1 1.123 andvar /* $NetBSD: pmap.c,v 1.123 2024/05/11 06:37:54 andvar Exp $ */ 2 1.1 gwr 3 1.1 gwr /*- 4 1.10 jeremy * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. 5 1.1 gwr * All rights reserved. 6 1.1 gwr * 7 1.1 gwr * This code is derived from software contributed to The NetBSD Foundation 8 1.1 gwr * by Jeremy Cooper. 9 1.1 gwr * 10 1.1 gwr * Redistribution and use in source and binary forms, with or without 11 1.1 gwr * modification, are permitted provided that the following conditions 12 1.1 gwr * are met: 13 1.1 gwr * 1. Redistributions of source code must retain the above copyright 14 1.1 gwr * notice, this list of conditions and the following disclaimer. 15 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 gwr * notice, this list of conditions and the following disclaimer in the 17 1.1 gwr * documentation and/or other materials provided with the distribution. 18 1.1 gwr * 19 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 gwr * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 gwr * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 gwr * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 gwr * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 gwr * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 gwr * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 gwr * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 gwr * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 gwr * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 gwr * POSSIBILITY OF SUCH DAMAGE. 30 1.1 gwr */ 31 1.1 gwr 32 1.1 gwr /* 33 1.1 gwr * XXX These comments aren't quite accurate. Need to change. 34 1.1 gwr * The sun3x uses the MC68851 Memory Management Unit, which is built 35 1.1 gwr * into the CPU. The 68851 maps virtual to physical addresses using 36 1.1 gwr * a multi-level table lookup, which is stored in the very memory that 37 1.1 gwr * it maps. The number of levels of lookup is configurable from one 38 1.1 gwr * to four. In this implementation, we use three, named 'A' through 'C'. 39 1.1 gwr * 40 1.113 tsutsui * The MMU translates virtual addresses into physical addresses by 41 1.113 tsutsui * traversing these tables in a process called a 'table walk'. The most 42 1.113 tsutsui * significant 7 bits of the Virtual Address ('VA') being translated are 43 1.113 tsutsui * used as an index into the level A table, whose base in physical memory 44 1.113 tsutsui * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The 45 1.1 gwr * address found at that index in the A table is used as the base 46 1.113 tsutsui * address for the next table, the B table. The next six bits of the VA are 47 1.113 tsutsui * used as an index into the B table, which in turn gives the base address 48 1.1 gwr * of the third and final C table. 49 1.1 gwr * 50 1.1 gwr * The next six bits of the VA are used as an index into the C table to 51 1.1 gwr * locate a Page Table Entry (PTE). The PTE is a physical address in memory 52 1.1 gwr * to which the remaining 13 bits of the VA are added, producing the 53 1.1 gwr * mapped physical address. 54 1.1 gwr * 55 1.113 tsutsui * To map the entire memory space in this manner would require 2114296 bytes 56 1.113 tsutsui * of page tables per process - quite expensive. Instead we will 57 1.113 tsutsui * allocate a fixed but considerably smaller space for the page tables at 58 1.1 gwr * the time the VM system is initialized. When the pmap code is asked by 59 1.1 gwr * the kernel to map a VA to a PA, it allocates tables as needed from this 60 1.1 gwr * pool. When there are no more tables in the pool, tables are stolen 61 1.113 tsutsui * from the oldest mapped entries in the tree. This is only possible 62 1.1 gwr * because all memory mappings are stored in the kernel memory map 63 1.1 gwr * structures, independent of the pmap structures. A VA which references 64 1.1 gwr * one of these invalidated maps will cause a page fault. The kernel 65 1.113 tsutsui * will determine that the page fault was caused by a task using a valid 66 1.1 gwr * VA, but for some reason (which does not concern it), that address was 67 1.1 gwr * not mapped. It will ask the pmap code to re-map the entry and then 68 1.1 gwr * it will resume executing the faulting task. 69 1.1 gwr * 70 1.1 gwr * In this manner the most efficient use of the page table space is 71 1.113 tsutsui * achieved. Tasks which do not execute often will have their tables 72 1.1 gwr * stolen and reused by tasks which execute more frequently. The best 73 1.113 tsutsui * size for the page table pool will probably be determined by 74 1.1 gwr * experimentation. 75 1.1 gwr * 76 1.1 gwr * You read all of the comments so far. Good for you. 77 1.1 gwr * Now go play! 78 1.1 gwr */ 79 1.1 gwr 80 1.1 gwr /*** A Note About the 68851 Address Translation Cache 81 1.1 gwr * The MC68851 has a 64 entry cache, called the Address Translation Cache 82 1.1 gwr * or 'ATC'. This cache stores the most recently used page descriptors 83 1.1 gwr * accessed by the MMU when it does translations. Using a marker called a 84 1.1 gwr * 'task alias' the MMU can store the descriptors from 8 different table 85 1.1 gwr * spaces concurrently. The task alias is associated with the base 86 1.1 gwr * address of the level A table of that address space. When an address 87 1.1 gwr * space is currently active (the CRP currently points to its A table) 88 1.1 gwr * the only cached descriptors that will be obeyed are ones which have a 89 1.1 gwr * matching task alias of the current space associated with them. 90 1.1 gwr * 91 1.1 gwr * Since the cache is always consulted before any table lookups are done, 92 1.1 gwr * it is important that it accurately reflect the state of the MMU tables. 93 1.1 gwr * Whenever a change has been made to a table that has been loaded into 94 1.1 gwr * the MMU, the code must be sure to flush any cached entries that are 95 1.1 gwr * affected by the change. These instances are documented in the code at 96 1.1 gwr * various points. 97 1.1 gwr */ 98 1.1 gwr /*** A Note About the Note About the 68851 Address Translation Cache 99 1.1 gwr * 4 months into this code I discovered that the sun3x does not have 100 1.1 gwr * a MC68851 chip. Instead, it has a version of this MMU that is part of the 101 1.1 gwr * the 68030 CPU. 102 1.1 gwr * All though it behaves very similarly to the 68851, it only has 1 task 103 1.8 gwr * alias and a 22 entry cache. So sadly (or happily), the first paragraph 104 1.8 gwr * of the previous note does not apply to the sun3x pmap. 105 1.1 gwr */ 106 1.83 lukem 107 1.83 lukem #include <sys/cdefs.h> 108 1.123 andvar __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.123 2024/05/11 06:37:54 andvar Exp $"); 109 1.45 gwr 110 1.45 gwr #include "opt_ddb.h" 111 1.82 martin #include "opt_pmap_debug.h" 112 1.1 gwr 113 1.1 gwr #include <sys/param.h> 114 1.1 gwr #include <sys/systm.h> 115 1.1 gwr #include <sys/proc.h> 116 1.56 tsutsui #include <sys/pool.h> 117 1.1 gwr #include <sys/queue.h> 118 1.20 thorpej #include <sys/kcore.h> 119 1.112 tsutsui #include <sys/atomic.h> 120 1.38 gwr 121 1.38 gwr #include <uvm/uvm.h> 122 1.43 mrg 123 1.1 gwr #include <machine/cpu.h> 124 1.17 gwr #include <machine/kcore.h> 125 1.33 gwr #include <machine/mon.h> 126 1.1 gwr #include <machine/pmap.h> 127 1.1 gwr #include <machine/pte.h> 128 1.37 gwr #include <machine/vmparam.h> 129 1.75 chs #include <m68k/cacheops.h> 130 1.33 gwr 131 1.33 gwr #include <sun3/sun3/cache.h> 132 1.33 gwr #include <sun3/sun3/machdep.h> 133 1.1 gwr 134 1.1 gwr #include "pmap_pvt.h" 135 1.1 gwr 136 1.1 gwr /* XXX - What headers declare these? */ 137 1.1 gwr extern struct pcb *curpcb; 138 1.7 gwr 139 1.1 gwr /* Defined in locore.s */ 140 1.1 gwr extern char kernel_text[]; 141 1.1 gwr 142 1.1 gwr /* Defined by the linker */ 143 1.1 gwr extern char etext[], edata[], end[]; 144 1.1 gwr extern char *esym; /* DDB */ 145 1.1 gwr 146 1.7 gwr /*************************** DEBUGGING DEFINITIONS *********************** 147 1.7 gwr * Macros, preprocessor defines and variables used in debugging can make * 148 1.7 gwr * code hard to read. Anything used exclusively for debugging purposes * 149 1.7 gwr * is defined here to avoid having such mess scattered around the file. * 150 1.7 gwr *************************************************************************/ 151 1.8 gwr #ifdef PMAP_DEBUG 152 1.7 gwr /* 153 1.7 gwr * To aid the debugging process, macros should be expanded into smaller steps 154 1.7 gwr * that accomplish the same goal, yet provide convenient places for placing 155 1.8 gwr * breakpoints. When this code is compiled with PMAP_DEBUG mode defined, the 156 1.7 gwr * 'INLINE' keyword is defined to an empty string. This way, any function 157 1.7 gwr * defined to be a 'static INLINE' will become 'outlined' and compiled as 158 1.7 gwr * a separate function, which is much easier to debug. 159 1.7 gwr */ 160 1.7 gwr #define INLINE /* nothing */ 161 1.7 gwr 162 1.1 gwr /* 163 1.7 gwr * It is sometimes convenient to watch the activity of a particular table 164 1.7 gwr * in the system. The following variables are used for that purpose. 165 1.1 gwr */ 166 1.7 gwr a_tmgr_t *pmap_watch_atbl = 0; 167 1.7 gwr b_tmgr_t *pmap_watch_btbl = 0; 168 1.7 gwr c_tmgr_t *pmap_watch_ctbl = 0; 169 1.1 gwr 170 1.7 gwr int pmap_debug = 0; 171 1.7 gwr #define DPRINT(args) if (pmap_debug) printf args 172 1.7 gwr 173 1.7 gwr #else /********** Stuff below is defined if NOT debugging **************/ 174 1.7 gwr 175 1.7 gwr #define INLINE inline 176 1.10 jeremy #define DPRINT(args) /* nada */ 177 1.7 gwr 178 1.10 jeremy #endif /* PMAP_DEBUG */ 179 1.7 gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/ 180 1.1 gwr 181 1.1 gwr /*** Management Structure - Memory Layout 182 1.1 gwr * For every MMU table in the sun3x pmap system there must be a way to 183 1.1 gwr * manage it; we must know which process is using it, what other tables 184 1.1 gwr * depend on it, and whether or not it contains any locked pages. This 185 1.1 gwr * is solved by the creation of 'table management' or 'tmgr' 186 1.1 gwr * structures. One for each MMU table in the system. 187 1.1 gwr * 188 1.1 gwr * MAP OF MEMORY USED BY THE PMAP SYSTEM 189 1.1 gwr * 190 1.1 gwr * towards lower memory 191 1.1 gwr * kernAbase -> +-------------------------------------------------------+ 192 1.1 gwr * | Kernel MMU A level table | 193 1.1 gwr * kernBbase -> +-------------------------------------------------------+ 194 1.1 gwr * | Kernel MMU B level tables | 195 1.1 gwr * kernCbase -> +-------------------------------------------------------+ 196 1.1 gwr * | | 197 1.1 gwr * | Kernel MMU C level tables | 198 1.1 gwr * | | 199 1.7 gwr * mmuCbase -> +-------------------------------------------------------+ 200 1.7 gwr * | User MMU C level tables | 201 1.1 gwr * mmuAbase -> +-------------------------------------------------------+ 202 1.1 gwr * | | 203 1.1 gwr * | User MMU A level tables | 204 1.1 gwr * | | 205 1.1 gwr * mmuBbase -> +-------------------------------------------------------+ 206 1.1 gwr * | User MMU B level tables | 207 1.1 gwr * tmgrAbase -> +-------------------------------------------------------+ 208 1.1 gwr * | TMGR A level table structures | 209 1.1 gwr * tmgrBbase -> +-------------------------------------------------------+ 210 1.1 gwr * | TMGR B level table structures | 211 1.1 gwr * tmgrCbase -> +-------------------------------------------------------+ 212 1.1 gwr * | TMGR C level table structures | 213 1.1 gwr * pvbase -> +-------------------------------------------------------+ 214 1.1 gwr * | Physical to Virtual mapping table (list heads) | 215 1.1 gwr * pvebase -> +-------------------------------------------------------+ 216 1.1 gwr * | Physical to Virtual mapping table (list elements) | 217 1.1 gwr * | | 218 1.1 gwr * +-------------------------------------------------------+ 219 1.1 gwr * towards higher memory 220 1.1 gwr * 221 1.1 gwr * For every A table in the MMU A area, there will be a corresponding 222 1.1 gwr * a_tmgr structure in the TMGR A area. The same will be true for 223 1.1 gwr * the B and C tables. This arrangement will make it easy to find the 224 1.120 andvar * controlling tmgr structure for any table in the system by use of 225 1.1 gwr * (relatively) simple macros. 226 1.1 gwr */ 227 1.7 gwr 228 1.7 gwr /* 229 1.8 gwr * Global variables for storing the base addresses for the areas 230 1.1 gwr * labeled above. 231 1.1 gwr */ 232 1.69 chs static vaddr_t kernAphys; 233 1.1 gwr static mmu_long_dte_t *kernAbase; 234 1.1 gwr static mmu_short_dte_t *kernBbase; 235 1.1 gwr static mmu_short_pte_t *kernCbase; 236 1.15 gwr static mmu_short_pte_t *mmuCbase; 237 1.15 gwr static mmu_short_dte_t *mmuBbase; 238 1.1 gwr static mmu_long_dte_t *mmuAbase; 239 1.1 gwr static a_tmgr_t *Atmgrbase; 240 1.1 gwr static b_tmgr_t *Btmgrbase; 241 1.1 gwr static c_tmgr_t *Ctmgrbase; 242 1.15 gwr static pv_t *pvbase; 243 1.1 gwr static pv_elem_t *pvebase; 244 1.100 pooka static struct pmap kernel_pmap; 245 1.101 pooka struct pmap *const kernel_pmap_ptr = &kernel_pmap; 246 1.1 gwr 247 1.8 gwr /* 248 1.8 gwr * This holds the CRP currently loaded into the MMU. 249 1.8 gwr */ 250 1.8 gwr struct mmu_rootptr kernel_crp; 251 1.8 gwr 252 1.8 gwr /* 253 1.8 gwr * Just all around global variables. 254 1.1 gwr */ 255 1.1 gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool; 256 1.1 gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool; 257 1.1 gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool; 258 1.7 gwr 259 1.7 gwr 260 1.7 gwr /* 261 1.7 gwr * Flags used to mark the safety/availability of certain operations or 262 1.7 gwr * resources. 263 1.7 gwr */ 264 1.92 tsutsui /* Safe to use pmap_bootstrap_alloc(). */ 265 1.95 thorpej static bool bootstrap_alloc_enabled = false; 266 1.92 tsutsui /* Temporary virtual pages are in use */ 267 1.92 tsutsui int tmp_vpages_inuse; 268 1.1 gwr 269 1.1 gwr /* 270 1.1 gwr * XXX: For now, retain the traditional variables that were 271 1.1 gwr * used in the old pmap/vm interface (without NONCONTIG). 272 1.1 gwr */ 273 1.81 thorpej /* Kernel virtual address space available: */ 274 1.81 thorpej vaddr_t virtual_avail, virtual_end; 275 1.1 gwr /* Physical address space available: */ 276 1.69 chs paddr_t avail_start, avail_end; 277 1.1 gwr 278 1.7 gwr /* This keep track of the end of the contiguously mapped range. */ 279 1.69 chs vaddr_t virtual_contig_end; 280 1.7 gwr 281 1.7 gwr /* Physical address used by pmap_next_page() */ 282 1.69 chs paddr_t avail_next; 283 1.7 gwr 284 1.7 gwr /* These are used by pmap_copy_page(), etc. */ 285 1.69 chs vaddr_t tmp_vpages[2]; 286 1.1 gwr 287 1.56 tsutsui /* memory pool for pmap structures */ 288 1.56 tsutsui struct pool pmap_pmap_pool; 289 1.56 tsutsui 290 1.7 gwr /* 291 1.7 gwr * The 3/80 is the only member of the sun3x family that has non-contiguous 292 1.1 gwr * physical memory. Memory is divided into 4 banks which are physically 293 1.1 gwr * locatable on the system board. Although the size of these banks varies 294 1.1 gwr * with the size of memory they contain, their base addresses are 295 1.120 andvar * permanently fixed. The following structure, which describes these 296 1.1 gwr * banks, is initialized by pmap_bootstrap() after it reads from a similar 297 1.1 gwr * structure provided by the ROM Monitor. 298 1.1 gwr * 299 1.1 gwr * For the other machines in the sun3x architecture which do have contiguous 300 1.1 gwr * RAM, this list will have only one entry, which will describe the entire 301 1.1 gwr * range of available memory. 302 1.1 gwr */ 303 1.20 thorpej struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS]; 304 1.1 gwr u_int total_phys_mem; 305 1.1 gwr 306 1.7 gwr /*************************************************************************/ 307 1.7 gwr 308 1.7 gwr /* 309 1.7 gwr * XXX - Should "tune" these based on statistics. 310 1.7 gwr * 311 1.7 gwr * My first guess about the relative numbers of these needed is 312 1.7 gwr * based on the fact that a "typical" process will have several 313 1.7 gwr * pages mapped at low virtual addresses (text, data, bss), then 314 1.7 gwr * some mapped shared libraries, and then some stack pages mapped 315 1.7 gwr * near the high end of the VA space. Each process can use only 316 1.7 gwr * one A table, and most will use only two B tables (maybe three) 317 1.7 gwr * and probably about four C tables. Therefore, the first guess 318 1.7 gwr * at the relative numbers of these needed is 1:2:4 -gwr 319 1.7 gwr * 320 1.7 gwr * The number of C tables needed is closely related to the amount 321 1.7 gwr * of physical memory available plus a certain amount attributable 322 1.7 gwr * to the use of double mappings. With a few simulation statistics 323 1.7 gwr * we can find a reasonably good estimation of this unknown value. 324 1.7 gwr * Armed with that and the above ratios, we have a good idea of what 325 1.7 gwr * is needed at each level. -j 326 1.7 gwr * 327 1.7 gwr * Note: It is not physical memory memory size, but the total mapped 328 1.7 gwr * virtual space required by the combined working sets of all the 329 1.7 gwr * currently _runnable_ processes. (Sleeping ones don't count.) 