locore.s revision 1.49 1 1.49 chs /* $NetBSD: locore.s,v 1.49 2002/10/20 02:37:38 chs Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1988 University of Utah.
5 1.1 gwr * Copyright (c) 1980, 1990, 1993
6 1.1 gwr * The Regents of the University of California. All rights reserved.
7 1.1 gwr *
8 1.1 gwr * This code is derived from software contributed to Berkeley by
9 1.1 gwr * the Systems Programming Group of the University of Utah Computer
10 1.1 gwr * Science Department.
11 1.1 gwr *
12 1.1 gwr * Redistribution and use in source and binary forms, with or without
13 1.1 gwr * modification, are permitted provided that the following conditions
14 1.1 gwr * are met:
15 1.1 gwr * 1. Redistributions of source code must retain the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer.
17 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 gwr * notice, this list of conditions and the following disclaimer in the
19 1.1 gwr * documentation and/or other materials provided with the distribution.
20 1.1 gwr * 3. All advertising materials mentioning features or use of this software
21 1.1 gwr * must display the following acknowledgement:
22 1.1 gwr * This product includes software developed by the University of
23 1.1 gwr * California, Berkeley and its contributors.
24 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
25 1.1 gwr * may be used to endorse or promote products derived from this software
26 1.1 gwr * without specific prior written permission.
27 1.1 gwr *
28 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 gwr * SUCH DAMAGE.
39 1.1 gwr *
40 1.1 gwr * from: Utah $Hdr: locore.s 1.66 92/12/22$
41 1.1 gwr * @(#)locore.s 8.6 (Berkeley) 5/27/94
42 1.1 gwr */
43 1.1 gwr
44 1.29 thorpej #include "opt_compat_netbsd.h"
45 1.34 kleink #include "opt_compat_svr4.h"
46 1.35 christos #include "opt_compat_sunos.h"
47 1.47 lukem #include "opt_kgdb.h"
48 1.42 thorpej #include "opt_lockdebug.h"
49 1.27 gwr
50 1.1 gwr #include "assym.h"
51 1.17 thorpej #include <machine/asm.h>
52 1.1 gwr #include <machine/trap.h>
53 1.1 gwr
54 1.1 gwr | Remember this is a fun project!
55 1.1 gwr
56 1.1 gwr .data
57 1.19 jeremy GLOBAL(mon_crp)
58 1.1 gwr .long 0,0
59 1.1 gwr
60 1.1 gwr | This is for kvm_mkdb, and should be the address of the beginning
61 1.1 gwr | of the kernel text segment (not necessarily the same as kernbase).
62 1.1 gwr .text
63 1.19 jeremy GLOBAL(kernel_text)
64 1.1 gwr
65 1.1 gwr | This is the entry point, as well as the end of the temporary stack
66 1.1 gwr | used during process switch (one 8K page ending at start)
67 1.19 jeremy ASGLOBAL(tmpstk)
68 1.20 gwr ASGLOBAL(start)
69 1.19 jeremy
70 1.1 gwr | The first step, after disabling interrupts, is to map enough of the kernel
71 1.1 gwr | into high virtual address space so that we can use position dependent code.
72 1.1 gwr | This is a tricky task on the sun3x because the MMU is already enabled and
73 1.1 gwr | the ROM monitor provides no indication of where the root MMU table is mapped.
74 1.1 gwr | Therefore we must use one of the 68030's 'transparent translation' registers
75 1.1 gwr | to define a range in the address space where the MMU translation is
76 1.1 gwr | turned off. Once this is complete we can modify the MMU table directly
77 1.1 gwr | without the need for it to be mapped into virtual memory.
78 1.1 gwr | All code must be position independent until otherwise noted, as the
79 1.1 gwr | boot loader has loaded us into low memory but all the symbols in this
80 1.1 gwr | code have been linked high.
81 1.45 chs movw #PSL_HIGHIPL,%sr | no interrupts
82 1.45 chs movl #KERNBASE,%a5 | for vtop conversion
83 1.45 chs lea _C_LABEL(mon_crp),%a0 | where to store the CRP
84 1.45 chs subl %a5,%a0
85 1.1 gwr | Note: borrowing mon_crp for tt0 setup...
86 1.45 chs movl #0x3F8107,%a0@ | map the low 1GB v=p with the
87 1.14 jeremy .long 0xf0100800 | transparent translation reg0
88 1.14 jeremy | [ pmove a0@, tt0 ]
89 1.1 gwr | In order to map the kernel into high memory we will copy the root table
90 1.1 gwr | entry which maps the 16 megabytes of memory starting at 0x0 into the
91 1.1 gwr | entry which maps the 16 megabytes starting at KERNBASE.
92 1.45 chs pmove %crp,%a0@ | Get monitor CPU root pointer
93 1.45 chs movl %a0@(4),%a1 | 2nd word is PA of level A table
94 1.1 gwr
95 1.45 chs movl %a1,%a0 | compute the descriptor address
96 1.45 chs addl #0x3e0,%a1 | for VA starting at KERNBASE
97 1.45 chs movl %a0@,%a1@ | copy descriptor type
98 1.45 chs movl %a0@(4),%a1@(4) | copy physical address
99 1.1 gwr
100 1.1 gwr | Kernel is now double mapped at zero and KERNBASE.
101 1.1 gwr | Force a long jump to the relocated code (high VA).
102 1.45 chs movl #IC_CLEAR,%d0 | Flush the I-cache
103 1.45 chs movc %d0,%cacr
104 1.1 gwr jmp L_high_code:l | long jump
105 1.1 gwr
106 1.1 gwr L_high_code:
107 1.1 gwr | We are now running in the correctly relocated kernel, so
108 1.1 gwr | we are no longer restricted to position-independent code.
109 1.1 gwr | It is handy to leave transparent translation enabled while
110 1.20 gwr | for the low 1GB while _bootstrap() is doing its thing.
111 1.1 gwr
112 1.1 gwr | Do bootstrap stuff needed before main() gets called.
113 1.1 gwr | Our boot loader leaves a copy of the kernel's exec header
114 1.1 gwr | just before the start of the kernel text segment, so the
115 1.1 gwr | kernel can sanity-check the DDB symbols at [end...esym].
116 1.20 gwr | Pass the struct exec at tmpstk-32 to _bootstrap().
117 1.7 gwr | Also, make sure the initial frame pointer is zero so that
118 1.7 gwr | the backtrace algorithm used by KGDB terminates nicely.
119 1.45 chs lea _ASM_LABEL(tmpstk)-32,%sp
120 1.45 chs movl #0,%a6
121 1.26 gwr jsr _C_LABEL(_bootstrap) | See locore2.c
122 1.1 gwr
123 1.1 gwr | Now turn off the transparent translation of the low 1GB.
124 1.1 gwr | (this also flushes the ATC)
125 1.45 chs clrl %sp@-
126 1.14 jeremy .long 0xf0170800 | pmove sp@,tt0
127 1.45 chs addql #4,%sp
128 1.1 gwr
129 1.20 gwr | Now that _bootstrap() is done using the PROM functions,
130 1.1 gwr | we can safely set the sfc/dfc to something != FC_CONTROL
131 1.45 chs moveq #FC_USERD,%d0 | make movs access "user data"
132 1.45 chs movc %d0,%sfc | space for copyin/copyout
133 1.45 chs movc %d0,%dfc
134 1.1 gwr
135 1.1 gwr | Setup process zero user/kernel stacks.
136 1.45 chs movl _C_LABEL(proc0paddr),%a1| get proc0 pcb addr
137 1.45 chs lea %a1@(USPACE-4),%sp | set SSP to last word
138 1.45 chs movl #USRSTACK-4,%a2
139 1.45 chs movl %a2,%usp | init user SP
140 1.1 gwr
141 1.20 gwr | Note curpcb was already set in _bootstrap().
