Home | History | Annotate | Line # | Download | only in sun3x
machdep.c revision 1.5
      1 /*	$NetBSD: machdep.c,v 1.5 1997/02/11 00:58:34 gwr Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1986, 1990, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	from: Utah Hdr: machdep.c 1.74 92/12/20
     41  *	from: @(#)machdep.c	8.10 (Berkeley) 4/20/94
     42  */
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/signalvar.h>
     47 #include <sys/kernel.h>
     48 #include <sys/map.h>
     49 #include <sys/proc.h>
     50 #include <sys/buf.h>
     51 #include <sys/reboot.h>
     52 #include <sys/conf.h>
     53 #include <sys/file.h>
     54 #include <sys/clist.h>
     55 #include <sys/callout.h>
     56 #include <sys/malloc.h>
     57 #include <sys/mbuf.h>
     58 #include <sys/msgbuf.h>
     59 #include <sys/ioctl.h>
     60 #include <sys/tty.h>
     61 #include <sys/mount.h>
     62 #include <sys/user.h>
     63 #include <sys/exec.h>
     64 #include <sys/core.h>
     65 #include <sys/kcore.h>
     66 #include <sys/vnode.h>
     67 #include <sys/sysctl.h>
     68 #include <sys/syscallargs.h>
     69 #ifdef SYSVMSG
     70 #include <sys/msg.h>
     71 #endif
     72 #ifdef SYSVSEM
     73 #include <sys/sem.h>
     74 #endif
     75 #ifdef SYSVSHM
     76 #include <sys/shm.h>
     77 #endif
     78 
     79 #include <vm/vm.h>
     80 #include <vm/vm_map.h>
     81 #include <vm/vm_kern.h>
     82 #include <vm/vm_page.h>
     83 
     84 #include <dev/cons.h>
     85 
     86 #include <machine/cpu.h>
     87 #include <machine/reg.h>
     88 #include <machine/psl.h>
     89 #include <machine/pte.h>
     90 #include <machine/mon.h>
     91 #include <machine/dvma.h>
     92 #include <machine/db_machdep.h>
     93 #include <machine/machdep.h>
     94 
     95 extern char *cpu_string;
     96 extern char version[];
     97 extern short exframesize[];
     98 
     99 /* Defined in locore.s */
    100 extern char kernel_text[];
    101 /* Defined by the linker */
    102 extern char etext[];
    103 
    104 int	physmem;
    105 int	fpu_type;
    106 int	msgbufmapped;
    107 
    108 vm_offset_t vmmap;
    109 
    110 /*
    111  * safepri is a safe priority for sleep to set for a spin-wait
    112  * during autoconfiguration or after a panic.
    113  */
    114 int	safepri = PSL_LOWIPL;
    115 
    116 /*
    117  * Declare these as initialized data so we can patch them.
    118  */
    119 int	nswbuf = 0;
    120 #ifdef	NBUF
    121 int	nbuf = NBUF;
    122 #else
    123 int	nbuf = 0;
    124 #endif
    125 #ifdef	BUFPAGES
    126 int	bufpages = BUFPAGES;
    127 #else
    128 int	bufpages = 0;
    129 #endif
    130 label_t *nofault;
    131 
    132 static void identifycpu __P((void));
    133 static void initcpu __P((void));
    134 
    135 /*
    136  * Console initialization: called early on from main,
    137  * before vm init or startup.  Do enough configuration
    138  * to choose and initialize a console.
    139  */
    140 void consinit()
    141 {
    142 	cninit();
    143 
    144 #ifdef KGDB
    145 	/* XXX - Ask on console for kgdb_dev? */
    146 	/* Note: this will just return if kgdb_dev<0 */
    147 	if (boothowto & RB_KDB)
    148 		kgdb_connect(1);
    149 #endif
    150 #ifdef DDB
    151 	/* Now that we have a console, we can stop in DDB. */
    152 	db_machine_init();
    153 	ddb_init();
    154 	if (boothowto & RB_KDB)
    155 		Debugger();
    156 #endif DDB
    157 }
    158 
    159 /*
    160  * allocsys() - Private routine used by cpu_startup() below.
    161  *
    162  * Allocate space for system data structures.  We are given
    163  * a starting virtual address and we return a final virtual
    164  * address; along the way we set each data structure pointer.
    165  *
    166  * We call allocsys() with 0 to find out how much space we want,
    167  * allocate that much and fill it with zeroes, and then call
    168  * allocsys() again with the correct base virtual address.
    169  */
    170 #define	valloc(name, type, num) \
    171 	v = (caddr_t)(((name) = (type *)v) + (num))
    172 static caddr_t allocsys __P((caddr_t));
    173 static caddr_t
    174 allocsys(v)
    175 	register caddr_t v;
    176 {
    177 
    178 #ifdef REAL_CLISTS
    179 	valloc(cfree, struct cblock, nclist);
    180 #endif
    181 	valloc(callout, struct callout, ncallout);
    182 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    183 #ifdef SYSVSHM
    184 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    185 #endif
    186 #ifdef SYSVSEM
    187 	valloc(sema, struct semid_ds, seminfo.semmni);
    188 	valloc(sem, struct sem, seminfo.semmns);
    189 	/* This is pretty disgusting! */
    190 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    191 #endif
    192 #ifdef SYSVMSG
    193 	valloc(msgpool, char, msginfo.msgmax);
    194 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    195 	valloc(msghdrs, struct msg, msginfo.msgtql);
    196 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    197 #endif
    198 
    199 	/*
    200 	 * Determine how many buffers to allocate. We allocate
    201 	 * the BSD standard of use 10% of memory for the first 2 Meg,
    202 	 * 5% of remaining. Insure a minimum of 16 buffers.