330 1.7 gwr * The amount of physical memory should be irrelevant. -gwr 331 1.7 gwr */ 332 1.22 jeremy #ifdef FIXED_NTABLES 333 1.7 gwr #define NUM_A_TABLES 16 334 1.7 gwr #define NUM_B_TABLES 32 335 1.7 gwr #define NUM_C_TABLES 64 336 1.22 jeremy #else 337 1.22 jeremy unsigned int NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES; 338 1.22 jeremy #endif /* FIXED_NTABLES */ 339 1.7 gwr 340 1.7 gwr /* 341 1.7 gwr * This determines our total virtual mapping capacity. 342 1.7 gwr * Yes, it is a FIXED value so we can pre-allocate. 343 1.7 gwr */ 344 1.7 gwr #define NUM_USER_PTES (NUM_C_TABLES * MMU_C_TBL_SIZE) 345 1.15 gwr 346 1.15 gwr /* 347 1.15 gwr * The size of the Kernel Virtual Address Space (KVAS) 348 1.15 gwr * for purposes of MMU table allocation is -KERNBASE 349 1.15 gwr * (length from KERNBASE to 0xFFFFffff) 350 1.15 gwr */ 351 1.111 tsutsui #define KVAS_SIZE (-KERNBASE3X) 352 1.15 gwr 353 1.15 gwr /* Numbers of kernel MMU tables to support KVAS_SIZE. */ 354 1.15 gwr #define KERN_B_TABLES (KVAS_SIZE >> MMU_TIA_SHIFT) 355 1.15 gwr #define KERN_C_TABLES (KVAS_SIZE >> MMU_TIB_SHIFT) 356 1.15 gwr #define NUM_KERN_PTES (KVAS_SIZE >> MMU_TIC_SHIFT) 357 1.7 gwr 358 1.116 msaitoh /*************************** MISCELLANEOUS MACROS *************************/ 359 1.64 thorpej void *pmap_bootstrap_alloc(int); 360 1.7 gwr 361 1.86 chs static INLINE void *mmu_ptov(paddr_t); 362 1.86 chs static INLINE paddr_t mmu_vtop(void *); 363 1.7 gwr 364 1.7 gwr #if 0 365 1.92 tsutsui static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *); 366 1.26 jeremy #endif /* 0 */ 367 1.92 tsutsui static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *); 368 1.92 tsutsui static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *); 369 1.7 gwr 370 1.86 chs static INLINE pv_t *pa2pv(paddr_t); 371 1.86 chs static INLINE int pteidx(mmu_short_pte_t *); 372 1.86 chs static INLINE pmap_t current_pmap(void); 373 1.7 gwr 374 1.7 gwr /* 375 1.7 gwr * We can always convert between virtual and physical addresses 376 1.7 gwr * for anything in the range [KERNBASE ... avail_start] because 377 1.7 gwr * that range is GUARANTEED to be mapped linearly. 378 1.7 gwr * We rely heavily upon this feature! 379 1.7 gwr */ 380 1.7 gwr static INLINE void * 381 1.86 chs mmu_ptov(paddr_t pa) 382 1.7 gwr { 383 1.69 chs vaddr_t va; 384 1.7 gwr 385 1.111 tsutsui va = (pa + KERNBASE3X); 386 1.8 gwr #ifdef PMAP_DEBUG 387 1.111 tsutsui if ((va < KERNBASE3X) || (va >= virtual_contig_end)) 388 1.7 gwr panic("mmu_ptov"); 389 1.7 gwr #endif 390 1.92 tsutsui return (void *)va; 391 1.7 gwr } 392 1.69 chs 393 1.113 tsutsui static INLINE paddr_t 394 1.86 chs mmu_vtop(void *vva) 395 1.7 gwr { 396 1.69 chs vaddr_t va; 397 1.7 gwr 398 1.69 chs va = (vaddr_t)vva; 399 1.8 gwr #ifdef PMAP_DEBUG 400 1.111 tsutsui if ((va < KERNBASE3X) || (va >= virtual_contig_end)) 401 1.72 tsutsui panic("mmu_vtop"); 402 1.7 gwr #endif 403 1.111 tsutsui return va - KERNBASE3X; 404 1.7 gwr } 405 1.7 gwr 406 1.7 gwr /* 407 1.7 gwr * These macros map MMU tables to their corresponding manager structures. 408 1.1 gwr * They are needed quite often because many of the pointers in the pmap 409 1.1 gwr * system reference MMU tables and not the structures that control them. 410 1.1 gwr * There needs to be a way to find one when given the other and these 411 1.1 gwr * macros do so by taking advantage of the memory layout described above. 412 1.1 gwr * Here's a quick step through the first macro, mmuA2tmgr(): 413 1.1 gwr * 414 1.1 gwr * 1) find the offset of the given MMU A table from the base of its table 415 1.1 gwr * pool (table - mmuAbase). 416 1.1 gwr * 2) convert this offset into a table index by dividing it by the 417 1.1 gwr * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE) 418 1.1 gwr * 3) use this index to select the corresponding 'A' table manager 419 1.1 gwr * structure from the 'A' table manager pool (Atmgrbase[index]). 420 1.1 gwr */ 421 1.7 gwr /* This function is not currently used. */ 422 1.7 gwr #if 0 423 1.7 gwr static INLINE a_tmgr_t * 424 1.86 chs mmuA2tmgr(mmu_long_dte_t *mmuAtbl) 425 1.7 gwr { 426 1.69 chs int idx; 427 1.7 gwr 428 1.7 gwr /* Which table is this in? */ 429 1.7 gwr idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE; 430 1.8 gwr #ifdef PMAP_DEBUG 431 1.7 gwr if ((idx < 0) || (idx >= NUM_A_TABLES)) 432 1.7 gwr panic("mmuA2tmgr"); 433 1.7 gwr #endif 434 1.92 tsutsui return &Atmgrbase[idx]; 435 1.7 gwr } 436 1.7 gwr #endif /* 0 */ 437 1.7 gwr 438 1.7 gwr static INLINE b_tmgr_t * 439 1.86 chs mmuB2tmgr(mmu_short_dte_t *mmuBtbl) 440 1.7 gwr { 441 1.69 chs int idx; 442 1.7 gwr 443 1.7 gwr /* Which table is this in? */ 444 1.7 gwr idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE; 445 1.8 gwr #ifdef PMAP_DEBUG 446 1.7 gwr if ((idx < 0) || (idx >= NUM_B_TABLES)) 447 1.7 gwr panic("mmuB2tmgr"); 448 1.7 gwr #endif 449 1.92 tsutsui return &Btmgrbase[idx]; 450 1.7 gwr } 451 1.7 gwr 452 1.7 gwr /* mmuC2tmgr INTERNAL 453 1.7 gwr ** 454 1.7 gwr * Given a pte known to belong to a C table, return the address of 455 1.7 gwr * that table's management structure. 456 1.7 gwr */ 457 1.7 gwr static INLINE c_tmgr_t * 458 1.86 chs mmuC2tmgr(mmu_short_pte_t *mmuCtbl) 459 1.7 gwr { 460 1.69 chs int idx; 461 1.7 gwr 462 1.7 gwr /* Which table is this in? */ 463 1.7 gwr idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE; 464 1.8 gwr #ifdef PMAP_DEBUG 465 1.7 gwr if ((idx < 0) || (idx >= NUM_C_TABLES)) 466 1.7 gwr panic("mmuC2tmgr"); 467 1.7 gwr #endif 468 1.92 tsutsui return &Ctmgrbase[idx]; 469 1.7 gwr } 470 1.7 gwr 471 1.8 gwr /* This is now a function call below. 472 1.1 gwr * #define pa2pv(pa) \ 473 1.1 gwr * (&pvbase[(unsigned long)\ 474 1.25 veego * m68k_btop(pa)\ 475 1.1 gwr * ]) 476 1.1 gwr */ 477 1.1 gwr 478 1.7 gwr /* pa2pv INTERNAL 479 1.7 gwr ** 480 1.7 gwr * Return the pv_list_head element which manages the given physical 481 1.7 gwr * address. 482 1.7 gwr */ 483 1.7 gwr static INLINE pv_t * 484 1.86 chs pa2pv(paddr_t pa) 485 1.7 gwr { 486 1.69 chs struct pmap_physmem_struct *bank; 487 1.69 chs int idx; 488 1.7 gwr 489 1.7 gwr bank = &avail_mem[0]; 490 1.7 gwr while (pa >= bank->pmem_end) 491 1.7 gwr bank = bank->pmem_next; 492 1.7 gwr 493 1.7 gwr pa -= bank->pmem_start; 494 1.25 veego idx = bank->pmem_pvbase + m68k_btop(pa); 495 1.8 gwr #ifdef PMAP_DEBUG 496 1.7 gwr if ((idx < 0) || (idx >= physmem)) 497 1.7 gwr panic("pa2pv"); 498 1.7 gwr #endif 499 1.7 gwr return &pvbase[idx]; 500 1.7 gwr } 501 1.7 gwr 502 1.7 gwr /* pteidx INTERNAL 503 1.7 gwr ** 504 1.7 gwr * Return the index of the given PTE within the entire fixed table of 505 1.7 gwr * PTEs. 506 1.7 gwr */ 507 1.7 gwr static INLINE int 508 1.86 chs pteidx(mmu_short_pte_t *pte) 509 1.7 gwr { 510 1.92 tsutsui 511 1.92 tsutsui return pte - kernCbase; 512 1.7 gwr } 513 1.7 gwr 514 1.7 gwr /* 515 1.8 gwr * This just offers a place to put some debugging checks, 516 1.76 thorpej * and reduces the number of places "curlwp" appears... 517 1.7 gwr */ 518 1.113 tsutsui static INLINE pmap_t 519 1.86 chs current_pmap(void) 520 1.7 gwr { 521 1.7 gwr struct vmspace *vm; 522 1.67 chs struct vm_map *map; 523 1.7 gwr pmap_t pmap; 524 1.7 gwr 525 1.97 tsutsui vm = curproc->p_vmspace; 526 1.97 tsutsui map = &vm->vm_map; 527 1.97 tsutsui pmap = vm_map_pmap(map); 528 1.7 gwr 529 1.92 tsutsui return pmap; 530 1.7 gwr } 531 1.7 gwr 532 1.7 gwr 533 1.1 gwr /*************************** FUNCTION DEFINITIONS ************************ 534 1.1 gwr * These appear here merely for the compiler to enforce type checking on * 535 1.1 gwr * all function calls. * 536 1.7 gwr *************************************************************************/ 537 1.1 gwr 538 1.92 tsutsui /* 539 1.92 tsutsui * Internal functions 540 1.92 tsutsui */ 541 1.92 tsutsui a_tmgr_t *get_a_table(void); 542 1.92 tsutsui b_tmgr_t *get_b_table(void); 543 1.92 tsutsui c_tmgr_t *get_c_table(void); 544 1.94 thorpej int free_a_table(a_tmgr_t *, bool); 545 1.94 thorpej int free_b_table(b_tmgr_t *, bool); 546 1.94 thorpej int free_c_table(c_tmgr_t *, bool); 547 1.92 tsutsui 548 1.92 tsutsui void pmap_bootstrap_aalign(int); 549 1.92 tsutsui void pmap_alloc_usermmu(void); 550 1.92 tsutsui void pmap_alloc_usertmgr(void); 551 1.92 tsutsui void pmap_alloc_pv(void); 552 1.92 tsutsui void pmap_init_a_tables(void); 553 1.92 tsutsui void pmap_init_b_tables(void); 554 1.92 tsutsui void pmap_init_c_tables(void); 555 1.92 tsutsui void pmap_init_pv(void); 556 1.92 tsutsui void pmap_clear_pv(paddr_t, int); 557 1.94 thorpej static INLINE bool is_managed(paddr_t); 558 1.92 tsutsui 559 1.94 thorpej bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t); 560 1.94 thorpej bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t); 561 1.94 thorpej bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t); 562 1.92 tsutsui void pmap_remove_pte(mmu_short_pte_t *); 563 1.92 tsutsui 564 1.92 tsutsui void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t); 565 1.92 tsutsui static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t); 566 1.92 tsutsui static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t); 567 1.94 thorpej static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *); 568 1.92 tsutsui vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **); 569 1.92 tsutsui static INLINE int pmap_dereference(pmap_t); 570 1.92 tsutsui 571 1.94 thorpej bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **, 572 1.92 tsutsui mmu_short_pte_t **, int *, int *, int *); 573 1.92 tsutsui void pmap_bootstrap_copyprom(void); 574 1.92 tsutsui void pmap_takeover_mmu(void); 575 1.92 tsutsui void pmap_bootstrap_setprom(void); 576 1.86 chs static void pmap_page_upload(void); 577 1.1 gwr 578 1.92 tsutsui #ifdef PMAP_DEBUG 579 1.92 tsutsui /* Debugging function definitions */ 580 1.92 tsutsui void pv_list(paddr_t, int); 581 1.92 tsutsui #endif /* PMAP_DEBUG */ 582 1.92 tsutsui 583 1.1 gwr /** Interface functions 584 1.1 gwr ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG 585 1.1 gwr ** defined. 586 1.92 tsutsui ** The new UVM doesn't require them so now INTERNAL. 587 1.1 gwr **/ 588 1.92 tsutsui static INLINE void pmap_pinit(pmap_t); 589 1.92 tsutsui static INLINE void pmap_release(pmap_t); 590 1.1 gwr 591 1.1 gwr /********************************** CODE ******************************** 592 1.1 gwr * Functions that are called from other parts of the kernel are labeled * 593 1.1 gwr * as 'INTERFACE' functions. Functions that are only called from * 594 1.1 gwr * within the pmap module are labeled as 'INTERNAL' functions. * 595 1.1 gwr * Functions that are internal, but are not (currently) used at all are * 596 1.1 gwr * labeled 'INTERNAL_X'. * 597 1.113 tsutsui ************************************************************************/ 598 1.1 gwr 599 1.1 gwr /* pmap_bootstrap INTERNAL 600 1.1 gwr ** 601 1.33 gwr * Initializes the pmap system. Called at boot time from 602 1.33 gwr * locore2.c:_vm_init() 603 1.1 gwr * 604 1.1 gwr * Reminder: having a pmap_bootstrap_alloc() and also having the VM 605 1.1 gwr * system implement pmap_steal_memory() is redundant. 606 1.1 gwr * Don't release this code without removing one or the other! 607 1.1 gwr */ 608 1.113 tsutsui void 609 1.86 chs pmap_bootstrap(vaddr_t nextva) 610 1.1 gwr { 611 1.1 gwr struct physmemory *membank; 612 1.1 gwr struct pmap_physmem_struct *pmap_membank; 613 1.69 chs vaddr_t va, eva; 614 1.69 chs paddr_t pa; 615 1.1 gwr int b, c, i, j; /* running table counts */ 616 1.40 gwr int size, resvmem; 617 1.1 gwr 618 1.1 gwr /* 619 1.1 gwr * This function is called by __bootstrap after it has 620 1.1 gwr * determined the type of machine and made the appropriate 621 1.1 gwr * patches to the ROM vectors (XXX- I don't quite know what I meant 622 1.1 gwr * by that.) It allocates and sets up enough of the pmap system 623 1.1 gwr * to manage the kernel's address space. 624 1.1 gwr */ 625 1.1 gwr 626 1.1 gwr /* 627 1.7 gwr * Determine the range of kernel virtual and physical 628 1.7 gwr * space available. Note that we ABSOLUTELY DEPEND on 629 1.7 gwr * the fact that the first bank of memory (4MB) is 630 1.7 gwr * mapped linearly to KERNBASE (which we guaranteed in 631 1.7 gwr * the first instructions of locore.s). 632 1.7 gwr * That is plenty for our bootstrap work. 633 1.1 gwr */ 634 1.25 veego virtual_avail = m68k_round_page(nextva); 635 1.111 tsutsui virtual_contig_end = KERNBASE3X + 0x400000; /* +4MB */ 636 1.1 gwr virtual_end = VM_MAX_KERNEL_ADDRESS; 637 1.7 gwr /* Don't need avail_start til later. */ 638 1.1 gwr 639 1.7 gwr /* We may now call pmap_bootstrap_alloc(). */ 640 1.95 thorpej bootstrap_alloc_enabled = true; 641 1.1 gwr 642 1.1 gwr /* 643 1.1 gwr * This is a somewhat unwrapped loop to deal with 644 1.1 gwr * copying the PROM's 'phsymem' banks into the pmap's 645 1.1 gwr * banks. The following is always assumed: 646 1.1 gwr * 1. There is always at least one bank of memory. 647 1.1 gwr * 2. There is always a last bank of memory, and its 648 1.1 gwr * pmem_next member must be set to NULL. 649 1.1 gwr */ 650 1.1 gwr membank = romVectorPtr->v_physmemory; 651 1.1 gwr pmap_membank = avail_mem; 652 1.1 gwr total_phys_mem = 0; 653 1.1 gwr 654 1.40 gwr for (;;) { /* break on !membank */ 655 1.1 gwr pmap_membank->pmem_start = membank->address; 656 1.1 gwr pmap_membank->pmem_end = membank->address + membank->size; 657 1.1 gwr total_phys_mem += membank->size; 658 1.40 gwr membank = membank->next; 659 1.40 gwr if (!membank) 660 1.40 gwr break; 661 1.1 gwr /* This silly syntax arises because pmap_membank 662 1.1 gwr * is really a pre-allocated array, but it is put into 663 1.1 gwr * use as a linked list. 664 1.1 gwr */ 665 1.1 gwr pmap_membank->pmem_next = pmap_membank + 1; 666 1.1 gwr pmap_membank = pmap_membank->pmem_next; 667 1.1 gwr } 668 1.40 gwr /* This is the last element. */ 669 1.40 gwr pmap_membank->pmem_next = NULL; 670 1.1 gwr 671 1.1 gwr /* 672 1.40 gwr * Note: total_phys_mem, physmem represent 673 1.40 gwr * actual physical memory, including that 674 1.40 gwr * reserved for the PROM monitor. 675 1.1 gwr */ 676 1.40 gwr physmem = btoc(total_phys_mem); 677 1.1 gwr 678 1.1 gwr /* 679 1.60 tsutsui * Avail_end is set to the first byte of physical memory 680 1.60 tsutsui * after the end of the last bank. We use this only to 681 1.60 tsutsui * determine if a physical address is "managed" memory. 682 1.60 tsutsui * This address range should be reduced to prevent the 683 1.40 gwr * physical pages needed by the PROM monitor from being used 684 1.40 gwr * in the VM system. 685 1.1 gwr */ 686 1.40 gwr resvmem = total_phys_mem - *(romVectorPtr->memoryAvail); 687 1.40 gwr resvmem = m68k_round_page(resvmem); 688 1.60 tsutsui avail_end = pmap_membank->pmem_end - resvmem; 689 1.1 gwr 690 1.1 gwr /* 691 1.15 gwr * First allocate enough kernel MMU tables to map all 692 1.15 gwr * of kernel virtual space from KERNBASE to 0xFFFFFFFF. 693 1.1 gwr * Note: All must be aligned on 256 byte boundaries. 694 1.15 gwr * Start with the level-A table (one of those). 695 1.1 gwr */ 696 1.69 chs size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE; 697 1.7 gwr kernAbase = pmap_bootstrap_alloc(size); 698 1.71 tsutsui memset(kernAbase, 0, size); 699 1.1 gwr 700 1.15 gwr /* Now the level-B kernel tables... */ 701 1.15 gwr size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES; 702 1.7 gwr kernBbase = pmap_bootstrap_alloc(size); 703 1.71 tsutsui memset(kernBbase, 0, size); 704 1.1 gwr 705 1.15 gwr /* Now the level-C kernel tables... */ 706 1.15 gwr size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES; 707 1.15 gwr kernCbase = pmap_bootstrap_alloc(size); 708 1.71 tsutsui memset(kernCbase, 0, size); 709 1.7 gwr /* 710 1.7 gwr * Note: In order for the PV system to work correctly, the kernel 711 1.7 gwr * and user-level C tables must be allocated contiguously. 712 1.7 gwr * Nothing should be allocated between here and the allocation of 713 1.7 gwr * mmuCbase below. XXX: Should do this as one allocation, and 714 1.7 gwr * then compute a pointer for mmuCbase instead of this... 715 1.15 gwr * 716 1.113 tsutsui * Allocate user MMU tables. 717 1.70 wiz * These must be contiguous with the preceding. 718 1.7 gwr */ 719 1.22 jeremy 720 1.22 jeremy #ifndef FIXED_NTABLES 721 1.22 jeremy /* 722 1.22 jeremy * The number of user-level C tables that should be allocated is 723 1.22 jeremy * related to the size of physical memory. In general, there should 724 1.22 jeremy * be enough tables to map four times the amount of available RAM. 725 1.22 jeremy * The extra amount is needed because some table space is wasted by 726 1.22 jeremy * fragmentation. 727 1.22 jeremy */ 728 1.22 jeremy NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE); 729 1.22 jeremy NUM_B_TABLES = NUM_C_TABLES / 2; 730 1.22 jeremy NUM_A_TABLES = NUM_B_TABLES / 2; 731 1.22 jeremy #endif /* !FIXED_NTABLES */ 732 1.22 jeremy 733 1.15 gwr size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES; 734 1.15 gwr mmuCbase = pmap_bootstrap_alloc(size); 735 1.15 gwr 736 1.15 gwr size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES; 737 1.15 gwr mmuBbase = pmap_bootstrap_alloc(size); 738 1.1 gwr 739 1.69 chs size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES; 740 1.15 gwr mmuAbase = pmap_bootstrap_alloc(size); 741 1.7 gwr 742 1.7 gwr /* 743 1.7 gwr * Fill in the never-changing part of the kernel tables. 