locore.s revision 1.36 1 1.36 thorpej /* $NetBSD: locore.s,v 1.36 1999/08/01 21:43:04 thorpej Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1988 University of Utah.
5 1.1 gwr * Copyright (c) 1980, 1990, 1993
6 1.1 gwr * The Regents of the University of California. All rights reserved.
7 1.1 gwr *
8 1.1 gwr * This code is derived from software contributed to Berkeley by
9 1.1 gwr * the Systems Programming Group of the University of Utah Computer
10 1.1 gwr * Science Department.
11 1.1 gwr *
12 1.1 gwr * Redistribution and use in source and binary forms, with or without
13 1.1 gwr * modification, are permitted provided that the following conditions
14 1.1 gwr * are met:
15 1.1 gwr * 1. Redistributions of source code must retain the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer.
17 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 gwr * notice, this list of conditions and the following disclaimer in the
19 1.1 gwr * documentation and/or other materials provided with the distribution.
20 1.1 gwr * 3. All advertising materials mentioning features or use of this software
21 1.1 gwr * must display the following acknowledgement:
22 1.1 gwr * This product includes software developed by the University of
23 1.1 gwr * California, Berkeley and its contributors.
24 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
25 1.1 gwr * may be used to endorse or promote products derived from this software
26 1.1 gwr * without specific prior written permission.
27 1.1 gwr *
28 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 gwr * SUCH DAMAGE.
39 1.1 gwr *
40 1.1 gwr * from: Utah $Hdr: locore.s 1.66 92/12/22$
41 1.1 gwr * @(#)locore.s 8.6 (Berkeley) 5/27/94
42 1.1 gwr */
43 1.1 gwr
44 1.29 thorpej #include "opt_compat_netbsd.h"
45 1.34 kleink #include "opt_compat_svr4.h"
46 1.35 christos #include "opt_compat_sunos.h"
47 1.27 gwr
48 1.1 gwr #include "assym.h"
49 1.17 thorpej #include <machine/asm.h>
50 1.1 gwr #include <machine/trap.h>
51 1.1 gwr
52 1.1 gwr | Remember this is a fun project!
53 1.1 gwr
54 1.1 gwr .data
55 1.19 jeremy GLOBAL(mon_crp)
56 1.1 gwr .long 0,0
57 1.1 gwr
58 1.1 gwr | This is for kvm_mkdb, and should be the address of the beginning
59 1.1 gwr | of the kernel text segment (not necessarily the same as kernbase).
60 1.1 gwr .text
61 1.19 jeremy GLOBAL(kernel_text)
62 1.1 gwr
63 1.1 gwr | This is the entry point, as well as the end of the temporary stack
64 1.1 gwr | used during process switch (one 8K page ending at start)
65 1.19 jeremy ASGLOBAL(tmpstk)
66 1.20 gwr ASGLOBAL(start)
67 1.19 jeremy
68 1.1 gwr | The first step, after disabling interrupts, is to map enough of the kernel
69 1.1 gwr | into high virtual address space so that we can use position dependent code.
70 1.1 gwr | This is a tricky task on the sun3x because the MMU is already enabled and
71 1.1 gwr | the ROM monitor provides no indication of where the root MMU table is mapped.
72 1.1 gwr | Therefore we must use one of the 68030's 'transparent translation' registers
73 1.1 gwr | to define a range in the address space where the MMU translation is
74 1.1 gwr | turned off. Once this is complete we can modify the MMU table directly
75 1.1 gwr | without the need for it to be mapped into virtual memory.
76 1.1 gwr | All code must be position independent until otherwise noted, as the
77 1.1 gwr | boot loader has loaded us into low memory but all the symbols in this
78 1.1 gwr | code have been linked high.
79 1.1 gwr movw #PSL_HIGHIPL, sr | no interrupts
80 1.1 gwr movl #KERNBASE, a5 | for vtop conversion
81 1.19 jeremy lea _C_LABEL(mon_crp), a0 | where to store the CRP
82 1.1 gwr subl a5, a0
83 1.1 gwr | Note: borrowing mon_crp for tt0 setup...
84 1.1 gwr movl #0x3F8107, a0@ | map the low 1GB v=p with the
85 1.14 jeremy .long 0xf0100800 | transparent translation reg0
86 1.14 jeremy | [ pmove a0@, tt0 ]
87 1.1 gwr | In order to map the kernel into high memory we will copy the root table
88 1.1 gwr | entry which maps the 16 megabytes of memory starting at 0x0 into the
89 1.1 gwr | entry which maps the 16 megabytes starting at KERNBASE.
90 1.1 gwr pmove crp, a0@ | Get monitor CPU root pointer
91 1.1 gwr movl a0@(4), a1 | 2nd word is PA of level A table
92 1.1 gwr
93 1.1 gwr movl a1, a0 | compute the descriptor address
94 1.1 gwr addl #0x3e0, a1 | for VA starting at KERNBASE
95 1.1 gwr movl a0@, a1@ | copy descriptor type
96 1.1 gwr movl a0@(4), a1@(4) | copy physical address
97 1.1 gwr
98 1.1 gwr | Kernel is now double mapped at zero and KERNBASE.
99 1.1 gwr | Force a long jump to the relocated code (high VA).
100 1.1 gwr movl #IC_CLEAR, d0 | Flush the I-cache
101 1.1 gwr movc d0, cacr
102 1.1 gwr jmp L_high_code:l | long jump
103 1.1 gwr
104 1.1 gwr L_high_code:
105 1.1 gwr | We are now running in the correctly relocated kernel, so
106 1.1 gwr | we are no longer restricted to position-independent code.
107 1.1 gwr | It is handy to leave transparent translation enabled while
108 1.20 gwr | for the low 1GB while _bootstrap() is doing its thing.
109 1.1 gwr
110 1.1 gwr | Do bootstrap stuff needed before main() gets called.
111 1.1 gwr | Our boot loader leaves a copy of the kernel's exec header
112 1.1 gwr | just before the start of the kernel text segment, so the
113 1.1 gwr | kernel can sanity-check the DDB symbols at [end...esym].
114 1.20 gwr | Pass the struct exec at tmpstk-32 to _bootstrap().
115 1.7 gwr | Also, make sure the initial frame pointer is zero so that
116 1.7 gwr | the backtrace algorithm used by KGDB terminates nicely.
117 1.19 jeremy lea _ASM_LABEL(tmpstk)-32, sp
118 1.6 gwr movl #0,a6
119 1.26 gwr jsr _C_LABEL(_bootstrap) | See locore2.c
120 1.1 gwr
121 1.1 gwr | Now turn off the transparent translation of the low 1GB.
122 1.1 gwr | (this also flushes the ATC)
123 1.1 gwr clrl sp@-
124 1.14 jeremy .long 0xf0170800 | pmove sp@,tt0
125 1.1 gwr addql #4,sp
126 1.1 gwr
127 1.20 gwr | Now that _bootstrap() is done using the PROM functions,
128 1.1 gwr | we can safely set the sfc/dfc to something != FC_CONTROL
129 1.1 gwr moveq #FC_USERD, d0 | make movs access "user data"
130 1.1 gwr movc d0, sfc | space for copyin/copyout
131 1.1 gwr movc d0, dfc
132 1.1 gwr
133 1.1 gwr | Setup process zero user/kernel stacks.