    203 	 * Allocate 1/2 as many swap buffer headers as file i/o buffers.
    204 	 */
    205 	if (bufpages == 0) {
    206 		/* We always have more than 2MB of memory. */
    207 		bufpages = ((btoc(2 * 1024 * 1024) + physmem) /
    208 		            (20 * CLSIZE));
    209 	}
    210 	if (nbuf == 0) {
    211 		nbuf = bufpages;
    212 		if (nbuf < 16)
    213 			nbuf = 16;
    214 	}
    215 	if (nswbuf == 0) {
    216 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    217 		if (nswbuf > 256)
    218 			nswbuf = 256;		/* sanity */
    219 	}
    220 	valloc(swbuf, struct buf, nswbuf);
    221 	valloc(buf, struct buf, nbuf);
    222 	return v;
    223 }
    224 #undef	valloc
    225 
    226 /*
    227  * cpu_startup: allocate memory for variable-sized tables,
    228  * initialize cpu, and do autoconfiguration.
    229  *
    230  * This is called early in init_main.c:main(), after the
    231  * kernel memory allocator is ready for use, but before
    232  * the creation of processes 1,2, and mountroot, etc.
    233  */
    234 void
    235 cpu_startup()
    236 {
    237 	caddr_t v;
    238 	int sz, i;
    239 	vm_size_t size;
    240 	int base, residual;
    241 	vm_offset_t minaddr, maxaddr;
    242 
    243 	/*
    244 	 * Initialize message buffer (for kernel printf).
    245 	 * This is put in physical page zero so it will
    246 	 * always be in the same place after a reboot.
    247 	 * Its mapping was prepared in pmap_bootstrap().
    248 	 * Also, offset some to avoid PROM scribbles.
    249 	 */
    250 	v = (caddr_t) KERNBASE;
    251 	msgbufp = (struct msgbuf *)(v + 0x1000);
    252 	msgbufmapped = 1;
    253 
    254 	/*
    255 	 * Good {morning,afternoon,evening,night}.
    256 	 */
    257 	printf(version);
    258 	identifycpu();
    259 	initfpu();	/* also prints FPU type */
    260 
    261 	printf("real mem = %d\n", ctob(physmem));
    262 
    263 	/*
    264 	 * Find out how much space we need, allocate it,
    265 	 * and then give everything true virtual addresses.
    266 	 */
    267 	sz = (int)allocsys((caddr_t)0);
    268 	if ((v = (caddr_t)kmem_alloc(kernel_map, round_page(sz))) == 0)
    269 		panic("startup: no room for tables");
    270 	if (allocsys(v) - v != sz)
    271 		panic("startup: table size inconsistency");
    272 
    273 	/*
    274 	 * Now allocate buffers proper.  They are different than the above
    275 	 * in that they usually occupy more virtual memory than physical.
    276 	 */
    277 	size = MAXBSIZE * nbuf;
    278 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    279 				   &maxaddr, size, TRUE);
    280 	minaddr = (vm_offset_t)buffers;
    281 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    282 			&minaddr, size, FALSE) != KERN_SUCCESS)
    283 		panic("startup: cannot allocate buffers");
    284 	if ((bufpages / nbuf) >= btoc(MAXBSIZE)) {
    285 		/* don't want to alloc more physical mem than needed */
    286 		bufpages = btoc(MAXBSIZE) * nbuf;
    287 	}
    288 	base = bufpages / nbuf;
    289 	residual = bufpages % nbuf;
    290 	for (i = 0; i < nbuf; i++) {
    291 		vm_size_t curbufsize;
    292 		vm_offset_t curbuf;
    293 
    294 		/*
    295 		 * First <residual> buffers get (base+1) physical pages
    296 		 * allocated for them.  The rest get (base) physical pages.
    297 		 *
    298 		 * The rest of each buffer occupies virtual space,
    299 		 * but has no physical memory allocated for it.
    300 		 */
    301 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    302 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    303 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    304 		vm_map_simplify(buffer_map, curbuf);
    305 	}
    306 
    307 	/*
    308 	 * Allocate a submap for exec arguments.  This map effectively
    309 	 * limits the number of processes exec'ing at any time.
    310 	 */
    311 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    312 				 16*NCARGS, TRUE);
    313 
    314 	/*
    315 	 * We don't use a submap for physio, and use a separate map
    316 	 * for DVMA allocations.  Our vmapbuf just maps pages into
    317 	 * the kernel map (any kernel mapping is OK) and then the
    318 	 * device drivers clone the kernel mappings into DVMA space.
    319 	 */
    320 
    321 	/*
    322 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    323 	 * we use the more space efficient malloc in place of kmem_alloc.
    324 	 */
    325 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    326 				   M_MBUF, M_NOWAIT);
    327 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    328 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    329 			       VM_MBUF_SIZE, FALSE);
    330 
    331 	/*
    332 	 * Initialize callouts
    333 	 */
    334 	callfree = callout;
    335 	for (i = 1; i < ncallout; i++)
    336 		callout[i-1].c_next = &callout[i];
    337 	callout[i-1].c_next = NULL;
    338 
    339 	printf("avail mem = %d\n", (int) ptoa(cnt.v_free_count));
    340 	printf("using %d buffers containing %d bytes of memory\n",
    341 		   nbuf, bufpages * CLBYTES);
    342 
    343 	/*
    344 	 * Tell the VM system that writing to kernel text isn't allowed.