142 1.1 gwr | Will do fpu initialization during autoconfig (see fpu.c)
143 1.1 gwr | The interrupt vector table and stack are now ready.
144 1.1 gwr | Interrupts will be enabled later, AFTER autoconfiguration
145 1.1 gwr | is finished, to avoid spurrious interrupts.
146 1.1 gwr
147 1.1 gwr /*
148 1.49 chs * Create a fake exception frame so that cpu_fork() can copy it.
149 1.49 chs * main() nevers returns; we exit to user mode from a forked process
150 1.49 chs * later on.
151 1.1 gwr */
152 1.45 chs clrw %sp@- | tf_format,tf_vector
153 1.45 chs clrl %sp@- | tf_pc (filled in later)
154 1.45 chs movw #PSL_USER,%sp@- | tf_sr for user mode
155 1.45 chs clrl %sp@- | tf_stackadj
156 1.45 chs lea %sp@(-64),%sp | tf_regs[16]
157 1.45 chs lea _C_LABEL(proc0),%a0 | proc0.p_md.md_regs =
158 1.45 chs movl %a1,%a0@(P_MDREGS) | trapframe
159 1.19 jeremy jbsr _C_LABEL(main) | main(&trapframe)
160 1.49 chs PANIC("main() returned")
161 1.1 gwr
162 1.1 gwr /*
163 1.49 chs * proc_trampoline: call function in register %a2 with %a3 as an arg
164 1.49 chs * and then rei.
165 1.1 gwr */
166 1.19 jeremy GLOBAL(proc_trampoline)
167 1.49 chs movl %a3,%sp@- | push function arg
168 1.49 chs jbsr %a2@ | call function
169 1.49 chs addql #4,%sp | pop arg
170 1.49 chs movl %sp@(FR_SP),%a0 | grab and load
171 1.49 chs movl %a0,%usp | user SP
172 1.49 chs moveml %sp@+,#0x7FFF | restore most user regs
173 1.49 chs addql #8,%sp | toss SP and stack adjust
174 1.49 chs jra _ASM_LABEL(rei) | and return
175 1.1 gwr
176 1.1 gwr | That is all the assembly startup code we need on the sun3x!
177 1.1 gwr | The rest of this is like the hp300/locore.s where possible.
178 1.1 gwr
179 1.1 gwr /*
180 1.1 gwr * Trap/interrupt vector routines
181 1.1 gwr */
182 1.17 thorpej #include <m68k/m68k/trap_subr.s>
183 1.1 gwr
184 1.19 jeremy GLOBAL(buserr)
185 1.19 jeremy tstl _C_LABEL(nofault) | device probe?
186 1.19 jeremy jeq _C_LABEL(addrerr) | no, handle as usual
187 1.45 chs movl _C_LABEL(nofault),%sp@- | yes,
188 1.19 jeremy jbsr _C_LABEL(longjmp) | longjmp(nofault)
189 1.19 jeremy GLOBAL(addrerr)
190 1.45 chs clrl %sp@- | stack adjust count
191 1.45 chs moveml #0xFFFF,%sp@- | save user registers
192 1.45 chs movl %usp,%a0 | save the user SP
193 1.45 chs movl %a0,%sp@(FR_SP) | in the savearea
194 1.45 chs lea %sp@(FR_HW),%a1 | grab base of HW berr frame
195 1.45 chs moveq #0,%d0
196 1.45 chs movw %a1@(10),%d0 | grab SSW for fault processing
197 1.45 chs btst #12,%d0 | RB set?
198 1.1 gwr jeq LbeX0 | no, test RC
199 1.45 chs bset #14,%d0 | yes, must set FB
200 1.45 chs movw %d0,%a1@(10) | for hardware too
201 1.1 gwr LbeX0:
202 1.45 chs btst #13,%d0 | RC set?
203 1.1 gwr jeq LbeX1 | no, skip
204 1.45 chs bset #15,%d0 | yes, must set FC
205 1.45 chs movw %d0,%a1@(10) | for hardware too
206 1.1 gwr LbeX1:
207 1.45 chs btst #8,%d0 | data fault?
208 1.1 gwr jeq Lbe0 | no, check for hard cases
209 1.45 chs movl %a1@(16),%d1 | fault address is as given in frame
210 1.1 gwr jra Lbe10 | thats it
211 1.1 gwr Lbe0:
212 1.45 chs btst #4,%a1@(6) | long (type B) stack frame?
213 1.1 gwr jne Lbe4 | yes, go handle
214 1.45 chs movl %a1@(2),%d1 | no, can use save PC
215 1.45 chs btst #14,%d0 | FB set?
216 1.1 gwr jeq Lbe3 | no, try FC
217 1.45 chs addql #4,%d1 | yes, adjust address
218 1.1 gwr jra Lbe10 | done
219 1.1 gwr Lbe3:
220 1.45 chs btst #15,%d0 | FC set?
221 1.1 gwr jeq Lbe10 | no, done
222 1.45 chs addql #2,%d1 | yes, adjust address
223 1.1 gwr jra Lbe10 | done
224 1.1 gwr Lbe4:
225 1.45 chs movl %a1@(36),%d1 | long format, use stage B address
226 1.45 chs btst #15,%d0 | FC set?
227 1.1 gwr jeq Lbe10 | no, all done
228 1.45 chs subql #2,%d1 | yes, adjust address
229 1.1 gwr Lbe10:
230 1.45 chs movl %d1,%sp@- | push fault VA
231 1.45 chs movl %d0,%sp@- | and padded SSW
232 1.45 chs movw %a1@(6),%d0 | get frame format/vector offset
233 1.45 chs andw #0x0FFF,%d0 | clear out frame format
234 1.45 chs cmpw #12,%d0 | address error vector?
235 1.1 gwr jeq Lisaerr | yes, go to it
236 1.1 gwr
237 1.1 gwr /* MMU-specific code to determine reason for bus error. */
238 1.45 chs movl %d1,%a0 | fault address
239 1.45 chs movl %sp@,%d0 | function code from ssw
240 1.45 chs btst #8,%d0 | data fault?
241 1.1 gwr jne Lbe10a
242 1.45 chs movql #1,%d0 | user program access FC
243 1.1 gwr | (we dont separate data/program)
244 1.45 chs btst #5,%a1@ | supervisor mode?
245 1.1 gwr jeq Lbe10a | if no, done
246 1.45 chs movql #5,%d0 | else supervisor program access
247 1.1 gwr Lbe10a:
248 1.45 chs ptestr %d0,%a0@,#7 | do a table search
249 1.45 chs pmove %psr,%sp@ | save result
250 1.45 chs movb %sp@,%d1
251 1.45 chs btst #2,%d1 | invalid? (incl. limit viol and berr)
252 1.1 gwr jeq Lmightnotbemerr | no -> wp check
253 1.45 chs btst #7,%d1 | is it MMU table berr?
254 1.1 gwr jeq Lismerr | no, must be fast
255 1.1 gwr jra Lisberr1 | real bus err needs not be fast
256 1.1 gwr Lmightnotbemerr:
257 1.45 chs btst #3,%d1 | write protect bit set?
258 1.1 gwr jeq Lisberr1 | no, must be bus error
259 1.45 chs movl %sp@,%d0 | ssw into low word of d0
260 1.45 chs andw #0xc0,%d0 | write protect is set on page:
261 1.45 chs cmpw #0x40,%d0 | was it read cycle?
262 1.1 gwr jeq Lisberr1 | yes, was not WPE, must be bus err
263 1.1 gwr /* End of MMU-specific bus error code. */
264 1.1 gwr
265 1.1 gwr Lismerr:
266 1.45 chs movl #T_MMUFLT,%sp@- | show that we are an MMU fault
267 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
268 1.1 gwr Lisaerr:
269 1.45 chs movl #T_ADDRERR,%sp@- | mark address error
270 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
271 1.1 gwr Lisberr1:
272 1.45 chs clrw %sp@ | re-clear pad word
273 1.1 gwr Lisberr:
274 1.45 chs movl #T_BUSERR,%sp@- | mark bus error
275 1.17 thorpej jra _ASM_LABEL(faultstkadj) | and deal with it
276 1.1 gwr
277 1.1 gwr /*
278 1.1 gwr * FP exceptions.
