machdep.c revision 1.41 1 1.41 kleink /* $NetBSD: machdep.c,v 1.41 1999/03/04 23:18:28 kleink Exp $ */
2 1.1 gwr
3 1.1 gwr /*
4 1.1 gwr * Copyright (c) 1988 University of Utah.
5 1.1 gwr * Copyright (c) 1982, 1986, 1990, 1993
6 1.1 gwr * The Regents of the University of California. All rights reserved.
7 1.1 gwr *
8 1.1 gwr * This code is derived from software contributed to Berkeley by
9 1.1 gwr * the Systems Programming Group of the University of Utah Computer
10 1.1 gwr * Science Department.
11 1.1 gwr *
12 1.1 gwr * Redistribution and use in source and binary forms, with or without
13 1.1 gwr * modification, are permitted provided that the following conditions
14 1.1 gwr * are met:
15 1.1 gwr * 1. Redistributions of source code must retain the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer.
17 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 gwr * notice, this list of conditions and the following disclaimer in the
19 1.1 gwr * documentation and/or other materials provided with the distribution.
20 1.1 gwr * 3. All advertising materials mentioning features or use of this software
21 1.1 gwr * must display the following acknowledgement:
22 1.1 gwr * This product includes software developed by the University of
23 1.1 gwr * California, Berkeley and its contributors.
24 1.1 gwr * 4. Neither the name of the University nor the names of its contributors
25 1.1 gwr * may be used to endorse or promote products derived from this software
26 1.1 gwr * without specific prior written permission.
27 1.1 gwr *
28 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 gwr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 gwr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 gwr * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 gwr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 gwr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 gwr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 gwr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 gwr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 gwr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 gwr * SUCH DAMAGE.
39 1.1 gwr *
40 1.1 gwr * from: Utah Hdr: machdep.c 1.74 92/12/20
41 1.1 gwr * from: @(#)machdep.c 8.10 (Berkeley) 4/20/94
42 1.1 gwr */
43 1.1 gwr
44 1.40 scottr #include "opt_bufcache.h"
45 1.35 jonathan #include "opt_ddb.h"
46 1.34 gwr #include "opt_uvm.h"
47 1.36 tron #include "opt_sysv.h"
48 1.34 gwr
49 1.1 gwr #include <sys/param.h>
50 1.1 gwr #include <sys/systm.h>
51 1.1 gwr #include <sys/kernel.h>
52 1.1 gwr #include <sys/map.h>
53 1.1 gwr #include <sys/proc.h>
54 1.1 gwr #include <sys/buf.h>
55 1.1 gwr #include <sys/reboot.h>
56 1.1 gwr #include <sys/conf.h>
57 1.1 gwr #include <sys/file.h>
58 1.1 gwr #include <sys/clist.h>
59 1.1 gwr #include <sys/callout.h>
60 1.37 kleink #include <sys/device.h>
61 1.1 gwr #include <sys/malloc.h>
62 1.1 gwr #include <sys/mbuf.h>
63 1.1 gwr #include <sys/msgbuf.h>
64 1.1 gwr #include <sys/ioctl.h>
65 1.1 gwr #include <sys/tty.h>
66 1.1 gwr #include <sys/mount.h>
67 1.1 gwr #include <sys/user.h>
68 1.1 gwr #include <sys/exec.h>
69 1.1 gwr #include <sys/core.h>
70 1.1 gwr #include <sys/kcore.h>
71 1.1 gwr #include <sys/vnode.h>
72 1.1 gwr #include <sys/syscallargs.h>
73 1.1 gwr #ifdef SYSVMSG
74 1.1 gwr #include <sys/msg.h>
75 1.1 gwr #endif
76 1.1 gwr #ifdef SYSVSEM
77 1.1 gwr #include <sys/sem.h>
78 1.1 gwr #endif
79 1.1 gwr #ifdef SYSVSHM
80 1.1 gwr #include <sys/shm.h>
81 1.1 gwr #endif
82 1.8 gwr #ifdef KGDB
83 1.8 gwr #include <sys/kgdb.h>
84 1.8 gwr #endif
85 1.1 gwr
86 1.1 gwr #include <vm/vm.h>
87 1.1 gwr #include <vm/vm_map.h>
88 1.1 gwr #include <vm/vm_kern.h>
89 1.1 gwr #include <vm/vm_page.h>
90 1.26 hannken
91 1.34 gwr #if defined(UVM)
92 1.34 gwr #include <uvm/uvm.h> /* XXX: not _extern ... need vm_map_create */
93 1.34 gwr #endif
94 1.34 gwr
95 1.26 hannken #include <sys/sysctl.h>
96 1.1 gwr
97 1.1 gwr #include <dev/cons.h>
98 1.1 gwr
99 1.1 gwr #include <machine/cpu.h>
100 1.29 gwr #include <machine/dvma.h>
101 1.29 gwr #include <machine/idprom.h>
102 1.29 gwr #include <machine/kcore.h>
103 1.1 gwr #include <machine/reg.h>
104 1.1 gwr #include <machine/psl.h>
105 1.1 gwr #include <machine/pte.h>
106 1.29 gwr
107 1.41 kleink #if defined(DDB)
108 1.1 gwr #include <machine/db_machdep.h>
109 1.33 gwr #include <ddb/db_sym.h>
110 1.32 tv #include <ddb/db_extern.h>
111 1.41 kleink #endif
112 1.1 gwr
113 1.29 gwr #include <sun3/sun3/machdep.h>
114 1.1 gwr
115 1.1 gwr /* Defined in locore.s */
116 1.1 gwr extern char kernel_text[];
117 1.1 gwr /* Defined by the linker */
118 1.1 gwr extern char etext[];
119 1.1 gwr
120 1.34 gwr #if defined(UVM)
121 1.34 gwr /* XXX - Gratuitous name changes... */
122 1.34 gwr #define kmem_alloc uvm_km_alloc
123 1.34 gwr vm_map_t exec_map = NULL;
124 1.34 gwr vm_map_t mb_map = NULL;
125 1.34 gwr vm_map_t phys_map = NULL;
126 1.34 gwr #else
127 1.34 gwr vm_map_t buffer_map;
128 1.34 gwr #endif
129 1.34 gwr
130 1.1 gwr int physmem;
131 1.9 gwr int fputype;
132 1.22 leo caddr_t msgbufaddr;
133 1.1 gwr
134 1.29 gwr /* Virtual page frame for /dev/mem (see mem.c) */
135 1.1 gwr vm_offset_t vmmap;
136 1.1 gwr
137 1.1 gwr /*
138 1.1 gwr * safepri is a safe priority for sleep to set for a spin-wait
139 1.1 gwr * during autoconfiguration or after a panic.