    345 	 * If we don't, we might end up COW'ing the text segment!
    346 	 */
    347 	if (vm_map_protect(kernel_map, (vm_offset_t) kernel_text,
    348 					   trunc_page((vm_offset_t) etext),
    349 					   VM_PROT_READ|VM_PROT_EXECUTE, TRUE)
    350 		!= KERN_SUCCESS)
    351 		panic("can't protect kernel text");
    352 
    353 	/*
    354 	 * Allocate a virtual page (for use by /dev/mem)
    355 	 * This page is handed to pmap_enter() therefore
    356 	 * it has to be in the normal kernel VA range.
    357 	 */
    358 	vmmap = kmem_alloc_wait(kernel_map, NBPG);
    359 
    360 	/*
    361 	 * Create the DVMA maps.
    362 	 */
    363 	dvma_init();
    364 
    365 	/*
    366 	 * Set up CPU-specific registers, cache, etc.
    367 	 */
    368 	initcpu();
    369 
    370 	/*
    371 	 * Set up buffers, so they can be used to read disk labels.
    372 	 */
    373 	bufinit();
    374 
    375 	/*
    376 	 * Configure the system.
    377 	 */
    378 	configure();
    379 }
    380 
    381 /*
    382  * Set registers on exec.
    383  * XXX Should clear registers except sp, pc,
    384  * but would break init; should be fixed soon.
    385  */
    386 void
    387 setregs(p, pack, stack, retval)
    388 	register struct proc *p;
    389 	struct exec_package *pack;
    390 	u_long stack;
    391 	register_t *retval;
    392 {
    393 	struct trapframe *tf = (struct trapframe *)p->p_md.md_regs;
    394 
    395 	tf->tf_pc = pack->ep_entry & ~1;
    396 	tf->tf_regs[SP] = stack;
    397 	tf->tf_regs[A2] = (int)PS_STRINGS;
    398 
    399 	/* restore a null state frame */
    400 	p->p_addr->u_pcb.pcb_fpregs.fpf_null = 0;
    401 	if (fpu_type) {
    402 		m68881_restore(&p->p_addr->u_pcb.pcb_fpregs);
    403 	}
    404 	p->p_md.md_flags = 0;
    405 	/* XXX - HPUX sigcode hack would go here... */
    406 }
    407 
    408 /*
    409  * Info for CTL_HW
    410  */
    411 char	machine[] = "sun3x";		/* cpu "architecture" */
    412 char	cpu_model[120];
    413 extern	long hostid;
    414 
    415 void
    416 identifycpu()
    417 {
    418     /*
    419      * actual identification done earlier because i felt like it,
    420      * and i believe i will need the info to deal with some VAC, and awful
    421      * framebuffer placement problems.  could be moved later.
    422      */
    423 	strcpy(cpu_model, "Sun 3/");
    424 
    425     /* should eventually include whether it has a VAC, mc6888x version, etc */
    426 	strcat(cpu_model, cpu_string);
    427 
    428 	printf("Model: %s (hostid %x)\n", cpu_model, (int) hostid);
    429 }
    430 
    431 /*
    432  * machine dependent system variables.
    433  */
    434 int
    435 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
    436 	int *name;
    437 	u_int namelen;
    438 	void *oldp;
    439 	size_t *oldlenp;
    440 	void *newp;
    441 	size_t newlen;
    442 	struct proc *p;
    443 {
    444 	int error;
    445 	dev_t consdev;
    446 
    447 	/* all sysctl names at this level are terminal */
    448 	if (namelen != 1)
    449 		return (ENOTDIR);		/* overloaded */
    450 
    451 	switch (name[0]) {
    452 	case CPU_CONSDEV:
    453 		if (cn_tab != NULL)
    454 			consdev = cn_tab->cn_dev;
    455 		else
    456 			consdev = NODEV;
    457 		error = sysctl_rdstruct(oldp, oldlenp, newp,
    458 		    &consdev, sizeof consdev);
    459 		break;
    460 
    461 #if 0	/* XXX - Not yet... */
    462 	case CPU_ROOT_DEVICE:
    463 		error = sysctl_rdstring(oldp, oldlenp, newp, root_device);
    464 		break;
    465 
    466 	case CPU_BOOTED_KERNEL:
    467 		error = sysctl_rdstring(oldp, oldlenp, newp, booted_kernel);
    468 		break;
    469 #endif
    470 
    471 	default:
    472 		error = EOPNOTSUPP;
    473 	}
    474 	return (error);
    475 }
    476 
    477 #define SS_RTEFRAME	1
    478 #define SS_FPSTATE	2
    479 #define SS_USERREGS	4
    480 
    481 struct sigstate {
    482 	int	ss_flags;		/* which of the following are valid */
    483 	struct	frame ss_frame;		/* original exception frame */
    484 	struct	fpframe ss_fpstate;	/* 68881/68882 state info */
    485 };
    486 
    487 /*
    488  * WARNING: code in locore.s assumes the layout shown for sf_signum
    489  * thru sf_handler so... don't screw with them!
    490  */
    491 struct sigframe {
    492 	int	sf_signum;		/* signo for handler */
    493 	int	sf_code;		/* additional info for handler */
    494 	struct	sigcontext *sf_scp;	/* context ptr for handler */
    495 	sig_t	sf_handler;		/* handler addr for u_sigc */
    496 	struct	sigstate sf_state;	/* state of the hardware */
    497 	struct	sigcontext sf_sc;	/* actual context */
    498 };
    499 
    500 #ifdef DEBUG
    501 int sigdebug = 0;
    502 int sigpid = 0;
    503 #define SDB_FOLLOW	0x01
    504 #define SDB_KSTACK	0x02
    505 #define SDB_FPSTATE	0x04
    506 #endif
    507 
    508 /*
    509  * Send an interrupt to process.