279 1.1 gwr */
280 1.19 jeremy GLOBAL(fpfline)
281 1.45 chs clrl %sp@- | stack adjust count
282 1.45 chs moveml #0xFFFF,%sp@- | save registers
283 1.45 chs moveq #T_FPEMULI,%d0 | denote as FP emulation trap
284 1.19 jeremy jra _ASM_LABEL(fault) | do it
285 1.1 gwr
286 1.19 jeremy GLOBAL(fpunsupp)
287 1.45 chs clrl %sp@- | stack adjust count
288 1.45 chs moveml #0xFFFF,%sp@- | save registers
289 1.45 chs moveq #T_FPEMULD,%d0 | denote as FP emulation trap
290 1.19 jeremy jra _ASM_LABEL(fault) | do it
291 1.1 gwr
292 1.1 gwr /*
293 1.1 gwr * Handles all other FP coprocessor exceptions.
294 1.1 gwr * Note that since some FP exceptions generate mid-instruction frames
295 1.1 gwr * and may cause signal delivery, we need to test for stack adjustment
296 1.1 gwr * after the trap call.
297 1.1 gwr */
298 1.19 jeremy GLOBAL(fpfault)
299 1.45 chs clrl %sp@- | stack adjust count
300 1.45 chs moveml #0xFFFF,%sp@- | save user registers
301 1.45 chs movl %usp,%a0 | and save
302 1.45 chs movl %a0,%sp@(FR_SP) | the user stack pointer
303 1.45 chs clrl %sp@- | no VA arg
304 1.45 chs movl _C_LABEL(curpcb),%a0 | current pcb
305 1.45 chs lea %a0@(PCB_FPCTX),%a0 | address of FP savearea
306 1.45 chs fsave %a0@ | save state
307 1.45 chs tstb %a0@ | null state frame?
308 1.1 gwr jeq Lfptnull | yes, safe
309 1.45 chs clrw %d0 | no, need to tweak BIU
310 1.45 chs movb %a0@(1),%d0 | get frame size
311 1.45 chs bset #3,%a0@(0,%d0:w) | set exc_pend bit of BIU
312 1.1 gwr Lfptnull:
313 1.45 chs fmovem %fpsr,%sp@- | push fpsr as code argument
314 1.45 chs frestore %a0@ | restore state
315 1.45 chs movl #T_FPERR,%sp@- | push type arg
316 1.17 thorpej jra _ASM_LABEL(faultstkadj) | call trap and deal with stack cleanup
317 1.1 gwr
318 1.1 gwr /*
319 1.1 gwr * Other exceptions only cause four and six word stack frame and require
320 1.1 gwr * no post-trap stack adjustment.
321 1.1 gwr */
322 1.19 jeremy GLOBAL(badtrap)
323 1.45 chs clrl %sp@- | stack adjust count
324 1.45 chs moveml #0xFFFF,%sp@- | save std frame regs
325 1.19 jeremy jbsr _C_LABEL(straytrap) | report
326 1.45 chs moveml %sp@+,#0xFFFF | restore regs
327 1.45 chs addql #4,%sp | stack adjust count
328 1.19 jeremy jra _ASM_LABEL(rei) | all done
329 1.1 gwr
330 1.1 gwr /*
331 1.1 gwr * Trap 0 is for system calls
332 1.1 gwr */
333 1.19 jeremy GLOBAL(trap0)
334 1.45 chs clrl %sp@- | stack adjust count
335 1.45 chs moveml #0xFFFF,%sp@- | save user registers
336 1.45 chs movl %usp,%a0 | save the user SP
337 1.45 chs movl %a0,%sp@(FR_SP) | in the savearea
338 1.45 chs movl %d0,%sp@- | push syscall number
339 1.19 jeremy jbsr _C_LABEL(syscall) | handle it
340 1.45 chs addql #4,%sp | pop syscall arg
341 1.45 chs movl %sp@(FR_SP),%a0 | grab and restore
342 1.45 chs movl %a0,%usp | user SP
343 1.45 chs moveml %sp@+,#0x7FFF | restore most registers
344 1.45 chs addql #8,%sp | pop SP and stack adjust
345 1.19 jeremy jra _ASM_LABEL(rei) | all done
346 1.11 gwr
347 1.11 gwr /*
348 1.11 gwr * Trap 12 is the entry point for the cachectl "syscall"
349 1.11 gwr * cachectl(command, addr, length)
350 1.11 gwr * command in d0, addr in a1, length in d1
351 1.11 gwr */
352 1.19 jeremy GLOBAL(trap12)
353 1.45 chs movl _C_LABEL(curproc),%sp@- | push curproc pointer
354 1.45 chs movl %d1,%sp@- | push length
355 1.45 chs movl %a1,%sp@- | push addr
356 1.45 chs movl %d0,%sp@- | push command
357 1.32 is jbsr _C_LABEL(cachectl1) | do it
358 1.45 chs lea %sp@(16),%sp | pop args
359 1.19 jeremy jra _ASM_LABEL(rei) | all done
360 1.1 gwr
361 1.1 gwr /*
362 1.1 gwr * Trace (single-step) trap. Kernel-mode is special.
363 1.1 gwr * User mode traps are simply passed on to trap().
364 1.1 gwr */
365 1.19 jeremy GLOBAL(trace)
366 1.45 chs clrl %sp@- | stack adjust count
367 1.45 chs moveml #0xFFFF,%sp@-
368 1.45 chs moveq #T_TRACE,%d0
369 1.37 itohy
370 1.37 itohy | Check PSW and see what happen.
371 1.37 itohy | T=0 S=0 (should not happen)
372 1.37 itohy | T=1 S=0 trace trap from user mode
373 1.37 itohy | T=0 S=1 trace trap on a trap instruction
374 1.37 itohy | T=1 S=1 trace trap from system mode (kernel breakpoint)
375 1.37 itohy
376 1.45 chs movw %sp@(FR_HW),%d1 | get PSW
377 1.45 chs notw %d1 | XXX no support for T0 on 680[234]0
378 1.45 chs andw #PSL_TS,%d1 | from system mode (T=1, S=1)?
379 1.37 itohy jeq _ASM_LABEL(kbrkpt) | yes, kernel brkpt
380 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
381 1.1 gwr
382 1.1 gwr /*
383 1.1 gwr * Trap 15 is used for:
384 1.1 gwr * - GDB breakpoints (in user programs)
385 1.1 gwr * - KGDB breakpoints (in the kernel)
386 1.1 gwr * - trace traps for SUN binaries (not fully supported yet)
387 1.11 gwr * User mode traps are simply passed to trap().
388 1.1 gwr */
389 1.19 jeremy GLOBAL(trap15)
390 1.45 chs clrl %sp@- | stack adjust count
391 1.45 chs moveml #0xFFFF,%sp@-
392 1.45 chs moveq #T_TRAP15,%d0
393 1.45 chs btst #5,%sp@(FR_HW) | was supervisor mode?
394 1.19 jeremy jne _ASM_LABEL(kbrkpt) | yes, kernel brkpt
395 1.19 jeremy jra _ASM_LABEL(fault) | no, user-mode fault
396 1.1 gwr
397 1.19 jeremy ASLOCAL(kbrkpt)
398 1.45 chs | Kernel-mode breakpoint or trace trap. (%d0=trap_type)
399 1.1 gwr | Save the system sp rather than the user sp.
400 1.45 chs movw #PSL_HIGHIPL,%sr | lock out interrupts
401 1.45 chs lea %sp@(FR_SIZE),%a6 | Save stack pointer
402 1.45 chs movl %a6,%sp@(FR_SP) | from before trap
403 1.1 gwr
404 1.1 gwr | If we are not on tmpstk switch to it.