134 1.19 jeremy movl _C_LABEL(proc0paddr),a1 | get proc0 pcb addr
135 1.1 gwr lea a1@(USPACE-4),sp | set SSP to last word
136 1.1 gwr movl #USRSTACK-4,a2
137 1.1 gwr movl a2,usp | init user SP
138 1.1 gwr
139 1.20 gwr | Note curpcb was already set in _bootstrap().
140 1.1 gwr | Will do fpu initialization during autoconfig (see fpu.c)
141 1.1 gwr | The interrupt vector table and stack are now ready.
142 1.1 gwr | Interrupts will be enabled later, AFTER autoconfiguration
143 1.1 gwr | is finished, to avoid spurrious interrupts.
144 1.1 gwr
145 1.1 gwr /*
146 1.1 gwr * Final preparation for calling main.
147 1.1 gwr *
148 1.1 gwr * Create a fake exception frame that returns to user mode,
149 1.1 gwr * and save its address in p->p_md.md_regs for cpu_fork().
150 1.1 gwr * The new frames for process 1 and 2 will be adjusted by
151 1.1 gwr * cpu_set_kpc() to arrange for a call to a kernel function
152 1.1 gwr * before the new process does its rte out to user mode.
153 1.1 gwr */
154 1.6 gwr clrw sp@- | tf_format,tf_vector
155 1.6 gwr clrl sp@- | tf_pc (filled in later)
156 1.6 gwr movw #PSL_USER,sp@- | tf_sr for user mode
157 1.6 gwr clrl sp@- | tf_stackadj
158 1.6 gwr lea sp@(-64),sp | tf_regs[16]
159 1.6 gwr movl sp,a1 | a1=trapframe
160 1.19 jeremy lea _C_LABEL(proc0),a0 | proc0.p_md.md_regs =
161 1.6 gwr movl a1,a0@(P_MDREGS) | trapframe
162 1.6 gwr movl a2,a1@(FR_SP) | a2 == usp (from above)
163 1.7 gwr pea a1@ | push &trapframe
164 1.19 jeremy jbsr _C_LABEL(main) | main(&trapframe)
165 1.7 gwr addql #4,sp | help DDB backtrace
166 1.1 gwr trap #15 | should not get here
167 1.1 gwr
168 1.1 gwr | This is used by cpu_fork() to return to user mode.
169 1.1 gwr | It is called with SP pointing to a struct trapframe.
170 1.19 jeremy GLOBAL(proc_do_uret)
171 1.1 gwr movl sp@(FR_SP),a0 | grab and load
172 1.1 gwr movl a0,usp | user SP
173 1.1 gwr moveml sp@+,#0x7FFF | load most registers (all but SSP)
174 1.1 gwr addql #8,sp | pop SSP and stack adjust count
175 1.1 gwr rte
176 1.1 gwr
177 1.1 gwr /*
178 1.1 gwr * proc_trampoline:
179 1.1 gwr * This is used by cpu_set_kpc() to "push" a function call onto the
180 1.1 gwr * kernel stack of some process, very much like a signal delivery.
181 1.1 gwr * When we get here, the stack has:
182 1.1 gwr *
183 1.1 gwr * SP+8: switchframe from before cpu_set_kpc
184 1.31 thorpej * SP+4: void *arg;
185 1.1 gwr * SP: u_long func;
186 1.1 gwr *
187 1.1 gwr * On entry, the switchframe pushed by cpu_set_kpc has already been
188 1.1 gwr * popped off the stack, so all this needs to do is pop the function
189 1.1 gwr * pointer into a register, call it, then pop the arg, and finally
190 1.1 gwr * return using the switchframe that remains on the stack.
191 1.1 gwr */
192 1.19 jeremy GLOBAL(proc_trampoline)
193 1.1 gwr movl sp@+,a0 | function pointer
194 1.31 thorpej jbsr a0@ | (*func)(arg)
195 1.1 gwr addql #4,sp | toss the arg
196 1.1 gwr rts | as cpu_switch would do
197 1.1 gwr
198 1.1 gwr | That is all the assembly startup code we need on the sun3x!
199 1.1 gwr | The rest of this is like the hp300/locore.s where possible.
200 1.1 gwr
201 1.1 gwr /*
202 1.1 gwr * Trap/interrupt vector routines
203 1.1 gwr */
204 1.17 thorpej #include <m68k/m68k/trap_subr.s>
205 1.1 gwr
206 1.19 jeremy GLOBAL(buserr)
207 1.19 jeremy tstl _C_LABEL(nofault) | device probe?
208 1.19 jeremy jeq _C_LABEL(addrerr) | no, handle as usual
209 1.19 jeremy movl _C_LABEL(nofault),sp@- | yes,
210 1.19 jeremy jbsr _C_LABEL(longjmp) | longjmp(nofault)
211 1.19 jeremy GLOBAL(addrerr)
212 1.1 gwr clrl sp@- | stack adjust count
213 1.1 gwr moveml #0xFFFF,sp@- | save user registers
214 1.1 gwr movl usp,a0 | save the user SP
215 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
216 1.1 gwr lea sp@(FR_HW),a1 | grab base of HW berr frame
217 1.1 gwr moveq #0,d0
218 1.1 gwr movw a1@(10),d0 | grab SSW for fault processing
219 1.1 gwr btst #12,d0 | RB set?
220 1.1 gwr jeq LbeX0 | no, test RC
221 1.1 gwr bset #14,d0 | yes, must set FB
222 1.1 gwr movw d0,a1@(10) | for hardware too
223 1.1 gwr LbeX0:
224 1.1 gwr btst #13,d0 | RC set?
225 1.1 gwr jeq LbeX1 | no, skip
226 1.1 gwr bset #15,d0 | yes, must set FC
227 1.1 gwr movw d0,a1@(10) | for hardware too
228 1.1 gwr LbeX1:
229 1.1 gwr btst #8,d0 | data fault?
230 1.1 gwr jeq Lbe0 | no, check for hard cases
231 1.1 gwr movl a1@(16),d1 | fault address is as given in frame
232 1.1 gwr jra Lbe10 | thats it
233 1.1 gwr Lbe0:
234 1.1 gwr btst #4,a1@(6) | long (type B) stack frame?
235 1.1 gwr jne Lbe4 | yes, go handle
236 1.1 gwr movl a1@(2),d1 | no, can use save PC
237 1.1 gwr btst #14,d0 | FB set?
238 1.1 gwr jeq Lbe3 | no, try FC
239 1.1 gwr addql #4,d1 | yes, adjust address
240 1.1 gwr jra Lbe10 | done
241 1.1 gwr Lbe3:
242 1.1 gwr btst #15,d0 | FC set?
243 1.1 gwr jeq Lbe10 | no, done
244 1.1 gwr addql #2,d1 | yes, adjust address
245 1.1 gwr jra Lbe10 | done
246 1.1 gwr Lbe4:
247 1.1 gwr movl a1@(36),d1 | long format, use stage B address
248 1.1 gwr btst #15,d0 | FC set?
249 1.1 gwr jeq Lbe10 | no, all done
250 1.1 gwr subql #2,d1 | yes, adjust address
251 1.1 gwr Lbe10:
252 1.1 gwr movl d1,sp@- | push fault VA
253 1.1 gwr movl d0,sp@- | and padded SSW
254 1.1 gwr movw a1@(6),d0 | get frame format/vector offset
255 1.1 gwr andw #0x0FFF,d0 | clear out frame format
256 1.1 gwr cmpw #12,d0 | address error vector?