    510  */
    511 void
    512 sendsig(catcher, sig, mask, code)
    513 	sig_t catcher;
    514 	int sig, mask;
    515 	u_long code;
    516 {
    517 	register struct proc *p = curproc;
    518 	register struct sigframe *fp, *kfp;
    519 	register struct frame *frame;
    520 	register struct sigacts *psp = p->p_sigacts;
    521 	register short ft;
    522 	int oonstack, fsize;
    523 	extern char sigcode[], esigcode[];
    524 
    525 	frame = (struct frame *)p->p_md.md_regs;
    526 	ft = frame->f_format;
    527 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
    528 
    529 	/*
    530 	 * Allocate and validate space for the signal handler
    531 	 * context. Note that if the stack is in P0 space, the
    532 	 * call to grow() is a nop, and the useracc() check
    533 	 * will fail if the process has not already allocated
    534 	 * the space with a `brk'.
    535 	 */
    536 	fsize = sizeof(struct sigframe);
    537 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
    538 	    (psp->ps_sigonstack & sigmask(sig))) {
    539 		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
    540 		    psp->ps_sigstk.ss_size - fsize);
    541 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
    542 	} else
    543 		fp = (struct sigframe *)(frame->f_regs[SP] - fsize);
    544 	if ((unsigned)fp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
    545 		(void)grow(p, (unsigned)fp);
    546 #ifdef DEBUG
    547 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
    548 		printf("sendsig(%d): sig %d ssp %x usp %x scp %x ft %d\n",
    549 		       p->p_pid, sig, &oonstack, fp, &fp->sf_sc, ft);
    550 #endif
    551 	if (useracc((caddr_t)fp, fsize, B_WRITE) == 0) {
    552 #ifdef DEBUG
    553 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
    554 			printf("sendsig(%d): useracc failed on sig %d\n",
    555 			       p->p_pid, sig);
    556 #endif
    557 		/*
    558 		 * Process has trashed its stack; give it an illegal
    559 		 * instruction to halt it in its tracks.
    560 		 */
    561 		SIGACTION(p, SIGILL) = SIG_DFL;
    562 		sig = sigmask(SIGILL);
    563 		p->p_sigignore &= ~sig;
    564 		p->p_sigcatch &= ~sig;
    565 		p->p_sigmask &= ~sig;
    566 		psignal(p, SIGILL);
    567 		return;
    568 	}
    569 	kfp = (struct sigframe *)malloc((u_long)fsize, M_TEMP, M_WAITOK);
    570 	/*
    571 	 * Build the argument list for the signal handler.
    572 	 */
    573 	kfp->sf_signum = sig;
    574 	kfp->sf_code = code;
    575 	kfp->sf_scp = &fp->sf_sc;
    576 	kfp->sf_handler = catcher;
    577 	/*
    578 	 * Save necessary hardware state.  Currently this includes:
    579 	 *	- general registers
    580 	 *	- original exception frame (if not a "normal" frame)
    581 	 *	- FP coprocessor state
    582 	 */
    583 	kfp->sf_state.ss_flags = SS_USERREGS;
    584 	bcopy((caddr_t)frame->f_regs,
    585 	      (caddr_t)kfp->sf_state.ss_frame.f_regs, sizeof frame->f_regs);
    586 	if (ft >= FMT7) {
    587 #ifdef DEBUG
    588 		if (ft > 15 || exframesize[ft] < 0)
    589 			panic("sendsig: bogus frame type");
    590 #endif
    591 		kfp->sf_state.ss_flags |= SS_RTEFRAME;
    592 		kfp->sf_state.ss_frame.f_format = frame->f_format;
    593 		kfp->sf_state.ss_frame.f_vector = frame->f_vector;
    594 		bcopy((caddr_t)&frame->F_u,
    595 		      (caddr_t)&kfp->sf_state.ss_frame.F_u,
    596 			  (size_t) exframesize[ft]);
    597 		/*
    598 		 * Leave an indicator that we need to clean up the kernel
    599 		 * stack.  We do this by setting the "pad word" above the
    600 		 * hardware stack frame to the amount the stack must be
    601 		 * adjusted by.
    602 		 *
    603 		 * N.B. we increment rather than just set f_stackadj in
    604 		 * case we are called from syscall when processing a
    605 		 * sigreturn.  In that case, f_stackadj may be non-zero.
    606 		 */
    607 		frame->f_stackadj += exframesize[ft];
    608 		frame->f_format = frame->f_vector = 0;
    609 #ifdef DEBUG
    610 		if (sigdebug & SDB_FOLLOW)
    611 			printf("sendsig(%d): copy out %d of frame %d\n",
    612 			       p->p_pid, exframesize[ft], ft);
    613 #endif
    614 	}
    615 
    616 	if (fpu_type) {
    617 		kfp->sf_state.ss_flags |= SS_FPSTATE;
    618 		m68881_save(&kfp->sf_state.ss_fpstate);
    619 	}
    620 #ifdef DEBUG
    621 	if ((sigdebug & SDB_FPSTATE) && *(char *)&kfp->sf_state.ss_fpstate)
    622 		printf("sendsig(%d): copy out FP state (%x) to %x\n",
    623 		       p->p_pid, *(u_int *)&kfp->sf_state.ss_fpstate,
    624 		       &kfp->sf_state.ss_fpstate);
    625 #endif
    626 
    627 	/*
    628 	 * Build the signal context to be used by sigreturn.