405 1.1 gwr | (so debugger can change the stack pointer)
406 1.45 chs movl %a6,%d1
407 1.45 chs cmpl #_ASM_LABEL(tmpstk),%d1
408 1.1 gwr jls Lbrkpt2 | already on tmpstk
409 1.1 gwr | Copy frame to the temporary stack
410 1.45 chs movl %sp,%a0 | %a0=src
411 1.45 chs lea _ASM_LABEL(tmpstk)-96,%a1 | %a1=dst
412 1.45 chs movl %a1,%sp | sp=new frame
413 1.45 chs moveq #FR_SIZE,%d1
414 1.1 gwr Lbrkpt1:
415 1.45 chs movl %a0@+,%a1@+
416 1.45 chs subql #4,%d1
417 1.1 gwr bgt Lbrkpt1
418 1.1 gwr
419 1.1 gwr Lbrkpt2:
420 1.11 gwr | Call the trap handler for the kernel debugger.
421 1.6 gwr | Do not call trap() to handle it, so that we can
422 1.1 gwr | set breakpoints in trap() if we want. We know
423 1.1 gwr | the trap type is either T_TRACE or T_BREAKPOINT.
424 1.45 chs movl %d0,%sp@- | push trap type
425 1.19 jeremy jbsr _C_LABEL(trap_kdebug)
426 1.45 chs addql #4,%sp | pop args
427 1.6 gwr
428 1.1 gwr | The stack pointer may have been modified, or
429 1.1 gwr | data below it modified (by kgdb push call),
430 1.1 gwr | so push the hardware frame at the current sp
431 1.1 gwr | before restoring registers and returning.
432 1.45 chs movl %sp@(FR_SP),%a0 | modified sp
433 1.45 chs lea %sp@(FR_SIZE),%a1 | end of our frame
434 1.45 chs movl %a1@-,%a0@- | copy 2 longs with
435 1.45 chs movl %a1@-,%a0@- | ... predecrement
436 1.45 chs movl %a0,%sp@(FR_SP) | sp = h/w frame
437 1.45 chs moveml %sp@+,#0x7FFF | restore all but sp
438 1.45 chs movl %sp@,%sp | ... and sp
439 1.1 gwr rte | all done
440 1.1 gwr
441 1.11 gwr /* Use common m68k sigreturn */
442 1.11 gwr #include <m68k/m68k/sigreturn.s>
443 1.1 gwr
444 1.1 gwr /*
445 1.1 gwr * Interrupt handlers. Most are auto-vectored,
446 1.1 gwr * and hard-wired the same way on all sun3 models.
447 1.1 gwr * Format in the stack is:
448 1.45 chs * %d0,%d1,%a0,%a1, sr, pc, vo
449 1.1 gwr */
450 1.1 gwr
451 1.1 gwr #define INTERRUPT_SAVEREG \
452 1.45 chs moveml #0xC0C0,%sp@-
453 1.1 gwr
454 1.1 gwr #define INTERRUPT_RESTORE \
455 1.45 chs moveml %sp@+,#0x0303
456 1.1 gwr
457 1.1 gwr /*
458 1.1 gwr * This is the common auto-vector interrupt handler,
459 1.1 gwr * for which the CPU provides the vector=0x18+level.
460 1.1 gwr * These are installed in the interrupt vector table.
461 1.1 gwr */
462 1.46 kleink #ifdef __ELF__
463 1.46 kleink .align 4
464 1.46 kleink #else
465 1.1 gwr .align 2
466 1.46 kleink #endif
467 1.19 jeremy GLOBAL(_isr_autovec)
468 1.1 gwr INTERRUPT_SAVEREG
469 1.19 jeremy jbsr _C_LABEL(isr_autovec)
470 1.1 gwr INTERRUPT_RESTORE
471 1.19 jeremy jra _ASM_LABEL(rei)
472 1.1 gwr
473 1.1 gwr /* clock: see clock.c */
474 1.46 kleink #ifdef __ELF__
475 1.46 kleink .align 4
476 1.46 kleink #else
477 1.1 gwr .align 2
478 1.46 kleink #endif
479 1.19 jeremy GLOBAL(_isr_clock)
480 1.1 gwr INTERRUPT_SAVEREG
481 1.19 jeremy jbsr _C_LABEL(clock_intr)
482 1.1 gwr INTERRUPT_RESTORE
483 1.19 jeremy jra _ASM_LABEL(rei)
484 1.1 gwr
485 1.1 gwr | Handler for all vectored interrupts (i.e. VME interrupts)
486 1.46 kleink #ifdef __ELF__
487 1.46 kleink .align 4
488 1.46 kleink #else
489 1.1 gwr .align 2
490 1.46 kleink #endif
491 1.19 jeremy GLOBAL(_isr_vectored)
492 1.1 gwr INTERRUPT_SAVEREG
493 1.19 jeremy jbsr _C_LABEL(isr_vectored)
494 1.1 gwr INTERRUPT_RESTORE
495 1.19 jeremy jra _ASM_LABEL(rei)
496 1.1 gwr
497 1.1 gwr #undef INTERRUPT_SAVEREG
498 1.1 gwr #undef INTERRUPT_RESTORE
499 1.1 gwr
500 1.1 gwr /* interrupt counters (needed by vmstat) */
501 1.19 jeremy GLOBAL(intrnames)
502 1.1 gwr .asciz "spur" | 0
503 1.1 gwr .asciz "lev1" | 1
504 1.1 gwr .asciz "lev2" | 2
505 1.1 gwr .asciz "lev3" | 3
506 1.1 gwr .asciz "lev4" | 4
507 1.1 gwr .asciz "clock" | 5
508 1.1 gwr .asciz "lev6" | 6
509 1.1 gwr .asciz "nmi" | 7
510 1.19 jeremy GLOBAL(eintrnames)
511 1.1 gwr
512 1.1 gwr .data
513 1.1 gwr .even
514 1.19 jeremy GLOBAL(intrcnt)
515 1.1 gwr .long 0,0,0,0,0,0,0,0,0,0
516 1.19 jeremy GLOBAL(eintrcnt)
517 1.1 gwr .text
518 1.1 gwr
519 1.1 gwr /*
520 1.1 gwr * Emulation of VAX REI instruction.
521 1.1 gwr *
522 1.1 gwr * This code is (mostly) un-altered from the hp300 code,
523 1.1 gwr * except that sun machines do not need a simulated SIR
524 1.1 gwr * because they have a real software interrupt register.
525 1.1 gwr *
526 1.1 gwr * This code deals with checking for and servicing ASTs
527 1.1 gwr * (profiling, scheduling) and software interrupts (network, softclock).
528 1.1 gwr * We check for ASTs first, just like the VAX. To avoid excess overhead
529 1.1 gwr * the T_ASTFLT handling code will also check for software interrupts so we
530 1.1 gwr * do not have to do it here. After identifying that we need an AST we
531 1.1 gwr * drop the IPL to allow device interrupts.
532 1.1 gwr *
533 1.1 gwr * This code is complicated by the fact that sendsig may have been called
534 1.1 gwr * necessitating a stack cleanup.
535 1.1 gwr */
536 1.1 gwr
537 1.19 jeremy ASGLOBAL(rei)
538 1.1 gwr #ifdef DIAGNOSTIC
539 1.19 jeremy tstl _C_LABEL(panicstr) | have we paniced?
540 1.1 gwr jne Ldorte | yes, do not make matters worse
541 1.1 gwr #endif
542 1.19 jeremy tstl _C_LABEL(astpending) | AST pending?
543 1.1 gwr jeq Ldorte | no, done
544 1.1 gwr Lrei1:
545 1.45 chs btst #5,%sp@ | yes, are we returning to user mode?