140 1.1 gwr */
141 1.1 gwr int safepri = PSL_LOWIPL;
142 1.1 gwr
143 1.1 gwr /*
144 1.1 gwr * Declare these as initialized data so we can patch them.
145 1.1 gwr */
146 1.1 gwr int nswbuf = 0;
147 1.1 gwr #ifdef NBUF
148 1.1 gwr int nbuf = NBUF;
149 1.1 gwr #else
150 1.1 gwr int nbuf = 0;
151 1.1 gwr #endif
152 1.1 gwr #ifdef BUFPAGES
153 1.1 gwr int bufpages = BUFPAGES;
154 1.1 gwr #else
155 1.1 gwr int bufpages = 0;
156 1.1 gwr #endif
157 1.1 gwr
158 1.29 gwr u_char cpu_machine_id = 0;
159 1.15 gwr char *cpu_string = NULL;
160 1.15 gwr int cpu_has_vme = 0;
161 1.15 gwr int has_iocache = 0;
162 1.15 gwr
163 1.1 gwr static void identifycpu __P((void));
164 1.1 gwr static void initcpu __P((void));
165 1.1 gwr
166 1.1 gwr /*
167 1.1 gwr * Console initialization: called early on from main,
168 1.15 gwr * before vm init or cpu_startup. This system is able
169 1.29 gwr * to use the console for output immediately (via PROM)
170 1.29 gwr * but can not use it for input until after this point.
171 1.1 gwr */
172 1.8 gwr void
173 1.8 gwr consinit()
174 1.1 gwr {
175 1.29 gwr
176 1.29 gwr /*
177 1.29 gwr * Switch from the PROM console (output only)
178 1.29 gwr * to our own console driver.
179 1.29 gwr */
180 1.29 gwr cninit();
181 1.1 gwr
182 1.1 gwr #ifdef DDB
183 1.1 gwr db_machine_init();
184 1.32 tv {
185 1.33 gwr extern int end[];
186 1.33 gwr extern char *esym;
187 1.32 tv
188 1.34 gwr /* symsize, symstart, symend */
189 1.33 gwr ddb_init(end[0], end + 1, (int*)esym);
190 1.32 tv }
191 1.31 gwr #endif DDB
192 1.31 gwr
193 1.31 gwr /*
194 1.31 gwr * Now that the console can do input as well as
195 1.31 gwr * output, consider stopping for a debugger.
196 1.31 gwr */
197 1.31 gwr if (boothowto & RB_KDB) {
198 1.31 gwr #ifdef KGDB
199 1.31 gwr /* XXX - Ask on console for kgdb_dev? */
200 1.31 gwr /* Note: this will just return if kgdb_dev==NODEV */
201 1.31 gwr kgdb_connect(1);
202 1.31 gwr #else /* KGDB */
203 1.31 gwr /* Either DDB or no debugger (just PROM). */
204 1.1 gwr Debugger();
205 1.31 gwr #endif /* KGDB */
206 1.31 gwr }
207 1.1 gwr }
208 1.1 gwr
209 1.1 gwr /*
210 1.1 gwr * allocsys() - Private routine used by cpu_startup() below.
211 1.1 gwr *
212 1.1 gwr * Allocate space for system data structures. We are given
213 1.1 gwr * a starting virtual address and we return a final virtual
214 1.1 gwr * address; along the way we set each data structure pointer.
215 1.1 gwr *
216 1.1 gwr * We call allocsys() with 0 to find out how much space we want,
217 1.1 gwr * allocate that much and fill it with zeroes, and then call
218 1.1 gwr * allocsys() again with the correct base virtual address.
219 1.1 gwr */
220 1.1 gwr #define valloc(name, type, num) \
221 1.1 gwr v = (caddr_t)(((name) = (type *)v) + (num))
222 1.1 gwr static caddr_t allocsys __P((caddr_t));
223 1.1 gwr static caddr_t
224 1.1 gwr allocsys(v)
225 1.1 gwr register caddr_t v;
226 1.1 gwr {
227 1.1 gwr
228 1.1 gwr #ifdef REAL_CLISTS
229 1.1 gwr valloc(cfree, struct cblock, nclist);
230 1.1 gwr #endif
231 1.1 gwr valloc(callout, struct callout, ncallout);
232 1.1 gwr #ifdef SYSVSHM
233 1.1 gwr valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
234 1.1 gwr #endif
235 1.1 gwr #ifdef SYSVSEM
236 1.1 gwr valloc(sema, struct semid_ds, seminfo.semmni);
237 1.1 gwr valloc(sem, struct sem, seminfo.semmns);
238 1.1 gwr /* This is pretty disgusting! */
239 1.1 gwr valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
240 1.1 gwr #endif
241 1.1 gwr #ifdef SYSVMSG
242 1.1 gwr valloc(msgpool, char, msginfo.msgmax);
243 1.1 gwr valloc(msgmaps, struct msgmap, msginfo.msgseg);
244 1.1 gwr valloc(msghdrs, struct msg, msginfo.msgtql);
245 1.1 gwr valloc(msqids, struct msqid_ds, msginfo.msgmni);
246 1.1 gwr #endif
247 1.1 gwr
248 1.1 gwr /*
249 1.1 gwr * Determine how many buffers to allocate. We allocate
250 1.1 gwr * the BSD standard of use 10% of memory for the first 2 Meg,
251 1.1 gwr * 5% of remaining. Insure a minimum of 16 buffers.