    629 	 */
    630 	kfp->sf_sc.sc_onstack = oonstack;
    631 	kfp->sf_sc.sc_mask = mask;
    632 	kfp->sf_sc.sc_sp = frame->f_regs[SP];
    633 	kfp->sf_sc.sc_fp = frame->f_regs[A6];
    634 	kfp->sf_sc.sc_ap = (int)&fp->sf_state;
    635 	kfp->sf_sc.sc_pc = frame->f_pc;
    636 	kfp->sf_sc.sc_ps = frame->f_sr;
    637 	(void) copyout((caddr_t)kfp, (caddr_t)fp, fsize);
    638 	frame->f_regs[SP] = (int)fp;
    639 #ifdef DEBUG
    640 	if (sigdebug & SDB_FOLLOW)
    641 		printf("sendsig(%d): sig %d scp %x fp %x sc_sp %x sc_ap %x\n",
    642 		       p->p_pid, sig, kfp->sf_scp, fp,
    643 		       kfp->sf_sc.sc_sp, kfp->sf_sc.sc_ap);
    644 #endif
    645 	/*
    646 	 * Signal trampoline code is at base of user stack.
    647 	 */
    648 	frame->f_pc = (int)PS_STRINGS - (esigcode - sigcode);
    649 #ifdef DEBUG
    650 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
    651 		printf("sendsig(%d): sig %d returns\n",
    652 		       p->p_pid, sig);
    653 #endif
    654 	free((caddr_t)kfp, M_TEMP);
    655 }
    656 
    657 /*
    658  * System call to cleanup state after a signal
    659  * has been taken.  Reset signal mask and
    660  * stack state from context left by sendsig (above).
    661  * Return to previous pc and psl as specified by
    662  * context left by sendsig. Check carefully to
    663  * make sure that the user has not modified the
    664  * psl to gain improper priviledges or to cause
    665  * a machine fault.
    666  */
    667 int
    668 sys_sigreturn(p, v, retval)
    669 	struct proc *p;
    670 	void *v;
    671 	register_t *retval;
    672 {
    673 	struct sys_sigreturn_args *uap = v;
    674 	register struct sigcontext *scp;
    675 	register struct frame *frame;
    676 	register int rf;
    677 	struct sigcontext tsigc;
    678 	struct sigstate tstate;
    679 	int flags;
    680 
    681 	scp = SCARG(uap, sigcntxp);
    682 #ifdef DEBUG
    683 	if (sigdebug & SDB_FOLLOW)
    684 		printf("sigreturn: pid %d, scp %x\n", p->p_pid, scp);
    685 #endif
    686 	if ((int)scp & 1)
    687 		return (EINVAL);
    688 
    689 	/*
    690 	 * Test and fetch the context structure.
    691 	 * We grab it all at once for speed.
    692 	 */
    693 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
    694 	    copyin((caddr_t)scp, (caddr_t)&tsigc, sizeof tsigc))
    695 		return (EINVAL);
    696 	scp = &tsigc;
    697 	if ((scp->sc_ps & (PSL_MBZ|PSL_IPL|PSL_S)) != 0)
    698 		return (EINVAL);
    699 	/*
    700 	 * Restore the user supplied information
    701 	 */
    702 	if (scp->sc_onstack & 01)
    703 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
    704 	else
    705 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
    706 	p->p_sigmask = scp->sc_mask &~ sigcantmask;
    707 	frame = (struct frame *) p->p_md.md_regs;
    708 	frame->f_regs[SP] = scp->sc_sp;
    709 	frame->f_regs[A6] = scp->sc_fp;
    710 	frame->f_pc = scp->sc_pc;
    711 	frame->f_sr = scp->sc_ps;
    712 
    713 	/*
    714 	 * Grab pointer to hardware state information.
    715 	 * If zero, the user is probably doing a longjmp.
    716 	 */
    717 	if ((rf = scp->sc_ap) == 0)
    718 		return (EJUSTRETURN);
    719 	/*
    720 	 * See if there is anything to do before we go to the
    721 	 * expense of copying in close to 1/2K of data
    722 	 */
    723 	flags = fuword((caddr_t)rf);
    724 #ifdef DEBUG
    725 	if (sigdebug & SDB_FOLLOW)
    726 		printf("sigreturn(%d): sc_ap %x flags %x\n",
    727 		       p->p_pid, rf, flags);
    728 #endif
    729 	/*
    730 	 * fuword failed (bogus sc_ap value).
    731 	 */
    732 	if (flags == -1)
    733 		return (EINVAL);
    734 	if (flags == 0 || copyin((caddr_t)rf, (caddr_t)&tstate, sizeof tstate))
    735 		return (EJUSTRETURN);
    736 #ifdef DEBUG
    737 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
    738 		printf("sigreturn(%d): ssp %x usp %x scp %x ft %d\n",
    739 		       p->p_pid, &flags, scp->sc_sp, SCARG(uap, sigcntxp),
    740 		       (flags&SS_RTEFRAME) ? tstate.ss_frame.f_format : -1);
    741 #endif
    742 	/*
    743 	 * Restore most of the users registers except for A6 and SP
    744 	 * which were handled above.