546 1.1 gwr jne Ldorte | no, done
547 1.45 chs movw #PSL_LOWIPL,%sr | lower SPL
548 1.45 chs clrl %sp@- | stack adjust
549 1.45 chs moveml #0xFFFF,%sp@- | save all registers
550 1.45 chs movl %usp,%a1 | including
551 1.45 chs movl %a1,%sp@(FR_SP) | the users SP
552 1.45 chs clrl %sp@- | VA == none
553 1.45 chs clrl %sp@- | code == none
554 1.45 chs movl #T_ASTFLT,%sp@- | type == async system trap
555 1.19 jeremy jbsr _C_LABEL(trap) | go handle it
556 1.45 chs lea %sp@(12),%sp | pop value args
557 1.45 chs movl %sp@(FR_SP),%a0 | restore user SP
558 1.45 chs movl %a0,%usp | from save area
559 1.45 chs movw %sp@(FR_ADJ),%d0 | need to adjust stack?
560 1.1 gwr jne Laststkadj | yes, go to it
561 1.45 chs moveml %sp@+,#0x7FFF | no, restore most user regs
562 1.45 chs addql #8,%sp | toss SP and stack adjust
563 1.1 gwr rte | and do real RTE
564 1.1 gwr Laststkadj:
565 1.45 chs lea %sp@(FR_HW),%a1 | pointer to HW frame
566 1.45 chs addql #8,%a1 | source pointer
567 1.45 chs movl %a1,%a0 | source
568 1.45 chs addw %d0,%a0 | + hole size = dest pointer
569 1.45 chs movl %a1@-,%a0@- | copy
570 1.45 chs movl %a1@-,%a0@- | 8 bytes
571 1.45 chs movl %a0,%sp@(FR_SP) | new SSP
572 1.45 chs moveml %sp@+,#0x7FFF | restore user registers
573 1.45 chs movl %sp@,%sp | and our SP
574 1.1 gwr Ldorte:
575 1.1 gwr rte | real return
576 1.1 gwr
577 1.1 gwr /*
578 1.1 gwr * Initialization is at the beginning of this file, because the
579 1.1 gwr * kernel entry point needs to be at zero for compatibility with
580 1.1 gwr * the Sun boot loader. This works on Sun machines because the
581 1.1 gwr * interrupt vector table for reset is NOT at address zero.
582 1.1 gwr * (The MMU has a "boot" bit that forces access to the PROM)
583 1.1 gwr */
584 1.1 gwr
585 1.1 gwr /*
586 1.16 thorpej * Use common m68k sigcode.
587 1.1 gwr */
588 1.16 thorpej #include <m68k/m68k/sigcode.s>
589 1.44 jdolecek #ifdef COMPAT_SUNOS
590 1.44 jdolecek #include <m68k/m68k/sunos_sigcode.s>
591 1.44 jdolecek #endif
592 1.44 jdolecek #ifdef COMPAT_SVR4
593 1.44 jdolecek #include <m68k/m68k/svr4_sigcode.s>
594 1.44 jdolecek #endif
595 1.16 thorpej
596 1.1 gwr .text
597 1.1 gwr
598 1.1 gwr /*
599 1.1 gwr * Primitives
600 1.1 gwr */
601 1.1 gwr
602 1.1 gwr /*
603 1.12 thorpej * Use common m68k support routines.
604 1.1 gwr */
605 1.12 thorpej #include <m68k/m68k/support.s>
606 1.1 gwr
607 1.19 jeremy BSS(want_resched,4)
608 1.1 gwr
609 1.1 gwr /*
610 1.15 thorpej * Use common m68k process manipulation routines.
611 1.1 gwr */
612 1.15 thorpej #include <m68k/m68k/proc_subr.s>
613 1.1 gwr
614 1.1 gwr | Message for Lbadsw panic
615 1.1 gwr Lsw0:
616 1.1 gwr .asciz "cpu_switch"
617 1.1 gwr .even
618 1.1 gwr
619 1.1 gwr .data
620 1.19 jeremy GLOBAL(masterpaddr) | XXX compatibility (debuggers)
621 1.19 jeremy GLOBAL(curpcb)
622 1.1 gwr .long 0
623 1.19 jeremy ASBSS(nullpcb,SIZEOF_PCB)
624 1.1 gwr .text
625 1.1 gwr
626 1.1 gwr /*
627 1.1 gwr * At exit of a process, do a cpu_switch for the last time.
628 1.28 thorpej * Switch to a safe stack and PCB, and select a new process to run. The
629 1.28 thorpej * old stack and u-area will be freed by the reaper.
630 1.42 thorpej *
631 1.42 thorpej * MUST BE CALLED AT SPLHIGH!
632 1.1 gwr */
633 1.1 gwr ENTRY(switch_exit)
634 1.45 chs movl %sp@(4),%a0 | struct proc *p
635 1.19 jeremy | save state into garbage pcb
636 1.19 jeremy movl #_ASM_LABEL(nullpcb),_C_LABEL(curpcb)
637 1.45 chs lea _ASM_LABEL(tmpstk),%sp | goto a tmp stack
638 1.1 gwr
639 1.28 thorpej /* Schedule the vmspace and stack to be freed. */
640 1.45 chs movl %a0,%sp@- | exit2(p)
641 1.28 thorpej jbsr _C_LABEL(exit2)
642 1.45 chs lea %sp@(4),%sp
643 1.28 thorpej
644 1.42 thorpej #if defined(LOCKDEBUG)
645 1.42 thorpej /* Acquire sched_lock */
646 1.42 thorpej jbsr _C_LABEL(sched_lock_idle)
647 1.42 thorpej #endif
648 1.1 gwr
649 1.19 jeremy jra _C_LABEL(cpu_switch)
650 1.1 gwr
651 1.1 gwr /*
652 1.1 gwr * When no processes are on the runq, cpu_switch() branches to idle
653 1.1 gwr * to wait for something to come ready.
654 1.1 gwr */
655 1.1 gwr Lidle:
656 1.42 thorpej #if defined(LOCKDEBUG)
657 1.42 thorpej /* Release sched_lock */
658 1.42 thorpej jbsr _C_LABEL(sched_unlock_idle)
659 1.42 thorpej #endif
660 1.1 gwr stop #PSL_LOWIPL
661 1.19 jeremy GLOBAL(_Idle) | See clock.c
662 1.45 chs movw #PSL_HIGHIPL,%sr
663 1.42 thorpej #if defined(LOCKDEBUG)
664 1.42 thorpej /* Acquire sched_lock */
665 1.42 thorpej jbsr _C_LABEL(sched_lock_idle)
666 1.42 thorpej #endif
667 1.42 thorpej movl _C_LABEL(sched_whichqs),%d0
668 1.1 gwr jeq Lidle
669 1.1 gwr jra Lsw1
670 1.1 gwr
671 1.1 gwr Lbadsw:
672 1.45 chs movl #Lsw0,%sp@-
673 1.19 jeremy jbsr _C_LABEL(panic)
674 1.1 gwr /*NOTREACHED*/
675 1.1 gwr
676 1.1 gwr /*
677 1.1 gwr * cpu_switch()
678 1.1 gwr * Hacked for sun3
679 1.1 gwr */
680 1.1 gwr ENTRY(cpu_switch)
681 1.45 chs movl _C_LABEL(curpcb),%a1 | current pcb
682 1.45 chs movw %sr,%a1@(PCB_PS) | save sr before changing ipl
683 1.1 gwr #ifdef notyet
684 1.45 chs movl _C_LABEL(curproc),%sp@- | remember last proc running
685 1.1 gwr #endif
686 1.19 jeremy clrl _C_LABEL(curproc)
687 1.1 gwr
688 1.1 gwr /*
689 1.1 gwr * Find the highest-priority queue that isn't empty,
690 1.1 gwr * then take the first proc from that queue.