252 1.1 gwr * Allocate 1/2 as many swap buffer headers as file i/o buffers.
253 1.1 gwr */
254 1.1 gwr if (bufpages == 0) {
255 1.1 gwr /* We always have more than 2MB of memory. */
256 1.1 gwr bufpages = ((btoc(2 * 1024 * 1024) + physmem) /
257 1.1 gwr (20 * CLSIZE));
258 1.1 gwr }
259 1.1 gwr if (nbuf == 0) {
260 1.1 gwr nbuf = bufpages;
261 1.1 gwr if (nbuf < 16)
262 1.1 gwr nbuf = 16;
263 1.1 gwr }
264 1.1 gwr if (nswbuf == 0) {
265 1.1 gwr nswbuf = (nbuf / 2) &~ 1; /* force even */
266 1.1 gwr if (nswbuf > 256)
267 1.1 gwr nswbuf = 256; /* sanity */
268 1.1 gwr }
269 1.34 gwr #if !defined(UVM)
270 1.1 gwr valloc(swbuf, struct buf, nswbuf);
271 1.34 gwr #endif
272 1.1 gwr valloc(buf, struct buf, nbuf);
273 1.1 gwr return v;
274 1.1 gwr }
275 1.1 gwr #undef valloc
276 1.1 gwr
277 1.1 gwr /*
278 1.1 gwr * cpu_startup: allocate memory for variable-sized tables,
279 1.1 gwr * initialize cpu, and do autoconfiguration.
280 1.1 gwr *
281 1.1 gwr * This is called early in init_main.c:main(), after the
282 1.1 gwr * kernel memory allocator is ready for use, but before
283 1.1 gwr * the creation of processes 1,2, and mountroot, etc.
284 1.1 gwr */
285 1.1 gwr void
286 1.1 gwr cpu_startup()
287 1.1 gwr {
288 1.1 gwr caddr_t v;
289 1.1 gwr int sz, i;
290 1.1 gwr vm_size_t size;
291 1.1 gwr int base, residual;
292 1.1 gwr vm_offset_t minaddr, maxaddr;
293 1.1 gwr
294 1.1 gwr /*
295 1.1 gwr * Initialize message buffer (for kernel printf).
296 1.1 gwr * This is put in physical page zero so it will
297 1.1 gwr * always be in the same place after a reboot.
298 1.1 gwr * Its mapping was prepared in pmap_bootstrap().
299 1.1 gwr * Also, offset some to avoid PROM scribbles.
300 1.1 gwr */
301 1.1 gwr v = (caddr_t) KERNBASE;
302 1.23 gwr msgbufaddr = (caddr_t)(v + MSGBUFOFF);
303 1.23 gwr initmsgbuf(msgbufaddr, MSGBUFSIZE);
304 1.1 gwr
305 1.1 gwr /*
306 1.1 gwr * Good {morning,afternoon,evening,night}.
307 1.1 gwr */
308 1.1 gwr printf(version);
309 1.1 gwr identifycpu();
310 1.1 gwr initfpu(); /* also prints FPU type */
311 1.1 gwr
312 1.29 gwr size = ptoa(physmem);
313 1.38 kleink printf("real mem = %ldK (0x%lx)\n", (size >> 10), size);
314 1.1 gwr
315 1.1 gwr /*
316 1.1 gwr * Find out how much space we need, allocate it,
317 1.1 gwr * and then give everything true virtual addresses.
318 1.1 gwr */
319 1.1 gwr sz = (int)allocsys((caddr_t)0);
320 1.1 gwr if ((v = (caddr_t)kmem_alloc(kernel_map, round_page(sz))) == 0)
321 1.1 gwr panic("startup: no room for tables");
322 1.1 gwr if (allocsys(v) - v != sz)
323 1.1 gwr panic("startup: table size inconsistency");
324 1.1 gwr
325 1.1 gwr /*
326 1.1 gwr * Now allocate buffers proper. They are different than the above
327 1.1 gwr * in that they usually occupy more virtual memory than physical.
328 1.1 gwr */
329 1.1 gwr size = MAXBSIZE * nbuf;
330 1.34 gwr #if defined(UVM)
331 1.34 gwr if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
332 1.34 gwr NULL, UVM_UNKNOWN_OFFSET,
333 1.34 gwr UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
334 1.34 gwr UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
335 1.34 gwr panic("startup: cannot allocate VM for buffers");
336 1.34 gwr minaddr = (vm_offset_t)buffers;
337 1.34 gwr #else
338 1.1 gwr buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
339 1.1 gwr &maxaddr, size, TRUE);
340 1.1 gwr minaddr = (vm_offset_t)buffers;
341 1.1 gwr if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
342 1.1 gwr &minaddr, size, FALSE) != KERN_SUCCESS)
343 1.1 gwr panic("startup: cannot allocate buffers");
344 1.34 gwr #endif /* UVM */
345 1.1 gwr if ((bufpages / nbuf) >= btoc(MAXBSIZE)) {
346 1.1 gwr /* don't want to alloc more physical mem than needed */
347 1.1 gwr bufpages = btoc(MAXBSIZE) * nbuf;
348 1.1 gwr }
349 1.1 gwr base = bufpages / nbuf;
350 1.1 gwr residual = bufpages % nbuf;
351 1.1 gwr for (i = 0; i < nbuf; i++) {
352 1.34 gwr #if defined(UVM)
353 1.34 gwr vm_size_t curbufsize;
354 1.34 gwr vm_offset_t curbuf;
355 1.34 gwr struct vm_page *pg;
356 1.34 gwr
357 1.34 gwr /*
358 1.34 gwr * Each buffer has MAXBSIZE bytes of VM space allocated. Of
359 1.34 gwr * that MAXBSIZE space, we allocate and map (base+1) pages
360 1.34 gwr * for the first "residual" buffers, and then we allocate
361 1.34 gwr * "base" pages for the rest.
