 gwr */
1037 1.1 gwr ENTRY(m68881_save)
1038 1.1 gwr movl sp@(4),a0 | save area pointer
1039 1.1 gwr fsave a0@ | save state
1040 1.1 gwr tstb a0@ | null state frame?
1041 1.1 gwr jeq Lm68881sdone | yes, all done
1042 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
1043 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
1044 1.1 gwr Lm68881sdone:
1045 1.1 gwr rts
1046 1.1 gwr
1047 1.1 gwr ENTRY(m68881_restore)
1048 1.1 gwr movl sp@(4),a0 | save area pointer
1049 1.1 gwr tstb a0@ | null state frame?
1050 1.1 gwr jeq Lm68881rdone | yes, easy
1051 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
1052 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
1053 1.1 gwr Lm68881rdone:
1054 1.1 gwr frestore a0@ | restore state
1055 1.1 gwr rts
1056 1.1 gwr
1057 1.1 gwr /*
1058 1.1 gwr * _delay(unsigned N)
1059 1.1 gwr * Delay for at least (N/256) microseconds.
1060 1.1 gwr * This routine depends on the variable: delay_divisor
1061 1.1 gwr * which should be set based on the CPU clock rate.
1062 1.26 gwr * XXX: Currently this is set based on the CPU model,
1063 1.26 gwr * XXX: but this should be determined at run time...
1064 1.1 gwr */
1065 1.19 jeremy GLOBAL(_delay)
1066 1.1 gwr | d0 = arg = (usecs << 8)
1067 1.1 gwr movl sp@(4),d0
1068 1.1 gwr | d1 = delay_divisor;
1069 1.19 jeremy movl _C_LABEL(delay_divisor),d1
1070 1.1 gwr L_delay:
1071 1.1 gwr subl d1,d0
1072 1.1 gwr jgt L_delay
1073 1.1 gwr rts
1074 1.1 gwr
1075 1.1 gwr
1076 1.1 gwr | Define some addresses, mostly so DDB can print useful info.
1077 1.24 gwr | Not using _C_LABEL() here because these symbols are never
1078 1.24 gwr | referenced by any C code, and if the leading underscore
1079 1.24 gwr | ever goes away, these lines turn into syntax errors...
1080 1.24 gwr .set _KERNBASE,KERNBASE
1081 1.26 gwr .set _MONSTART,SUN3X_MONSTART
1082 1.26 gwr .set _PROM_BASE,SUN3X_PROM_BASE
1083 1.26 gwr .set _MONEND,SUN3X_MONEND
1084 1.1 gwr
1085 1.1 gwr |The end!
1086