257 1.1 gwr jeq Lisaerr | yes, go to it
258 1.1 gwr
259 1.1 gwr /* MMU-specific code to determine reason for bus error. */
260 1.1 gwr movl d1,a0 | fault address
261 1.1 gwr movl sp@,d0 | function code from ssw
262 1.1 gwr btst #8,d0 | data fault?
263 1.1 gwr jne Lbe10a
264 1.1 gwr movql #1,d0 | user program access FC
265 1.1 gwr | (we dont separate data/program)
266 1.1 gwr btst #5,a1@ | supervisor mode?
267 1.1 gwr jeq Lbe10a | if no, done
268 1.1 gwr movql #5,d0 | else supervisor program access
269 1.1 gwr Lbe10a:
270 1.1 gwr ptestr d0,a0@,#7 | do a table search
271 1.1 gwr pmove psr,sp@ | save result
272 1.1 gwr movb sp@,d1
273 1.1 gwr btst #2,d1 | invalid? (incl. limit viol and berr)
274 1.1 gwr jeq Lmightnotbemerr | no -> wp check
275 1.1 gwr btst #7,d1 | is it MMU table berr?
276 1.1 gwr jeq Lismerr | no, must be fast
277 1.1 gwr jra Lisberr1 | real bus err needs not be fast
278 1.1 gwr Lmightnotbemerr:
279 1.1 gwr btst #3,d1 | write protect bit set?
280 1.1 gwr jeq Lisberr1 | no, must be bus error
281 1.1 gwr movl sp@,d0 | ssw into low word of d0
282 1.1 gwr andw #0xc0,d0 | write protect is set on page:
283 1.1 gwr cmpw #0x40,d0 | was it read cycle?
284 1.1 gwr jeq Lisberr1 | yes, was not WPE, must be bus err
285 1.1 gwr /* End of MMU-specific bus error code. */
286 1.1 gwr
287 1.1 gwr Lismerr:
288 1.1 gwr movl #T_MMUFLT,sp@- | show that we are an MMU fault
289 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
290 1.1 gwr Lisaerr:
291 1.1 gwr movl #T_ADDRERR,sp@- | mark address error
292 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
293 1.1 gwr Lisberr1:
294 1.1 gwr clrw sp@ | re-clear pad word
295 1.1 gwr Lisberr:
296 1.1 gwr movl #T_BUSERR,sp@- | mark bus error
297 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
298 1.1 gwr
299 1.1 gwr /*
300 1.1 gwr * FP exceptions.
301 1.1 gwr */
302 1.19 jeremy GLOBAL(fpfline)
303 1.1 gwr clrl sp@- | stack adjust count
304 1.1 gwr moveml #0xFFFF,sp@- | save registers
305 1.1 gwr moveq #T_FPEMULI,d0 | denote as FP emulation trap
306 1.19 jeremy jra _ASM_LABEL(fault) | do it
307 1.1 gwr
308 1.19 jeremy GLOBAL(fpunsupp)
309 1.1 gwr clrl sp@- | stack adjust count
310 1.1 gwr moveml #0xFFFF,sp@- | save registers
311 1.1 gwr moveq #T_FPEMULD,d0 | denote as FP emulation trap
312 1.19 jeremy jra _ASM_LABEL(fault) | do it
313 1.1 gwr
314 1.1 gwr /*
315 1.1 gwr * Handles all other FP coprocessor exceptions.
316 1.1 gwr * Note that since some FP exceptions generate mid-instruction frames
317 1.1 gwr * and may cause signal delivery, we need to test for stack adjustment
318 1.1 gwr * after the trap call.
319 1.1 gwr */
320 1.19 jeremy GLOBAL(fpfault)
321 1.1 gwr clrl sp@- | stack adjust count
322 1.1 gwr moveml #0xFFFF,sp@- | save user registers
323 1.1 gwr movl usp,a0 | and save
324 1.1 gwr movl a0,sp@(FR_SP) | the user stack pointer
325 1.1 gwr clrl sp@- | no VA arg
326 1.19 jeremy movl _C_LABEL(curpcb),a0 | current pcb
327 1.1 gwr lea a0@(PCB_FPCTX),a0 | address of FP savearea
328 1.1 gwr fsave a0@ | save state
329 1.1 gwr tstb a0@ | null state frame?
330 1.1 gwr jeq Lfptnull | yes, safe
331 1.1 gwr clrw d0 | no, need to tweak BIU
332 1.1 gwr movb a0@(1),d0 | get frame size
333 1.1 gwr bset #3,a0@(0,d0:w) | set exc_pend bit of BIU
334 1.1 gwr Lfptnull:
335 1.1 gwr fmovem fpsr,sp@- | push fpsr as code argument
336 1.1 gwr frestore a0@ | restore state
337 1.1 gwr movl #T_FPERR,sp@- | push type arg
338 1.17 thorpej jra _ASM_LABEL(faultstkadj) | call trap and deal with stack cleanup
339 1.1 gwr
340 1.1 gwr /*
341 1.1 gwr * Other exceptions only cause four and six word stack frame and require
342 1.1 gwr * no post-trap stack adjustment.
343 1.1 gwr */
344 1.19 jeremy GLOBAL(badtrap)
345 1.1 gwr clrl sp@- | stack adjust count
346 1.1 gwr moveml #0xFFFF,sp@- | save std frame regs
347 1.19 jeremy jbsr _C_LABEL(straytrap) | report
348 1.1 gwr moveml sp@+,#0xFFFF | restore regs
349 1.1 gwr addql #4, sp | stack adjust count
350 1.19 jeremy jra _ASM_LABEL(rei) | all done
351 1.1 gwr
352 1.1 gwr /*
353 1.1 gwr * Trap 0 is for system calls
354 1.1 gwr */
355 1.19 jeremy GLOBAL(trap0)
356 1.1 gwr clrl sp@- | stack adjust count
357 1.1 gwr moveml #0xFFFF,sp@- | save user registers
358 1.1 gwr movl usp,a0 | save the user SP
359 1.1 gwr movl a0,sp@(FR_SP) | in the savearea
360 1.1 gwr movl d0,sp@- | push syscall number
361 1.19 jeremy jbsr _C_LABEL(syscall) | handle it
362 1.1 gwr addql #4,sp | pop syscall arg
363 1.1 gwr movl sp@(FR_SP),a0 | grab and restore
364 1.1 gwr movl a0,usp | user SP
365 1.1 gwr moveml sp@+,#0x7FFF | restore most registers
366 1.1 gwr addql #8,sp | pop SP and stack adjust
367 1.19 jeremy jra _ASM_LABEL(rei) | all done
368 1.11 gwr
369 1.11 gwr /*
370 1.11 gwr * Trap 12 is the entry point for the cachectl "syscall"
371 1.11 gwr * cachectl(command, addr, length)
372 1.11 gwr * command in d0, addr in a1, length in d1
373 1.11 gwr */
374 1.19 jeremy GLOBAL(trap12)
375 1.32 is movl _C_LABEL(curproc),sp@- | push curproc pointer
376 1.11 gwr movl d1,sp@- | push length
377 1.11 gwr movl a1,sp@- | push addr
378 1.11 gwr movl d0,sp@- | push command
379 1.32 is jbsr _C_LABEL(cachectl1) | do it
380 1.32 is lea sp@(16),sp | pop args
381 1.19 jeremy jra _ASM_LABEL(rei) | all done
382 1.1 gwr
383 1.1 gwr /*
384 1.1 gwr * Trace (single-step) trap. Kernel-mode is special.
385 1.1 gwr * User mode traps are simply passed on to trap().