362 1.34 gwr */
363 1.34 gwr curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
364 1.34 gwr curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
365 1.34 gwr
366 1.34 gwr while (curbufsize) {
367 1.34 gwr pg = uvm_pagealloc(NULL, 0, NULL);
368 1.34 gwr if (pg == NULL)
369 1.34 gwr panic("cpu_startup: not enough memory for "
370 1.34 gwr "buffer cache");
371 1.34 gwr #if defined(PMAP_NEW)
372 1.34 gwr pmap_kenter_pgs(curbuf, &pg, 1);
373 1.34 gwr #else
374 1.34 gwr pmap_enter(kernel_map->pmap, curbuf,
375 1.34 gwr VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
376 1.34 gwr #endif
377 1.34 gwr curbuf += PAGE_SIZE;
378 1.34 gwr curbufsize -= PAGE_SIZE;
379 1.34 gwr }
380 1.34 gwr #else /* ! UVM */
381 1.1 gwr vm_size_t curbufsize;
382 1.1 gwr vm_offset_t curbuf;
383 1.1 gwr
384 1.1 gwr /*
385 1.1 gwr * First <residual> buffers get (base+1) physical pages
386 1.1 gwr * allocated for them. The rest get (base) physical pages.
387 1.1 gwr *
388 1.1 gwr * The rest of each buffer occupies virtual space,
389 1.1 gwr * but has no physical memory allocated for it.
390 1.1 gwr */
391 1.1 gwr curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
392 1.1 gwr curbufsize = CLBYTES * (i < residual ? base+1 : base);
393 1.1 gwr vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
394 1.1 gwr vm_map_simplify(buffer_map, curbuf);
395 1.34 gwr #endif /* UVM */
396 1.1 gwr }
397 1.1 gwr
398 1.1 gwr /*
399 1.1 gwr * Allocate a submap for exec arguments. This map effectively
400 1.1 gwr * limits the number of processes exec'ing at any time.
401 1.1 gwr */
402 1.34 gwr #if defined(UVM)
403 1.34 gwr exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
404 1.34 gwr 16*NCARGS, TRUE, FALSE, NULL);
405 1.34 gwr #else
406 1.1 gwr exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
407 1.1 gwr 16*NCARGS, TRUE);
408 1.34 gwr #endif
409 1.1 gwr
410 1.1 gwr /*
411 1.1 gwr * We don't use a submap for physio, and use a separate map
412 1.1 gwr * for DVMA allocations. Our vmapbuf just maps pages into
413 1.1 gwr * the kernel map (any kernel mapping is OK) and then the
414 1.1 gwr * device drivers clone the kernel mappings into DVMA space.
415 1.1 gwr */
416 1.1 gwr
417 1.1 gwr /*
418 1.12 thorpej * Finally, allocate mbuf cluster submap.
419 1.1 gwr */
420 1.34 gwr #if defined(UVM)
421 1.39 thorpej mb_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
422 1.34 gwr VM_MBUF_SIZE, FALSE, FALSE, NULL);
423 1.34 gwr #else
424 1.39 thorpej mb_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
425 1.1 gwr VM_MBUF_SIZE, FALSE);
426 1.34 gwr #endif
427 1.1 gwr
428 1.1 gwr /*
429 1.1 gwr * Initialize callouts
430 1.1 gwr */
431 1.1 gwr callfree = callout;
432 1.1 gwr for (i = 1; i < ncallout; i++)
433 1.1 gwr callout[i-1].c_next = &callout[i];
434 1.1 gwr callout[i-1].c_next = NULL;
435 1.1 gwr
436 1.34 gwr #if defined(UVM)
437 1.34 gwr size = ptoa(uvmexp.free);
438 1.34 gwr #else
439 1.29 gwr size = ptoa(cnt.v_free_count);
440 1.34 gwr #endif
441 1.38 kleink printf("avail mem = %ldK (0x%lx)\n", (size >> 10), size);
442 1.1 gwr printf("using %d buffers containing %d bytes of memory\n",
443 1.1 gwr nbuf, bufpages * CLBYTES);
444 1.1 gwr
445 1.1 gwr /*
446 1.1 gwr * Tell the VM system that writing to kernel text isn't allowed.
447 1.1 gwr * If we don't, we might end up COW'ing the text segment!
448 1.1 gwr */
449 1.34 gwr #if defined(UVM)
450 1.34 gwr if (uvm_map_protect(kernel_map, (vm_offset_t) kernel_text,
451 1.34 gwr m68k_trunc_page((vm_offset_t) etext),
452 1.34 gwr UVM_PROT_READ|UVM_PROT_EXEC, TRUE) != KERN_SUCCESS)
453 1.34 gwr panic("can't protect kernel text");
454 1.34 gwr #else
455 1.1 gwr if (vm_map_protect(kernel_map, (vm_offset_t) kernel_text,
456 1.34 gwr m68k_trunc_page((vm_offset_t) etext),
457 1.34 gwr VM_PROT_READ|VM_PROT_EXECUTE, TRUE) != KERN_SUCCESS)
458 1.1 gwr panic("can't protect kernel text");
459 1.34 gwr #endif
460 1.1 gwr
461 1.1 gwr /*
462 1.1 gwr * Allocate a virtual page (for use by /dev/mem)
463 1.1 gwr * This page is handed to pmap_enter() therefore
464 1.1 gwr * it has to be in the normal kernel VA range.