    745 	 */
    746 	if (flags & SS_USERREGS)
    747 		bcopy((caddr_t)tstate.ss_frame.f_regs,
    748 		      (caddr_t)frame->f_regs, sizeof(frame->f_regs)-2*NBPW);
    749 	/*
    750 	 * Restore long stack frames.  Note that we do not copy
    751 	 * back the saved SR or PC, they were picked up above from
    752 	 * the sigcontext structure.
    753 	 */
    754 	if (flags & SS_RTEFRAME) {
    755 		register int sz;
    756 
    757 		/* grab frame type and validate */
    758 		sz = tstate.ss_frame.f_format;
    759 		if (sz > 15 || (sz = exframesize[sz]) < 0)
    760 			return (EINVAL);
    761 		frame->f_stackadj -= sz;
    762 		frame->f_format = tstate.ss_frame.f_format;
    763 		frame->f_vector = tstate.ss_frame.f_vector;
    764 		bcopy((caddr_t)&tstate.ss_frame.F_u, (caddr_t)&frame->F_u, sz);
    765 #ifdef DEBUG
    766 		if (sigdebug & SDB_FOLLOW)
    767 			printf("sigreturn(%d): copy in %d of frame type %d\n",
    768 			       p->p_pid, sz, tstate.ss_frame.f_format);
    769 #endif
    770 	}
    771 
    772 	/*
    773 	 * Finally we restore the original FP context
    774 	 */
    775 	if (flags & SS_FPSTATE)
    776 		m68881_restore(&tstate.ss_fpstate);
    777 #ifdef DEBUG
    778 	if ((sigdebug & SDB_FPSTATE) && *(char *)&tstate.ss_fpstate)
    779 		printf("sigreturn(%d): copied in FP state (%x) at %x\n",
    780 		       p->p_pid, *(u_int *)&tstate.ss_fpstate,
    781 		       &tstate.ss_fpstate);
    782 	if ((sigdebug & SDB_FOLLOW) ||
    783 	    ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid))
    784 		printf("sigreturn(%d): returns\n", p->p_pid);
    785 #endif
    786 	return (EJUSTRETURN);
    787 }
    788 
    789 
    790 /*
    791  * Do a sync in preparation for a reboot.
    792  * XXX - This could probably be common code.
    793  * XXX - And now, most of it is in vfs_shutdown()
    794  * XXX - Put waittime checks in there too?
    795  */
    796 int waittime = -1;	/* XXX - Who else looks at this? -gwr */
    797 static void
    798 reboot_sync __P((void))
    799 {
    800 
    801 	/* Check waittime here to localize its use to this function. */
    802 	if (waittime >= 0)
    803 		return;
    804 	waittime = 0;
    805 	vfs_shutdown();
    806 }
    807 
    808 /*
    809  * Common part of the BSD and SunOS reboot system calls.
    810  * XXX - Should be named: cpu_reboot maybe? -gwr
    811  */
    812 __dead void
    813 boot(howto, user_boot_string)
    814 	int howto;
    815 	char *user_boot_string;
    816 {
    817 	/* Note: this string MUST be static! */
    818 	static char bootstr[128];
    819 	char *p;
    820 
    821 	/* If system is cold, just halt. (early panic?) */
    822 	if (cold)
    823 		goto haltsys;
    824 
    825 	if ((howto & RB_NOSYNC) == 0) {
    826 		reboot_sync();
    827 		/*
    828 		 * If we've been adjusting the clock, the todr
    829 		 * will be out of synch; adjust it now.
    830 		 *
    831 		 * XXX - However, if the kernel has been sitting in ddb,
    832 		 * the time will be way off, so don't set the HW clock!
    833 		 * XXX - Should do sanity check against HW clock. -gwr
    834 		 */
    835 		/* resettodr(); */
    836 	}
    837 
    838 	/* Disable interrupts. */
    839 	splhigh();
    840 
    841 	/* Write out a crash dump if asked. */
    842 	if (howto & RB_DUMP)
    843 		dumpsys();
    844 
    845 	/* run any shutdown hooks */
    846 	doshutdownhooks();
    847 
    848 	if (howto & RB_HALT) {
    849 	haltsys:
    850 		printf("Kernel halted.\n");
    851 		sunmon_halt();
    852 	}
    853 
    854 	/*
    855 	 * Automatic reboot.
    856 	 */
    857 	if (user_boot_string)
    858 		strncpy(bootstr, user_boot_string, sizeof(bootstr));
    859 	else {
    860 		/*
    861 		 * Build our own boot string with an empty
    862 		 * boot device/file and (maybe) some flags.
    863 		 * The PROM will supply the device/file name.
    864 		 */
    865 		p = bootstr;
    866 		*p = '\0';
    867 		if (howto & (RB_KDB|RB_ASKNAME|RB_SINGLE)) {
    868 			/* Append the boot flags. */
    869 			*p++ = ' ';
    870 			*p++ = '-';
    871 			if (howto & RB_KDB)
    872 				*p++ = 'd';
    873 			if (howto & RB_ASKNAME)
    874 				*p++ = 'a';
    875 			if (howto & RB_SINGLE)
    876 				*p++ = 's';
    877 			*p = '\0';
    878 		}
    879 	}
    880 	printf("Kernel rebooting...\n");
    881 	sunmon_reboot(bootstr);
    882 	for (;;) ;
    883 	/*NOTREACHED*/
    884 }
    885 
    886 /*
    887  * These variables are needed by /sbin/savecore
    888  */
    889 u_long	dumpmag = 0x8fca0101;	/* magic number */
    890 int 	dumpsize = 0;		/* pages */
    891 long	dumplo = 0; 		/* blocks */
    892 
    893 /*
    894  * This is called by cpu_startup to set dumplo, dumpsize.