386 1.1 gwr */
387 1.19 jeremy GLOBAL(trace)
388 1.1 gwr clrl sp@- | stack adjust count
389 1.1 gwr moveml #0xFFFF,sp@-
390 1.1 gwr moveq #T_TRACE,d0
391 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
392 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
393 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
394 1.1 gwr
395 1.1 gwr /*
396 1.1 gwr * Trap 15 is used for:
397 1.1 gwr * - GDB breakpoints (in user programs)
398 1.1 gwr * - KGDB breakpoints (in the kernel)
399 1.1 gwr * - trace traps for SUN binaries (not fully supported yet)
400 1.11 gwr * User mode traps are simply passed to trap().
401 1.1 gwr */
402 1.19 jeremy GLOBAL(trap15)
403 1.1 gwr clrl sp@- | stack adjust count
404 1.1 gwr moveml #0xFFFF,sp@-
405 1.1 gwr moveq #T_TRAP15,d0
406 1.11 gwr btst #5,sp@(FR_HW) | was supervisor mode?
407 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
408 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
409 1.1 gwr
410 1.19 jeremy ASLOCAL(kbrkpt)
411 1.11 gwr | Kernel-mode breakpoint or trace trap. (d0=trap_type)
412 1.1 gwr | Save the system sp rather than the user sp.
413 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
414 1.1 gwr lea sp@(FR_SIZE),a6 | Save stack pointer
415 1.1 gwr movl a6,sp@(FR_SP) | from before trap
416 1.1 gwr
417 1.1 gwr | If we are not on tmpstk switch to it.
418 1.1 gwr | (so debugger can change the stack pointer)
419 1.1 gwr movl a6,d1
420 1.19 jeremy cmpl #_ASM_LABEL(tmpstk),d1
421 1.1 gwr jls Lbrkpt2 | already on tmpstk
422 1.1 gwr | Copy frame to the temporary stack
423 1.1 gwr movl sp,a0 | a0=src
424 1.19 jeremy lea _ASM_LABEL(tmpstk)-96,a1 | a1=dst
425 1.1 gwr movl a1,sp | sp=new frame
426 1.1 gwr moveq #FR_SIZE,d1
427 1.1 gwr Lbrkpt1:
428 1.1 gwr movl a0@+,a1@+
429 1.1 gwr subql #4,d1
430 1.1 gwr bgt Lbrkpt1
431 1.1 gwr
432 1.1 gwr Lbrkpt2:
433 1.11 gwr | Call the trap handler for the kernel debugger.
434 1.6 gwr | Do not call trap() to handle it, so that we can
435 1.1 gwr | set breakpoints in trap() if we want. We know
436 1.1 gwr | the trap type is either T_TRACE or T_BREAKPOINT.
437 1.6 gwr movl d0,sp@- | push trap type
438 1.19 jeremy jbsr _C_LABEL(trap_kdebug)
439 1.6 gwr addql #4,sp | pop args
440 1.6 gwr
441 1.1 gwr | The stack pointer may have been modified, or
442 1.1 gwr | data below it modified (by kgdb push call),
443 1.1 gwr | so push the hardware frame at the current sp
444 1.1 gwr | before restoring registers and returning.
445 1.1 gwr movl sp@(FR_SP),a0 | modified sp
446 1.1 gwr lea sp@(FR_SIZE),a1 | end of our frame
447 1.1 gwr movl a1@-,a0@- | copy 2 longs with
448 1.1 gwr movl a1@-,a0@- | ... predecrement
449 1.1 gwr movl a0,sp@(FR_SP) | sp = h/w frame
450 1.1 gwr moveml sp@+,#0x7FFF | restore all but sp
451 1.1 gwr movl sp@,sp | ... and sp
452 1.1 gwr rte | all done
453 1.1 gwr
454 1.11 gwr /* Use common m68k sigreturn */
455 1.11 gwr #include <m68k/m68k/sigreturn.s>
456 1.1 gwr
457 1.1 gwr /*
458 1.1 gwr * Interrupt handlers. Most are auto-vectored,
459 1.1 gwr * and hard-wired the same way on all sun3 models.
460 1.1 gwr * Format in the stack is:
461 1.1 gwr * d0,d1,a0,a1, sr, pc, vo
462 1.1 gwr */
463 1.1 gwr
464 1.1 gwr #define INTERRUPT_SAVEREG \
465 1.1 gwr moveml #0xC0C0,sp@-
466 1.1 gwr
467 1.1 gwr #define INTERRUPT_RESTORE \
468 1.1 gwr moveml sp@+,#0x0303
469 1.1 gwr
470 1.1 gwr /*
471 1.1 gwr * This is the common auto-vector interrupt handler,
472 1.1 gwr * for which the CPU provides the vector=0x18+level.
473 1.1 gwr * These are installed in the interrupt vector table.
474 1.1 gwr */
475 1.1 gwr .align 2
476 1.19 jeremy GLOBAL(_isr_autovec)
477 1.1 gwr INTERRUPT_SAVEREG
478 1.19 jeremy jbsr _C_LABEL(isr_autovec)
479 1.1 gwr INTERRUPT_RESTORE
480 1.19 jeremy jra _ASM_LABEL(rei)
481 1.1 gwr
482 1.1 gwr /* clock: see clock.c */
483 1.1 gwr .align 2
484 1.19 jeremy GLOBAL(_isr_clock)
485 1.1 gwr INTERRUPT_SAVEREG
486 1.19 jeremy jbsr _C_LABEL(clock_intr)
487 1.1 gwr INTERRUPT_RESTORE
488 1.19 jeremy jra _ASM_LABEL(rei)
489 1.1 gwr
490 1.1 gwr | Handler for all vectored interrupts (i.e. VME interrupts)
491 1.1 gwr .align 2
492 1.19 jeremy GLOBAL(_isr_vectored)
493 1.1 gwr INTERRUPT_SAVEREG
494 1.19 jeremy jbsr _C_LABEL(isr_vectored)
495 1.1 gwr INTERRUPT_RESTORE
496 1.19 jeremy jra _ASM_LABEL(rei)
497 1.1 gwr
498 1.1 gwr #undef INTERRUPT_SAVEREG
499 1.1 gwr #undef INTERRUPT_RESTORE
500 1.1 gwr
501 1.1 gwr /* interrupt counters (needed by vmstat) */
502 1.19 jeremy GLOBAL(intrnames)
503 1.1 gwr .asciz "spur" | 0
504 1.1 gwr .asciz "lev1" | 1
505 1.1 gwr .asciz "lev2" | 2
506 1.1 gwr .asciz "lev3" | 3
507 1.1 gwr .asciz "lev4" | 4
508 1.1 gwr .asciz "clock" | 5
509 1.1 gwr .asciz "lev6" | 6
510 1.1 gwr .asciz "nmi" | 7
511 1.19 jeremy GLOBAL(eintrnames)
512 1.1 gwr
513 1.1 gwr .data
514 1.1 gwr .even
515 1.19 jeremy GLOBAL(intrcnt)
516 1.1 gwr .long 0,0,0,0,0,0,0,0,0,0
517 1.19 jeremy GLOBAL(eintrcnt)
518 1.1 gwr .text
519 1.1 gwr
520 1.1 gwr /*
521 1.1 gwr * Emulation of VAX REI instruction.
522 1.1 gwr *
523 1.1 gwr * This code is (mostly) un-altered from the hp300 code,
524 1.1 gwr * except that sun machines do not need a simulated SIR
525 1.1 gwr * because they have a real software interrupt register.