691 1.1 gwr */
692 1.42 thorpej movl _C_LABEL(sched_whichqs),%d0
693 1.43 tsutsui jeq Lidle
694 1.42 thorpej Lsw1:
695 1.42 thorpej /*
696 1.42 thorpej * Interrupts are blocked, sched_lock is held. If
697 1.42 thorpej * we come here via Idle, %d0 contains the contents
698 1.42 thorpej * of a non-zero sched_whichqs.
699 1.42 thorpej */
700 1.42 thorpej movl %d0,%d1
701 1.42 thorpej negl %d0
702 1.42 thorpej andl %d1,%d0
703 1.42 thorpej bfffo %d0{#0:#32},%d1
704 1.42 thorpej eorib #31,%d1
705 1.42 thorpej
706 1.42 thorpej movl %d1,%d0
707 1.42 thorpej lslb #3,%d1 | convert queue number to index
708 1.42 thorpej addl #_C_LABEL(sched_qs),%d1 | locate queue (q)
709 1.42 thorpej movl %d1,%a1
710 1.42 thorpej movl %a1@(P_FORW),%a0 | p = q->p_forw
711 1.42 thorpej cmpal %d1,%a0 | anyone on queue?
712 1.1 gwr jeq Lbadsw | no, panic
713 1.38 thorpej #ifdef DIAGNOSTIC
714 1.45 chs tstl %a0@(P_WCHAN)
715 1.38 thorpej jne Lbadsw
716 1.45 chs cmpb #SRUN,%a0@(P_STAT)
717 1.38 thorpej jne Lbadsw
718 1.38 thorpej #endif
719 1.42 thorpej movl %a0@(P_FORW),%a1@(P_FORW) | q->p_forw = p->p_forw
720 1.42 thorpej movl %a0@(P_FORW),%a1 | n = p->p_forw
721 1.42 thorpej movl %a0@(P_BACK),%a1@(P_BACK) | n->p_back = q
722 1.42 thorpej cmpal %d1,%a1 | anyone left on queue?
723 1.42 thorpej jne Lsw2 | yes, skip
724 1.42 thorpej movl _C_LABEL(sched_whichqs),%d1
725 1.42 thorpej bclr %d0,%d1 | no, clear bit
726 1.42 thorpej movl %d1,_C_LABEL(sched_whichqs)
727 1.1 gwr Lsw2:
728 1.41 thorpej /* p->p_cpu initialized in fork1() for single-processor */
729 1.45 chs movb #SONPROC,%a0@(P_STAT) | p->p_stat = SONPROC
730 1.45 chs movl %a0,_C_LABEL(curproc)
731 1.19 jeremy clrl _C_LABEL(want_resched)
732 1.1 gwr #ifdef notyet
733 1.45 chs movl %sp@+,%a1 | XXX - Make this work!
734 1.45 chs cmpl %a0,%a1 | switching to same proc?
735 1.1 gwr jeq Lswdone | yes, skip save and restore
736 1.1 gwr #endif
737 1.1 gwr /*
738 1.1 gwr * Save state of previous process in its pcb.
739 1.1 gwr */
740 1.45 chs movl _C_LABEL(curpcb),%a1
741 1.45 chs moveml #0xFCFC,%a1@(PCB_REGS) | save non-scratch registers
742 1.45 chs movl %usp,%a2 | grab USP (a2 has been saved)
743 1.45 chs movl %a2,%a1@(PCB_USP) | and save it
744 1.1 gwr
745 1.19 jeremy tstl _C_LABEL(fputype) | Do we have an fpu?
746 1.1 gwr jeq Lswnofpsave | No? Then don't try save.
747 1.45 chs lea %a1@(PCB_FPCTX),%a2 | pointer to FP save area
748 1.45 chs fsave %a2@ | save FP state
749 1.45 chs tstb %a2@ | null state frame?
750 1.1 gwr jeq Lswnofpsave | yes, all done
751 1.45 chs fmovem %fp0-%fp7,%a2@(FPF_REGS) | save FP general regs
752 1.45 chs fmovem %fpcr/%fpsr/%fpi,%a2@(FPF_FPCR) | save FP control regs
753 1.1 gwr Lswnofpsave:
754 1.1 gwr
755 1.6 gwr /*
756 1.6 gwr * Now that we have saved all the registers that must be
757 1.6 gwr * preserved, we are free to use those registers until
758 1.6 gwr * we load the registers for the switched-to process.
759 1.45 chs * In this section, keep: %a0=curproc, %a1=curpcb
760 1.6 gwr */
761 1.6 gwr
762 1.45 chs clrl %a0@(P_BACK) | clear back link
763 1.45 chs movl %a0@(P_ADDR),%a1 | get p_addr
764 1.45 chs movl %a1,_C_LABEL(curpcb)
765 1.42 thorpej
766 1.42 thorpej #if defined(LOCKDEBUG)
767 1.42 thorpej /*
768 1.42 thorpej * Done mucking with the run queues, release the
769 1.42 thorpej * scheduler lock, but keep interrupts out.
770 1.42 thorpej */
771 1.45 chs movl %a0,%sp@- | not args...
772 1.45 chs movl %a1,%sp@- | ...just saving
773 1.42 thorpej jbsr _C_LABEL(sched_unlock_idle)
774 1.45 chs movl %sp@+,%a1
775 1.45 chs movl %sp@+,%a0
776 1.42 thorpej #endif
777 1.1 gwr
778 1.8 gwr /*
779 1.8 gwr * Load the new VM context (new MMU root pointer)
780 1.8 gwr */
781 1.45 chs movl %a0@(P_VMSPACE),%a2 | vm = p->p_vmspace
782 1.8 gwr #ifdef DIAGNOSTIC
783 1.45 chs tstl %a2 | vm == VM_MAP_NULL?
784 1.8 gwr jeq Lbadsw | panic
785 1.8 gwr #endif
786 1.8 gwr #ifdef PMAP_DEBUG
787 1.25 gwr /* When debugging just call _pmap_switch(). */
788 1.45 chs movl %a2@(VM_PMAP),a2 | pmap = vm->vm_map.pmap
789 1.45 chs pea %a2@ | push pmap
790 1.25 gwr jbsr _C_LABEL(_pmap_switch) | _pmap_switch(pmap)
791 1.45 chs addql #4,%sp
792 1.45 chs movl _C_LABEL(curpcb),%a1 | restore p_addr
793 1.8 gwr #else
794 1.25 gwr /* Otherwise, use this inline version. */
795 1.45 chs lea _C_LABEL(kernel_crp),%a3 | our CPU Root Ptr. (CRP)
796 1.45 chs movl %a2@(VM_PMAP),%a2 | pmap = vm->vm_map.pmap
797 1.45 chs movl %a2@(PM_A_PHYS),%d0 | phys = pmap->pm_a_phys
798 1.45 chs cmpl %a3@(4),%d0 | == kernel_crp.rp_addr ?
799 1.8 gwr jeq Lsame_mmuctx | skip loadcrp/flush
800 1.8 gwr /* OK, it is a new MMU context. Load it up. */
801 1.45 chs movl %d0,%a3@(4)
802 1.45 chs movl #CACHE_CLR,%d0
803 1.45 chs movc %d0,%cacr | invalidate cache(s)
804 1.1 gwr pflusha | flush entire TLB
805 1.45 chs pmove %a3@,%crp | load new user root pointer
806 1.8 gwr Lsame_mmuctx:
807 1.8 gwr #endif
808 1.1 gwr
809 1.6 gwr /*
810 1.6 gwr * Reload the registers for the new process.
811 1.45 chs * After this point we can only use %d0,%d1,%a0,%a1
812 1.6 gwr */
813 1.45 chs moveml %a1@(PCB_REGS),#0xFCFC | reload registers
814 1.45 chs movl %a1@(PCB_USP),%a0
815 1.45 chs movl %a0,%usp | and USP
816 1.1 gwr
817 1.19 jeremy tstl _C_LABEL(fputype) | If we don't have an fpu,
818 1.1 gwr jeq Lres_skip | don't try to restore it.