744 1.7 gwr * For simplicity, the kernel's mappings will be editable as a 745 1.1 gwr * flat array of page table entries at kernCbase. The 746 1.1 gwr * higher level 'A' and 'B' tables must be initialized to point 747 1.113 tsutsui * to this lower one. 748 1.1 gwr */ 749 1.1 gwr b = c = 0; 750 1.1 gwr 751 1.7 gwr /* 752 1.7 gwr * Invalidate all mappings below KERNBASE in the A table. 753 1.1 gwr * This area has already been zeroed out, but it is good 754 1.1 gwr * practice to explicitly show that we are interpreting 755 1.1 gwr * it as a list of A table descriptors. 756 1.1 gwr */ 757 1.111 tsutsui for (i = 0; i < MMU_TIA(KERNBASE3X); i++) { 758 1.1 gwr kernAbase[i].addr.raw = 0; 759 1.1 gwr } 760 1.1 gwr 761 1.7 gwr /* 762 1.7 gwr * Set up the kernel A and B tables so that they will reference the 763 1.1 gwr * correct spots in the contiguous table of PTEs allocated for the 764 1.1 gwr * kernel's virtual memory space. 765 1.1 gwr */ 766 1.111 tsutsui for (i = MMU_TIA(KERNBASE3X); i < MMU_A_TBL_SIZE; i++) { 767 1.1 gwr kernAbase[i].attr.raw = 768 1.92 tsutsui MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT; 769 1.7 gwr kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]); 770 1.1 gwr 771 1.92 tsutsui for (j = 0; j < MMU_B_TBL_SIZE; j++) { 772 1.92 tsutsui kernBbase[b + j].attr.raw = 773 1.92 tsutsui mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT; 774 1.1 gwr c += MMU_C_TBL_SIZE; 775 1.1 gwr } 776 1.1 gwr b += MMU_B_TBL_SIZE; 777 1.1 gwr } 778 1.1 gwr 779 1.7 gwr pmap_alloc_usermmu(); /* Allocate user MMU tables. */ 780 1.7 gwr pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/ 781 1.7 gwr pmap_alloc_pv(); /* Allocate physical->virtual map. */ 782 1.7 gwr 783 1.7 gwr /* 784 1.7 gwr * We are now done with pmap_bootstrap_alloc(). Round up 785 1.7 gwr * `virtual_avail' to the nearest page, and set the flag 786 1.7 gwr * to prevent use of pmap_bootstrap_alloc() hereafter. 787 1.7 gwr */ 788 1.79 thorpej pmap_bootstrap_aalign(PAGE_SIZE); 789 1.95 thorpej bootstrap_alloc_enabled = false; 790 1.7 gwr 791 1.7 gwr /* 792 1.7 gwr * Now that we are done with pmap_bootstrap_alloc(), we 793 1.7 gwr * must save the virtual and physical addresses of the 794 1.7 gwr * end of the linearly mapped range, which are stored in 795 1.7 gwr * virtual_contig_end and avail_start, respectively. 796 1.7 gwr * These variables will never change after this point. 797 1.7 gwr */ 798 1.7 gwr virtual_contig_end = virtual_avail; 799 1.111 tsutsui avail_start = virtual_avail - KERNBASE3X; 800 1.7 gwr 801 1.7 gwr /* 802 1.7 gwr * `avail_next' is a running pointer used by pmap_next_page() to 803 1.7 gwr * keep track of the next available physical page to be handed 804 1.7 gwr * to the VM system during its initialization, in which it 805 1.7 gwr * asks for physical pages, one at a time. 806 1.7 gwr */ 807 1.7 gwr avail_next = avail_start; 808 1.7 gwr 809 1.7 gwr /* 810 1.7 gwr * Now allocate some virtual addresses, but not the physical pages 811 1.7 gwr * behind them. Note that virtual_avail is already page-aligned. 812 1.7 gwr * 813 1.7 gwr * tmp_vpages[] is an array of two virtual pages used for temporary 814 1.7 gwr * kernel mappings in the pmap module to facilitate various physical 815 1.7 gwr * address-oritented operations. 816 1.7 gwr */ 817 1.7 gwr tmp_vpages[0] = virtual_avail; 818 1.79 thorpej virtual_avail += PAGE_SIZE; 819 1.7 gwr tmp_vpages[1] = virtual_avail; 820 1.79 thorpej virtual_avail += PAGE_SIZE; 821 1.7 gwr 822 1.7 gwr /** Initialize the PV system **/ 823 1.7 gwr pmap_init_pv(); 824 1.7 gwr 825 1.7 gwr /* 826 1.7 gwr * Fill in the kernel_pmap structure and kernel_crp. 827 1.7 gwr */ 828 1.7 gwr kernAphys = mmu_vtop(kernAbase); 829 1.7 gwr kernel_pmap.pm_a_tmgr = NULL; 830 1.7 gwr kernel_pmap.pm_a_phys = kernAphys; 831 1.7 gwr kernel_pmap.pm_refcount = 1; /* always in use */ 832 1.7 gwr 833 1.7 gwr kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG; 834 1.7 gwr kernel_crp.rp_addr = kernAphys; 835 1.7 gwr 836 1.1 gwr /* 837 1.1 gwr * Now pmap_enter_kernel() may be used safely and will be 838 1.7 gwr * the main interface used hereafter to modify the kernel's 839 1.7 gwr * virtual address space. Note that since we are still running 840 1.7 gwr * under the PROM's address table, none of these table modifications 841 1.7 gwr * actually take effect until pmap_takeover_mmu() is called. 842 1.1 gwr * 843 1.7 gwr * Note: Our tables do NOT have the PROM linear mappings! 844 1.7 gwr * Only the mappings created here exist in our tables, so 845 1.7 gwr * remember to map anything we expect to use. 846 1.1 gwr */ 847 1.111 tsutsui va = (vaddr_t)KERNBASE3X; 848 1.7 gwr pa = 0; 849 1.1 gwr 850 1.1 gwr /* 851 1.7 gwr * The first page of the kernel virtual address space is the msgbuf 852 1.7 gwr * page. The page attributes (data, non-cached) are set here, while 853 1.7 gwr * the address is assigned to this global pointer in cpu_startup(). 854 1.29 gwr * It is non-cached, mostly due to paranoia. 855 1.1 gwr */ 856 1.29 gwr pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL); 857 1.92 tsutsui va += PAGE_SIZE; 858 1.92 tsutsui pa += PAGE_SIZE; 859 1.1 gwr 860 1.7 gwr /* Next page is used as the temporary stack. */ 861 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_ALL); 862 1.92 tsutsui va += PAGE_SIZE; 863 1.92 tsutsui pa += PAGE_SIZE; 864 1.1 gwr 865 1.1 gwr /* 866 1.1 gwr * Map all of the kernel's text segment as read-only and cacheable. 867 1.1 gwr * (Cacheable is implied by default). Unfortunately, the last bytes 868 1.1 gwr * of kernel text and the first bytes of kernel data will often be 869 1.1 gwr * sharing the same page. Therefore, the last page of kernel text 870 1.93 christos * has to be mapped as read/write, to accommodate the data. 871 1.1 gwr */ 872 1.69 chs eva = m68k_trunc_page((vaddr_t)etext); 873 1.79 thorpej for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE) 874 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE); 875 1.1 gwr 876 1.7 gwr /* 877 1.7 gwr * Map all of the kernel's data as read/write and cacheable. 878 1.7 gwr * This includes: data, BSS, symbols, and everything in the 879 1.7 gwr * contiguous memory used by pmap_bootstrap_alloc() 880 1.1 gwr */ 881 1.79 thorpej for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE) 882 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE); 883 1.1 gwr 884 1.7 gwr /* 885 1.7 gwr * At this point we are almost ready to take over the MMU. But first 886 1.7 gwr * we must save the PROM's address space in our map, as we call its 887 1.7 gwr * routines and make references to its data later in the kernel. 888 1.1 gwr */ 889 1.7 gwr pmap_bootstrap_copyprom(); 890 1.7 gwr pmap_takeover_mmu(); 891 1.13 gwr pmap_bootstrap_setprom(); 892 1.1 gwr 893 1.1 gwr /* Notify the VM system of our page size. */ 894 1.79 thorpej uvmexp.pagesize = PAGE_SIZE; 895 1.114 cherry uvm_md_init(); 896 1.37 gwr 897 1.37 gwr pmap_page_upload(); 898 1.1 gwr } 899 1.1 gwr 900 1.1 gwr 901 1.1 gwr /* pmap_alloc_usermmu INTERNAL 902 1.1 gwr ** 903 1.1 gwr * Called from pmap_bootstrap() to allocate MMU tables that will 904 1.1 gwr * eventually be used for user mappings. 905 1.1 gwr */ 906 1.113 tsutsui void 907 1.86 chs pmap_alloc_usermmu(void) 908 1.1 gwr { 909 1.92 tsutsui 910 1.7 gwr /* XXX: Moved into caller. */ 911 1.1 gwr } 912 1.1 gwr 913 1.1 gwr /* pmap_alloc_pv INTERNAL 914 1.1 gwr ** 915 1.1 gwr * Called from pmap_bootstrap() to allocate the physical 916 1.1 gwr * to virtual mapping list. Each physical page of memory 917 1.1 gwr * in the system has a corresponding element in this list. 918 1.1 gwr */ 919 1.113 tsutsui void 920 1.86 chs pmap_alloc_pv(void) 921 1.1 gwr { 922 1.1 gwr int i; 923 1.1 gwr unsigned int total_mem; 924 1.1 gwr 925 1.7 gwr /* 926 1.7 gwr * Allocate a pv_head structure for every page of physical 927 1.1 gwr * memory that will be managed by the system. Since memory on 928 1.1 gwr * the 3/80 is non-contiguous, we cannot arrive at a total page 929 1.1 gwr * count by subtraction of the lowest available address from the 930 1.1 gwr * highest, but rather we have to step through each memory 931 1.1 gwr * bank and add the number of pages in each to the total. 932 1.1 gwr * 933 1.1 gwr * At this time we also initialize the offset of each bank's 934 1.1 gwr * starting pv_head within the pv_head list so that the physical 935 1.1 gwr * memory state routines (pmap_is_referenced(), 936 1.118 msaitoh * pmap_is_modified(), et al.) can quickly find corresponding 937 1.1 gwr * pv_heads in spite of the non-contiguity. 938 1.1 gwr */ 939 1.1 gwr total_mem = 0; 940 1.20 thorpej for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 941 1.25 veego avail_mem[i].pmem_pvbase = m68k_btop(total_mem); 942 1.92 tsutsui total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start; 943 1.1 gwr if (avail_mem[i].pmem_next == NULL) 944 1.1 gwr break; 945 1.1 gwr } 946 1.92 tsutsui pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) * 947 1.92 tsutsui m68k_btop(total_phys_mem)); 948 1.1 gwr } 949 1.1 gwr 950 1.1 gwr /* pmap_alloc_usertmgr INTERNAL 951 1.1 gwr ** 952 1.1 gwr * Called from pmap_bootstrap() to allocate the structures which 953 1.1 gwr * facilitate management of user MMU tables. Each user MMU table 954 1.1 gwr * in the system has one such structure associated with it. 955 1.1 gwr */ 956 1.113 tsutsui void 957 1.86 chs pmap_alloc_usertmgr(void) 958 1.1 gwr { 959 1.1 gwr /* Allocate user MMU table managers */ 960 1.7 gwr /* It would be a lot simpler to just make these BSS, but */ 961 1.7 gwr /* we may want to change their size at boot time... -j */ 962 1.92 tsutsui Atmgrbase = 963 1.92 tsutsui (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES); 964 1.92 tsutsui Btmgrbase = 965 1.92 tsutsui (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES); 966 1.92 tsutsui Ctmgrbase = 967 1.92 tsutsui (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES); 968 1.1 gwr 969 1.7 gwr /* 970 1.7 gwr * Allocate PV list elements for the physical to virtual 971 1.1 gwr * mapping system. 972 1.1 gwr */ 973 1.92 tsutsui pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) * 974 1.92 tsutsui (NUM_USER_PTES + NUM_KERN_PTES)); 975 1.1 gwr } 976 1.1 gwr 977 1.1 gwr /* pmap_bootstrap_copyprom() INTERNAL 978 1.1 gwr ** 979 1.1 gwr * Copy the PROM mappings into our own tables. Note, we 980 1.1 gwr * can use physical addresses until __bootstrap returns. 981 1.1 gwr */ 982 1.113 tsutsui void 983 1.86 chs pmap_bootstrap_copyprom(void) 984 1.1 gwr { 985 1.33 gwr struct sunromvec *romp; 986 1.1 gwr int *mon_ctbl; 987 1.1 gwr mmu_short_pte_t *kpte; 988 1.1 gwr int i, len; 989 1.1 gwr 990 1.1 gwr romp = romVectorPtr; 991 1.1 gwr 992 1.1 gwr /* 993 1.33 gwr * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND 994 1.33 gwr * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE 995 1.1 gwr */ 996 1.1 gwr mon_ctbl = *romp->monptaddr; 997 1.111 tsutsui i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE3X); 998 1.1 gwr kpte = &kernCbase[i]; 999 1.33 gwr len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE); 1000 1.1 gwr 1001 1.1 gwr for (i = 0; i < len; i++) { 1002 1.1 gwr kpte[i].attr.raw = mon_ctbl[i]; 1003 1.1 gwr } 1004 1.1 gwr 1005 1.1 gwr /* 1006 1.1 gwr * Copy the mappings at MON_DVMA_BASE (to the end). 1007 1.1 gwr * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE. 1008 1.32 gwr * Actually, we only want the last page, which the 1009 1.32 gwr * PROM has set up for use by the "ie" driver. 1010 1.32 gwr * (The i82686 needs its SCP there.) 1011 1.32 gwr * If we copy all the mappings, pmap_enter_kernel 1012 1.32 gwr * may complain about finding valid PTEs that are 1013 1.32 gwr * not recorded in our PV lists... 1014 1.1 gwr */ 1015 1.1 gwr mon_ctbl = *romp->shadowpteaddr; 1016 1.111 tsutsui i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE3X); 1017 1.1 gwr kpte = &kernCbase[i]; 1018 1.33 gwr len = m68k_btop(SUN3X_MON_DVMA_SIZE); 1019 1.92 tsutsui for (i = (len - 1); i < len; i++) { 1020 1.1 gwr kpte[i].attr.raw = mon_ctbl[i]; 1021 1.1 gwr } 1022 1.1 gwr } 1023 1.113 tsutsui 1024 1.1 gwr /* pmap_takeover_mmu INTERNAL 1025 1.1 gwr ** 1026 1.1 gwr * Called from pmap_bootstrap() after it has copied enough of the 1027 1.1 gwr * PROM mappings into the kernel map so that we can use our own 1028 1.1 gwr * MMU table. 1029 1.1 gwr */ 1030 1.113 tsutsui void 1031 1.86 chs pmap_takeover_mmu(void) 1032 1.1 gwr { 1033 1.1 gwr 1034 1.13 gwr loadcrp(&kernel_crp); 1035 1.1 gwr } 1036 1.1 gwr 1037 1.13 gwr /* pmap_bootstrap_setprom() INTERNAL 1038 1.13 gwr ** 1039 1.13 gwr * Set the PROM mappings so it can see kernel space. 1040 1.13 gwr * Note that physical addresses are used here, which 1041 1.13 gwr * we can get away with because this runs with the 1042 1.13 gwr * low 1GB set for transparent translation. 1043 1.13 gwr */ 1044 1.113 tsutsui void 1045 1.86 chs pmap_bootstrap_setprom(void) 1046 1.13 gwr { 1047 1.13 gwr mmu_long_dte_t *mon_dte; 1048 1.13 gwr extern struct mmu_rootptr mon_crp; 1049 1.13 gwr int i; 1050 1.13 gwr 1051 1.92 tsutsui mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr; 1052 1.111 tsutsui for (i = MMU_TIA(KERNBASE3X); i < MMU_TIA(KERN_END3X); i++) { 1053 1.13 gwr mon_dte[i].attr.raw = kernAbase[i].attr.raw; 1054 1.13 gwr mon_dte[i].addr.raw = kernAbase[i].addr.raw; 1055 1.13 gwr } 1056 1.13 gwr } 1057 1.13 gwr 1058 1.13 gwr 1059 1.1 gwr /* pmap_init INTERFACE 1060 1.1 gwr ** 1061 1.1 gwr * Called at the end of vm_init() to set up the pmap system to go 1062 1.7 gwr * into full time operation. All initialization of kernel_pmap 1063 1.7 gwr * should be already done by now, so this should just do things 1064 1.7 gwr * needed for user-level pmaps to work. 1065 1.1 gwr */ 1066 1.113 tsutsui void 1067 1.86 chs pmap_init(void) 1068 1.1 gwr { 1069 1.92 tsutsui 1070 1.1 gwr /** Initialize the manager pools **/ 1071 1.1 gwr TAILQ_INIT(&a_pool); 1072 1.1 gwr TAILQ_INIT(&b_pool); 1073 1.1 gwr TAILQ_INIT(&c_pool); 1074 1.1 gwr 1075 1.1 gwr /************************************************************** 1076 1.1 gwr * Initialize all tmgr structures and MMU tables they manage. * 1077 1.1 gwr **************************************************************/ 1078 1.1 gwr /** Initialize A tables **/ 1079 1.1 gwr pmap_init_a_tables(); 1080 1.1 gwr /** Initialize B tables **/ 1081 1.1 gwr pmap_init_b_tables(); 1082 1.1 gwr /** Initialize C tables **/ 1083 1.1 gwr pmap_init_c_tables(); 1084 1.56 tsutsui 1085 1.56 tsutsui /** Initialize the pmap pools **/ 1086 1.56 tsutsui pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl", 1087 1.96 ad &pool_allocator_nointr, IPL_NONE); 1088 1.1 gwr } 1089 1.1 gwr 1090 1.1 gwr /* pmap_init_a_tables() INTERNAL 1091 1.1 gwr ** 1092 1.1 gwr * Initializes all A managers, their MMU A tables, and inserts 1093 1.1 gwr * them into the A manager pool for use by the system. 1094 1.1 gwr */ 1095 1.113 tsutsui void 1096 1.86 chs pmap_init_a_tables(void) 1097 1.1 gwr { 1098 1.1 gwr int i; 1099 1.1 gwr a_tmgr_t *a_tbl; 1100 1.1 gwr 1101 1.86 chs for (i = 0; i < NUM_A_TABLES; i++) { 1102 1.1 gwr /* Select the next available A manager from the pool */ 1103 1.1 gwr a_tbl = &Atmgrbase[i]; 1104 1.1 gwr 1105 1.7 gwr /* 1106 1.7 gwr * Clear its parent entry. Set its wired and valid 1107 1.1 gwr * entry count to zero. 1108 1.1 gwr */ 1109 1.1 gwr a_tbl->at_parent = NULL; 1110 1.1 gwr a_tbl->at_wcnt = a_tbl->at_ecnt = 0; 1111 1.1 gwr 1112 1.1 gwr /* Assign it the next available MMU A table from the pool */ 1113 1.1 gwr a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE]; 1114 1.1 gwr 1115 1.7 gwr /* 1116 1.110 matt * Initialize the MMU A table with the table in the `lwp0', 1117 1.1 gwr * or kernel, mapping. This ensures that every process has 1118 1.1 gwr * the kernel mapped in the top part of its address space. 1119 1.1 gwr */ 1120 1.92 tsutsui memcpy(a_tbl->at_dtbl, kernAbase, 1121 1.92 tsutsui MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t)); 1122 1.1 gwr 1123 1.7 gwr /* 1124 1.7 gwr * Finally, insert the manager into the A pool, 1125 1.1 gwr * making it ready to be used by the system. 1126 1.1 gwr */ 1127 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 1128 1.113 tsutsui } 1129 1.1 gwr } 1130 1.1 gwr 1131 1.1 gwr /* pmap_init_b_tables() INTERNAL 1132 1.1 gwr ** 1133 1.1 gwr * Initializes all B table managers, their MMU B tables, and 1134 1.1 gwr * inserts them into the B manager pool for use by the system. 1135 1.1 gwr */ 1136 1.113 tsutsui void 1137 1.86 chs pmap_init_b_tables(void) 1138 1.1 gwr { 1139 1.86 chs int i, j; 1140 1.1 gwr b_tmgr_t *b_tbl; 1141 1.1 gwr 1142 1.86 chs for (i = 0; i < NUM_B_TABLES; i++) { 1143 1.1 gwr /* Select the next available B manager from the pool */ 1144 1.1 gwr b_tbl = &Btmgrbase[i]; 1145 1.1 gwr 1146 1.1 gwr b_tbl->bt_parent = NULL; /* clear its parent, */ 1147 1.1 gwr b_tbl->bt_pidx = 0; /* parent index, */ 1148 1.1 gwr b_tbl->bt_wcnt = 0; /* wired entry count, */ 1149 1.1 gwr b_tbl->bt_ecnt = 0; /* valid entry count. */ 1150 1.1 gwr 1151 1.1 gwr /* Assign it the next available MMU B table from the pool */ 1152 1.1 gwr b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE]; 1153 1.1 gwr 1154 1.1 gwr /* Invalidate every descriptor in the table */ 1155 1.92 tsutsui for (j = 0; j < MMU_B_TBL_SIZE; j++) 1156 1.1 gwr b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID; 1157 1.1 gwr 1158 1.1 gwr /* Insert the manager into the B pool */ 1159 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 1160 1.1 gwr } 1161 1.1 gwr } 1162 1.1 gwr 1163 1.1 gwr /* pmap_init_c_tables() INTERNAL 1164 1.1 gwr ** 1165 1.1 gwr * Initializes all C table managers, their MMU C tables, and 1166 1.1 gwr * inserts them into the C manager pool for use by the system. 