526 1.1 gwr *
527 1.1 gwr * This code deals with checking for and servicing ASTs
528 1.1 gwr * (profiling, scheduling) and software interrupts (network, softclock).
529 1.1 gwr * We check for ASTs first, just like the VAX. To avoid excess overhead
530 1.1 gwr * the T_ASTFLT handling code will also check for software interrupts so we
531 1.1 gwr * do not have to do it here. After identifying that we need an AST we
532 1.1 gwr * drop the IPL to allow device interrupts.
533 1.1 gwr *
534 1.1 gwr * This code is complicated by the fact that sendsig may have been called
535 1.1 gwr * necessitating a stack cleanup.
536 1.1 gwr */
537 1.1 gwr
538 1.19 jeremy ASGLOBAL(rei)
539 1.1 gwr #ifdef DIAGNOSTIC
540 1.19 jeremy tstl _C_LABEL(panicstr) | have we paniced?
541 1.1 gwr jne Ldorte | yes, do not make matters worse
542 1.1 gwr #endif
543 1.19 jeremy tstl _C_LABEL(astpending) | AST pending?
544 1.1 gwr jeq Ldorte | no, done
545 1.1 gwr Lrei1:
546 1.1 gwr btst #5,sp@ | yes, are we returning to user mode?
547 1.1 gwr jne Ldorte | no, done
548 1.1 gwr movw #PSL_LOWIPL,sr | lower SPL
549 1.1 gwr clrl sp@- | stack adjust
550 1.1 gwr moveml #0xFFFF,sp@- | save all registers
551 1.1 gwr movl usp,a1 | including
552 1.1 gwr movl a1,sp@(FR_SP) | the users SP
553 1.1 gwr clrl sp@- | VA == none
554 1.1 gwr clrl sp@- | code == none
555 1.1 gwr movl #T_ASTFLT,sp@- | type == async system trap
556 1.19 jeremy jbsr _C_LABEL(trap) | go handle it
557 1.1 gwr lea sp@(12),sp | pop value args
558 1.1 gwr movl sp@(FR_SP),a0 | restore user SP
559 1.1 gwr movl a0,usp | from save area
560 1.1 gwr movw sp@(FR_ADJ),d0 | need to adjust stack?
561 1.1 gwr jne Laststkadj | yes, go to it
562 1.1 gwr moveml sp@+,#0x7FFF | no, restore most user regs
563 1.1 gwr addql #8,sp | toss SP and stack adjust
564 1.1 gwr rte | and do real RTE
565 1.1 gwr Laststkadj:
566 1.1 gwr lea sp@(FR_HW),a1 | pointer to HW frame
567 1.1 gwr addql #8,a1 | source pointer
568 1.1 gwr movl a1,a0 | source
569 1.1 gwr addw d0,a0 | + hole size = dest pointer
570 1.1 gwr movl a1@-,a0@- | copy
571 1.1 gwr movl a1@-,a0@- | 8 bytes
572 1.1 gwr movl a0,sp@(FR_SP) | new SSP
573 1.1 gwr moveml sp@+,#0x7FFF | restore user registers
574 1.1 gwr movl sp@,sp | and our SP
575 1.1 gwr Ldorte:
576 1.1 gwr rte | real return
577 1.1 gwr
578 1.1 gwr /*
579 1.1 gwr * Initialization is at the beginning of this file, because the
580 1.1 gwr * kernel entry point needs to be at zero for compatibility with
581 1.1 gwr * the Sun boot loader. This works on Sun machines because the
582 1.1 gwr * interrupt vector table for reset is NOT at address zero.
583 1.1 gwr * (The MMU has a "boot" bit that forces access to the PROM)
584 1.1 gwr */
585 1.1 gwr
586 1.1 gwr /*
587 1.16 thorpej * Use common m68k sigcode.
588 1.1 gwr */
589 1.16 thorpej #include <m68k/m68k/sigcode.s>
590 1.16 thorpej
591 1.1 gwr .text
592 1.1 gwr
593 1.1 gwr /*
594 1.1 gwr * Primitives
595 1.1 gwr */
596 1.1 gwr
597 1.1 gwr /*
598 1.12 thorpej * Use common m68k support routines.
599 1.1 gwr */
600 1.12 thorpej #include <m68k/m68k/support.s>
601 1.1 gwr
602 1.19 jeremy BSS(want_resched,4)
603 1.1 gwr
604 1.1 gwr /*
605 1.15 thorpej * Use common m68k process manipulation routines.
606 1.1 gwr */
607 1.15 thorpej #include <m68k/m68k/proc_subr.s>
608 1.1 gwr
609 1.1 gwr | Message for Lbadsw panic
610 1.1 gwr Lsw0:
611 1.1 gwr .asciz "cpu_switch"
612 1.1 gwr .even
613 1.1 gwr
614 1.1 gwr .data
615 1.19 jeremy GLOBAL(masterpaddr) | XXX compatibility (debuggers)
616 1.19 jeremy GLOBAL(curpcb)
617 1.1 gwr .long 0
618 1.19 jeremy ASBSS(nullpcb,SIZEOF_PCB)
619 1.1 gwr .text
620 1.1 gwr
621 1.1 gwr /*
622 1.1 gwr * At exit of a process, do a cpu_switch for the last time.
623 1.28 thorpej * Switch to a safe stack and PCB, and select a new process to run. The
624 1.28 thorpej * old stack and u-area will be freed by the reaper.
625 1.1 gwr */
626 1.1 gwr ENTRY(switch_exit)
627 1.1 gwr movl sp@(4),a0 | struct proc *p
628 1.19 jeremy | save state into garbage pcb
629 1.19 jeremy movl #_ASM_LABEL(nullpcb),_C_LABEL(curpcb)
630 1.19 jeremy lea _ASM_LABEL(tmpstk),sp | goto a tmp stack
631 1.1 gwr
632 1.28 thorpej /* Schedule the vmspace and stack to be freed. */
633 1.28 thorpej movl a0,sp@- | exit2(p)
634 1.28 thorpej jbsr _C_LABEL(exit2)
635 1.28 thorpej
636 1.28 thorpej /* Don't pop the proc; pass it to cpu_switch(). */
637 1.1 gwr
638 1.19 jeremy jra _C_LABEL(cpu_switch)
639 1.1 gwr
640 1.1 gwr /*
641 1.1 gwr * When no processes are on the runq, cpu_switch() branches to idle
642 1.1 gwr * to wait for something to come ready.
643 1.1 gwr */
644 1.1 gwr .data
645 1.19 jeremy GLOBAL(Idle_count)
646 1.1 gwr .long 0
647 1.1 gwr .text
648 1.1 gwr
649 1.1 gwr Lidle:
650 1.1 gwr stop #PSL_LOWIPL
651 1.19 jeremy GLOBAL(_Idle) | See clock.c
652 1.1 gwr movw #PSL_HIGHIPL,sr
653 1.19 jeremy addql #1, _C_LABEL(Idle_count)
654 1.19 jeremy tstl _C_LABEL(whichqs)
655 1.1 gwr jeq Lidle
656 1.1 gwr movw #PSL_LOWIPL,sr
657 1.1 gwr jra Lsw1
658 1.1 gwr
659 1.1 gwr Lbadsw:
660 1.1 gwr movl #Lsw0,sp@-
661 1.19 jeremy jbsr _C_LABEL(panic)
662 1.1 gwr /*NOTREACHED*/
663 1.1 gwr
664 1.1 gwr /*
665 1.1 gwr * cpu_switch()
666 1.1 gwr * Hacked for sun3
667 1.1 gwr * XXX - Arg 1 is a proc pointer (curproc) but this doesn't use it.