819 1.45 chs lea %a1@(PCB_FPCTX),%a0 | pointer to FP save area
820 1.45 chs tstb %a0@ | null state frame?
821 1.1 gwr jeq Lresfprest | yes, easy
822 1.45 chs fmovem %a0@(FPF_FPCR),%fpcr/%fpsr/%fpi | restore FP control regs
823 1.45 chs fmovem %a0@(FPF_REGS),%fp0-%fp7 | restore FP general regs
824 1.1 gwr Lresfprest:
825 1.45 chs frestore %a0@ | restore state
826 1.1 gwr Lres_skip:
827 1.45 chs movw %a1@(PCB_PS),%d0 | no, restore PS
828 1.1 gwr #ifdef DIAGNOSTIC
829 1.45 chs btst #13,%d0 | supervisor mode?
830 1.1 gwr jeq Lbadsw | no? panic!
831 1.1 gwr #endif
832 1.45 chs movw %d0,%sr | OK, restore PS
833 1.45 chs movl #1,%a0 | return 1 (for alternate returns)
834 1.1 gwr rts
835 1.1 gwr
836 1.1 gwr /*
837 1.1 gwr * savectx(pcb)
838 1.1 gwr * Update pcb, saving current processor state.
839 1.1 gwr */
840 1.1 gwr ENTRY(savectx)
841 1.45 chs movl %sp@(4),%a1
842 1.45 chs movw %sr,%a1@(PCB_PS)
843 1.45 chs movl %usp,%a0 | grab USP
844 1.45 chs movl %a0,%a1@(PCB_USP) | and save it
845 1.45 chs moveml #0xFCFC,%a1@(PCB_REGS) | save non-scratch registers
846 1.1 gwr
847 1.19 jeremy tstl _C_LABEL(fputype) | Do we have FPU?
848 1.1 gwr jeq Lsavedone | No? Then don't save state.
849 1.45 chs lea %a1@(PCB_FPCTX),%a0 | pointer to FP save area
850 1.45 chs fsave %a0@ | save FP state
851 1.45 chs tstb %a0@ | null state frame?
852 1.1 gwr jeq Lsavedone | yes, all done
853 1.45 chs fmovem %fp0-%fp7,%a0@(FPF_REGS) | save FP general regs
854 1.45 chs fmovem %fpcr/%fpsr/%fpi,%a0@(FPF_FPCR) | save FP control regs
855 1.1 gwr Lsavedone:
856 1.45 chs movl #0,%a0 | return 0
857 1.1 gwr rts
858 1.1 gwr
859 1.20 gwr /* suline() */
860 1.1 gwr
861 1.1 gwr #ifdef DEBUG
862 1.1 gwr .data
863 1.19 jeremy ASGLOBAL(fulltflush)
864 1.1 gwr .long 0
865 1.19 jeremy ASGLOBAL(fullcflush)
866 1.1 gwr .long 0
867 1.1 gwr .text
868 1.1 gwr #endif
869 1.1 gwr
870 1.1 gwr /*
871 1.1 gwr * Invalidate entire TLB.
872 1.1 gwr */
873 1.1 gwr ENTRY(TBIA)
874 1.19 jeremy _C_LABEL(_TBIA):
875 1.1 gwr pflusha
876 1.45 chs movl #DC_CLEAR,%d0
877 1.45 chs movc %d0,%cacr | invalidate on-chip d-cache
878 1.1 gwr rts
879 1.1 gwr
880 1.1 gwr /*
881 1.1 gwr * Invalidate any TLB entry for given VA (TB Invalidate Single)
882 1.1 gwr */
883 1.1 gwr ENTRY(TBIS)
884 1.1 gwr #ifdef DEBUG
885 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
886 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush entire TLB
887 1.1 gwr #endif
888 1.45 chs movl %sp@(4),%a0
889 1.45 chs pflush #0,#0,%a0@ | flush address from both sides
890 1.45 chs movl #DC_CLEAR,%d0
891 1.45 chs movc %d0,%cacr | invalidate on-chip data cache
892 1.1 gwr rts
893 1.1 gwr
894 1.1 gwr /*
895 1.1 gwr * Invalidate supervisor side of TLB
896 1.1 gwr */
897 1.1 gwr ENTRY(TBIAS)
898 1.1 gwr #ifdef DEBUG
899 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
900 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
901 1.1 gwr #endif
902 1.1 gwr pflush #4,#4 | flush supervisor TLB entries
903 1.45 chs movl #DC_CLEAR,%d0
904 1.45 chs movc %d0,%cacr | invalidate on-chip d-cache
905 1.1 gwr rts
906 1.1 gwr
907 1.1 gwr /*
908 1.1 gwr * Invalidate user side of TLB
909 1.1 gwr */
910 1.1 gwr ENTRY(TBIAU)
911 1.1 gwr #ifdef DEBUG
912 1.19 jeremy tstl _ASM_LABEL(fulltflush) | being conservative?
913 1.19 jeremy jne _C_LABEL(_TBIA) | yes, flush everything
914 1.1 gwr #endif
915 1.1 gwr pflush #0,#4 | flush user TLB entries
916 1.45 chs movl #DC_CLEAR,%d0
917 1.45 chs movc %d0,%cacr | invalidate on-chip d-cache
918 1.1 gwr rts
919 1.1 gwr
920 1.1 gwr /*
921 1.1 gwr * Invalidate instruction cache
922 1.1 gwr */
923 1.1 gwr ENTRY(ICIA)
924 1.45 chs movl #IC_CLEAR,%d0
925 1.45 chs movc %d0,%cacr | invalidate i-cache
926 1.1 gwr rts
927 1.1 gwr
928 1.1 gwr /*
929 1.1 gwr * Invalidate data cache.
930 1.1 gwr * NOTE: we do not flush 68030 on-chip cache as there are no aliasing
931 1.1 gwr * problems with DC_WA. The only cases we have to worry about are context
932 1.1 gwr * switch and TLB changes, both of which are handled "in-line" in resume
933 1.1 gwr * and TBI*.
934 1.1 gwr */
935 1.1 gwr ENTRY(DCIA)
936 1.1 gwr __DCIA:
937 1.1 gwr rts
938 1.1 gwr
939 1.1 gwr ENTRY(DCIS)
940 1.1 gwr __DCIS:
941 1.1 gwr rts
942 1.1 gwr
943 1.1 gwr /*
944 1.1 gwr * Invalidate data cache.
945 1.1 gwr */
946 1.1 gwr ENTRY(DCIU)
947 1.45 chs movl #DC_CLEAR,%d0
948 1.45 chs movc %d0,%cacr | invalidate on-chip d-cache
949 1.1 gwr rts
950 1.1 gwr
951 1.1 gwr /* ICPL, ICPP, DCPL, DCPP, DCPA, DCFL, DCFP */
952 1.1 gwr
953 1.1 gwr ENTRY(PCIA)
954 1.45 chs movl #DC_CLEAR,%d0
955 1.45 chs movc %d0,%cacr | invalidate on-chip d-cache
956 1.1 gwr rts
957 1.1 gwr
958 1.1 gwr ENTRY(ecacheon)
959 1.1 gwr rts
960 1.1 gwr
961 1.1 gwr ENTRY(ecacheoff)
962 1.1 gwr rts
963 1.1 gwr
964 1.1 gwr /*
965 1.1 gwr * Get callers current SP value.
966 1.1 gwr * Note that simply taking the address of a local variable in a C function
967 1.1 gwr * doesn't work because callee saved registers may be outside the stack frame
968 1.1 gwr * defined by A6 (e.g. GCC generated code).