1167 1.1 gwr */ 1168 1.113 tsutsui void 1169 1.86 chs pmap_init_c_tables(void) 1170 1.1 gwr { 1171 1.86 chs int i, j; 1172 1.1 gwr c_tmgr_t *c_tbl; 1173 1.1 gwr 1174 1.86 chs for (i = 0; i < NUM_C_TABLES; i++) { 1175 1.1 gwr /* Select the next available C manager from the pool */ 1176 1.1 gwr c_tbl = &Ctmgrbase[i]; 1177 1.1 gwr 1178 1.1 gwr c_tbl->ct_parent = NULL; /* clear its parent, */ 1179 1.1 gwr c_tbl->ct_pidx = 0; /* parent index, */ 1180 1.1 gwr c_tbl->ct_wcnt = 0; /* wired entry count, */ 1181 1.26 jeremy c_tbl->ct_ecnt = 0; /* valid entry count, */ 1182 1.26 jeremy c_tbl->ct_pmap = NULL; /* parent pmap, */ 1183 1.26 jeremy c_tbl->ct_va = 0; /* base of managed range */ 1184 1.1 gwr 1185 1.113 tsutsui /* Assign it the next available MMU C table from the pool */ 1186 1.1 gwr c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE]; 1187 1.1 gwr 1188 1.92 tsutsui for (j = 0; j < MMU_C_TBL_SIZE; j++) 1189 1.1 gwr c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID; 1190 1.1 gwr 1191 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 1192 1.1 gwr } 1193 1.1 gwr } 1194 1.1 gwr 1195 1.1 gwr /* pmap_init_pv() INTERNAL 1196 1.1 gwr ** 1197 1.1 gwr * Initializes the Physical to Virtual mapping system. 1198 1.1 gwr */ 1199 1.113 tsutsui void 1200 1.86 chs pmap_init_pv(void) 1201 1.1 gwr { 1202 1.86 chs int i; 1203 1.7 gwr 1204 1.7 gwr /* Initialize every PV head. */ 1205 1.25 veego for (i = 0; i < m68k_btop(total_phys_mem); i++) { 1206 1.7 gwr pvbase[i].pv_idx = PVE_EOL; /* Indicate no mappings */ 1207 1.7 gwr pvbase[i].pv_flags = 0; /* Zero out page flags */ 1208 1.7 gwr } 1209 1.1 gwr } 1210 1.1 gwr 1211 1.92 tsutsui /* is_managed INTERNAL 1212 1.92 tsutsui ** 1213 1.92 tsutsui * Determine if the given physical address is managed by the PV system. 1214 1.92 tsutsui * Note that this logic assumes that no one will ask for the status of 1215 1.92 tsutsui * addresses which lie in-between the memory banks on the 3/80. If they 1216 1.92 tsutsui * do so, it will falsely report that it is managed. 1217 1.92 tsutsui * 1218 1.113 tsutsui * Note: A "managed" address is one that was reported to the VM system as 1219 1.92 tsutsui * a "usable page" during system startup. As such, the VM system expects the 1220 1.120 andvar * pmap module to keep an accurate track of the usage of those pages. 1221 1.113 tsutsui * Any page not given to the VM system at startup does not exist (as far as 1222 1.92 tsutsui * the VM system is concerned) and is therefore "unmanaged." Examples are 1223 1.92 tsutsui * those pages which belong to the ROM monitor and the memory allocated before 1224 1.92 tsutsui * the VM system was started. 1225 1.92 tsutsui */ 1226 1.113 tsutsui static INLINE bool 1227 1.92 tsutsui is_managed(paddr_t pa) 1228 1.92 tsutsui { 1229 1.92 tsutsui if (pa >= avail_start && pa < avail_end) 1230 1.95 thorpej return true; 1231 1.92 tsutsui else 1232 1.95 thorpej return false; 1233 1.92 tsutsui } 1234 1.92 tsutsui 1235 1.1 gwr /* get_a_table INTERNAL 1236 1.1 gwr ** 1237 1.1 gwr * Retrieve and return a level A table for use in a user map. 1238 1.1 gwr */ 1239 1.1 gwr a_tmgr_t * 1240 1.86 chs get_a_table(void) 1241 1.1 gwr { 1242 1.1 gwr a_tmgr_t *tbl; 1243 1.7 gwr pmap_t pmap; 1244 1.1 gwr 1245 1.1 gwr /* Get the top A table in the pool */ 1246 1.86 chs tbl = TAILQ_FIRST(&a_pool); 1247 1.7 gwr if (tbl == NULL) { 1248 1.7 gwr /* 1249 1.85 wiz * XXX - Instead of panicking here and in other get_x_table 1250 1.7 gwr * functions, we do have the option of sleeping on the head of 1251 1.7 gwr * the table pool. Any function which updates the table pool 1252 1.7 gwr * would then issue a wakeup() on the head, thus waking up any 1253 1.7 gwr * processes waiting for a table. 1254 1.7 gwr * 1255 1.7 gwr * Actually, the place to sleep would be when some process 1256 1.7 gwr * asks for a "wired" mapping that would run us short of 1257 1.7 gwr * mapping resources. This design DEPENDS on always having 1258 1.7 gwr * some mapping resources in the pool for stealing, so we 1259 1.7 gwr * must make sure we NEVER let the pool become empty. -gwr 1260 1.7 gwr */ 1261 1.1 gwr panic("get_a_table: out of A tables."); 1262 1.7 gwr } 1263 1.7 gwr 1264 1.1 gwr TAILQ_REMOVE(&a_pool, tbl, at_link); 1265 1.7 gwr /* 1266 1.7 gwr * If the table has a non-null parent pointer then it is in use. 1267 1.1 gwr * Forcibly abduct it from its parent and clear its entries. 1268 1.1 gwr * No re-entrancy worries here. This table would not be in the 1269 1.1 gwr * table pool unless it was available for use. 1270 1.7 gwr * 1271 1.95 thorpej * Note that the second argument to free_a_table() is false. This 1272 1.7 gwr * indicates that the table should not be relinked into the A table 1273 1.7 gwr * pool. That is a job for the function that called us. 1274 1.1 gwr */ 1275 1.1 gwr if (tbl->at_parent) { 1276 1.91 tsutsui KASSERT(tbl->at_wcnt == 0); 1277 1.7 gwr pmap = tbl->at_parent; 1278 1.95 thorpej free_a_table(tbl, false); 1279 1.7 gwr pmap->pm_a_tmgr = NULL; 1280 1.7 gwr pmap->pm_a_phys = kernAphys; 1281 1.1 gwr } 1282 1.1 gwr return tbl; 1283 1.1 gwr } 1284 1.1 gwr 1285 1.1 gwr /* get_b_table INTERNAL 1286 1.1 gwr ** 1287 1.1 gwr * Return a level B table for use. 1288 1.1 gwr */ 1289 1.1 gwr b_tmgr_t * 1290 1.86 chs get_b_table(void) 1291 1.1 gwr { 1292 1.1 gwr b_tmgr_t *tbl; 1293 1.1 gwr 1294 1.1 gwr /* See 'get_a_table' for comments. */ 1295 1.86 chs tbl = TAILQ_FIRST(&b_pool); 1296 1.1 gwr if (tbl == NULL) 1297 1.1 gwr panic("get_b_table: out of B tables."); 1298 1.1 gwr TAILQ_REMOVE(&b_pool, tbl, bt_link); 1299 1.1 gwr if (tbl->bt_parent) { 1300 1.91 tsutsui KASSERT(tbl->bt_wcnt == 0); 1301 1.1 gwr tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID; 1302 1.1 gwr tbl->bt_parent->at_ecnt--; 1303 1.95 thorpej free_b_table(tbl, false); 1304 1.1 gwr } 1305 1.1 gwr return tbl; 1306 1.1 gwr } 1307 1.1 gwr 1308 1.1 gwr /* get_c_table INTERNAL 1309 1.1 gwr ** 1310 1.1 gwr * Return a level C table for use. 1311 1.1 gwr */ 1312 1.1 gwr c_tmgr_t * 1313 1.86 chs get_c_table(void) 1314 1.1 gwr { 1315 1.1 gwr c_tmgr_t *tbl; 1316 1.1 gwr 1317 1.1 gwr /* See 'get_a_table' for comments */ 1318 1.86 chs tbl = TAILQ_FIRST(&c_pool); 1319 1.1 gwr if (tbl == NULL) 1320 1.1 gwr panic("get_c_table: out of C tables."); 1321 1.1 gwr TAILQ_REMOVE(&c_pool, tbl, ct_link); 1322 1.1 gwr if (tbl->ct_parent) { 1323 1.91 tsutsui KASSERT(tbl->ct_wcnt == 0); 1324 1.1 gwr tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID; 1325 1.1 gwr tbl->ct_parent->bt_ecnt--; 1326 1.95 thorpej free_c_table(tbl, false); 1327 1.1 gwr } 1328 1.1 gwr return tbl; 1329 1.1 gwr } 1330 1.1 gwr 1331 1.7 gwr /* 1332 1.7 gwr * The following 'free_table' and 'steal_table' functions are called to 1333 1.1 gwr * detach tables from their current obligations (parents and children) and 1334 1.1 gwr * prepare them for reuse in another mapping. 1335 1.1 gwr * 1336 1.1 gwr * Free_table is used when the calling function will handle the fate 1337 1.1 gwr * of the parent table, such as returning it to the free pool when it has 1338 1.1 gwr * no valid entries. Functions that do not want to handle this should 1339 1.1 gwr * call steal_table, in which the parent table's descriptors and entry 1340 1.1 gwr * count are automatically modified when this table is removed. 1341 1.1 gwr */ 1342 1.1 gwr 1343 1.1 gwr /* free_a_table INTERNAL 1344 1.1 gwr ** 1345 1.1 gwr * Unmaps the given A table and all child tables from their current 1346 1.1 gwr * mappings. Returns the number of pages that were invalidated. 1347 1.7 gwr * If 'relink' is true, the function will return the table to the head 1348 1.7 gwr * of the available table pool. 1349 1.1 gwr * 1350 1.1 gwr * Cache note: The MC68851 will automatically flush all 1351 1.1 gwr * descriptors derived from a given A table from its 1352 1.1 gwr * Automatic Translation Cache (ATC) if we issue a 1353 1.1 gwr * 'PFLUSHR' instruction with the base address of the 1354 1.1 gwr * table. This function should do, and does so. 1355 1.1 gwr * Note note: We are using an MC68030 - there is no 1356 1.1 gwr * PFLUSHR. 1357 1.1 gwr */ 1358 1.113 tsutsui int 1359 1.94 thorpej free_a_table(a_tmgr_t *a_tbl, bool relink) 1360 1.1 gwr { 1361 1.1 gwr int i, removed_cnt; 1362 1.1 gwr mmu_long_dte_t *dte; 1363 1.1 gwr mmu_short_dte_t *dtbl; 1364 1.91 tsutsui b_tmgr_t *b_tbl; 1365 1.91 tsutsui uint8_t at_wired, bt_wired; 1366 1.1 gwr 1367 1.7 gwr /* 1368 1.7 gwr * Flush the ATC cache of all cached descriptors derived 1369 1.1 gwr * from this table. 1370 1.22 jeremy * Sun3x does not use 68851's cached table feature 1371 1.1 gwr * flush_atc_crp(mmu_vtop(a_tbl->dte)); 1372 1.1 gwr */ 1373 1.1 gwr 1374 1.7 gwr /* 1375 1.7 gwr * Remove any pending cache flushes that were designated 1376 1.1 gwr * for the pmap this A table belongs to. 1377 1.1 gwr * a_tbl->parent->atc_flushq[0] = 0; 1378 1.22 jeremy * Not implemented in sun3x. 1379 1.1 gwr */ 1380 1.1 gwr 1381 1.7 gwr /* 1382 1.7 gwr * All A tables in the system should retain a map for the 1383 1.1 gwr * kernel. If the table contains any valid descriptors 1384 1.1 gwr * (other than those for the kernel area), invalidate them all, 1385 1.1 gwr * stopping short of the kernel's entries. 1386 1.1 gwr */ 1387 1.1 gwr removed_cnt = 0; 1388 1.91 tsutsui at_wired = a_tbl->at_wcnt; 1389 1.1 gwr if (a_tbl->at_ecnt) { 1390 1.1 gwr dte = a_tbl->at_dtbl; 1391 1.111 tsutsui for (i = 0; i < MMU_TIA(KERNBASE3X); i++) { 1392 1.7 gwr /* 1393 1.7 gwr * If a table entry points to a valid B table, free 1394 1.1 gwr * it and its children. 1395 1.1 gwr */ 1396 1.1 gwr if (MMU_VALID_DT(dte[i])) { 1397 1.7 gwr /* 1398 1.7 gwr * The following block does several things, 1399 1.1 gwr * from innermost expression to the 1400 1.1 gwr * outermost: 1401 1.1 gwr * 1) It extracts the base (cc 1996) 1402 1.1 gwr * address of the B table pointed 1403 1.1 gwr * to in the A table entry dte[i]. 1404 1.1 gwr * 2) It converts this base address into 1405 1.1 gwr * the virtual address it can be 1406 1.1 gwr * accessed with. (all MMU tables point 1407 1.1 gwr * to physical addresses.) 1408 1.1 gwr * 3) It finds the corresponding manager 1409 1.1 gwr * structure which manages this MMU table. 1410 1.1 gwr * 4) It frees the manager structure. 1411 1.1 gwr * (This frees the MMU table and all 1412 1.1 gwr * child tables. See 'free_b_table' for 1413 1.1 gwr * details.) 1414 1.1 gwr */ 1415 1.7 gwr dtbl = mmu_ptov(dte[i].addr.raw); 1416 1.91 tsutsui b_tbl = mmuB2tmgr(dtbl); 1417 1.91 tsutsui bt_wired = b_tbl->bt_wcnt; 1418 1.95 thorpej removed_cnt += free_b_table(b_tbl, true); 1419 1.91 tsutsui if (bt_wired) 1420 1.91 tsutsui a_tbl->at_wcnt--; 1421 1.8 gwr dte[i].attr.raw = MMU_DT_INVALID; 1422 1.1 gwr } 1423 1.8 gwr } 1424 1.8 gwr a_tbl->at_ecnt = 0; 1425 1.1 gwr } 1426 1.91 tsutsui KASSERT(a_tbl->at_wcnt == 0); 1427 1.91 tsutsui 1428 1.7 gwr if (relink) { 1429 1.7 gwr a_tbl->at_parent = NULL; 1430 1.91 tsutsui if (!at_wired) 1431 1.91 tsutsui TAILQ_REMOVE(&a_pool, a_tbl, at_link); 1432 1.7 gwr TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link); 1433 1.7 gwr } 1434 1.1 gwr return removed_cnt; 1435 1.1 gwr } 1436 1.1 gwr 1437 1.1 gwr /* free_b_table INTERNAL 1438 1.1 gwr ** 1439 1.1 gwr * Unmaps the given B table and all its children from their current 1440 1.1 gwr * mappings. Returns the number of pages that were invalidated. 1441 1.1 gwr * (For comments, see 'free_a_table()'). 1442 1.1 gwr */ 1443 1.113 tsutsui int 1444 1.94 thorpej free_b_table(b_tmgr_t *b_tbl, bool relink) 1445 1.1 gwr { 1446 1.1 gwr int i, removed_cnt; 1447 1.1 gwr mmu_short_dte_t *dte; 1448 1.1 gwr mmu_short_pte_t *dtbl; 1449 1.91 tsutsui c_tmgr_t *c_tbl; 1450 1.91 tsutsui uint8_t bt_wired, ct_wired; 1451 1.1 gwr 1452 1.1 gwr removed_cnt = 0; 1453 1.91 tsutsui bt_wired = b_tbl->bt_wcnt; 1454 1.1 gwr if (b_tbl->bt_ecnt) { 1455 1.1 gwr dte = b_tbl->bt_dtbl; 1456 1.92 tsutsui for (i = 0; i < MMU_B_TBL_SIZE; i++) { 1457 1.1 gwr if (MMU_VALID_DT(dte[i])) { 1458 1.7 gwr dtbl = mmu_ptov(MMU_DTE_PA(dte[i])); 1459 1.91 tsutsui c_tbl = mmuC2tmgr(dtbl); 1460 1.91 tsutsui ct_wired = c_tbl->ct_wcnt; 1461 1.95 thorpej removed_cnt += free_c_table(c_tbl, true); 1462 1.91 tsutsui if (ct_wired) 1463 1.91 tsutsui b_tbl->bt_wcnt--; 1464 1.8 gwr dte[i].attr.raw = MMU_DT_INVALID; 1465 1.1 gwr } 1466 1.8 gwr } 1467 1.8 gwr b_tbl->bt_ecnt = 0; 1468 1.1 gwr } 1469 1.91 tsutsui KASSERT(b_tbl->bt_wcnt == 0); 1470 1.1 gwr 1471 1.7 gwr if (relink) { 1472 1.7 gwr b_tbl->bt_parent = NULL; 1473 1.91 tsutsui if (!bt_wired) 1474 1.91 tsutsui TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 1475 1.7 gwr TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link); 1476 1.7 gwr } 1477 1.1 gwr return removed_cnt; 1478 1.1 gwr } 1479 1.1 gwr 1480 1.1 gwr /* free_c_table INTERNAL 1481 1.1 gwr ** 1482 1.1 gwr * Unmaps the given C table from use and returns it to the pool for 1483 1.1 gwr * re-use. Returns the number of pages that were invalidated. 1484 1.1 gwr * 1485 1.113 tsutsui * This function preserves any physical page modification information 1486 1.1 gwr * contained in the page descriptors within the C table by calling 1487 1.1 gwr * 'pmap_remove_pte().' 1488 1.1 gwr */ 1489 1.113 tsutsui int 1490 1.94 thorpej free_c_table(c_tmgr_t *c_tbl, bool relink) 1491 1.1 gwr { 1492 1.91 tsutsui mmu_short_pte_t *c_pte; 1493 1.1 gwr int i, removed_cnt; 1494 1.91 tsutsui uint8_t ct_wired; 1495 1.1 gwr 1496 1.1 gwr removed_cnt = 0; 1497 1.91 tsutsui ct_wired = c_tbl->ct_wcnt; 1498 1.8 gwr if (c_tbl->ct_ecnt) { 1499 1.92 tsutsui for (i = 0; i < MMU_C_TBL_SIZE; i++) { 1500 1.91 tsutsui c_pte = &c_tbl->ct_dtbl[i]; 1501 1.91 tsutsui if (MMU_VALID_DT(*c_pte)) { 1502 1.91 tsutsui if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) 1503 1.91 tsutsui c_tbl->ct_wcnt--; 1504 1.91 tsutsui pmap_remove_pte(c_pte); 1505 1.1 gwr removed_cnt++; 1506 1.1 gwr } 1507 1.8 gwr } 1508 1.8 gwr c_tbl->ct_ecnt = 0; 1509 1.8 gwr } 1510 1.91 tsutsui KASSERT(c_tbl->ct_wcnt == 0); 1511 1.8 gwr 1512 1.7 gwr if (relink) { 1513 1.7 gwr c_tbl->ct_parent = NULL; 1514 1.91 tsutsui if (!ct_wired) 1515 1.91 tsutsui TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 1516 1.7 gwr TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link); 1517 1.7 gwr } 1518 1.1 gwr return removed_cnt; 1519 1.1 gwr } 1520 1.1 gwr 1521 1.1 gwr 1522 1.1 gwr /* pmap_remove_pte INTERNAL 1523 1.1 gwr ** 1524 1.1 gwr * Unmap the given pte and preserve any page modification 1525 1.119 andvar * information by transferring it to the pv head of the 1526 1.1 gwr * physical page it maps to. This function does not update 1527 1.1 gwr * any reference counts because it is assumed that the calling 1528 1.8 gwr * function will do so. 1529 1.1 gwr */ 1530 1.1 gwr void 1531 1.86 chs pmap_remove_pte(mmu_short_pte_t *pte) 1532 1.1 gwr { 1533 1.7 gwr u_short pv_idx, targ_idx; 1534 1.69 chs paddr_t pa; 1535 1.1 gwr pv_t *pv; 1536 1.1 gwr 1537 1.1 gwr pa = MMU_PTE_PA(*pte); 1538 1.1 gwr if (is_managed(pa)) { 1539 1.1 gwr pv = pa2pv(pa); 1540 1.7 gwr targ_idx = pteidx(pte); /* Index of PTE being removed */ 1541 1.7 gwr 1542 1.7 gwr /* 1543 1.7 gwr * If the PTE being removed is the first (or only) PTE in 1544 1.7 gwr * the list of PTEs currently mapped to this page, remove the 1545 1.7 gwr * PTE by changing the index found on the PV head. Otherwise 1546 1.113 tsutsui * a linear search through the list will have to be executed 1547 1.7 gwr * in order to find the PVE which points to the PTE being 1548 1.7 gwr * removed, so that it may be modified to point to its new 1549 1.7 gwr * neighbor. 1550 1.7 gwr */ 1551 1.69 chs 1552 1.7 gwr pv_idx = pv->pv_idx; /* Index of first PTE in PV list */ 1553 1.7 gwr if (pv_idx == targ_idx) { 1554 1.7 gwr pv->pv_idx = pvebase[targ_idx].pve_next; 1555 1.7 gwr } else { 1556 1.69 chs 1557 1.7 gwr /* 1558 1.32 gwr * Find the PV element pointing to the target 1559 1.32 gwr * element. Note: may have pv_idx==PVE_EOL 1560 1.7 gwr */ 1561 1.69 chs 1562 1.32 gwr for (;;) { 1563 1.32 gwr if (pv_idx == PVE_EOL) { 1564 1.32 gwr goto pv_not_found; 1565 1.32 gwr } 1566 1.32 gwr if (pvebase[pv_idx].pve_next == targ_idx) 1567 1.32 gwr break; 1568 1.7 gwr pv_idx = pvebase[pv_idx].pve_next; 1569 1.7 gwr } 1570 1.69 chs 1571 1.7 gwr /* 1572 1.7 gwr * At this point, pv_idx is the index of the PV 1573 1.7 gwr * element just before the target element in the list. 1574 1.7 gwr * Unlink the target. 1575 1.7 gwr */ 1576 1.69 chs 1577 1.7 gwr pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next; 1578 1.7 gwr } 1579 1.69 chs 1580 1.7 gwr /* 1581 1.7 gwr * Save the mod/ref bits of the pte by simply 1582 1.1 gwr * ORing the entire pte onto the pv_flags member 1583 1.1 gwr * of the pv structure. 1584 1.1 gwr * There is no need to use a separate bit pattern 1585 1.1 gwr * for usage information on the pv head than that 1586 1.1 gwr * which is used on the MMU ptes. 1587 1.1 gwr */ 1588 1.69 chs 1589 1.92 tsutsui pv_not_found: 1590 1.7 gwr pv->pv_flags |= (u_short) pte->attr.raw; 1591 1.1 gwr } 1592 1.1 gwr pte->attr.raw = MMU_DT_INVALID; 1593 1.1 gwr } 1594 1.1 gwr 1595 1.1 gwr /* pmap_stroll INTERNAL 1596 1.1 gwr ** 1597 1.1 gwr * Retrieve the addresses of all table managers involved in the mapping of 1598 1.77 wiz * the given virtual address. If the table walk completed successfully, 1599 1.95 thorpej * return true. If it was only partially successful, return false. 