465 1.1 gwr */
466 1.34 gwr #if defined(UVM)
467 1.34 gwr vmmap = uvm_km_valloc_wait(kernel_map, NBPG);
468 1.34 gwr #else
469 1.1 gwr vmmap = kmem_alloc_wait(kernel_map, NBPG);
470 1.34 gwr #endif
471 1.1 gwr
472 1.1 gwr /*
473 1.1 gwr * Create the DVMA maps.
474 1.1 gwr */
475 1.1 gwr dvma_init();
476 1.1 gwr
477 1.1 gwr /*
478 1.1 gwr * Set up CPU-specific registers, cache, etc.
479 1.1 gwr */
480 1.1 gwr initcpu();
481 1.1 gwr
482 1.1 gwr /*
483 1.1 gwr * Set up buffers, so they can be used to read disk labels.
484 1.1 gwr */
485 1.1 gwr bufinit();
486 1.1 gwr
487 1.1 gwr /*
488 1.1 gwr * Configure the system.
489 1.1 gwr */
490 1.1 gwr configure();
491 1.1 gwr }
492 1.1 gwr
493 1.1 gwr /*
494 1.1 gwr * Set registers on exec.
495 1.1 gwr */
496 1.1 gwr void
497 1.19 mycroft setregs(p, pack, stack)
498 1.34 gwr struct proc *p;
499 1.1 gwr struct exec_package *pack;
500 1.1 gwr u_long stack;
501 1.1 gwr {
502 1.5 gwr struct trapframe *tf = (struct trapframe *)p->p_md.md_regs;
503 1.1 gwr
504 1.21 mycroft tf->tf_sr = PSL_USERSET;
505 1.5 gwr tf->tf_pc = pack->ep_entry & ~1;
506 1.20 mycroft tf->tf_regs[D0] = 0;
507 1.20 mycroft tf->tf_regs[D1] = 0;
508 1.20 mycroft tf->tf_regs[D2] = 0;
509 1.20 mycroft tf->tf_regs[D3] = 0;
510 1.20 mycroft tf->tf_regs[D4] = 0;
511 1.20 mycroft tf->tf_regs[D5] = 0;
512 1.20 mycroft tf->tf_regs[D6] = 0;
513 1.20 mycroft tf->tf_regs[D7] = 0;
514 1.20 mycroft tf->tf_regs[A0] = 0;
515 1.20 mycroft tf->tf_regs[A1] = 0;
516 1.20 mycroft tf->tf_regs[A2] = (int)PS_STRINGS;
517 1.20 mycroft tf->tf_regs[A3] = 0;
518 1.20 mycroft tf->tf_regs[A4] = 0;
519 1.20 mycroft tf->tf_regs[A5] = 0;
520 1.20 mycroft tf->tf_regs[A6] = 0;
521 1.5 gwr tf->tf_regs[SP] = stack;
522 1.1 gwr
523 1.1 gwr /* restore a null state frame */
524 1.1 gwr p->p_addr->u_pcb.pcb_fpregs.fpf_null = 0;
525 1.19 mycroft if (fputype)
526 1.1 gwr m68881_restore(&p->p_addr->u_pcb.pcb_fpregs);
527 1.19 mycroft
528 1.1 gwr p->p_md.md_flags = 0;
529 1.1 gwr }
530 1.1 gwr
531 1.1 gwr /*
532 1.1 gwr * Info for CTL_HW
533 1.1 gwr */
534 1.25 gwr char machine[16] = MACHINE; /* from <machine/param.h> */
535 1.1 gwr char cpu_model[120];
536 1.15 gwr
537 1.15 gwr /*
538 1.15 gwr * XXX - Should empirically estimate the divisor...
539 1.15 gwr * Note that the value of delay_divisor is roughly
540 1.15 gwr * 2048 / cpuclock (where cpuclock is in MHz).
541 1.15 gwr */
542 1.16 gwr int delay_divisor = 62; /* assume the fastest (33 MHz) */
543 1.1 gwr
544 1.1 gwr void
545 1.1 gwr identifycpu()
546 1.1 gwr {
547 1.29 gwr u_char machtype;
548 1.1 gwr
549 1.15 gwr machtype = identity_prom.idp_machtype;
550 1.29 gwr if ((machtype & IDM_ARCH_MASK) != IDM_ARCH_SUN3X) {
551 1.29 gwr printf("Bad IDPROM arch!\n");
552 1.15 gwr sunmon_abort();
553 1.15 gwr }
554 1.15 gwr
555 1.29 gwr cpu_machine_id = machtype;
556 1.15 gwr switch (cpu_machine_id) {
557 1.15 gwr
558 1.15 gwr case SUN3X_MACH_80:
559 1.15 gwr cpu_string = "80"; /* Hydra */
560 1.16 gwr delay_divisor = 102; /* 20 MHz */
561 1.15 gwr cpu_has_vme = FALSE;
562 1.15 gwr break;
563 1.15 gwr
564 1.15 gwr case SUN3X_MACH_470:
565 1.15 gwr cpu_string = "470"; /* Pegasus */
566 1.15 gwr delay_divisor = 62; /* 33 MHz */
567 1.15 gwr cpu_has_vme = TRUE;
568 1.15 gwr break;
569 1.15 gwr
570 1.15 gwr default:
571 1.15 gwr printf("unknown sun3x model\n");
572 1.15 gwr sunmon_abort();
573 1.15 gwr }
574 1.15 gwr
575 1.15 gwr /* Other stuff? (VAC, mc6888x version, etc.) */
576 1.29 gwr sprintf(cpu_model, "Sun-3X (3/%s)", cpu_string);
577 1.1 gwr
578 1.29 gwr printf("Model: %s\n", cpu_model);
579 1.1 gwr }
580 1.1 gwr
581 1.1 gwr /*
582 1.1 gwr * machine dependent system variables.