668 1.1 gwr * XXX - Sould we use p->p_addr instead of curpcb? -gwr
669 1.1 gwr */
670 1.1 gwr ENTRY(cpu_switch)
671 1.19 jeremy movl _C_LABEL(curpcb),a1 | current pcb
672 1.1 gwr movw sr,a1@(PCB_PS) | save sr before changing ipl
673 1.1 gwr #ifdef notyet
674 1.19 jeremy movl _C_LABEL(curproc),sp@- | remember last proc running
675 1.1 gwr #endif
676 1.19 jeremy clrl _C_LABEL(curproc)
677 1.1 gwr
678 1.1 gwr Lsw1:
679 1.1 gwr /*
680 1.1 gwr * Find the highest-priority queue that isn't empty,
681 1.1 gwr * then take the first proc from that queue.
682 1.1 gwr */
683 1.1 gwr clrl d0
684 1.19 jeremy lea _C_LABEL(whichqs),a0
685 1.1 gwr movl a0@,d1
686 1.1 gwr Lswchk:
687 1.1 gwr btst d0,d1
688 1.1 gwr jne Lswfnd
689 1.1 gwr addqb #1,d0
690 1.1 gwr cmpb #32,d0
691 1.1 gwr jne Lswchk
692 1.19 jeremy jra _C_LABEL(_Idle)
693 1.1 gwr Lswfnd:
694 1.1 gwr movw #PSL_HIGHIPL,sr | lock out interrupts
695 1.1 gwr movl a0@,d1 | and check again...
696 1.1 gwr bclr d0,d1
697 1.1 gwr jeq Lsw1 | proc moved, rescan
698 1.1 gwr movl d1,a0@ | update whichqs
699 1.1 gwr moveq #1,d1 | double check for higher priority
700 1.1 gwr lsll d0,d1 | process (which may have snuck in
701 1.1 gwr subql #1,d1 | while we were finding this one)
702 1.1 gwr andl a0@,d1
703 1.1 gwr jeq Lswok | no one got in, continue
704 1.1 gwr movl a0@,d1
705 1.1 gwr bset d0,d1 | otherwise put this one back
706 1.1 gwr movl d1,a0@
707 1.1 gwr jra Lsw1 | and rescan
708 1.1 gwr Lswok:
709 1.1 gwr movl d0,d1
710 1.1 gwr lslb #3,d1 | convert queue number to index
711 1.1 gwr addl #_qs,d1 | locate queue (q)
712 1.1 gwr movl d1,a1
713 1.1 gwr cmpl a1@(P_FORW),a1 | anyone on queue?
714 1.1 gwr jeq Lbadsw | no, panic
715 1.1 gwr movl a1@(P_FORW),a0 | p = q->p_forw
716 1.1 gwr movl a0@(P_FORW),a1@(P_FORW) | q->p_forw = p->p_forw
717 1.1 gwr movl a0@(P_FORW),a1 | q = p->p_forw
718 1.1 gwr movl a0@(P_BACK),a1@(P_BACK) | q->p_back = p->p_back
719 1.1 gwr cmpl a0@(P_FORW),d1 | anyone left on queue?
720 1.1 gwr jeq Lsw2 | no, skip
721 1.19 jeremy movl _C_LABEL(whichqs),d1
722 1.1 gwr bset d0,d1 | yes, reset bit
723 1.19 jeremy movl d1,_C_LABEL(whichqs)
724 1.1 gwr Lsw2:
725 1.19 jeremy movl a0,_C_LABEL(curproc)
726 1.19 jeremy clrl _C_LABEL(want_resched)
727 1.1 gwr #ifdef notyet
728 1.1 gwr movl sp@+,a1 | XXX - Make this work!
729 1.1 gwr cmpl a0,a1 | switching to same proc?
730 1.1 gwr jeq Lswdone | yes, skip save and restore
731 1.1 gwr #endif
732 1.1 gwr /*
733 1.1 gwr * Save state of previous process in its pcb.
734 1.1 gwr */
735 1.19 jeremy movl _C_LABEL(curpcb),a1
736 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
737 1.1 gwr movl usp,a2 | grab USP (a2 has been saved)
738 1.1 gwr movl a2,a1@(PCB_USP) | and save it
739 1.1 gwr
740 1.19 jeremy tstl _C_LABEL(fputype) | Do we have an fpu?
741 1.1 gwr jeq Lswnofpsave | No? Then don't try save.
742 1.1 gwr lea a1@(PCB_FPCTX),a2 | pointer to FP save area
743 1.1 gwr fsave a2@ | save FP state
744 1.1 gwr tstb a2@ | null state frame?
745 1.1 gwr jeq Lswnofpsave | yes, all done
746 1.1 gwr fmovem fp0-fp7,a2@(FPF_REGS) | save FP general regs
747 1.1 gwr fmovem fpcr/fpsr/fpi,a2@(FPF_FPCR) | save FP control regs
748 1.1 gwr Lswnofpsave:
749 1.1 gwr
750 1.6 gwr /*
751 1.6 gwr * Now that we have saved all the registers that must be
752 1.6 gwr * preserved, we are free to use those registers until
753 1.6 gwr * we load the registers for the switched-to process.
754 1.6 gwr * In this section, keep: a0=curproc, a1=curpcb
755 1.6 gwr */
756 1.6 gwr
757 1.1 gwr #ifdef DIAGNOSTIC
758 1.1 gwr tstl a0@(P_WCHAN)
759 1.1 gwr jne Lbadsw
760 1.1 gwr cmpb #SRUN,a0@(P_STAT)
761 1.1 gwr jne Lbadsw
762 1.1 gwr #endif
763 1.1 gwr clrl a0@(P_BACK) | clear back link
764 1.1 gwr movl a0@(P_ADDR),a1 | get p_addr
765 1.19 jeremy movl a1,_C_LABEL(curpcb)
766 1.1 gwr
767 1.8 gwr /*
768 1.8 gwr * Load the new VM context (new MMU root pointer)
769 1.8 gwr */
770 1.8 gwr movl a0@(P_VMSPACE),a2 | vm = p->p_vmspace
771 1.8 gwr #ifdef DIAGNOSTIC
772 1.20 gwr tstl a2 | vm == VM_MAP_NULL?
773 1.8 gwr jeq Lbadsw | panic
774 1.8 gwr #endif
775 1.8 gwr #ifdef PMAP_DEBUG
776 1.25 gwr /* When debugging just call _pmap_switch(). */
777 1.25 gwr movl a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
778 1.25 gwr pea a2@ | push pmap
779 1.25 gwr jbsr _C_LABEL(_pmap_switch) | _pmap_switch(pmap)
780 1.8 gwr addql #4,sp
781 1.19 jeremy movl _C_LABEL(curpcb),a1 | restore p_addr
782 1.8 gwr #else
783 1.25 gwr /* Otherwise, use this inline version. */
784 1.20 gwr lea _C_LABEL(kernel_crp), a3 | our CPU Root Ptr. (CRP)
785 1.20 gwr movl a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
786 1.8 gwr movl a2@(PM_A_PHYS),d0 | phys = pmap->pm_a_phys
787 1.9 jeremy cmpl a3@(4),d0 | == kernel_crp.rp_addr ?