1600 1.1 gwr * The table walk performed by this function is important to many other 1601 1.1 gwr * functions in this module. 1602 1.7 gwr * 1603 1.7 gwr * Note: This function ought to be easier to read. 1604 1.1 gwr */ 1605 1.94 thorpej bool 1606 1.86 chs pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl, 1607 1.86 chs c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx, 1608 1.86 chs int *pte_idx) 1609 1.1 gwr { 1610 1.1 gwr mmu_long_dte_t *a_dte; /* A: long descriptor table */ 1611 1.1 gwr mmu_short_dte_t *b_dte; /* B: short descriptor table */ 1612 1.1 gwr 1613 1.1 gwr if (pmap == pmap_kernel()) 1614 1.95 thorpej return false; 1615 1.1 gwr 1616 1.7 gwr /* Does the given pmap have its own A table? */ 1617 1.7 gwr *a_tbl = pmap->pm_a_tmgr; 1618 1.1 gwr if (*a_tbl == NULL) 1619 1.95 thorpej return false; /* No. Return unknown. */ 1620 1.1 gwr /* Does the A table have a valid B table 1621 1.1 gwr * under the corresponding table entry? 1622 1.1 gwr */ 1623 1.1 gwr *a_idx = MMU_TIA(va); 1624 1.1 gwr a_dte = &((*a_tbl)->at_dtbl[*a_idx]); 1625 1.1 gwr if (!MMU_VALID_DT(*a_dte)) 1626 1.95 thorpej return false; /* No. Return unknown. */ 1627 1.1 gwr /* Yes. Extract B table from the A table. */ 1628 1.7 gwr *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw)); 1629 1.92 tsutsui /* 1630 1.92 tsutsui * Does the B table have a valid C table 1631 1.1 gwr * under the corresponding table entry? 1632 1.1 gwr */ 1633 1.1 gwr *b_idx = MMU_TIB(va); 1634 1.1 gwr b_dte = &((*b_tbl)->bt_dtbl[*b_idx]); 1635 1.1 gwr if (!MMU_VALID_DT(*b_dte)) 1636 1.95 thorpej return false; /* No. Return unknown. */ 1637 1.1 gwr /* Yes. Extract C table from the B table. */ 1638 1.7 gwr *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte))); 1639 1.1 gwr *pte_idx = MMU_TIC(va); 1640 1.1 gwr *pte = &((*c_tbl)->ct_dtbl[*pte_idx]); 1641 1.113 tsutsui 1642 1.95 thorpej return true; 1643 1.1 gwr } 1644 1.113 tsutsui 1645 1.1 gwr /* pmap_enter INTERFACE 1646 1.1 gwr ** 1647 1.1 gwr * Called by the kernel to map a virtual address 1648 1.113 tsutsui * to a physical address in the given process map. 1649 1.1 gwr * 1650 1.1 gwr * Note: this function should apply an exclusive lock 1651 1.1 gwr * on the pmap system for its duration. (it certainly 1652 1.1 gwr * would save my hair!!) 1653 1.7 gwr * This function ought to be easier to read. 1654 1.1 gwr */ 1655 1.113 tsutsui int 1656 1.104 cegger pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 1657 1.1 gwr { 1658 1.94 thorpej bool insert, managed; /* Marks the need for PV insertion.*/ 1659 1.7 gwr u_short nidx; /* PV list index */ 1660 1.52 jeremy int mapflags; /* Flags for the mapping (see NOTE1) */ 1661 1.8 gwr u_int a_idx, b_idx, pte_idx; /* table indices */ 1662 1.1 gwr a_tmgr_t *a_tbl; /* A: long descriptor table manager */ 1663 1.1 gwr b_tmgr_t *b_tbl; /* B: short descriptor table manager */ 1664 1.1 gwr c_tmgr_t *c_tbl; /* C: short page table manager */ 1665 1.1 gwr mmu_long_dte_t *a_dte; /* A: long descriptor table */ 1666 1.1 gwr mmu_short_dte_t *b_dte; /* B: short descriptor table */ 1667 1.1 gwr mmu_short_pte_t *c_pte; /* C: short page descriptor table */ 1668 1.1 gwr pv_t *pv; /* pv list head */ 1669 1.94 thorpej bool wired; /* is the mapping to be wired? */ 1670 1.1 gwr enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */ 1671 1.1 gwr 1672 1.1 gwr if (pmap == pmap_kernel()) { 1673 1.1 gwr pmap_enter_kernel(va, pa, prot); 1674 1.61 chs return 0; 1675 1.1 gwr } 1676 1.7 gwr 1677 1.52 jeremy /* 1678 1.52 jeremy * Determine if the mapping should be wired. 1679 1.52 jeremy */ 1680 1.52 jeremy wired = ((flags & PMAP_WIRED) != 0); 1681 1.52 jeremy 1682 1.52 jeremy /* 1683 1.52 jeremy * NOTE1: 1684 1.52 jeremy * 1685 1.52 jeremy * On November 13, 1999, someone changed the pmap_enter() API such 1686 1.52 jeremy * that it now accepts a 'flags' argument. This new argument 1687 1.52 jeremy * contains bit-flags for the architecture-independent (UVM) system to 1688 1.52 jeremy * use in signalling certain mapping requirements to the architecture- 1689 1.52 jeremy * dependent (pmap) system. The argument it replaces, 'wired', is now 1690 1.52 jeremy * one of the flags within it. 1691 1.52 jeremy * 1692 1.52 jeremy * In addition to flags signaled by the architecture-independent 1693 1.52 jeremy * system, parts of the architecture-dependent section of the sun3x 1694 1.52 jeremy * kernel pass their own flags in the lower, unused bits of the 1695 1.52 jeremy * physical address supplied to this function. These flags are 1696 1.52 jeremy * extracted and stored in the temporary variable 'mapflags'. 1697 1.52 jeremy * 1698 1.52 jeremy * Extract sun3x specific flags from the physical address. 1699 1.113 tsutsui */ 1700 1.92 tsutsui mapflags = (pa & ~MMU_PAGE_MASK); 1701 1.92 tsutsui pa &= MMU_PAGE_MASK; 1702 1.7 gwr 1703 1.7 gwr /* 1704 1.22 jeremy * Determine if the physical address being mapped is on-board RAM. 1705 1.22 jeremy * Any other area of the address space is likely to belong to a 1706 1.120 andvar * device and hence it would be disastrous to cache its contents. 1707 1.7 gwr */ 1708 1.95 thorpej if ((managed = is_managed(pa)) == false) 1709 1.52 jeremy mapflags |= PMAP_NC; 1710 1.7 gwr 1711 1.7 gwr /* 1712 1.7 gwr * For user mappings we walk along the MMU tables of the given 1713 1.1 gwr * pmap, reaching a PTE which describes the virtual page being 1714 1.1 gwr * mapped or changed. If any level of the walk ends in an invalid 1715 1.1 gwr * entry, a table must be allocated and the entry must be updated 1716 1.1 gwr * to point to it. 1717 1.1 gwr * There is a bit of confusion as to whether this code must be 1718 1.1 gwr * re-entrant. For now we will assume it is. To support 1719 1.1 gwr * re-entrancy we must unlink tables from the table pool before 1720 1.1 gwr * we assume we may use them. Tables are re-linked into the pool 1721 1.1 gwr * when we are finished with them at the end of the function. 1722 1.1 gwr * But I don't feel like doing that until we have proof that this 1723 1.1 gwr * needs to be re-entrant. 1724 1.1 gwr * 'llevel' records which tables need to be relinked. 1725 1.1 gwr */ 1726 1.1 gwr llevel = NONE; 1727 1.1 gwr 1728 1.7 gwr /* 1729 1.7 gwr * Step 1 - Retrieve the A table from the pmap. If it has no 1730 1.7 gwr * A table, allocate a new one from the available pool. 1731 1.1 gwr */ 1732 1.1 gwr 1733 1.7 gwr a_tbl = pmap->pm_a_tmgr; 1734 1.7 gwr if (a_tbl == NULL) { 1735 1.7 gwr /* 1736 1.7 gwr * This pmap does not currently have an A table. Allocate 1737 1.7 gwr * a new one. 1738 1.7 gwr */ 1739 1.7 gwr a_tbl = get_a_table(); 1740 1.7 gwr a_tbl->at_parent = pmap; 1741 1.7 gwr 1742 1.7 gwr /* 1743 1.7 gwr * Assign this new A table to the pmap, and calculate its 1744 1.7 gwr * physical address so that loadcrp() can be used to make 1745 1.7 gwr * the table active. 1746 1.7 gwr */ 1747 1.7 gwr pmap->pm_a_tmgr = a_tbl; 1748 1.7 gwr pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl); 1749 1.7 gwr 1750 1.7 gwr /* 1751 1.7 gwr * If the process receiving a new A table is the current 1752 1.7 gwr * process, we are responsible for setting the MMU so that 1753 1.9 gwr * it becomes the current address space. This only adds 1754 1.9 gwr * new mappings, so no need to flush anything. 1755 1.7 gwr */ 1756 1.9 gwr if (pmap == current_pmap()) { 1757 1.9 gwr kernel_crp.rp_addr = pmap->pm_a_phys; 1758 1.9 gwr loadcrp(&kernel_crp); 1759 1.9 gwr } 1760 1.7 gwr 1761 1.1 gwr if (!wired) 1762 1.1 gwr llevel = NEWA; 1763 1.1 gwr } else { 1764 1.7 gwr /* 1765 1.7 gwr * Use the A table already allocated for this pmap. 1766 1.1 gwr * Unlink it from the A table pool if necessary. 1767 1.1 gwr */ 1768 1.1 gwr if (wired && !a_tbl->at_wcnt) 1769 1.1 gwr TAILQ_REMOVE(&a_pool, a_tbl, at_link); 1770 1.1 gwr } 1771 1.1 gwr 1772 1.7 gwr /* 1773 1.7 gwr * Step 2 - Walk into the B table. If there is no valid B table, 1774 1.1 gwr * allocate one. 1775 1.1 gwr */ 1776 1.1 gwr 1777 1.1 gwr a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */ 1778 1.1 gwr a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */ 1779 1.1 gwr if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */ 1780 1.7 gwr /* The descriptor is valid. Use the B table it points to. */ 1781 1.1 gwr /************************************* 1782 1.1 gwr * a_idx * 1783 1.1 gwr * v * 1784 1.1 gwr * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- * 1785 1.1 gwr * | | | | | | | | | | | | * 1786 1.1 gwr * +-+-+-+-+-+-+-+-+-+-+-+- * 1787 1.1 gwr * | * 1788 1.1 gwr * \- b_tbl -> +-+- * 1789 1.1 gwr * | | * 1790 1.1 gwr * +-+- * 1791 1.1 gwr *************************************/ 1792 1.7 gwr b_dte = mmu_ptov(a_dte->addr.raw); 1793 1.1 gwr b_tbl = mmuB2tmgr(b_dte); 1794 1.7 gwr 1795 1.7 gwr /* 1796 1.7 gwr * If the requested mapping must be wired, but this table 1797 1.7 gwr * being used to map it is not, the table must be removed 1798 1.7 gwr * from the available pool and its wired entry count 1799 1.7 gwr * incremented. 1800 1.7 gwr */ 1801 1.1 gwr if (wired && !b_tbl->bt_wcnt) { 1802 1.1 gwr TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 1803 1.7 gwr a_tbl->at_wcnt++; 1804 1.1 gwr } 1805 1.1 gwr } else { 1806 1.7 gwr /* The descriptor is invalid. Allocate a new B table. */ 1807 1.7 gwr b_tbl = get_b_table(); 1808 1.7 gwr 1809 1.1 gwr /* Point the parent A table descriptor to this new B table. */ 1810 1.7 gwr a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl); 1811 1.7 gwr a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT; 1812 1.7 gwr a_tbl->at_ecnt++; /* Update parent's valid entry count */ 1813 1.7 gwr 1814 1.1 gwr /* Create the necessary back references to the parent table */ 1815 1.1 gwr b_tbl->bt_parent = a_tbl; 1816 1.1 gwr b_tbl->bt_pidx = a_idx; 1817 1.7 gwr 1818 1.7 gwr /* 1819 1.7 gwr * If this table is to be wired, make sure the parent A table 1820 1.1 gwr * wired count is updated to reflect that it has another wired 1821 1.1 gwr * entry. 1822 1.1 gwr */ 1823 1.1 gwr if (wired) 1824 1.1 gwr a_tbl->at_wcnt++; 1825 1.1 gwr else if (llevel == NONE) 1826 1.1 gwr llevel = NEWB; 1827 1.1 gwr } 1828 1.1 gwr 1829 1.7 gwr /* 1830 1.7 gwr * Step 3 - Walk into the C table, if there is no valid C table, 1831 1.1 gwr * allocate one. 1832 1.1 gwr */ 1833 1.1 gwr 1834 1.1 gwr b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */ 1835 1.1 gwr b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */ 1836 1.1 gwr if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */ 1837 1.7 gwr /* The descriptor is valid. Use the C table it points to. */ 1838 1.1 gwr /************************************** 1839 1.1 gwr * c_idx * 1840 1.1 gwr * | v * 1841 1.1 gwr * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- * 1842 1.1 gwr * | | | | | | | | | | | * 1843 1.1 gwr * +-+-+-+-+-+-+-+-+-+-+- * 1844 1.1 gwr * | * 1845 1.1 gwr * \- c_tbl -> +-+-- * 1846 1.1 gwr * | | | * 1847 1.1 gwr * +-+-- * 1848 1.1 gwr **************************************/ 1849 1.7 gwr c_pte = mmu_ptov(MMU_PTE_PA(*b_dte)); 1850 1.1 gwr c_tbl = mmuC2tmgr(c_pte); 1851 1.7 gwr 1852 1.7 gwr /* If mapping is wired and table is not */ 1853 1.1 gwr if (wired && !c_tbl->ct_wcnt) { 1854 1.1 gwr TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 1855 1.1 gwr b_tbl->bt_wcnt++; 1856 1.1 gwr } 1857 1.1 gwr } else { 1858 1.7 gwr /* The descriptor is invalid. Allocate a new C table. */ 1859 1.7 gwr c_tbl = get_c_table(); 1860 1.7 gwr 1861 1.1 gwr /* Point the parent B table descriptor to this new C table. */ 1862 1.7 gwr b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl); 1863 1.7 gwr b_dte->attr.raw |= MMU_DT_SHORT; 1864 1.7 gwr b_tbl->bt_ecnt++; /* Update parent's valid entry count */ 1865 1.7 gwr 1866 1.1 gwr /* Create the necessary back references to the parent table */ 1867 1.1 gwr c_tbl->ct_parent = b_tbl; 1868 1.1 gwr c_tbl->ct_pidx = b_idx; 1869 1.26 jeremy /* 1870 1.26 jeremy * Store the pmap and base virtual managed address for faster 1871 1.26 jeremy * retrieval in the PV functions. 1872 1.26 jeremy */ 1873 1.26 jeremy c_tbl->ct_pmap = pmap; 1874 1.26 jeremy c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK)); 1875 1.7 gwr 1876 1.7 gwr /* 1877 1.7 gwr * If this table is to be wired, make sure the parent B table 1878 1.1 gwr * wired count is updated to reflect that it has another wired 1879 1.1 gwr * entry. 1880 1.1 gwr */ 1881 1.1 gwr if (wired) 1882 1.1 gwr b_tbl->bt_wcnt++; 1883 1.1 gwr else if (llevel == NONE) 1884 1.1 gwr llevel = NEWC; 1885 1.1 gwr } 1886 1.1 gwr 1887 1.7 gwr /* 1888 1.7 gwr * Step 4 - Deposit a page descriptor (PTE) into the appropriate 1889 1.1 gwr * slot of the C table, describing the PA to which the VA is mapped. 1890 1.1 gwr */ 1891 1.1 gwr 1892 1.1 gwr pte_idx = MMU_TIC(va); 1893 1.1 gwr c_pte = &c_tbl->ct_dtbl[pte_idx]; 1894 1.1 gwr if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */ 1895 1.7 gwr /* 1896 1.7 gwr * The PTE is currently valid. This particular call 1897 1.1 gwr * is just a synonym for one (or more) of the following 1898 1.1 gwr * operations: 1899 1.7 gwr * change protection of a page 1900 1.1 gwr * change wiring status of a page 1901 1.1 gwr * remove the mapping of a page 1902 1.1 gwr */ 1903 1.7 gwr 1904 1.7 gwr /* First check if this is a wiring operation. */ 1905 1.91 tsutsui if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) { 1906 1.7 gwr /* 1907 1.91 tsutsui * The existing mapping is wired, so adjust wired 1908 1.91 tsutsui * entry count here. If new mapping is still wired, 1909 1.91 tsutsui * wired entry count will be incremented again later. 1910 1.7 gwr */ 1911 1.91 tsutsui c_tbl->ct_wcnt--; 1912 1.91 tsutsui if (!wired) { 1913 1.91 tsutsui /* 1914 1.91 tsutsui * The mapping of this PTE is being changed 1915 1.91 tsutsui * from wired to unwired. 1916 1.91 tsutsui * Adjust wired entry counts in each table and 1917 1.91 tsutsui * set llevel flag to put unwired tables back 1918 1.91 tsutsui * into the active pool. 1919 1.91 tsutsui */ 1920 1.91 tsutsui if (c_tbl->ct_wcnt == 0) { 1921 1.91 tsutsui llevel = NEWC; 1922 1.91 tsutsui if (--b_tbl->bt_wcnt == 0) { 1923 1.91 tsutsui llevel = NEWB; 1924 1.91 tsutsui if (--a_tbl->at_wcnt == 0) { 1925 1.91 tsutsui llevel = NEWA; 1926 1.91 tsutsui } 1927 1.91 tsutsui } 1928 1.91 tsutsui } 1929 1.91 tsutsui } 1930 1.7 gwr } 1931 1.7 gwr 1932 1.1 gwr /* Is the new address the same as the old? */ 1933 1.1 gwr if (MMU_PTE_PA(*c_pte) == pa) { 1934 1.7 gwr /* 1935 1.7 gwr * Yes, mark that it does not need to be reinserted 1936 1.7 gwr * into the PV list. 1937 1.7 gwr */ 1938 1.95 thorpej insert = false; 1939 1.7 gwr 1940 1.7 gwr /* 1941 1.7 gwr * Clear all but the modified, referenced and wired 1942 1.7 gwr * bits on the PTE. 1943 1.7 gwr */ 1944 1.7 gwr c_pte->attr.raw &= (MMU_SHORT_PTE_M 1945 1.92 tsutsui | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED); 1946 1.1 gwr } else { 1947 1.1 gwr /* No, remove the old entry */ 1948 1.1 gwr pmap_remove_pte(c_pte); 1949 1.95 thorpej insert = true; 1950 1.1 gwr } 1951 1.8 gwr 1952 1.8 gwr /* 1953 1.8 gwr * TLB flush is only necessary if modifying current map. 1954 1.8 gwr * However, in pmap_enter(), the pmap almost always IS 1955 1.8 gwr * the current pmap, so don't even bother to check. 1956 1.8 gwr */ 1957 1.8 gwr TBIS(va); 1958 1.1 gwr } else { 1959 1.7 gwr /* 1960 1.7 gwr * The PTE is invalid. Increment the valid entry count in 1961 1.8 gwr * the C table manager to reflect the addition of a new entry. 1962 1.7 gwr */ 1963 1.1 gwr c_tbl->ct_ecnt++; 1964 1.8 gwr 1965 1.8 gwr /* XXX - temporarily make sure the PTE is cleared. */ 1966 1.8 gwr c_pte->attr.raw = 0; 1967 1.1 gwr 1968 1.7 gwr /* It will also need to be inserted into the PV list. */ 1969 1.95 thorpej insert = true; 1970 1.7 gwr } 1971 1.7 gwr 1972 1.7 gwr /* 1973 1.7 gwr * If page is changing from unwired to wired status, set an unused bit 1974 1.7 gwr * within the PTE to indicate that it is wired. Also increment the 1975 1.7 gwr * wired entry count in the C table manager. 1976 1.7 gwr */ 1977 1.7 gwr if (wired) { 1978 1.1 gwr c_pte->attr.raw |= MMU_SHORT_PTE_WIRED; 1979 1.7 gwr c_tbl->ct_wcnt++; 1980 1.1 gwr } 1981 1.1 gwr 1982 1.7 gwr /* 1983 1.7 gwr * Map the page, being careful to preserve modify/reference/wired 1984 1.7 gwr * bits. At this point it is assumed that the PTE either has no bits 1985 1.7 gwr * set, or if there are set bits, they are only modified, reference or 1986 1.7 gwr * wired bits. If not, the following statement will cause erratic 1987 1.7 gwr * behavior. 1988 1.7 gwr */ 1989 1.8 gwr #ifdef PMAP_DEBUG 1990 1.7 gwr if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M | 1991 1.7 gwr MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) { 1992 1.7 gwr printf("pmap_enter: junk left in PTE at %p\n", c_pte); 1993 1.7 gwr Debugger(); 1994 1.7 gwr } 1995 1.7 gwr #endif 1996 1.7 gwr c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE); 1997 1.7 gwr 1998 1.7 gwr /* 1999 1.7 gwr * If the mapping should be read-only, set the write protect 2000 1.7 gwr * bit in the PTE. 2001 1.7 gwr */ 2002 1.7 gwr if (!