583 1.1 gwr */
584 1.1 gwr int
585 1.1 gwr cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
586 1.1 gwr int *name;
587 1.1 gwr u_int namelen;
588 1.1 gwr void *oldp;
589 1.1 gwr size_t *oldlenp;
590 1.1 gwr void *newp;
591 1.1 gwr size_t newlen;
592 1.1 gwr struct proc *p;
593 1.1 gwr {
594 1.1 gwr int error;
595 1.1 gwr dev_t consdev;
596 1.1 gwr
597 1.1 gwr /* all sysctl names at this level are terminal */
598 1.1 gwr if (namelen != 1)
599 1.1 gwr return (ENOTDIR); /* overloaded */
600 1.1 gwr
601 1.1 gwr switch (name[0]) {
602 1.1 gwr case CPU_CONSDEV:
603 1.1 gwr if (cn_tab != NULL)
604 1.1 gwr consdev = cn_tab->cn_dev;
605 1.1 gwr else
606 1.1 gwr consdev = NODEV;
607 1.1 gwr error = sysctl_rdstruct(oldp, oldlenp, newp,
608 1.1 gwr &consdev, sizeof consdev);
609 1.1 gwr break;
610 1.1 gwr
611 1.1 gwr #if 0 /* XXX - Not yet... */
612 1.1 gwr case CPU_ROOT_DEVICE:
613 1.1 gwr error = sysctl_rdstring(oldp, oldlenp, newp, root_device);
614 1.1 gwr break;
615 1.1 gwr
616 1.1 gwr case CPU_BOOTED_KERNEL:
617 1.1 gwr error = sysctl_rdstring(oldp, oldlenp, newp, booted_kernel);
618 1.1 gwr break;
619 1.1 gwr #endif
620 1.1 gwr
621 1.1 gwr default:
622 1.1 gwr error = EOPNOTSUPP;
623 1.1 gwr }
624 1.1 gwr return (error);
625 1.1 gwr }
626 1.1 gwr
627 1.7 gwr /* See: sig_machdep.c */
628 1.1 gwr
629 1.1 gwr /*
630 1.1 gwr * Do a sync in preparation for a reboot.
631 1.1 gwr * XXX - This could probably be common code.
632 1.1 gwr * XXX - And now, most of it is in vfs_shutdown()
633 1.1 gwr * XXX - Put waittime checks in there too?
634 1.1 gwr */
635 1.1 gwr int waittime = -1; /* XXX - Who else looks at this? -gwr */
636 1.1 gwr static void
637 1.1 gwr reboot_sync __P((void))
638 1.1 gwr {
639 1.1 gwr
640 1.1 gwr /* Check waittime here to localize its use to this function. */
641 1.1 gwr if (waittime >= 0)
642 1.1 gwr return;
643 1.1 gwr waittime = 0;
644 1.1 gwr vfs_shutdown();
645 1.1 gwr }
646 1.1 gwr
647 1.1 gwr /*
648 1.1 gwr * Common part of the BSD and SunOS reboot system calls.
649 1.1 gwr */
650 1.1 gwr __dead void
651 1.11 gwr cpu_reboot(howto, user_boot_string)
652 1.1 gwr int howto;
653 1.1 gwr char *user_boot_string;
654 1.1 gwr {
655 1.2 gwr /* Note: this string MUST be static! */
656 1.2 gwr static char bootstr[128];
657 1.2 gwr char *p;
658 1.1 gwr
659 1.1 gwr /* If system is cold, just halt. (early panic?) */
660 1.1 gwr if (cold)
661 1.1 gwr goto haltsys;
662 1.1 gwr
663 1.24 gwr /* Un-blank the screen if appropriate. */
664 1.24 gwr cnpollc(1);
665 1.24 gwr
666 1.1 gwr if ((howto & RB_NOSYNC) == 0) {
667 1.1 gwr reboot_sync();
668 1.1 gwr /*
669 1.1 gwr * If we've been adjusting the clock, the todr
670 1.1 gwr * will be out of synch; adjust it now.
671 1.1 gwr *
672 1.1 gwr * XXX - However, if the kernel has been sitting in ddb,
673 1.1 gwr * the time will be way off, so don't set the HW clock!
674 1.1 gwr * XXX - Should do sanity check against HW clock. -gwr
675 1.1 gwr */
676 1.1 gwr /* resettodr(); */
677 1.1 gwr }
678 1.1 gwr
679 1.1 gwr /* Disable interrupts. */
680 1.1 gwr splhigh();
681 1.1 gwr
682 1.1 gwr /* Write out a crash dump if asked. */
683 1.1 gwr if (howto & RB_DUMP)
684 1.1 gwr dumpsys();
685 1.1 gwr
686 1.1 gwr /* run any shutdown hooks */
687 1.1 gwr doshutdownhooks();
688 1.1 gwr
689 1.1 gwr if (howto & RB_HALT) {
690 1.1 gwr haltsys:
691 1.1 gwr printf("Kernel halted.\n");
692 1.15 gwr #if 0
693 1.15 gwr /*
694 1.15 gwr * This calls the PROM monitor "exit_to_mon" function
695 1.15 gwr * which appears to have problems... SunOS uses the
696 1.15 gwr * "abort" function when you halt (bug work-around?)
697 1.15 gwr * so we might as well do the same.
698 1.15 gwr */
699 1.15 gwr sunmon_halt(); /* provokes PROM monitor bug */
700 1.15 gwr #else
701 1.15 gwr sunmon_abort();
702 1.15 gwr #endif
703 1.1 gwr }
704 1.1 gwr
705 1.1 gwr /*
706 1.1 gwr * Automatic reboot.
707 1.1 gwr */
708 1.2 gwr if (user_boot_string)
709 1.2 gwr strncpy(bootstr, user_boot_string, sizeof(bootstr));
710 1.2 gwr else {
711 1.1 gwr /*
712 1.1 gwr * Build our own boot string with an empty
713 1.1 gwr * boot device/file and (maybe) some flags.
714 1.1 gwr * The PROM will supply the device/file name.