    895  * Dumps always skip the first CLBYTES of disk space
    896  * in case there might be a disk label stored there.
    897  * If there is extra space, put dump at the end to
    898  * reduce the chance that swapping trashes it.
    899  */
    900 void
    901 dumpconf()
    902 {
    903 	int nblks;	/* size of dump area */
    904 	int maj;
    905 	int (*getsize)__P((dev_t));
    906 
    907 	if (dumpdev == NODEV)
    908 		return;
    909 
    910 	maj = major(dumpdev);
    911 	if (maj < 0 || maj >= nblkdev)
    912 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    913 	getsize = bdevsw[maj].d_psize;
    914 	if (getsize == NULL)
    915 		return;
    916 	nblks = (*getsize)(dumpdev);
    917 	if (nblks <= ctod(1))
    918 		return;
    919 
    920 	/* Position dump image near end of space, page aligned. */
    921 	dumpsize = physmem; 	/* pages */
    922 	dumplo = nblks - ctod(dumpsize);
    923 	dumplo &= ~(ctod(1)-1);
    924 
    925 	/* If it does not fit, truncate it by moving dumplo. */
    926 	/* Note: Must force signed comparison. */
    927 	if (dumplo < ((long)ctod(1))) {
    928 		dumplo = ctod(1);
    929 		dumpsize = dtoc(nblks - dumplo);
    930 	}
    931 }
    932 
    933 struct pcb dumppcb;
    934 extern vm_offset_t avail_start;
    935 
    936 /*
    937  * Write a crash dump.  The format while in swap is:
    938  *   kcore_seg_t cpu_hdr;
    939  *   cpu_kcore_hdr_t cpu_data;
    940  *   padding (NBPG-sizeof(kcore_seg_t))
    941  *   pagemap (2*NBPG)
    942  *   physical memory...
    943  */
    944 void
    945 dumpsys()
    946 {
    947 	struct bdevsw *dsw;
    948 	char *vaddr;
    949 	vm_offset_t paddr;
    950 	int psize, todo, chunk;
    951 	daddr_t blkno;
    952 	int error = 0;
    953 
    954 	msgbufmapped = 0;
    955 	if (dumpdev == NODEV)
    956 		return;
    957 
    958 	/*
    959 	 * For dumps during autoconfiguration,
    960 	 * if dump device has already configured...
    961 	 */
    962 	if (dumpsize == 0)
    963 		dumpconf();
    964 	if (dumplo <= 0)
    965 		return;
    966 	savectx(&dumppcb);
    967 
    968 	dsw = &bdevsw[major(dumpdev)];
    969 	psize = (*(dsw->d_psize))(dumpdev);
    970 	if (psize == -1) {
    971 		printf("dump area unavailable\n");
    972 		return;
    973 	}
    974 
    975 	printf("\ndumping to dev %x, offset %d\n",
    976 		   (int) dumpdev, (int) dumplo);
    977 
    978 	/*
    979 	 * Write the dump header, including MMU state.
    980 	 */
    981 	blkno = dumplo;
    982 	todo = dumpsize;	/* pages */
    983 
    984 	/*
    985 	 * Now dump physical memory.  Have to do it in two chunks.
    986 	 * The first chunk is "unmanaged" (by the VM code) and its
    987 	 * range of physical addresses is not allow in pmap_enter.
    988 	 * However, that segment is mapped linearly, so we can just
    989 	 * use the virtual mappings already in place.  The second
    990 	 * chunk is done the normal way, using pmap_enter.
    991 	 *
    992 	 * Note that vaddr==(paddr+KERNBASE) for paddr=0 through etext.
    993 	 */
    994 
    995 	/* Do the first chunk (0 <= PA < avail_start) */
    996 	paddr = 0;
    997 	chunk = btoc(avail_start);
    998 	if (chunk > todo)
    999 		chunk = todo;
   1000 	do {
   1001 		if ((todo & 0xf) == 0)
   1002 			printf("\r%4d", todo);
   1003 		vaddr = (char*)(paddr + KERNBASE);
   1004 		error = (*dsw->d_dump)(dumpdev, blkno, vaddr, NBPG);
   1005 		if (error)
   1006 			goto fail;
   1007 		paddr += NBPG;
   1008 		blkno += btodb(NBPG);
   1009 		--todo;
   1010 	} while (--chunk > 0);
   1011 
   1012 	/* Do the second chunk (avail_start <= PA < dumpsize) */
   1013 	vaddr = (char*)vmmap;	/* Borrow /dev/mem VA */
   1014 	do {
   1015 		if ((todo & 0xf) == 0)
   1016 			printf("\r%4d", todo);
   1017 		pmap_enter(pmap_kernel(), vmmap, paddr | PMAP_NC,
   1018 			VM_PROT_READ, FALSE);
   1019 		error = (*dsw->d_dump)(dumpdev, blkno, vaddr, NBPG);
   1020 		pmap_remove(pmap_kernel(), vmmap, vmmap + NBPG);
   1021 		if (error)
   1022 			goto fail;
   1023 		paddr += NBPG;
   1024 		blkno += btodb(NBPG);
   1025 	} while (--todo > 0);
   1026 
   1027 	printf("\rdump succeeded\n");
   1028 	return;
   1029 fail:
   1030 	printf(" dump error=%d\n", error);
   1031 }
   1032 
   1033 static void
   1034 initcpu()
   1035 {
   1036 	/* XXX: Enable RAM parity/ECC checking? */
   1037 	/* XXX: parityenable(); */
   1038 
   1039 	nofault = NULL;	/* XXX - needed? */
   1040 
   1041 #ifdef	HAVECACHE
   1042 	cache_enable();
   1043 #endif
   1044 }
   1045 
   1046 /* called from locore.s */
   1047 void straytrap __P((struct trapframe));
   1048 void
   1049 straytrap(frame)
   1050 	struct trapframe frame;
   1051 {
   1052 	printf("unexpected trap; vector=0x%x at pc=0x%x\n",
   1053 		frame.tf_vector, frame.tf_pc);
   1054 #ifdef	DDB
   1055 	kdb_trap(-1, (db_regs_t *) &frame);
   1056 #endif
   1057 }
   1058 
   1059 /* from hp300: badaddr() */
   1060 /* peek_byte(), peek_word() moved to autoconf.c */
   1061 
   1062 /* XXX: parityenable() ? */
   1063 
   1064 static void dumpmem __P((int *, int, int));
   1065 static char *hexstr __P((int, int));
   1066 
   1067 /*
   1068  * Print a register and stack dump.