(prot & VM_PROT_WRITE)) 2003 1.7 gwr c_pte->attr.raw |= MMU_SHORT_PTE_WP; 2004 1.7 gwr 2005 1.7 gwr /* 2006 1.87 chs * Mark the PTE as used and/or modified as specified by the flags arg. 2007 1.87 chs */ 2008 1.87 chs if (flags & VM_PROT_ALL) { 2009 1.87 chs c_pte->attr.raw |= MMU_SHORT_PTE_USED; 2010 1.87 chs if (flags & VM_PROT_WRITE) { 2011 1.87 chs c_pte->attr.raw |= MMU_SHORT_PTE_M; 2012 1.87 chs } 2013 1.87 chs } 2014 1.87 chs 2015 1.87 chs /* 2016 1.7 gwr * If the mapping should be cache inhibited (indicated by the flag 2017 1.7 gwr * bits found on the lower order of the physical address.) 2018 1.7 gwr * mark the PTE as a cache inhibited page. 2019 1.7 gwr */ 2020 1.52 jeremy if (mapflags & PMAP_NC) 2021 1.7 gwr c_pte->attr.raw |= MMU_SHORT_PTE_CI; 2022 1.7 gwr 2023 1.7 gwr /* 2024 1.7 gwr * If the physical address being mapped is managed by the PV 2025 1.7 gwr * system then link the pte into the list of pages mapped to that 2026 1.7 gwr * address. 2027 1.7 gwr */ 2028 1.7 gwr if (insert && managed) { 2029 1.7 gwr pv = pa2pv(pa); 2030 1.7 gwr nidx = pteidx(c_pte); 2031 1.7 gwr 2032 1.7 gwr pvebase[nidx].pve_next = pv->pv_idx; 2033 1.7 gwr pv->pv_idx = nidx; 2034 1.7 gwr } 2035 1.1 gwr 2036 1.91 tsutsui /* Move any allocated or unwired tables back into the active pool. */ 2037 1.113 tsutsui 2038 1.1 gwr switch (llevel) { 2039 1.1 gwr case NEWA: 2040 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 2041 1.1 gwr /* FALLTHROUGH */ 2042 1.1 gwr case NEWB: 2043 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 2044 1.1 gwr /* FALLTHROUGH */ 2045 1.1 gwr case NEWC: 2046 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 2047 1.1 gwr /* FALLTHROUGH */ 2048 1.1 gwr default: 2049 1.1 gwr break; 2050 1.1 gwr } 2051 1.51 thorpej 2052 1.61 chs return 0; 2053 1.1 gwr } 2054 1.1 gwr 2055 1.1 gwr /* pmap_enter_kernel INTERNAL 2056 1.1 gwr ** 2057 1.1 gwr * Map the given virtual address to the given physical address within the 2058 1.1 gwr * kernel address space. This function exists because the kernel map does 2059 1.1 gwr * not do dynamic table allocation. It consists of a contiguous array of ptes 2060 1.1 gwr * and can be edited directly without the need to walk through any tables. 2061 1.113 tsutsui * 2062 1.1 gwr * XXX: "Danger, Will Robinson!" 2063 1.1 gwr * Note that the kernel should never take a fault on any page 2064 1.1 gwr * between [ KERNBASE .. virtual_avail ] and this is checked in 2065 1.1 gwr * trap.c for kernel-mode MMU faults. This means that mappings 2066 1.120 andvar * created in that range must be implicitly wired. -gwr 2067 1.1 gwr */ 2068 1.113 tsutsui void 2069 1.86 chs pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot) 2070 1.1 gwr { 2071 1.94 thorpej bool was_valid, insert; 2072 1.32 gwr u_short pte_idx; 2073 1.69 chs int flags; 2074 1.1 gwr mmu_short_pte_t *pte; 2075 1.7 gwr pv_t *pv; 2076 1.69 chs paddr_t old_pa; 2077 1.7 gwr 2078 1.32 gwr flags = (pa & ~MMU_PAGE_MASK); 2079 1.32 gwr pa &= MMU_PAGE_MASK; 2080 1.32 gwr 2081 1.32 gwr if (is_managed(pa)) 2082 1.113 tsutsui insert = true; 2083 1.32 gwr else 2084 1.95 thorpej insert = false; 2085 1.7 gwr 2086 1.7 gwr /* 2087 1.7 gwr * Calculate the index of the PTE being modified. 2088 1.7 gwr */ 2089 1.111 tsutsui pte_idx = (u_long)m68k_btop(va - KERNBASE3X); 2090 1.1 gwr 2091 1.22 jeremy /* This array is traditionally named "Sysmap" */ 2092 1.7 gwr pte = &kernCbase[pte_idx]; 2093 1.7 gwr 2094 1.7 gwr if (MMU_VALID_DT(*pte)) { 2095 1.95 thorpej was_valid = true; 2096 1.7 gwr /* 2097 1.32 gwr * If the PTE already maps a different 2098 1.32 gwr * physical address, umap and pv_unlink. 2099 1.24 jeremy */ 2100 1.24 jeremy old_pa = MMU_PTE_PA(*pte); 2101 1.32 gwr if (pa != old_pa) 2102 1.32 gwr pmap_remove_pte(pte); 2103 1.32 gwr else { 2104 1.24 jeremy /* 2105 1.32 gwr * Old PA and new PA are the same. No need to 2106 1.32 gwr * relink the mapping within the PV list. 2107 1.24 jeremy */ 2108 1.95 thorpej insert = false; 2109 1.8 gwr 2110 1.7 gwr /* 2111 1.24 jeremy * Save any mod/ref bits on the PTE. 2112 1.7 gwr */ 2113 1.24 jeremy pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M); 2114 1.7 gwr } 2115 1.7 gwr } else { 2116 1.8 gwr pte->attr.raw = MMU_DT_INVALID; 2117 1.95 thorpej was_valid = false; 2118 1.7 gwr } 2119 1.7 gwr 2120 1.7 gwr /* 2121 1.8 gwr * Map the page. Being careful to preserve modified/referenced bits 2122 1.8 gwr * on the PTE. 2123 1.7 gwr */ 2124 1.7 gwr pte->attr.raw |= (pa | MMU_DT_PAGE); 2125 1.1 gwr 2126 1.1 gwr if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */ 2127 1.1 gwr pte->attr.raw |= MMU_SHORT_PTE_WP; 2128 1.7 gwr if (flags & PMAP_NC) 2129 1.1 gwr pte->attr.raw |= MMU_SHORT_PTE_CI; 2130 1.8 gwr if (was_valid) 2131 1.7 gwr TBIS(va); 2132 1.1 gwr 2133 1.7 gwr /* 2134 1.7 gwr * Insert the PTE into the PV system, if need be. 2135 1.7 gwr */ 2136 1.7 gwr if (insert) { 2137 1.7 gwr pv = pa2pv(pa); 2138 1.7 gwr pvebase[pte_idx].pve_next = pv->pv_idx; 2139 1.7 gwr pv->pv_idx = pte_idx; 2140 1.7 gwr } 2141 1.34 gwr } 2142 1.34 gwr 2143 1.113 tsutsui void 2144 1.108 cegger pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 2145 1.49 chs { 2146 1.69 chs mmu_short_pte_t *pte; 2147 1.117 tsutsui u_int mapflags; 2148 1.117 tsutsui 2149 1.117 tsutsui /* XXX: MD PMAP_NC should be replaced by MI PMAP_NOCACHE in flags. */ 2150 1.117 tsutsui mapflags = (pa & ~MMU_PAGE_MASK); 2151 1.117 tsutsui if ((mapflags & PMAP_NC) != 0) 2152 1.117 tsutsui flags |= PMAP_NOCACHE; 2153 1.69 chs 2154 1.69 chs /* This array is traditionally named "Sysmap" */ 2155 1.111 tsutsui pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE3X)]; 2156 1.69 chs 2157 1.69 chs KASSERT(!MMU_VALID_DT(*pte)); 2158 1.69 chs pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK); 2159 1.69 chs if (!(prot & VM_PROT_WRITE)) 2160 1.69 chs pte->attr.raw |= MMU_SHORT_PTE_WP; 2161 1.117 tsutsui if ((flags & PMAP_NOCACHE) != 0) 2162 1.117 tsutsui pte->attr.raw |= MMU_SHORT_PTE_CI; 2163 1.49 chs } 2164 1.49 chs 2165 1.113 tsutsui void 2166 1.86 chs pmap_kremove(vaddr_t va, vsize_t len) 2167 1.49 chs { 2168 1.69 chs int idx, eidx; 2169 1.69 chs 2170 1.69 chs #ifdef PMAP_DEBUG 2171 1.91 tsutsui if ((va & PGOFSET) || (len & PGOFSET)) 2172 1.72 tsutsui panic("pmap_kremove: alignment"); 2173 1.69 chs #endif 2174 1.69 chs 2175 1.111 tsutsui idx = m68k_btop(va - KERNBASE3X); 2176 1.111 tsutsui eidx = m68k_btop(va + len - KERNBASE3X); 2177 1.69 chs 2178 1.69 chs while (idx < eidx) { 2179 1.69 chs kernCbase[idx++].attr.raw = MMU_DT_INVALID; 2180 1.69 chs TBIS(va); 2181 1.79 thorpej va += PAGE_SIZE; 2182 1.49 chs } 2183 1.49 chs } 2184 1.49 chs 2185 1.35 jeremy /* pmap_map INTERNAL 2186 1.35 jeremy ** 2187 1.35 jeremy * Map a contiguous range of physical memory into a contiguous range of 2188 1.35 jeremy * the kernel virtual address space. 2189 1.35 jeremy * 2190 1.35 jeremy * Used for device mappings and early mapping of the kernel text/data/bss. 2191 1.35 jeremy * Returns the first virtual address beyond the end of the range. 2192 1.34 gwr */ 2193 1.113 tsutsui vaddr_t 2194 1.86 chs pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot) 2195 1.34 gwr { 2196 1.34 gwr int sz; 2197 1.34 gwr 2198 1.34 gwr sz = endpa - pa; 2199 1.34 gwr do { 2200 1.34 gwr pmap_enter_kernel(va, pa, prot); 2201 1.79 thorpej va += PAGE_SIZE; 2202 1.79 thorpej pa += PAGE_SIZE; 2203 1.79 thorpej sz -= PAGE_SIZE; 2204 1.34 gwr } while (sz > 0); 2205 1.73 chris pmap_update(pmap_kernel()); 2206 1.92 tsutsui return va; 2207 1.92 tsutsui } 2208 1.92 tsutsui 2209 1.92 tsutsui /* pmap_protect_kernel INTERNAL 2210 1.92 tsutsui ** 2211 1.92 tsutsui * Apply the given protection code to a kernel address range. 2212 1.92 tsutsui */ 2213 1.113 tsutsui static INLINE void 2214 1.92 tsutsui pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot) 2215 1.92 tsutsui { 2216 1.92 tsutsui vaddr_t va; 2217 1.92 tsutsui mmu_short_pte_t *pte; 2218 1.92 tsutsui 2219 1.111 tsutsui pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE3X)]; 2220 1.92 tsutsui for (va = startva; va < endva; va += PAGE_SIZE, pte++) { 2221 1.92 tsutsui if (MMU_VALID_DT(*pte)) { 2222 1.92 tsutsui switch (prot) { 2223 1.92 tsutsui case VM_PROT_ALL: 2224 1.92 tsutsui break; 2225 1.92 tsutsui case VM_PROT_EXECUTE: 2226 1.92 tsutsui case VM_PROT_READ: 2227 1.92 tsutsui case VM_PROT_READ|VM_PROT_EXECUTE: 2228 1.92 tsutsui pte->attr.raw |= MMU_SHORT_PTE_WP; 2229 1.92 tsutsui break; 2230 1.92 tsutsui case VM_PROT_NONE: 2231 1.92 tsutsui /* this is an alias for 'pmap_remove_kernel' */ 2232 1.92 tsutsui pmap_remove_pte(pte); 2233 1.92 tsutsui break; 2234 1.92 tsutsui default: 2235 1.92 tsutsui break; 2236 1.92 tsutsui } 2237 1.92 tsutsui /* 2238 1.92 tsutsui * since this is the kernel, immediately flush any cached 2239 1.92 tsutsui * descriptors for this address. 2240 1.92 tsutsui */ 2241 1.92 tsutsui TBIS(va); 2242 1.92 tsutsui } 2243 1.92 tsutsui } 2244 1.1 gwr } 2245 1.1 gwr 2246 1.1 gwr /* pmap_protect INTERFACE 2247 1.1 gwr ** 2248 1.7 gwr * Apply the given protection to the given virtual address range within 2249 1.1 gwr * the given map. 2250 1.1 gwr * 2251 1.1 gwr * It is ok for the protection applied to be stronger than what is 2252 1.1 gwr * specified. We use this to our advantage when the given map has no 2253 1.7 gwr * mapping for the virtual address. By skipping a page when this 2254 1.1 gwr * is discovered, we are effectively applying a protection of VM_PROT_NONE, 2255 1.1 gwr * and therefore do not need to map the page just to apply a protection 2256 1.1 gwr * code. Only pmap_enter() needs to create new mappings if they do not exist. 2257 1.7 gwr * 2258 1.121 andvar * XXX - This function could be speeded up by using pmap_stroll() for initial 2259 1.7 gwr * setup, and then manual scrolling in the for() loop. 2260 1.1 gwr */ 2261 1.113 tsutsui void 2262 1.86 chs pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot) 2263 1.1 gwr { 2264 1.94 thorpej bool iscurpmap; 2265 1.1 gwr int a_idx, b_idx, c_idx; 2266 1.1 gwr a_tmgr_t *a_tbl; 2267 1.1 gwr b_tmgr_t *b_tbl; 2268 1.1 gwr c_tmgr_t *c_tbl; 2269 1.1 gwr mmu_short_pte_t *pte; 2270 1.1 gwr 2271 1.1 gwr if (pmap == pmap_kernel()) { 2272 1.7 gwr pmap_protect_kernel(startva, endva, prot); 2273 1.1 gwr return; 2274 1.1 gwr } 2275 1.1 gwr 2276 1.11 jeremy /* 2277 1.12 jeremy * In this particular pmap implementation, there are only three 2278 1.12 jeremy * types of memory protection: 'all' (read/write/execute), 2279 1.12 jeremy * 'read-only' (read/execute) and 'none' (no mapping.) 2280 1.12 jeremy * It is not possible for us to treat 'executable' as a separate 2281 1.12 jeremy * protection type. Therefore, protection requests that seek to 2282 1.12 jeremy * remove execute permission while retaining read or write, and those 2283 1.12 jeremy * that make little sense (write-only for example) are ignored. 2284 1.11 jeremy */ 2285 1.12 jeremy switch (prot) { 2286 1.12 jeremy case VM_PROT_NONE: 2287 1.12 jeremy /* 2288 1.12 jeremy * A request to apply the protection code of 2289 1.12 jeremy * 'VM_PROT_NONE' is a synonym for pmap_remove(). 2290 1.12 jeremy */ 2291 1.12 jeremy pmap_remove(pmap, startva, endva); 2292 1.12 jeremy return; 2293 1.12 jeremy case VM_PROT_EXECUTE: 2294 1.12 jeremy case VM_PROT_READ: 2295 1.12 jeremy case VM_PROT_READ|VM_PROT_EXECUTE: 2296 1.12 jeremy /* continue */ 2297 1.12 jeremy break; 2298 1.12 jeremy case VM_PROT_WRITE: 2299 1.12 jeremy case VM_PROT_WRITE|VM_PROT_READ: 2300 1.12 jeremy case VM_PROT_WRITE|VM_PROT_EXECUTE: 2301 1.12 jeremy case VM_PROT_ALL: 2302 1.12 jeremy /* None of these should happen in a sane system. */ 2303 1.12 jeremy return; 2304 1.11 jeremy } 2305 1.11 jeremy 2306 1.11 jeremy /* 2307 1.11 jeremy * If the pmap has no A table, it has no mappings and therefore 2308 1.11 jeremy * there is nothing to protect. 2309 1.11 jeremy */ 2310 1.11 jeremy if ((a_tbl = pmap->pm_a_tmgr) == NULL) 2311 1.11 jeremy return; 2312 1.11 jeremy 2313 1.11 jeremy a_idx = MMU_TIA(startva); 2314 1.11 jeremy b_idx = MMU_TIB(startva); 2315 1.11 jeremy c_idx = MMU_TIC(startva); 2316 1.90 skrll b_tbl = NULL; 2317 1.90 skrll c_tbl = NULL; 2318 1.11 jeremy 2319 1.7 gwr iscurpmap = (pmap == current_pmap()); 2320 1.11 jeremy while (startva < endva) { 2321 1.11 jeremy if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) { 2322 1.11 jeremy if (b_tbl == NULL) { 2323 1.11 jeremy b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw; 2324 1.69 chs b_tbl = mmu_ptov((vaddr_t)b_tbl); 2325 1.69 chs b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl); 2326 1.11 jeremy } 2327 1.11 jeremy if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) { 2328 1.11 jeremy if (c_tbl == NULL) { 2329 1.11 jeremy c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]); 2330 1.69 chs c_tbl = mmu_ptov((vaddr_t)c_tbl); 2331 1.69 chs c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl); 2332 1.11 jeremy } 2333 1.11 jeremy if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) { 2334 1.11 jeremy pte = &c_tbl->ct_dtbl[c_idx]; 2335 1.12 jeremy /* make the mapping read-only */ 2336 1.12 jeremy pte->attr.raw |= MMU_SHORT_PTE_WP; 2337 1.11 jeremy /* 2338 1.11 jeremy * If we just modified the current address space, 2339 1.11 jeremy * flush any translations for the modified page from 2340 1.11 jeremy * the translation cache and any data from it in the 2341 1.11 jeremy * data cache. 2342 1.11 jeremy */ 2343 1.11 jeremy if (iscurpmap) 2344 1.11 jeremy TBIS(startva); 2345 1.11 jeremy } 2346 1.79 thorpej startva += PAGE_SIZE; 2347 1.1 gwr 2348 1.11 jeremy if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */ 2349 1.11 jeremy c_tbl = NULL; 2350 1.11 jeremy c_idx = 0; 2351 1.11 jeremy if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */ 2352 1.11 jeremy b_tbl = NULL; 2353 1.11 jeremy b_idx = 0; 2354 1.11 jeremy } 2355 1.11 jeremy } 2356 1.11 jeremy } else { /* C table wasn't valid */ 2357 1.11 jeremy c_tbl = NULL; 2358 1.11 jeremy c_idx = 0; 2359 1.11 jeremy startva += MMU_TIB_RANGE; 2360 1.11 jeremy if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */ 2361 1.11 jeremy b_tbl = NULL; 2362 1.11 jeremy b_idx = 0; 2363 1.11 jeremy } 2364 1.11 jeremy } /* C table */ 2365 1.11 jeremy } else { /* B table wasn't valid */ 2366 1.11 jeremy b_tbl = NULL; 2367 1.11 jeremy b_idx = 0; 2368 1.11 jeremy startva += MMU_TIA_RANGE; 2369 1.11 jeremy a_idx++; 2370 1.11 jeremy } /* B table */ 2371 1.1 gwr } 2372 1.1 gwr } 2373 1.1 gwr 2374 1.47 thorpej /* pmap_unwire INTERFACE 2375 1.1 gwr ** 2376 1.47 thorpej * Clear the wired attribute of the specified page. 2377 1.1 gwr * 2378 1.1 gwr * This function is called from vm_fault.c to unwire 2379 1.47 thorpej * a mapping. 2380 1.1 gwr */ 2381 1.113 tsutsui void 2382 1.86 chs pmap_unwire(pmap_t pmap, vaddr_t va) 2383 1.1 gwr { 2384 1.1 gwr int a_idx, b_idx, c_idx; 2385 1.1 gwr a_tmgr_t *a_tbl; 2386 1.1 gwr b_tmgr_t *b_tbl; 2387 1.1 gwr c_tmgr_t *c_tbl; 2388 1.1 gwr mmu_short_pte_t *pte; 2389 1.113 tsutsui 2390 1.1 gwr /* Kernel mappings always remain wired. */ 2391 1.1 gwr if (pmap == pmap_kernel()) 2392 1.1 gwr return; 2393 1.1 gwr 2394 1.7 gwr /* 2395 1.7 gwr * Walk through the tables. If the walk terminates without 2396 1.1 gwr * a valid PTE then the address wasn't wired in the first place. 2397 1.1 gwr * Return immediately. 2398 1.1 gwr */ 2399 1.1 gwr if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx, 2400 1.95 thorpej &b_idx, &c_idx) == false) 2401 1.1 gwr return; 2402 1.1 gwr 2403 1.1 gwr 2404 1.1 gwr /* Is the PTE wired? If not, return. */ 2405 1.1 gwr if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED)) 2406 1.1 gwr return; 2407 1.1 gwr 2408 1.1 gwr /* Remove the wiring bit. */ 2409 1.1 gwr pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED); 2410 1.1 gwr 2411 1.7 gwr /* 2412 1.7 gwr * Decrement the wired entry count in the C table. 2413 1.1 gwr * If it reaches zero the following things happen: 2414 1.113 tsutsui * 1. The table no longer has any wired entries and is considered 2415 1.1 gwr * unwired. 2416 1.1 gwr * 2. It is placed on the available queue. 2417 1.1 gwr * 3. The parent table's wired entry count is decremented. 2418 1.1 gwr * 4. If it reaches zero, this process repeats at step 1 and 2419 1.1 gwr * stops at after reaching the A table. 2420 1.1 gwr */ 2421 1.7 gwr if (--c_tbl->ct_wcnt == 0) { 2422 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 2423 1.7 gwr if (--b_tbl->bt_wcnt == 0) { 2424 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 2425 1.7 gwr if (--a_tbl->at_wcnt == 0) { 2426 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 2427 1.1 gwr } 2428 1.1 gwr } 2429 1.1 gwr } 2430 1.1 gwr } 2431 1.1 gwr 2432 1.1 gwr /* pmap_copy INTERFACE 2433 1.1 gwr ** 2434 1.1 gwr * Copy the mappings of a range of addresses in one pmap, into 2435 1.1 gwr * the destination address of another. 2436 1.1 gwr * 2437 1.1 gwr * This routine is advisory. Should we one day decide that MMU tables 2438 1.1 gwr * may be shared by more than one pmap, this function should be used to 2439 1.1 gwr * link them together. Until that day however, we do nothing. 2440 1.1 gwr */ 2441 1.1 gwr void 2442 1.86 chs pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src) 2443 1.1 gwr { 2444 1.92 tsutsui 2445 1.1 gwr /* not implemented. */ 2446 1.1 gwr } 2447 1.1 gwr 2448 1.1 gwr /* pmap_copy_page INTERFACE 2449 1.1 gwr ** 2450 1.1 gwr * Copy the contents of one physical page into another. 