715 1.1 gwr */
716 1.2 gwr p = bootstr;
717 1.2 gwr *p = '\0';
718 1.1 gwr if (howto & (RB_KDB|RB_ASKNAME|RB_SINGLE)) {
719 1.1 gwr /* Append the boot flags. */
720 1.1 gwr *p++ = ' ';
721 1.1 gwr *p++ = '-';
722 1.1 gwr if (howto & RB_KDB)
723 1.1 gwr *p++ = 'd';
724 1.1 gwr if (howto & RB_ASKNAME)
725 1.1 gwr *p++ = 'a';
726 1.1 gwr if (howto & RB_SINGLE)
727 1.1 gwr *p++ = 's';
728 1.1 gwr *p = '\0';
729 1.1 gwr }
730 1.1 gwr }
731 1.1 gwr printf("Kernel rebooting...\n");
732 1.3 gwr sunmon_reboot(bootstr);
733 1.1 gwr for (;;) ;
734 1.1 gwr /*NOTREACHED*/
735 1.1 gwr }
736 1.1 gwr
737 1.1 gwr /*
738 1.1 gwr * These variables are needed by /sbin/savecore
739 1.1 gwr */
740 1.1 gwr u_long dumpmag = 0x8fca0101; /* magic number */
741 1.1 gwr int dumpsize = 0; /* pages */
742 1.1 gwr long dumplo = 0; /* blocks */
743 1.1 gwr
744 1.1 gwr /*
745 1.11 gwr * This is called by main to set dumplo, dumpsize.
746 1.1 gwr * Dumps always skip the first CLBYTES of disk space
747 1.1 gwr * in case there might be a disk label stored there.
748 1.1 gwr * If there is extra space, put dump at the end to
749 1.1 gwr * reduce the chance that swapping trashes it.
750 1.1 gwr */
751 1.1 gwr void
752 1.11 gwr cpu_dumpconf()
753 1.1 gwr {
754 1.1 gwr int nblks; /* size of dump area */
755 1.1 gwr int maj;
756 1.1 gwr int (*getsize)__P((dev_t));
757 1.24 gwr
758 1.24 gwr /* Validate space in page zero for the kcore header. */
759 1.24 gwr if (MSGBUFOFF < (sizeof(kcore_seg_t) + sizeof(cpu_kcore_hdr_t)))
760 1.24 gwr panic("cpu_dumpconf: MSGBUFOFF too small");
761 1.1 gwr
762 1.1 gwr if (dumpdev == NODEV)
763 1.1 gwr return;
764 1.1 gwr
765 1.1 gwr maj = major(dumpdev);
766 1.1 gwr if (maj < 0 || maj >= nblkdev)
767 1.1 gwr panic("dumpconf: bad dumpdev=0x%x", dumpdev);
768 1.1 gwr getsize = bdevsw[maj].d_psize;
769 1.1 gwr if (getsize == NULL)
770 1.1 gwr return;
771 1.1 gwr nblks = (*getsize)(dumpdev);
772 1.1 gwr if (nblks <= ctod(1))
773 1.1 gwr return;
774 1.1 gwr
775 1.1 gwr /* Position dump image near end of space, page aligned. */
776 1.1 gwr dumpsize = physmem; /* pages */
777 1.1 gwr dumplo = nblks - ctod(dumpsize);
778 1.1 gwr dumplo &= ~(ctod(1)-1);
779 1.1 gwr
780 1.1 gwr /* If it does not fit, truncate it by moving dumplo. */
781 1.1 gwr /* Note: Must force signed comparison. */
782 1.1 gwr if (dumplo < ((long)ctod(1))) {
783 1.1 gwr dumplo = ctod(1);
784 1.1 gwr dumpsize = dtoc(nblks - dumplo);
785 1.1 gwr }
786 1.1 gwr }
787 1.1 gwr
788 1.13 gwr /* Note: gdb looks for "dumppcb" in a kernel crash dump. */
789 1.1 gwr struct pcb dumppcb;
790 1.1 gwr
791 1.1 gwr /*
792 1.1 gwr * Write a crash dump. The format while in swap is:
793 1.1 gwr * kcore_seg_t cpu_hdr;
794 1.1 gwr * cpu_kcore_hdr_t cpu_data;
795 1.1 gwr * padding (NBPG-sizeof(kcore_seg_t))
796 1.1 gwr * pagemap (2*NBPG)
797 1.1 gwr * physical memory...
798 1.1 gwr */
799 1.1 gwr void
800 1.1 gwr dumpsys()
801 1.1 gwr {
802 1.1 gwr struct bdevsw *dsw;
803 1.10 gwr kcore_seg_t *kseg_p;
804 1.10 gwr cpu_kcore_hdr_t *chdr_p;
805 1.14 thorpej struct sun3x_kcore_hdr *sh;
806 1.14 thorpej phys_ram_seg_t *crs_p;
807 1.1 gwr char *vaddr;
808 1.1 gwr vm_offset_t paddr;
809 1.10 gwr int psize, todo, seg, segsz;
810 1.1 gwr daddr_t blkno;
811 1.1 gwr int error = 0;
812 1.1 gwr
813 1.30 thorpej msgbufenabled = 0;
814 1.1 gwr if (dumpdev == NODEV)
815 1.1 gwr return;
816 1.1 gwr
817 1.1 gwr /*
818 1.1 gwr * For dumps during autoconfiguration,
819 1.1 gwr * if dump device has already configured...
820 1.1 gwr */
821 1.1 gwr if (dumpsize == 0)
822 1.11 gwr cpu_dumpconf();
823 1.28 mycroft if (dumplo <= 0) {
824 1.28 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
825 1.28 mycroft minor(dumpdev));
826 1.1 gwr return;
827 1.28 mycroft }
828 1.1 gwr savectx(&dumppcb);
829 1.1 gwr
830 1.1 gwr dsw = &bdevsw[major(dumpdev)];
831 1.1 gwr psize = (*(dsw->d_psize))(dumpdev);
832 1.1 gwr if (psize == -1) {
833 1.1 gwr printf("dump area unavailable\n");
834 1.1 gwr return;
835 1.1 gwr }
836 1.1 gwr
837 1.28 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
838 1.28 mycroft minor(dumpdev), dumplo);
839 1.1 gwr
840 1.1 gwr /*
841 1.10 gwr * We put the dump header is in physical page zero,
842 1.10 gwr * so there is no extra work here to write it out.