969 1.20 gwr *
970 1.1 gwr * [I don't think the ENTRY() macro will do the right thing with this -- glass]
971 1.1 gwr */
972 1.19 jeremy GLOBAL(getsp)
973 1.45 chs movl %sp,%d0 | get current SP
974 1.45 chs addql #4,%d0 | compensate for return address
975 1.45 chs movl %d0,%a0
976 1.1 gwr rts
977 1.1 gwr
978 1.1 gwr ENTRY(getsfc)
979 1.45 chs movc %sfc,%d0
980 1.45 chs movl %d0,%a0
981 1.1 gwr rts
982 1.1 gwr
983 1.1 gwr ENTRY(getdfc)
984 1.45 chs movc %dfc,%d0
985 1.45 chs movl %d0,%a0
986 1.1 gwr rts
987 1.1 gwr
988 1.1 gwr ENTRY(getvbr)
989 1.45 chs movc %vbr,%d0
990 1.45 chs movl %d0,%a0
991 1.1 gwr rts
992 1.1 gwr
993 1.1 gwr ENTRY(setvbr)
994 1.45 chs movl %sp@(4),%d0
995 1.45 chs movc %d0,%vbr
996 1.1 gwr rts
997 1.1 gwr
998 1.1 gwr /*
999 1.1 gwr * Load a new CPU Root Pointer (CRP) into the MMU.
1000 1.2 gwr * void loadcrp(struct mmu_rootptr *);
1001 1.1 gwr */
1002 1.1 gwr ENTRY(loadcrp)
1003 1.45 chs movl %sp@(4),%a0 | arg1: &CRP
1004 1.45 chs movl #CACHE_CLR,%d0
1005 1.45 chs movc %d0,%cacr | invalidate cache(s)
1006 1.1 gwr pflusha | flush entire TLB
1007 1.45 chs pmove %a0@,%crp | load new user root pointer
1008 1.45 chs rts
1009 1.45 chs
1010 1.45 chs ENTRY(getcrp)
1011 1.45 chs movl %sp@(4),%a0 | arg1: &crp
1012 1.45 chs pmove %crp,%a0@ | *crpp = %crp
1013 1.10 gwr rts
1014 1.10 gwr
1015 1.10 gwr /*
1016 1.10 gwr * Get the physical address of the PTE for a given VA.
1017 1.10 gwr */
1018 1.10 gwr ENTRY(ptest_addr)
1019 1.45 chs movl %sp@(4),%a1 | VA
1020 1.45 chs ptestr #5,%a1@,#7,%a0 | %a0 = addr of PTE
1021 1.48 scw movl %a0,%d0 | Result in %d0 (not a pointer return)
1022 1.1 gwr rts
1023 1.1 gwr
1024 1.1 gwr /*
1025 1.1 gwr * Set processor priority level calls. Most are implemented with
1026 1.1 gwr * inline asm expansions. However, we need one instantiation here
1027 1.1 gwr * in case some non-optimized code makes external references.
1028 1.21 gwr * Most places will use the inlined functions param.h supplies.
1029 1.1 gwr */
1030 1.1 gwr
1031 1.21 gwr ENTRY(_getsr)
1032 1.45 chs clrl %d0
1033 1.45 chs movw %sr,%d0
1034 1.45 chs movl %a1,%d0
1035 1.21 gwr rts
1036 1.21 gwr
1037 1.1 gwr ENTRY(_spl)
1038 1.45 chs clrl %d0
1039 1.45 chs movw %sr,%d0
1040 1.45 chs movl %sp@(4),%d1
1041 1.45 chs movw %d1,%sr
1042 1.1 gwr rts
1043 1.1 gwr
1044 1.21 gwr ENTRY(_splraise)
1045 1.45 chs clrl %d0
1046 1.45 chs movw %sr,%d0
1047 1.45 chs movl %d0,%d1
1048 1.45 chs andl #PSL_HIGHIPL,%d1 | old &= PSL_HIGHIPL
1049 1.45 chs cmpl %sp@(4),%d1 | (old - new)
1050 1.21 gwr bge Lsplr
1051 1.45 chs movl %sp@(4),%d1
1052 1.45 chs movw %d1,%sr
1053 1.21 gwr Lsplr:
1054 1.1 gwr rts
1055 1.1 gwr
1056 1.1 gwr /*
1057 1.1 gwr * Save and restore 68881 state.
1058 1.1 gwr */
1059 1.1 gwr ENTRY(m68881_save)
1060 1.45 chs movl %sp@(4),%a0 | save area pointer
1061 1.45 chs fsave %a0@ | save state
1062 1.45 chs tstb %a0@ | null state frame?
1063 1.1 gwr jeq Lm68881sdone | yes, all done
1064 1.45 chs fmovem %fp0-%fp7,%a0@(FPF_REGS) | save FP general regs
1065 1.45 chs fmovem %fpcr/%fpsr/%fpi,%a0@(FPF_FPCR) | save FP control regs
1066 1.1 gwr Lm68881sdone:
1067 1.1 gwr rts
1068 1.1 gwr
1069 1.1 gwr ENTRY(m68881_restore)
1070 1.45 chs movl %sp@(4),%a0 | save area pointer
1071 1.45 chs tstb %a0@ | null state frame?
1072 1.1 gwr jeq Lm68881rdone | yes, easy
1073 1.45 chs fmovem %a0@(FPF_FPCR),%fpcr/%fpsr/%fpi | restore FP control regs
1074 1.45 chs fmovem %a0@(FPF_REGS),%fp0-%fp7 | restore FP general regs
1075 1.1 gwr Lm68881rdone:
1076 1.45 chs frestore %a0@ | restore state
1077 1.1 gwr rts
1078 1.1 gwr
1079 1.1 gwr /*
1080 1.1 gwr * _delay(unsigned N)
1081 1.1 gwr * Delay for at least (N/256) microseconds.
1082 1.1 gwr * This routine depends on the variable: delay_divisor
1083 1.1 gwr * which should be set based on the CPU clock rate.
1084 1.26 gwr * XXX: Currently this is set based on the CPU model,
1085 1.26 gwr * XXX: but this should be determined at run time...
1086 1.1 gwr */
1087 1.19 jeremy GLOBAL(_delay)
1088 1.45 chs | %d0 = arg = (usecs << 8)
1089 1.45 chs movl %sp@(4),%d0
1090 1.45 chs | %d1 = delay_divisor;
1091 1.45 chs movl _C_LABEL(delay_divisor),%d1
1092 1.36 thorpej jra L_delay /* Jump into the loop! */
1093 1.36 thorpej
1094 1.36 thorpej /*
1095 1.36 thorpej * Align the branch target of the loop to a half-line (8-byte)
1096 1.36 thorpej * boundary to minimize cache effects. This guarantees both
1097 1.36 thorpej * that there will be no prefetch stalls due to cache line burst
1098 1.36 thorpej * operations and that the loop will run from a single cache
1099 1.36 thorpej * half-line.
1100 1.36 thorpej */
1101 1.46 kleink #ifdef __ELF__
1102 1.36 thorpej .align 8
1103 1.46 kleink #else
1104 1.46 kleink .align 3
1105 1.46 kleink #endif
1106 1.1 gwr L_delay:
1107 1.45 chs subl %d1,%d0
1108 1.1 gwr jgt L_delay
1109 1.1 gwr rts
1110 1.1 gwr
1111 1.1 gwr | Define some addresses, mostly so DDB can print useful info.
1112 1.24 gwr | Not using _C_LABEL() here because these symbols are never
1113 1.24 gwr | referenced by any C code, and if the leading underscore
1114 1.24 gwr | ever goes away, these lines turn into syntax errors...
1115 1.24 gwr .set _KERNBASE,KERNBASE
1116 1.26 gwr .set _MONSTART,SUN3X_MONSTART
1117 1.26 gwr .set _PROM_BASE,SUN3X_PROM_BASE
1118 1.26 gwr .set _MONEND,SUN3X_MONEND
1119 1.1 gwr
1120 1.1 gwr |The end!
1121