788 1.8 gwr jeq Lsame_mmuctx | skip loadcrp/flush
789 1.8 gwr /* OK, it is a new MMU context. Load it up. */
790 1.9 jeremy movl d0,a3@(4)
791 1.1 gwr movl #CACHE_CLR,d0
792 1.1 gwr movc d0,cacr | invalidate cache(s)
793 1.1 gwr pflusha | flush entire TLB
794 1.8 gwr pmove a3@,crp | load new user root pointer
795 1.8 gwr Lsame_mmuctx:
796 1.8 gwr #endif
797 1.1 gwr
798 1.6 gwr /*
799 1.6 gwr * Reload the registers for the new process.
800 1.6 gwr * After this point we can only use d0,d1,a0,a1
801 1.6 gwr */
802 1.6 gwr moveml a1@(PCB_REGS),#0xFCFC | reload registers
803 1.1 gwr movl a1@(PCB_USP),a0
804 1.1 gwr movl a0,usp | and USP
805 1.1 gwr
806 1.19 jeremy tstl _C_LABEL(fputype) | If we don't have an fpu,
807 1.1 gwr jeq Lres_skip | don't try to restore it.
808 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
809 1.1 gwr tstb a0@ | null state frame?
810 1.1 gwr jeq Lresfprest | yes, easy
811 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
812 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
813 1.1 gwr Lresfprest:
814 1.1 gwr frestore a0@ | restore state
815 1.1 gwr Lres_skip:
816 1.1 gwr movw a1@(PCB_PS),d0 | no, restore PS
817 1.1 gwr #ifdef DIAGNOSTIC
818 1.1 gwr btst #13,d0 | supervisor mode?
819 1.1 gwr jeq Lbadsw | no? panic!
820 1.1 gwr #endif
821 1.1 gwr movw d0,sr | OK, restore PS
822 1.1 gwr moveq #1,d0 | return 1 (for alternate returns)
823 1.1 gwr rts
824 1.1 gwr
825 1.1 gwr /*
826 1.1 gwr * savectx(pcb)
827 1.1 gwr * Update pcb, saving current processor state.
828 1.1 gwr */
829 1.1 gwr ENTRY(savectx)
830 1.1 gwr movl sp@(4),a1
831 1.1 gwr movw sr,a1@(PCB_PS)
832 1.1 gwr movl usp,a0 | grab USP
833 1.1 gwr movl a0,a1@(PCB_USP) | and save it
834 1.1 gwr moveml #0xFCFC,a1@(PCB_REGS) | save non-scratch registers
835 1.1 gwr
836 1.19 jeremy tstl _C_LABEL(fputype) | Do we have FPU?
837 1.1 gwr jeq Lsavedone | No? Then don't save state.
838 1.1 gwr lea a1@(PCB_FPCTX),a0 | pointer to FP save area
839 1.1 gwr fsave a0@ | save FP state
840 1.1 gwr tstb a0@ | null state frame?
841 1.1 gwr jeq Lsavedone | yes, all done
842 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
843 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
844 1.1 gwr Lsavedone:
845 1.1 gwr moveq #0,d0 | return 0
846 1.1 gwr rts
847 1.1 gwr
848 1.20 gwr /* suline() */
849 1.1 gwr
850 1.1 gwr #ifdef DEBUG
851 1.1 gwr .data
852 1.19 jeremy ASGLOBAL(fulltflush)
853 1.1 gwr .long 0
854 1.19 jeremy ASGLOBAL(fullcflush)
855 1.1 gwr .long 0
856 1.1 gwr .text
857 1.1 gwr #endif
858 1.1 gwr
859 1.1 gwr /*
860 1.1 gwr * Invalidate entire TLB.
861 1.1 gwr */
862 1.1 gwr ENTRY(TBIA)
863 1.19 jeremy _C_LABEL(_TBIA):
864 1.1 gwr pflusha
865 1.1 gwr movl #DC_CLEAR,d0
866 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
867 1.1 gwr rts
868 1.1 gwr
869 1.1 gwr /*
870 1.1 gwr * Invalidate any TLB entry for given VA (TB Invalidate Single)
871 1.1 gwr */
872 1.1 gwr ENTRY(TBIS)
873 1.1 gwr #ifdef DEBUG
874 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
875 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush entire TLB
876 1.1 gwr #endif
877 1.1 gwr movl sp@(4),a0
878 1.1 gwr pflush #0,#0,a0@ | flush address from both sides
879 1.1 gwr movl #DC_CLEAR,d0
880 1.1 gwr movc d0,cacr | invalidate on-chip data cache
881 1.1 gwr rts
882 1.1 gwr
883 1.1 gwr /*
884 1.1 gwr * Invalidate supervisor side of TLB
885 1.1 gwr */
886 1.1 gwr ENTRY(TBIAS)
887 1.1 gwr #ifdef DEBUG
888 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
889 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
890 1.1 gwr #endif
891 1.1 gwr pflush #4,#4 | flush supervisor TLB entries
892 1.1 gwr movl #DC_CLEAR,d0
893 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
894 1.1 gwr rts
895 1.1 gwr
896 1.1 gwr /*
897 1.1 gwr * Invalidate user side of TLB
898 1.1 gwr */
899 1.1 gwr ENTRY(TBIAU)
900 1.1 gwr #ifdef DEBUG
901 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
902 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
903 1.1 gwr #endif
904 1.1 gwr pflush #0,#4 | flush user TLB entries
905 1.1 gwr movl #DC_CLEAR,d0
906 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
907 1.1 gwr rts
908 1.1 gwr
909 1.1 gwr /*
910 1.1 gwr * Invalidate instruction cache
911 1.1 gwr */
912 1.1 gwr ENTRY(ICIA)
913 1.1 gwr movl #IC_CLEAR,d0
914 1.1 gwr movc d0,cacr | invalidate i-cache
915 1.1 gwr rts
916 1.1 gwr
917 1.1 gwr /*
918 1.1 gwr * Invalidate data cache.
919 1.1 gwr * NOTE: we do not flush 68030 on-chip cache as there are no aliasing
920 1.1 gwr * problems with DC_WA. The only cases we have to worry about are context
921 1.1 gwr * switch and TLB changes, both of which are handled "in-line" in resume
922 1.1 gwr * and TBI*.
923 1.1 gwr */
924 1.1 gwr ENTRY(DCIA)
925 1.1 gwr __DCIA:
926 1.1 gwr rts
927 1.1 gwr
928 1.1 gwr ENTRY(DCIS)
929 1.1 gwr __DCIS:
930 1.1 gwr rts
931 1.1 gwr
932 1.1 gwr /*
933 1.1 gwr * Invalidate data cache.
934 1.1 gwr */
935 1.1 gwr ENTRY(DCIU)
936 1.11 gwr movl #DC_CLEAR,d0
937 1.11 gwr movc d0,cacr | invalidate on-chip d-cache
938 1.1 gwr rts
939 1.1 gwr
940 1.1 gwr /* ICPL, ICPP, DCPL, DCPP, DCPA, DCFL, DCFP */
941 1.1 gwr
942 1.1 gwr ENTRY(PCIA)
943 1.1 gwr movl #DC_CLEAR,d0
944 1.1 gwr movc d0,cacr | invalidate on-chip d-cache
945 1.1 gwr rts
946 1.1 gwr
947 1.1 gwr ENTRY(ecacheon)
948 1.1 gwr rts
949 1.1 gwr
950 1.1 gwr ENTRY(ecacheoff)
951 1.1 gwr rts
952 1.1 gwr
953 1.1 gwr /*
954 1.1 gwr * Get callers current SP value.