843 1.25 gwr * All we do is initialize the header.
844 1.1 gwr */
845 1.25 gwr
846 1.25 gwr /* Set pointers to all three parts. */
847 1.10 gwr kseg_p = (kcore_seg_t *)KERNBASE;
848 1.10 gwr chdr_p = (cpu_kcore_hdr_t *) (kseg_p + 1);
849 1.14 thorpej sh = &chdr_p->un._sun3x;
850 1.25 gwr
851 1.25 gwr /* Fill in kcore_seg_t part. */
852 1.10 gwr CORE_SETMAGIC(*kseg_p, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
853 1.10 gwr kseg_p->c_size = sizeof(*chdr_p);
854 1.25 gwr
855 1.25 gwr /* Fill in cpu_kcore_hdr_t part. */
856 1.29 gwr /* Can NOT use machine[] as the name! */
857 1.29 gwr strncpy(chdr_p->name, "sun3x", sizeof(chdr_p->name));
858 1.25 gwr chdr_p->page_size = NBPG;
859 1.25 gwr chdr_p->kernbase = KERNBASE;
860 1.25 gwr
861 1.25 gwr /* Fill in the sun3x_kcore_hdr part. */
862 1.25 gwr pmap_kcore_hdr(sh);
863 1.10 gwr
864 1.10 gwr /*
865 1.10 gwr * Now dump physical memory. Note that physical memory
866 1.10 gwr * might NOT be congiguous, so do it by segments.
867 1.10 gwr */
868 1.10 gwr
869 1.1 gwr blkno = dumplo;
870 1.1 gwr todo = dumpsize; /* pages */
871 1.10 gwr vaddr = (char*)vmmap; /* Borrow /dev/mem VA */
872 1.1 gwr
873 1.14 thorpej for (seg = 0; seg < SUN3X_NPHYS_RAM_SEGS; seg++) {
874 1.14 thorpej crs_p = &sh->ram_segs[seg];
875 1.10 gwr paddr = crs_p->start;
876 1.10 gwr segsz = crs_p->size;
877 1.10 gwr /*
878 1.10 gwr * Our header lives in the first little bit of
879 1.10 gwr * physical memory (not written separately), so
880 1.10 gwr * we have to adjust the first ram segment size
881 1.10 gwr * and start address to reflect the stolen RAM.
882 1.10 gwr * (Nothing interesing in that RAM anyway 8^).
883 1.10 gwr */
884 1.10 gwr if (seg == 0) {
885 1.10 gwr int adj = sizeof(*kseg_p) + sizeof(*chdr_p);
886 1.10 gwr crs_p->start += adj;
887 1.10 gwr crs_p->size -= adj;
888 1.10 gwr }
889 1.1 gwr
890 1.10 gwr while (todo && (segsz > 0)) {
891 1.1 gwr
892 1.10 gwr /* Print pages left after every 16. */
893 1.10 gwr if ((todo & 0xf) == 0)
894 1.10 gwr printf("\r%4d", todo);
895 1.10 gwr
896 1.10 gwr /* Make a temporary mapping for the page. */
897 1.10 gwr pmap_enter(pmap_kernel(), vmmap, paddr | PMAP_NC,
898 1.10 gwr VM_PROT_READ, FALSE);
899 1.10 gwr error = (*dsw->d_dump)(dumpdev, blkno, vaddr, NBPG);
900 1.10 gwr pmap_remove(pmap_kernel(), vmmap, vmmap + NBPG);
901 1.10 gwr if (error)
902 1.10 gwr goto fail;
903 1.10 gwr paddr += NBPG;
904 1.10 gwr segsz -= NBPG;
905 1.10 gwr blkno += btodb(NBPG);
906 1.10 gwr todo--;
907 1.10 gwr }
908 1.10 gwr }
909 1.1 gwr printf("\rdump succeeded\n");
910 1.1 gwr return;
911 1.1 gwr fail:
912 1.1 gwr printf(" dump error=%d\n", error);
913 1.1 gwr }
914 1.1 gwr
915 1.1 gwr static void
916 1.1 gwr initcpu()
917 1.1 gwr {
918 1.1 gwr /* XXX: Enable RAM parity/ECC checking? */
919 1.1 gwr /* XXX: parityenable(); */
920 1.1 gwr
921 1.1 gwr #ifdef HAVECACHE
922 1.1 gwr cache_enable();
923 1.1 gwr #endif
924 1.1 gwr }
925 1.1 gwr
926 1.8 gwr /* straptrap() in trap.c */
927 1.1 gwr
928 1.1 gwr /* from hp300: badaddr() */
929 1.15 gwr /* peek_byte(), peek_word() moved to bus_subr.c */
930 1.1 gwr
931 1.1 gwr /* XXX: parityenable() ? */
932 1.7 gwr /* regdump() moved to regdump.c */
933 1.1 gwr
934 1.1 gwr /*
935 1.1 gwr * cpu_exec_aout_makecmds():
936 1.1 gwr * cpu-dependent a.out format hook for execve().
937 1.1 gwr *
938 1.1 gwr * Determine if the given exec package refers to something which we
939 1.1 gwr * understand and, if so, set up the vmcmds for it.
940 1.1 gwr */
941 1.1 gwr int
942 1.1 gwr cpu_exec_aout_makecmds(p, epp)
943 1.1 gwr struct proc *p;
944 1.1 gwr struct exec_package *epp;
945 1.1 gwr {
946 1.27 tv return ENOEXEC;
947 1.1 gwr }
948