2451 1.1 gwr * 2452 1.7 gwr * This function makes use of two virtual pages allocated in pmap_bootstrap() 2453 1.24 jeremy * to map the two specified physical pages into the kernel address space. 2454 1.7 gwr * 2455 1.7 gwr * Note: We could use the transparent translation registers to make the 2456 1.7 gwr * mappings. If we do so, be sure to disable interrupts before using them. 2457 1.1 gwr */ 2458 1.113 tsutsui void 2459 1.86 chs pmap_copy_page(paddr_t srcpa, paddr_t dstpa) 2460 1.1 gwr { 2461 1.69 chs vaddr_t srcva, dstva; 2462 1.23 jeremy int s; 2463 1.24 jeremy 2464 1.24 jeremy srcva = tmp_vpages[0]; 2465 1.24 jeremy dstva = tmp_vpages[1]; 2466 1.1 gwr 2467 1.58 thorpej s = splvm(); 2468 1.69 chs #ifdef DIAGNOSTIC 2469 1.24 jeremy if (tmp_vpages_inuse++) 2470 1.24 jeremy panic("pmap_copy_page: temporary vpages are in use."); 2471 1.69 chs #endif 2472 1.23 jeremy 2473 1.23 jeremy /* Map pages as non-cacheable to avoid cache polution? */ 2474 1.108 cegger pmap_kenter_pa(srcva, srcpa, VM_PROT_READ, 0); 2475 1.108 cegger pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0); 2476 1.7 gwr 2477 1.105 tsutsui /* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */ 2478 1.92 tsutsui copypage((char *)srcva, (char *)dstva); 2479 1.24 jeremy 2480 1.79 thorpej pmap_kremove(srcva, PAGE_SIZE); 2481 1.79 thorpej pmap_kremove(dstva, PAGE_SIZE); 2482 1.24 jeremy 2483 1.69 chs #ifdef DIAGNOSTIC 2484 1.24 jeremy --tmp_vpages_inuse; 2485 1.69 chs #endif 2486 1.23 jeremy splx(s); 2487 1.1 gwr } 2488 1.1 gwr 2489 1.1 gwr /* pmap_zero_page INTERFACE 2490 1.1 gwr ** 2491 1.1 gwr * Zero the contents of the specified physical page. 2492 1.1 gwr * 2493 1.115 skrll * Uses one of the virtual pages allocated in pmap_bootstrap() 2494 1.24 jeremy * to map the specified page into the kernel address space. 2495 1.1 gwr */ 2496 1.113 tsutsui void 2497 1.86 chs pmap_zero_page(paddr_t dstpa) 2498 1.1 gwr { 2499 1.69 chs vaddr_t dstva; 2500 1.23 jeremy int s; 2501 1.23 jeremy 2502 1.24 jeremy dstva = tmp_vpages[1]; 2503 1.58 thorpej s = splvm(); 2504 1.69 chs #ifdef DIAGNOSTIC 2505 1.26 jeremy if (tmp_vpages_inuse++) 2506 1.24 jeremy panic("pmap_zero_page: temporary vpages are in use."); 2507 1.69 chs #endif 2508 1.24 jeremy 2509 1.24 jeremy /* The comments in pmap_copy_page() above apply here also. */ 2510 1.108 cegger pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0); 2511 1.24 jeremy 2512 1.102 cegger /* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */ 2513 1.92 tsutsui zeropage((char *)dstva); 2514 1.1 gwr 2515 1.79 thorpej pmap_kremove(dstva, PAGE_SIZE); 2516 1.69 chs #ifdef DIAGNOSTIC 2517 1.24 jeremy --tmp_vpages_inuse; 2518 1.69 chs #endif 2519 1.23 jeremy splx(s); 2520 1.1 gwr } 2521 1.1 gwr 2522 1.92 tsutsui /* pmap_pinit INTERNAL 2523 1.92 tsutsui ** 2524 1.92 tsutsui * Initialize a pmap structure. 2525 1.92 tsutsui */ 2526 1.113 tsutsui static INLINE void 2527 1.92 tsutsui pmap_pinit(pmap_t pmap) 2528 1.92 tsutsui { 2529 1.92 tsutsui 2530 1.92 tsutsui memset(pmap, 0, sizeof(struct pmap)); 2531 1.92 tsutsui pmap->pm_a_tmgr = NULL; 2532 1.92 tsutsui pmap->pm_a_phys = kernAphys; 2533 1.92 tsutsui pmap->pm_refcount = 1; 2534 1.92 tsutsui } 2535 1.92 tsutsui 2536 1.1 gwr /* pmap_create INTERFACE 2537 1.1 gwr ** 2538 1.1 gwr * Create and return a pmap structure. 2539 1.1 gwr */ 2540 1.113 tsutsui pmap_t 2541 1.86 chs pmap_create(void) 2542 1.1 gwr { 2543 1.1 gwr pmap_t pmap; 2544 1.1 gwr 2545 1.56 tsutsui pmap = pool_get(&pmap_pmap_pool, PR_WAITOK); 2546 1.1 gwr pmap_pinit(pmap); 2547 1.1 gwr return pmap; 2548 1.1 gwr } 2549 1.1 gwr 2550 1.92 tsutsui /* pmap_release INTERNAL 2551 1.1 gwr ** 2552 1.1 gwr * Release any resources held by the given pmap. 2553 1.1 gwr * 2554 1.1 gwr * This is the reverse analog to pmap_pinit. It does not 2555 1.1 gwr * necessarily mean for the pmap structure to be deallocated, 2556 1.1 gwr * as in pmap_destroy. 2557 1.1 gwr */ 2558 1.113 tsutsui static INLINE void 2559 1.86 chs pmap_release(pmap_t pmap) 2560 1.1 gwr { 2561 1.92 tsutsui 2562 1.7 gwr /* 2563 1.7 gwr * As long as the pmap contains no mappings, 2564 1.1 gwr * which always should be the case whenever 2565 1.1 gwr * this function is called, there really should 2566 1.1 gwr * be nothing to do. 2567 1.1 gwr */ 2568 1.1 gwr #ifdef PMAP_DEBUG 2569 1.1 gwr if (pmap == pmap_kernel()) 2570 1.9 gwr panic("pmap_release: kernel pmap"); 2571 1.1 gwr #endif 2572 1.9 gwr /* 2573 1.9 gwr * XXX - If this pmap has an A table, give it back. 2574 1.9 gwr * The pmap SHOULD be empty by now, and pmap_remove 2575 1.9 gwr * should have already given back the A table... 2576 1.9 gwr * However, I see: pmap->pm_a_tmgr->at_ecnt == 1 2577 1.9 gwr * at this point, which means some mapping was not 2578 1.9 gwr * removed when it should have been. -gwr 2579 1.9 gwr */ 2580 1.7 gwr if (pmap->pm_a_tmgr != NULL) { 2581 1.9 gwr /* First make sure we are not using it! */ 2582 1.9 gwr if (kernel_crp.rp_addr == pmap->pm_a_phys) { 2583 1.9 gwr kernel_crp.rp_addr = kernAphys; 2584 1.9 gwr loadcrp(&kernel_crp); 2585 1.9 gwr } 2586 1.13 gwr #ifdef PMAP_DEBUG /* XXX - todo! */ 2587 1.13 gwr /* XXX - Now complain... */ 2588 1.13 gwr printf("pmap_release: still have table\n"); 2589 1.13 gwr Debugger(); 2590 1.13 gwr #endif 2591 1.95 thorpej free_a_table(pmap->pm_a_tmgr, true); 2592 1.7 gwr pmap->pm_a_tmgr = NULL; 2593 1.7 gwr pmap->pm_a_phys = kernAphys; 2594 1.7 gwr } 2595 1.1 gwr } 2596 1.1 gwr 2597 1.1 gwr /* pmap_reference INTERFACE 2598 1.1 gwr ** 2599 1.1 gwr * Increment the reference count of a pmap. 2600 1.1 gwr */ 2601 1.113 tsutsui void 2602 1.86 chs pmap_reference(pmap_t pmap) 2603 1.1 gwr { 2604 1.112 tsutsui 2605 1.112 tsutsui atomic_inc_uint(&pmap->pm_refcount); 2606 1.1 gwr } 2607 1.1 gwr 2608 1.1 gwr /* pmap_dereference INTERNAL 2609 1.1 gwr ** 2610 1.1 gwr * Decrease the reference count on the given pmap 2611 1.1 gwr * by one and return the current count. 2612 1.1 gwr */ 2613 1.113 tsutsui static INLINE int 2614 1.86 chs pmap_dereference(pmap_t pmap) 2615 1.1 gwr { 2616 1.1 gwr int rtn; 2617 1.1 gwr 2618 1.112 tsutsui rtn = atomic_dec_uint_nv(&pmap->pm_refcount); 2619 1.1 gwr 2620 1.1 gwr return rtn; 2621 1.1 gwr } 2622 1.113 tsutsui 2623 1.1 gwr /* pmap_destroy INTERFACE 2624 1.1 gwr ** 2625 1.1 gwr * Decrement a pmap's reference count and delete 2626 1.1 gwr * the pmap if it becomes zero. Will be called 2627 1.1 gwr * only after all mappings have been removed. 2628 1.1 gwr */ 2629 1.113 tsutsui void 2630 1.86 chs pmap_destroy(pmap_t pmap) 2631 1.1 gwr { 2632 1.92 tsutsui 2633 1.1 gwr if (pmap_dereference(pmap) == 0) { 2634 1.1 gwr pmap_release(pmap); 2635 1.56 tsutsui pool_put(&pmap_pmap_pool, pmap); 2636 1.1 gwr } 2637 1.1 gwr } 2638 1.1 gwr 2639 1.1 gwr /* pmap_is_referenced INTERFACE 2640 1.1 gwr ** 2641 1.1 gwr * Determine if the given physical page has been 2642 1.1 gwr * referenced (read from [or written to.]) 2643 1.1 gwr */ 2644 1.94 thorpej bool 2645 1.86 chs pmap_is_referenced(struct vm_page *pg) 2646 1.1 gwr { 2647 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg); 2648 1.1 gwr pv_t *pv; 2649 1.69 chs int idx; 2650 1.1 gwr 2651 1.7 gwr /* 2652 1.7 gwr * Check the flags on the pv head. If they are set, 2653 1.1 gwr * return immediately. Otherwise a search must be done. 2654 1.7 gwr */ 2655 1.69 chs 2656 1.69 chs pv = pa2pv(pa); 2657 1.1 gwr if (pv->pv_flags & PV_FLAGS_USED) 2658 1.95 thorpej return true; 2659 1.32 gwr 2660 1.32 gwr /* 2661 1.32 gwr * Search through all pv elements pointing 2662 1.32 gwr * to this page and query their reference bits 2663 1.32 gwr */ 2664 1.32 gwr 2665 1.69 chs for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2666 1.32 gwr if (MMU_PTE_USED(kernCbase[idx])) { 2667 1.95 thorpej return true; 2668 1.32 gwr } 2669 1.7 gwr } 2670 1.95 thorpej return false; 2671 1.1 gwr } 2672 1.1 gwr 2673 1.1 gwr /* pmap_is_modified INTERFACE 2674 1.1 gwr ** 2675 1.1 gwr * Determine if the given physical page has been 2676 1.1 gwr * modified (written to.) 2677 1.1 gwr */ 2678 1.94 thorpej bool 2679 1.86 chs pmap_is_modified(struct vm_page *pg) 2680 1.1 gwr { 2681 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg); 2682 1.1 gwr pv_t *pv; 2683 1.69 chs int idx; 2684 1.1 gwr 2685 1.1 gwr /* see comments in pmap_is_referenced() */ 2686 1.1 gwr pv = pa2pv(pa); 2687 1.32 gwr if (pv->pv_flags & PV_FLAGS_MDFY) 2688 1.95 thorpej return true; 2689 1.32 gwr 2690 1.32 gwr for (idx = pv->pv_idx; 2691 1.32 gwr idx != PVE_EOL; 2692 1.32 gwr idx = pvebase[idx].pve_next) { 2693 1.32 gwr 2694 1.32 gwr if (MMU_PTE_MODIFIED(kernCbase[idx])) { 2695 1.95 thorpej return true; 2696 1.32 gwr } 2697 1.7 gwr } 2698 1.7 gwr 2699 1.95 thorpej return false; 2700 1.1 gwr } 2701 1.1 gwr 2702 1.1 gwr /* pmap_page_protect INTERFACE 2703 1.1 gwr ** 2704 1.1 gwr * Applies the given protection to all mappings to the given 2705 1.1 gwr * physical page. 2706 1.1 gwr */ 2707 1.113 tsutsui void 2708 1.86 chs pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 2709 1.1 gwr { 2710 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg); 2711 1.1 gwr pv_t *pv; 2712 1.69 chs int idx; 2713 1.69 chs vaddr_t va; 2714 1.1 gwr struct mmu_short_pte_struct *pte; 2715 1.8 gwr c_tmgr_t *c_tbl; 2716 1.8 gwr pmap_t pmap, curpmap; 2717 1.1 gwr 2718 1.8 gwr curpmap = current_pmap(); 2719 1.1 gwr pv = pa2pv(pa); 2720 1.32 gwr 2721 1.69 chs for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2722 1.7 gwr pte = &kernCbase[idx]; 2723 1.1 gwr switch (prot) { 2724 1.1 gwr case VM_PROT_ALL: 2725 1.1 gwr /* do nothing */ 2726 1.1 gwr break; 2727 1.7 gwr case VM_PROT_EXECUTE: 2728 1.1 gwr case VM_PROT_READ: 2729 1.1 gwr case VM_PROT_READ|VM_PROT_EXECUTE: 2730 1.8 gwr /* 2731 1.8 gwr * Determine the virtual address mapped by 2732 1.8 gwr * the PTE and flush ATC entries if necessary. 2733 1.8 gwr */ 2734 1.8 gwr va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2735 1.69 chs pte->attr.raw |= MMU_SHORT_PTE_WP; 2736 1.8 gwr if (pmap == curpmap || pmap == pmap_kernel()) 2737 1.8 gwr TBIS(va); 2738 1.1 gwr break; 2739 1.1 gwr case VM_PROT_NONE: 2740 1.7 gwr /* Save the mod/ref bits. */ 2741 1.7 gwr pv->pv_flags |= pte->attr.raw; 2742 1.7 gwr /* Invalidate the PTE. */ 2743 1.7 gwr pte->attr.raw = MMU_DT_INVALID; 2744 1.8 gwr 2745 1.8 gwr /* 2746 1.8 gwr * Update table counts. And flush ATC entries 2747 1.8 gwr * if necessary. 2748 1.8 gwr */ 2749 1.8 gwr va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2750 1.8 gwr 2751 1.8 gwr /* 2752 1.8 gwr * If the PTE belongs to the kernel map, 2753 1.8 gwr * be sure to flush the page it maps. 2754 1.8 gwr */ 2755 1.8 gwr if (pmap == pmap_kernel()) { 2756 1.8 gwr TBIS(va); 2757 1.8 gwr } else { 2758 1.8 gwr /* 2759 1.8 gwr * The PTE belongs to a user map. 2760 1.8 gwr * update the entry count in the C 2761 1.8 gwr * table to which it belongs and flush 2762 1.8 gwr * the ATC if the mapping belongs to 2763 1.8 gwr * the current pmap. 2764 1.8 gwr */ 2765 1.8 gwr c_tbl->ct_ecnt--; 2766 1.8 gwr if (pmap == curpmap) 2767 1.8 gwr TBIS(va); 2768 1.8 gwr } 2769 1.1 gwr break; 2770 1.1 gwr default: 2771 1.1 gwr break; 2772 1.1 gwr } 2773 1.1 gwr } 2774 1.8 gwr 2775 1.8 gwr /* 2776 1.8 gwr * If the protection code indicates that all mappings to the page 2777 1.8 gwr * be removed, truncate the PV list to zero entries. 2778 1.8 gwr */ 2779 1.7 gwr if (prot == VM_PROT_NONE) 2780 1.7 gwr pv->pv_idx = PVE_EOL; 2781 1.1 gwr } 2782 1.1 gwr 2783 1.7 gwr /* pmap_get_pteinfo INTERNAL 2784 1.1 gwr ** 2785 1.7 gwr * Called internally to find the pmap and virtual address within that 2786 1.8 gwr * map to which the pte at the given index maps. Also includes the PTE's C 2787 1.8 gwr * table manager. 2788 1.1 gwr * 2789 1.7 gwr * Returns the pmap in the argument provided, and the virtual address 2790 1.7 gwr * by return value. 2791 1.1 gwr */ 2792 1.113 tsutsui vaddr_t 2793 1.86 chs pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl) 2794 1.1 gwr { 2795 1.69 chs vaddr_t va = 0; 2796 1.1 gwr 2797 1.7 gwr /* 2798 1.7 gwr * Determine if the PTE is a kernel PTE or a user PTE. 2799 1.1 gwr */ 2800 1.8 gwr if (idx >= NUM_KERN_PTES) { 2801 1.7 gwr /* 2802 1.7 gwr * The PTE belongs to a user mapping. 2803 1.7 gwr */ 2804 1.8 gwr /* XXX: Would like an inline for this to validate idx... */ 2805 1.26 jeremy *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE]; 2806 1.26 jeremy 2807 1.26 jeremy *pmap = (*tbl)->ct_pmap; 2808 1.26 jeremy /* 2809 1.26 jeremy * To find the va to which the PTE maps, we first take 2810 1.26 jeremy * the table's base virtual address mapping which is stored 2811 1.26 jeremy * in ct_va. We then increment this address by a page for 2812 1.26 jeremy * every slot skipped until we reach the PTE. 2813 1.26 jeremy */ 2814 1.92 tsutsui va = (*tbl)->ct_va; 2815 1.26 jeremy va += m68k_ptob(idx % MMU_C_TBL_SIZE); 2816 1.7 gwr } else { 2817 1.7 gwr /* 2818 1.7 gwr * The PTE belongs to the kernel map. 2819 1.7 gwr */ 2820 1.8 gwr *pmap = pmap_kernel(); 2821 1.8 gwr 2822 1.25 veego va = m68k_ptob(idx); 2823 1.111 tsutsui va += KERNBASE3X; 2824 1.7 gwr } 2825 1.113 tsutsui 2826 1.1 gwr return va; 2827 1.1 gwr } 2828 1.1 gwr 2829 1.1 gwr /* pmap_clear_modify INTERFACE 2830 1.1 gwr ** 2831 1.1 gwr * Clear the modification bit on the page at the specified 2832 1.1 gwr * physical address. 2833 1.1 gwr * 2834 1.1 gwr */ 2835 1.94 thorpej bool 2836 1.86 chs pmap_clear_modify(struct vm_page *pg) 2837 1.1 gwr { 2838 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg); 2839 1.94 thorpej bool rv; 2840 1.49 chs 2841 1.49 chs rv = pmap_is_modified(pg); 2842 1.1 gwr pmap_clear_pv(pa, PV_FLAGS_MDFY); 2843 1.49 chs return rv; 2844 1.1 gwr } 2845 1.1 gwr 2846 1.1 gwr /* pmap_clear_reference INTERFACE 2847 1.1 gwr ** 2848 1.1 gwr * Clear the referenced bit on the page at the specified 2849 1.1 gwr * physical address. 2850 1.1 gwr */ 2851 1.94 thorpej bool 2852 1.86 chs pmap_clear_reference(struct vm_page *pg) 2853 1.1 gwr { 2854 1.49 chs paddr_t pa = VM_PAGE_TO_PHYS(pg); 2855 1.94 thorpej bool rv; 2856 1.49 chs 2857 1.49 chs rv = pmap_is_referenced(pg); 2858 1.1 gwr pmap_clear_pv(pa, PV_FLAGS_USED); 2859 1.49 chs return rv; 2860 1.1 gwr } 2861 1.113 tsutsui 2862 1.1 gwr /* pmap_clear_pv INTERNAL 2863 1.1 gwr ** 2864 1.1 gwr * Clears the specified flag from the specified physical address. 2865 1.1 gwr * (Used by pmap_clear_modify() and pmap_clear_reference().) 2866 1.1 gwr * 2867 1.1 gwr * Flag is one of: 2868 1.1 gwr * PV_FLAGS_MDFY - Page modified bit. 2869 1.1 gwr * PV_FLAGS_USED - Page used (referenced) bit. 2870 1.1 gwr * 2871 1.1 gwr * This routine must not only clear the flag on the pv list 2872 1.1 gwr * head. It must also clear the bit on every pte in the pv 2873 1.1 gwr * list associated with the address. 2874 1.1 gwr */ 2875 1.113 tsutsui void 2876 1.86 chs pmap_clear_pv(paddr_t pa, int flag) 2877 1.1 gwr { 2878 1.1 gwr pv_t *pv; 2879 1.69 chs int idx; 2880 1.69 chs vaddr_t va; 2881 1.7 gwr pmap_t pmap; 2882 1.1 gwr mmu_short_pte_t *pte; 2883 1.7 gwr c_tmgr_t *c_tbl; 2884 1.1 gwr 2885 1.1 gwr pv = pa2pv(pa); 2886 1.1 gwr pv->pv_flags &= ~(flag); 2887 1.69 chs for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) { 2888 1.7 gwr pte = &kernCbase[idx]; 2889 1.1 gwr pte->attr.raw &= ~(flag); 2890 1.69 chs 2891 1.7 gwr /* 2892 1.7 gwr * The MC68030 MMU will not set the modified or 2893 1.7 gwr * referenced bits on any MMU tables for which it has 2894 1.7 gwr * a cached descriptor with its modify bit set. To insure 2895 1.7 gwr * that it will modify these bits on the PTE during the next 2896 1.7 gwr * time it is written to or read from, we must flush it from 2897 1.7 gwr * the ATC. 2898 1.7 gwr * 2899 1.7 gwr * Ordinarily it is only necessary to flush the descriptor 2900 1.7 gwr * if it is used in the current address space. But since I 2901 1.7 gwr * am not sure that there will always be a notion of 2902 1.7 gwr * 'the current address space' when this function is called, 2903 1.7 gwr * I will skip the test and always flush the address. It 2904 1.7 gwr * does no harm. 2905 1.7 gwr */ 2906 1.69 chs 2907 1.8 gwr va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 2908 1.7 gwr TBIS(va); 2909 1.1 gwr } 2910 1.1 gwr } 2911 1.1 gwr 2912 1.92 tsutsui /* pmap_extract_kernel INTERNAL 2913 1.92 tsutsui ** 2914 1.92 tsutsui * Extract a translation from the kernel address space. 2915 1.92 tsutsui */ 2916 1.113 tsutsui static INLINE bool 2917 1.92 tsutsui pmap_extract_kernel(vaddr_t va, paddr_t *pap) 2918 1.92 tsutsui { 2919 1.92 tsutsui mmu_short_pte_t *pte; 2920 1.92 tsutsui 2921 1.111 tsutsui pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE3X)]; 2922 1.92 tsutsui if (!MMU_VALID_DT(*pte)) 2923 1.95 thorpej return false; 2924 1.92 tsutsui if (pap != NULL) 2925 1.92 tsutsui *pap = MMU_PTE_PA(*pte); 2926 1.95 thorpej return true; 2927 1.92 tsutsui } 2928 1.92 tsutsui 2929 1.1 gwr /* pmap_extract INTERFACE 2930 1.1 gwr ** 2931 1.1 gwr * Return the physical address mapped by the virtual address 2932 1.48 thorpej * in the specified pmap. 2933 1.1 gwr * 2934 1.1 gwr * Note: this function should also apply an exclusive lock 2935 1.1 gwr * on the pmap system during its duration. 