955 1.1 gwr * Note that simply taking the address of a local variable in a C function
956 1.1 gwr * doesn't work because callee saved registers may be outside the stack frame
957 1.1 gwr * defined by A6 (e.g. GCC generated code).
958 1.20 gwr *
959 1.1 gwr * [I don't think the ENTRY() macro will do the right thing with this -- glass]
960 1.1 gwr */
961 1.19 jeremy GLOBAL(getsp)
962 1.1 gwr movl sp,d0 | get current SP
963 1.1 gwr addql #4,d0 | compensate for return address
964 1.1 gwr rts
965 1.1 gwr
966 1.1 gwr ENTRY(getsfc)
967 1.1 gwr movc sfc,d0
968 1.1 gwr rts
969 1.1 gwr
970 1.1 gwr ENTRY(getdfc)
971 1.1 gwr movc dfc,d0
972 1.1 gwr rts
973 1.1 gwr
974 1.1 gwr ENTRY(getvbr)
975 1.1 gwr movc vbr, d0
976 1.1 gwr rts
977 1.1 gwr
978 1.1 gwr ENTRY(setvbr)
979 1.1 gwr movl sp@(4), d0
980 1.1 gwr movc d0, vbr
981 1.1 gwr rts
982 1.1 gwr
983 1.1 gwr /*
984 1.1 gwr * Load a new CPU Root Pointer (CRP) into the MMU.
985 1.2 gwr * void loadcrp(struct mmu_rootptr *);
986 1.1 gwr */
987 1.1 gwr ENTRY(loadcrp)
988 1.1 gwr movl sp@(4),a0 | arg1: &CRP
989 1.1 gwr movl #CACHE_CLR,d0
990 1.1 gwr movc d0,cacr | invalidate cache(s)
991 1.1 gwr pflusha | flush entire TLB
992 1.1 gwr pmove a0@,crp | load new user root pointer
993 1.10 gwr rts
994 1.10 gwr
995 1.10 gwr /*
996 1.10 gwr * Get the physical address of the PTE for a given VA.
997 1.10 gwr */
998 1.10 gwr ENTRY(ptest_addr)
999 1.10 gwr movl sp@(4),a0 | VA
1000 1.10 gwr ptestr #5,a0@,#7,a1 | a1 = addr of PTE
1001 1.10 gwr movl a1,d0
1002 1.1 gwr rts
1003 1.1 gwr
1004 1.1 gwr /*
1005 1.1 gwr * Set processor priority level calls. Most are implemented with
1006 1.1 gwr * inline asm expansions. However, we need one instantiation here
1007 1.1 gwr * in case some non-optimized code makes external references.
1008 1.21 gwr * Most places will use the inlined functions param.h supplies.
1009 1.1 gwr */
1010 1.1 gwr
1011 1.21 gwr ENTRY(_getsr)
1012 1.21 gwr clrl d0
1013 1.21 gwr movw sr,d0
1014 1.21 gwr rts
1015 1.21 gwr
1016 1.1 gwr ENTRY(_spl)
1017 1.1 gwr clrl d0
1018 1.1 gwr movw sr,d0
1019 1.21 gwr movl sp@(4),d1
1020 1.1 gwr movw d1,sr
1021 1.1 gwr rts
1022 1.1 gwr
1023 1.21 gwr ENTRY(_splraise)
1024 1.21 gwr clrl d0
1025 1.21 gwr movw sr,d0
1026 1.21 gwr movl d0,d1
1027 1.21 gwr andl #PSL_HIGHIPL,d1 | old &= PSL_HIGHIPL
1028 1.21 gwr cmpl sp@(4),d1 | (old - new)
1029 1.21 gwr bge Lsplr
1030 1.21 gwr movl sp@(4),d1
1031 1.21 gwr movw d1,sr
1032 1.21 gwr Lsplr:
1033 1.1 gwr rts
1034 1.1 gwr
1035 1.1 gwr /*
1036 1.1 gwr * Save and restore 68881 state.
1037 1.1 gwr */
1038 1.1 gwr ENTRY(m68881_save)
1039 1.1 gwr movl sp@(4),a0 | save area pointer
1040 1.1 gwr fsave a0@ | save state
1041 1.1 gwr tstb a0@ | null state frame?
1042 1.1 gwr jeq Lm68881sdone | yes, all done
1043 1.1 gwr fmovem fp0-fp7,a0@(FPF_REGS) | save FP general regs
1044 1.1 gwr fmovem fpcr/fpsr/fpi,a0@(FPF_FPCR) | save FP control regs
1045 1.1 gwr Lm68881sdone:
1046 1.1 gwr rts
1047 1.1 gwr
1048 1.1 gwr ENTRY(m68881_restore)
1049 1.1 gwr movl sp@(4),a0 | save area pointer
1050 1.1 gwr tstb a0@ | null state frame?
1051 1.1 gwr jeq Lm68881rdone | yes, easy
1052 1.1 gwr fmovem a0@(FPF_FPCR),fpcr/fpsr/fpi | restore FP control regs
1053 1.1 gwr fmovem a0@(FPF_REGS),fp0-fp7 | restore FP general regs
1054 1.1 gwr Lm68881rdone:
1055 1.1 gwr frestore a0@ | restore state
1056 1.1 gwr rts
1057 1.1 gwr
1058 1.1 gwr /*
1059 1.1 gwr * _delay(unsigned N)
1060 1.1 gwr * Delay for at least (N/256) microseconds.
1061 1.1 gwr * This routine depends on the variable: delay_divisor
1062 1.1 gwr * which should be set based on the CPU clock rate.
1063 1.26 gwr * XXX: Currently this is set based on the CPU model,
1064 1.26 gwr * XXX: but this should be determined at run time...
1065 1.1 gwr */
1066 1.19 jeremy GLOBAL(_delay)
1067 1.1 gwr | d0 = arg = (usecs << 8)
1068 1.1 gwr movl sp@(4),d0
1069 1.1 gwr | d1 = delay_divisor;
1070 1.19 jeremy movl _C_LABEL(delay_divisor),d1
1071 1.36 thorpej jra L_delay /* Jump into the loop! */
1072 1.36 thorpej
1073 1.36 thorpej /*
1074 1.36 thorpej * Align the branch target of the loop to a half-line (8-byte)
1075 1.36 thorpej * boundary to minimize cache effects. This guarantees both
1076 1.36 thorpej * that there will be no prefetch stalls due to cache line burst
1077 1.36 thorpej * operations and that the loop will run from a single cache
1078 1.36 thorpej * half-line.
1079 1.36 thorpej */
1080 1.36 thorpej .align 8
1081 1.1 gwr L_delay:
1082 1.1 gwr subl d1,d0
1083 1.1 gwr jgt L_delay
1084 1.1 gwr rts
1085 1.1 gwr
1086 1.1 gwr
1087 1.1 gwr | Define some addresses, mostly so DDB can print useful info.
1088 1.24 gwr | Not using _C_LABEL() here because these symbols are never
1089 1.24 gwr | referenced by any C code, and if the leading underscore
1090 1.24 gwr | ever goes away, these lines turn into syntax errors...
1091 1.24 gwr .set _KERNBASE,KERNBASE
1092 1.26 gwr .set _MONSTART,SUN3X_MONSTART
1093 1.26 gwr .set _PROM_BASE,SUN3X_PROM_BASE
1094 1.26 gwr .set _MONEND,SUN3X_MONEND
1095 1.1 gwr
1096 1.1 gwr |The end!
1097