   1069  */
   1070 void
   1071 regdump(tf, sbytes)
   1072 	struct trapframe *tf; /* must not be register */
   1073 	int sbytes;
   1074 {
   1075 	static int doingdump = 0;
   1076 	register int i;
   1077 	int s;
   1078 
   1079 	if (doingdump)
   1080 		return;
   1081 	s = splhigh();
   1082 	doingdump = 1;
   1083 	printf("pid = %d, pc = %s, ",
   1084 	       curproc ? curproc->p_pid : -1, hexstr(tf->tf_pc, 8));
   1085 	printf("ps = %s, ", hexstr(tf->tf_sr, 4));
   1086 	printf("sfc = %s, ", hexstr(getsfc(), 4));
   1087 	printf("dfc = %s\n", hexstr(getdfc(), 4));
   1088 	printf("Registers:\n     ");
   1089 	for (i = 0; i < 8; i++)
   1090 		printf("        %d", i);
   1091 	printf("\ndreg:");
   1092 	for (i = 0; i < 8; i++)
   1093 		printf(" %s", hexstr(tf->tf_regs[i], 8));
   1094 	printf("\nareg:");
   1095 	for (i = 0; i < 8; i++)
   1096 		printf(" %s", hexstr(tf->tf_regs[i+8], 8));
   1097 	if (sbytes > 0) {
   1098 		if (tf->tf_sr & PSL_S) {
   1099 			printf("\n\nKernel stack (%s):",
   1100 			       hexstr((int)(((int *)&tf)-1), 8));
   1101 			dumpmem(((int *)&tf)-1, sbytes, 0);
   1102 		} else {
   1103 			printf("\n\nUser stack (%s):", hexstr(tf->tf_regs[SP], 8));
   1104 			dumpmem((int *)tf->tf_regs[SP], sbytes, 1);
   1105 		}
   1106 	}
   1107 	doingdump = 0;
   1108 	splx(s);
   1109 }
   1110 
   1111 #define KSADDR	((int *)((u_int)curproc->p_addr + USPACE - NBPG))
   1112 
   1113 static void
   1114 dumpmem(ptr, sz, ustack)
   1115 	register int *ptr;
   1116 	int sz, ustack;
   1117 {
   1118 	register int i, val;
   1119 
   1120 	for (i = 0; i < sz; i++) {
   1121 		if ((i & 7) == 0)
   1122 			printf("\n%s: ", hexstr((int)ptr, 6));
   1123 		else
   1124 			printf(" ");
   1125 		if (ustack == 1) {
   1126 			if ((val = fuword(ptr++)) == -1)
   1127 				break;
   1128 		} else {
   1129 			if (ustack == 0 &&
   1130 			    (ptr < KSADDR || ptr > KSADDR+(NBPG/4-1)))
   1131 				break;
   1132 			val = *ptr++;
   1133 		}
   1134 		printf("%s", hexstr(val, 8));
   1135 	}
   1136 	printf("\n");
   1137 }
   1138 
   1139 static char *
   1140 hexstr(val, len)
   1141 	register int val;
   1142 	int len;
   1143 {
   1144 	static char nbuf[9];
   1145 	register int x, i;
   1146 
   1147 	if (len > 8)
   1148 		return("");
   1149 	nbuf[len] = '\0';
   1150 	for (i = len-1; i >= 0; --i) {
   1151 		x = val & 0xF;
   1152 		/* Isn't this a cool trick? */
   1153 		nbuf[i] = "0123456789ABCDEF"[x];
   1154 		val >>= 4;
   1155 	}
   1156 	return(nbuf);
   1157 }
   1158 
   1159 /*
   1160  * cpu_exec_aout_makecmds():
   1161  *	cpu-dependent a.out format hook for execve().
   1162  *
   1163  * Determine if the given exec package refers to something which we
   1164  * understand and, if so, set up the vmcmds for it.
   1165  */
   1166 int
   1167 cpu_exec_aout_makecmds(p, epp)
   1168 	struct proc *p;
   1169 	struct exec_package *epp;
   1170 {
   1171 	int error = ENOEXEC;
   1172 
   1173 #ifdef COMPAT_SUNOS
   1174 	extern sunos_exec_aout_makecmds
   1175 		__P((struct proc *, struct exec_package *));
   1176 	if ((error = sunos_exec_aout_makecmds(p, epp)) == 0)
   1177 		return 0;
   1178 #endif
   1179 	return error;
   1180 }
   1181