2936 1.1 gwr */ 2937 1.113 tsutsui bool 2938 1.86 chs pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap) 2939 1.1 gwr { 2940 1.1 gwr int a_idx, b_idx, pte_idx; 2941 1.1 gwr a_tmgr_t *a_tbl; 2942 1.1 gwr b_tmgr_t *b_tbl; 2943 1.1 gwr c_tmgr_t *c_tbl; 2944 1.1 gwr mmu_short_pte_t *c_pte; 2945 1.1 gwr 2946 1.1 gwr if (pmap == pmap_kernel()) 2947 1.48 thorpej return pmap_extract_kernel(va, pap); 2948 1.1 gwr 2949 1.1 gwr if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, 2950 1.95 thorpej &c_pte, &a_idx, &b_idx, &pte_idx) == false) 2951 1.95 thorpej return false; 2952 1.1 gwr 2953 1.7 gwr if (!MMU_VALID_DT(*c_pte)) 2954 1.95 thorpej return false; 2955 1.7 gwr 2956 1.48 thorpej if (pap != NULL) 2957 1.48 thorpej *pap = MMU_PTE_PA(*c_pte); 2958 1.95 thorpej return true; 2959 1.1 gwr } 2960 1.1 gwr 2961 1.1 gwr /* pmap_remove_kernel INTERNAL 2962 1.1 gwr ** 2963 1.1 gwr * Remove the mapping of a range of virtual addresses from the kernel map. 2964 1.9 gwr * The arguments are already page-aligned. 2965 1.1 gwr */ 2966 1.113 tsutsui static INLINE void 2967 1.86 chs pmap_remove_kernel(vaddr_t sva, vaddr_t eva) 2968 1.1 gwr { 2969 1.9 gwr int idx, eidx; 2970 1.9 gwr 2971 1.9 gwr #ifdef PMAP_DEBUG 2972 1.9 gwr if ((sva & PGOFSET) || (eva & PGOFSET)) 2973 1.9 gwr panic("pmap_remove_kernel: alignment"); 2974 1.9 gwr #endif 2975 1.1 gwr 2976 1.111 tsutsui idx = m68k_btop(sva - KERNBASE3X); 2977 1.111 tsutsui eidx = m68k_btop(eva - KERNBASE3X); 2978 1.9 gwr 2979 1.24 jeremy while (idx < eidx) { 2980 1.9 gwr pmap_remove_pte(&kernCbase[idx++]); 2981 1.24 jeremy TBIS(sva); 2982 1.79 thorpej sva += PAGE_SIZE; 2983 1.24 jeremy } 2984 1.1 gwr } 2985 1.1 gwr 2986 1.1 gwr /* pmap_remove INTERFACE 2987 1.1 gwr ** 2988 1.1 gwr * Remove the mapping of a range of virtual addresses from the given pmap. 2989 1.7 gwr * 2990 1.1 gwr */ 2991 1.113 tsutsui void 2992 1.88 tsutsui pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva) 2993 1.1 gwr { 2994 1.7 gwr 2995 1.1 gwr if (pmap == pmap_kernel()) { 2996 1.88 tsutsui pmap_remove_kernel(sva, eva); 2997 1.1 gwr return; 2998 1.1 gwr } 2999 1.1 gwr 3000 1.7 gwr /* 3001 1.7 gwr * If the pmap doesn't have an A table of its own, it has no mappings 3002 1.7 gwr * that can be removed. 3003 1.1 gwr */ 3004 1.7 gwr if (pmap->pm_a_tmgr == NULL) 3005 1.7 gwr return; 3006 1.7 gwr 3007 1.7 gwr /* 3008 1.7 gwr * Remove the specified range from the pmap. If the function 3009 1.7 gwr * returns true, the operation removed all the valid mappings 3010 1.7 gwr * in the pmap and freed its A table. If this happened to the 3011 1.7 gwr * currently loaded pmap, the MMU root pointer must be reloaded 3012 1.7 gwr * with the default 'kernel' map. 3013 1.113 tsutsui */ 3014 1.88 tsutsui if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) { 3015 1.9 gwr if (kernel_crp.rp_addr == pmap->pm_a_phys) { 3016 1.9 gwr kernel_crp.rp_addr = kernAphys; 3017 1.9 gwr loadcrp(&kernel_crp); 3018 1.9 gwr /* will do TLB flush below */ 3019 1.9 gwr } 3020 1.7 gwr pmap->pm_a_tmgr = NULL; 3021 1.7 gwr pmap->pm_a_phys = kernAphys; 3022 1.1 gwr } 3023 1.9 gwr 3024 1.9 gwr /* 3025 1.9 gwr * If we just modified the current address space, 3026 1.9 gwr * make sure to flush the MMU cache. 3027 1.9 gwr * 3028 1.120 andvar * XXX - this could be an unnecessarily large flush. 3029 1.9 gwr * XXX - Could decide, based on the size of the VA range 3030 1.9 gwr * to be removed, whether to flush "by pages" or "all". 3031 1.9 gwr */ 3032 1.9 gwr if (pmap == current_pmap()) 3033 1.9 gwr TBIAU(); 3034 1.1 gwr } 3035 1.1 gwr 3036 1.1 gwr /* pmap_remove_a INTERNAL 3037 1.1 gwr ** 3038 1.1 gwr * This is function number one in a set of three that removes a range 3039 1.1 gwr * of memory in the most efficient manner by removing the highest possible 3040 1.1 gwr * tables from the memory space. This particular function attempts to remove 3041 1.1 gwr * as many B tables as it can, delegating the remaining fragmented ranges to 3042 1.1 gwr * pmap_remove_b(). 3043 1.1 gwr * 3044 1.7 gwr * If the removal operation results in an empty A table, the function returns 3045 1.95 thorpej * true. 3046 1.7 gwr * 3047 1.1 gwr * It's ugly but will do for now. 3048 1.1 gwr */ 3049 1.113 tsutsui bool 3050 1.88 tsutsui pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva) 3051 1.1 gwr { 3052 1.94 thorpej bool empty; 3053 1.1 gwr int idx; 3054 1.69 chs vaddr_t nstart, nend; 3055 1.1 gwr b_tmgr_t *b_tbl; 3056 1.1 gwr mmu_long_dte_t *a_dte; 3057 1.1 gwr mmu_short_dte_t *b_dte; 3058 1.91 tsutsui uint8_t at_wired, bt_wired; 3059 1.8 gwr 3060 1.7 gwr /* 3061 1.7 gwr * The following code works with what I call a 'granularity 3062 1.120 andvar * reduction algorithm'. A range of addresses will always have 3063 1.7 gwr * the following properties, which are classified according to 3064 1.7 gwr * how the range relates to the size of the current granularity 3065 1.7 gwr * - an A table entry: 3066 1.7 gwr * 3067 1.7 gwr * 1 2 3 4 3068 1.7 gwr * -+---+---+---+---+---+---+---+- 3069 1.7 gwr * -+---+---+---+---+---+---+---+- 3070 1.7 gwr * 3071 1.7 gwr * A range will always start on a granularity boundary, illustrated 3072 1.7 gwr * by '+' signs in the table above, or it will start at some point 3073 1.120 andvar * in-between a granularity boundary, as illustrated by point 1. 3074 1.7 gwr * The first step in removing a range of addresses is to remove the 3075 1.7 gwr * range between 1 and 2, the nearest granularity boundary. This 3076 1.7 gwr * job is handled by the section of code governed by the 3077 1.7 gwr * 'if (start < nstart)' statement. 3078 1.113 tsutsui * 3079 1.120 andvar * A range will always encompass zero or more integral granules, 3080 1.7 gwr * illustrated by points 2 and 3. Integral granules are easy to 3081 1.7 gwr * remove. The removal of these granules is the second step, and 3082 1.7 gwr * is handled by the code block 'if (nstart < nend)'. 3083 1.7 gwr * 3084 1.7 gwr * Lastly, a range will always end on a granularity boundary, 3085 1.7 gwr * ill. by point 3, or it will fall just beyond one, ill. by point 3086 1.7 gwr * 4. The last step involves removing this range and is handled by 3087 1.7 gwr * the code block 'if (nend < end)'. 3088 1.7 gwr */ 3089 1.88 tsutsui nstart = MMU_ROUND_UP_A(sva); 3090 1.88 tsutsui nend = MMU_ROUND_A(eva); 3091 1.1 gwr 3092 1.91 tsutsui at_wired = a_tbl->at_wcnt; 3093 1.91 tsutsui 3094 1.88 tsutsui if (sva < nstart) { 3095 1.7 gwr /* 3096 1.7 gwr * This block is executed if the range starts between 3097 1.7 gwr * a granularity boundary. 3098 1.7 gwr * 3099 1.7 gwr * First find the DTE which is responsible for mapping 3100 1.7 gwr * the start of the range. 3101 1.7 gwr */ 3102 1.88 tsutsui idx = MMU_TIA(sva); 3103 1.1 gwr a_dte = &a_tbl->at_dtbl[idx]; 3104 1.7 gwr 3105 1.7 gwr /* 3106 1.7 gwr * If the DTE is valid then delegate the removal of the sub 3107 1.7 gwr * range to pmap_remove_b(), which can remove addresses at 3108 1.7 gwr * a finer granularity. 3109 1.7 gwr */ 3110 1.1 gwr if (MMU_VALID_DT(*a_dte)) { 3111 1.7 gwr b_dte = mmu_ptov(a_dte->addr.raw); 3112 1.1 gwr b_tbl = mmuB2tmgr(b_dte); 3113 1.91 tsutsui bt_wired = b_tbl->bt_wcnt; 3114 1.7 gwr 3115 1.7 gwr /* 3116 1.7 gwr * The sub range to be removed starts at the start 3117 1.7 gwr * of the full range we were asked to remove, and ends 3118 1.7 gwr * at the greater of: 3119 1.7 gwr * 1. The end of the full range, -or- 3120 1.7 gwr * 2. The end of the full range, rounded down to the 3121 1.7 gwr * nearest granularity boundary. 3122 1.7 gwr */ 3123 1.88 tsutsui if (eva < nstart) 3124 1.88 tsutsui empty = pmap_remove_b(b_tbl, sva, eva); 3125 1.7 gwr else 3126 1.88 tsutsui empty = pmap_remove_b(b_tbl, sva, nstart); 3127 1.7 gwr 3128 1.7 gwr /* 3129 1.91 tsutsui * If the child table no longer has wired entries, 3130 1.91 tsutsui * decrement wired entry count. 3131 1.91 tsutsui */ 3132 1.91 tsutsui if (bt_wired && b_tbl->bt_wcnt == 0) 3133 1.91 tsutsui a_tbl->at_wcnt--; 3134 1.91 tsutsui 3135 1.91 tsutsui /* 3136 1.7 gwr * If the removal resulted in an empty B table, 3137 1.7 gwr * invalidate the DTE that points to it and decrement 3138 1.7 gwr * the valid entry count of the A table. 3139 1.7 gwr */ 3140 1.7 gwr if (empty) { 3141 1.7 gwr a_dte->attr.raw = MMU_DT_INVALID; 3142 1.7 gwr a_tbl->at_ecnt--; 3143 1.1 gwr } 3144 1.1 gwr } 3145 1.7 gwr /* 3146 1.7 gwr * If the DTE is invalid, the address range is already non- 3147 1.68 wiz * existent and can simply be skipped. 3148 1.7 gwr */ 3149 1.1 gwr } 3150 1.1 gwr if (nstart < nend) { 3151 1.7 gwr /* 3152 1.8 gwr * This block is executed if the range spans a whole number 3153 1.7 gwr * multiple of granules (A table entries.) 3154 1.7 gwr * 3155 1.7 gwr * First find the DTE which is responsible for mapping 3156 1.7 gwr * the start of the first granule involved. 3157 1.7 gwr */ 3158 1.1 gwr idx = MMU_TIA(nstart); 3159 1.1 gwr a_dte = &a_tbl->at_dtbl[idx]; 3160 1.7 gwr 3161 1.7 gwr /* 3162 1.7 gwr * Remove entire sub-granules (B tables) one at a time, 3163 1.7 gwr * until reaching the end of the range. 3164 1.7 gwr */ 3165 1.7 gwr for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE) 3166 1.1 gwr if (MMU_VALID_DT(*a_dte)) { 3167 1.7 gwr /* 3168 1.7 gwr * Find the B table manager for the 3169 1.7 gwr * entry and free it. 3170 1.7 gwr */ 3171 1.7 gwr b_dte = mmu_ptov(a_dte->addr.raw); 3172 1.1 gwr b_tbl = mmuB2tmgr(b_dte); 3173 1.91 tsutsui bt_wired = b_tbl->bt_wcnt; 3174 1.91 tsutsui 3175 1.95 thorpej free_b_table(b_tbl, true); 3176 1.7 gwr 3177 1.7 gwr /* 3178 1.91 tsutsui * All child entries has been removed. 3179 1.91 tsutsui * If there were any wired entries in it, 3180 1.91 tsutsui * decrement wired entry count. 3181 1.91 tsutsui */ 3182 1.91 tsutsui if (bt_wired) 3183 1.91 tsutsui a_tbl->at_wcnt--; 3184 1.91 tsutsui 3185 1.91 tsutsui /* 3186 1.7 gwr * Invalidate the DTE that points to the 3187 1.7 gwr * B table and decrement the valid entry 3188 1.7 gwr * count of the A table. 3189 1.7 gwr */ 3190 1.1 gwr a_dte->attr.raw = MMU_DT_INVALID; 3191 1.1 gwr a_tbl->at_ecnt--; 3192 1.1 gwr } 3193 1.1 gwr } 3194 1.88 tsutsui if (nend < eva) { 3195 1.7 gwr /* 3196 1.7 gwr * This block is executed if the range ends beyond a 3197 1.7 gwr * granularity boundary. 3198 1.7 gwr * 3199 1.7 gwr * First find the DTE which is responsible for mapping 3200 1.7 gwr * the start of the nearest (rounded down) granularity 3201 1.7 gwr * boundary. 3202 1.7 gwr */ 3203 1.1 gwr idx = MMU_TIA(nend); 3204 1.1 gwr a_dte = &a_tbl->at_dtbl[idx]; 3205 1.7 gwr 3206 1.7 gwr /* 3207 1.7 gwr * If the DTE is valid then delegate the removal of the sub 3208 1.7 gwr * range to pmap_remove_b(), which can remove addresses at 3209 1.7 gwr * a finer granularity. 3210 1.7 gwr */ 3211 1.1 gwr if (MMU_VALID_DT(*a_dte)) { 3212 1.7 gwr /* 3213 1.7 gwr * Find the B table manager for the entry 3214 1.7 gwr * and hand it to pmap_remove_b() along with 3215 1.7 gwr * the sub range. 3216 1.7 gwr */ 3217 1.7 gwr b_dte = mmu_ptov(a_dte->addr.raw); 3218 1.1 gwr b_tbl = mmuB2tmgr(b_dte); 3219 1.91 tsutsui bt_wired = b_tbl->bt_wcnt; 3220 1.7 gwr 3221 1.88 tsutsui empty = pmap_remove_b(b_tbl, nend, eva); 3222 1.7 gwr 3223 1.7 gwr /* 3224 1.91 tsutsui * If the child table no longer has wired entries, 3225 1.91 tsutsui * decrement wired entry count. 3226 1.91 tsutsui */ 3227 1.91 tsutsui if (bt_wired && b_tbl->bt_wcnt == 0) 3228 1.91 tsutsui a_tbl->at_wcnt--; 3229 1.91 tsutsui /* 3230 1.7 gwr * If the removal resulted in an empty B table, 3231 1.7 gwr * invalidate the DTE that points to it and decrement 3232 1.7 gwr * the valid entry count of the A table. 3233 1.7 gwr */ 3234 1.7 gwr if (empty) { 3235 1.7 gwr a_dte->attr.raw = MMU_DT_INVALID; 3236 1.7 gwr a_tbl->at_ecnt--; 3237 1.7 gwr } 3238 1.1 gwr } 3239 1.1 gwr } 3240 1.7 gwr 3241 1.7 gwr /* 3242 1.7 gwr * If there are no more entries in the A table, release it 3243 1.95 thorpej * back to the available pool and return true. 3244 1.7 gwr */ 3245 1.7 gwr if (a_tbl->at_ecnt == 0) { 3246 1.91 tsutsui KASSERT(a_tbl->at_wcnt == 0); 3247 1.7 gwr a_tbl->at_parent = NULL; 3248 1.91 tsutsui if (!at_wired) 3249 1.91 tsutsui TAILQ_REMOVE(&a_pool, a_tbl, at_link); 3250 1.7 gwr TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link); 3251 1.95 thorpej empty = true; 3252 1.7 gwr } else { 3253 1.91 tsutsui /* 3254 1.91 tsutsui * If the table doesn't have wired entries any longer 3255 1.91 tsutsui * but still has unwired entries, put it back into 3256 1.91 tsutsui * the available queue. 3257 1.91 tsutsui */ 3258 1.91 tsutsui if (at_wired && a_tbl->at_wcnt == 0) 3259 1.91 tsutsui TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link); 3260 1.95 thorpej empty = false; 3261 1.7 gwr } 3262 1.7 gwr 3263 1.7 gwr return empty; 3264 1.1 gwr } 3265 1.1 gwr 3266 1.1 gwr /* pmap_remove_b INTERNAL 3267 1.1 gwr ** 3268 1.1 gwr * Remove a range of addresses from an address space, trying to remove entire 3269 1.1 gwr * C tables if possible. 3270 1.7 gwr * 3271 1.95 thorpej * If the operation results in an empty B table, the function returns true. 3272 1.1 gwr */ 3273 1.113 tsutsui bool 3274 1.88 tsutsui pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva) 3275 1.1 gwr { 3276 1.94 thorpej bool empty; 3277 1.1 gwr int idx; 3278 1.69 chs vaddr_t nstart, nend, rstart; 3279 1.1 gwr c_tmgr_t *c_tbl; 3280 1.1 gwr mmu_short_dte_t *b_dte; 3281 1.1 gwr mmu_short_pte_t *c_dte; 3282 1.91 tsutsui uint8_t bt_wired, ct_wired; 3283 1.113 tsutsui 3284 1.88 tsutsui nstart = MMU_ROUND_UP_B(sva); 3285 1.88 tsutsui nend = MMU_ROUND_B(eva); 3286 1.1 gwr 3287 1.91 tsutsui bt_wired = b_tbl->bt_wcnt; 3288 1.91 tsutsui 3289 1.88 tsutsui if (sva < nstart) { 3290 1.88 tsutsui idx = MMU_TIB(sva); 3291 1.1 gwr b_dte = &b_tbl->bt_dtbl[idx]; 3292 1.1 gwr if (MMU_VALID_DT(*b_dte)) { 3293 1.7 gwr c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3294 1.1 gwr c_tbl = mmuC2tmgr(c_dte); 3295 1.91 tsutsui ct_wired = c_tbl->ct_wcnt; 3296 1.91 tsutsui 3297 1.88 tsutsui if (eva < nstart) 3298 1.88 tsutsui empty = pmap_remove_c(c_tbl, sva, eva); 3299 1.7 gwr else 3300 1.88 tsutsui empty = pmap_remove_c(c_tbl, sva, nstart); 3301 1.91 tsutsui 3302 1.91 tsutsui /* 3303 1.91 tsutsui * If the child table no longer has wired entries, 3304 1.91 tsutsui * decrement wired entry count. 3305 1.91 tsutsui */ 3306 1.91 tsutsui if (ct_wired && c_tbl->ct_wcnt == 0) 3307 1.91 tsutsui b_tbl->bt_wcnt--; 3308 1.91 tsutsui 3309 1.7 gwr if (empty) { 3310 1.7 gwr b_dte->attr.raw = MMU_DT_INVALID; 3311 1.7 gwr b_tbl->bt_ecnt--; 3312 1.1 gwr } 3313 1.1 gwr } 3314 1.1 gwr } 3315 1.1 gwr if (nstart < nend) { 3316 1.1 gwr idx = MMU_TIB(nstart); 3317 1.1 gwr b_dte = &b_tbl->bt_dtbl[idx]; 3318 1.1 gwr rstart = nstart; 3319 1.1 gwr while (rstart < nend) { 3320 1.1 gwr if (MMU_VALID_DT(*b_dte)) { 3321 1.7 gwr c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3322 1.1 gwr c_tbl = mmuC2tmgr(c_dte); 3323 1.91 tsutsui ct_wired = c_tbl->ct_wcnt; 3324 1.91 tsutsui 3325 1.95 thorpej free_c_table(c_tbl, true); 3326 1.91 tsutsui 3327 1.91 tsutsui /* 3328 1.91 tsutsui * All child entries has been removed. 3329 1.91 tsutsui * If there were any wired entries in it, 3330 1.91 tsutsui * decrement wired entry count. 3331 1.91 tsutsui */ 3332 1.91 tsutsui if (ct_wired) 3333 1.91 tsutsui b_tbl->bt_wcnt--; 3334 1.91 tsutsui 3335 1.1 gwr b_dte->attr.raw = MMU_DT_INVALID; 3336 1.1 gwr b_tbl->bt_ecnt--; 3337 1.1 gwr } 3338 1.1 gwr b_dte++; 3339 1.1 gwr rstart += MMU_TIB_RANGE; 3340 1.1 gwr } 3341 1.1 gwr } 3342 1.88 tsutsui if (nend < eva) { 3343 1.1 gwr idx = MMU_TIB(nend); 3344 1.1 gwr b_dte = &b_tbl->bt_dtbl[idx]; 3345 1.1 gwr if (MMU_VALID_DT(*b_dte)) { 3346 1.7 gwr c_dte = mmu_ptov(MMU_DTE_PA(*b_dte)); 3347 1.1 gwr c_tbl = mmuC2tmgr(c_dte); 3348 1.91 tsutsui ct_wired = c_tbl->ct_wcnt; 3349 1.88 tsutsui empty = pmap_remove_c(c_tbl, nend, eva); 3350 1.91 tsutsui 3351 1.91 tsutsui /* 3352 1.91 tsutsui * If the child table no longer has wired entries, 3353 1.91 tsutsui * decrement wired entry count. 3354 1.91 tsutsui */ 3355 1.91 tsutsui if (ct_wired && c_tbl->ct_wcnt == 0) 3356 1.91 tsutsui b_tbl->bt_wcnt--; 3357 1.91 tsutsui 3358 1.7 gwr if (empty) { 3359 1.7 gwr b_dte->attr.raw = MMU_DT_INVALID; 3360 1.7 gwr b_tbl->bt_ecnt--; 3361 1.7 gwr } 3362 1.1 gwr } 3363 1.1 gwr } 3364 1.7 gwr 3365 1.7 gwr if (b_tbl->bt_ecnt == 0) { 3366 1.91 tsutsui KASSERT(b_tbl->bt_wcnt == 0); 3367 1.7 gwr b_tbl->bt_parent = NULL; 3368 1.91 tsutsui if (!bt_wired) 3369 1.91 tsutsui TAILQ_REMOVE(&b_pool, b_tbl, bt_link); 3370 1.7 gwr TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link); 3371 1.95 thorpej empty = true; 3372 1.7 gwr } else { 3373 1.91 tsutsui /* 3374 1.91 tsutsui * If the table doesn't have wired entries any longer 3375 1.91 tsutsui * but still has unwired entries, put it back into 3376 1.91 tsutsui * the available queue. 3377 1.91 tsutsui */ 3378 1.91 tsutsui if (bt_wired && b_tbl->bt_wcnt == 0) 3379 1.91 tsutsui TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link); 3380 1.91 tsutsui 3381 1.95 thorpej empty = false; 3382 1.7 gwr } 3383 1.7 gwr 3384 1.7 gwr return empty; 3385 1.1 gwr } 3386 1.1 gwr 3387 1.1 gwr /* pmap_remove_c INTERNAL 3388 1.1 gwr ** 3389 1.1 gwr * Remove a range of addresses from the given C table. 3390 1.1 gwr */ 3391 1.113 tsutsui bool 3392 1.88 tsutsui pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva) 3393 1.1 gwr { 3394 1.94 thorpej bool empty; 3395 1.1 gwr int idx; 3396 1.1 gwr mmu_short_pte_t *c_pte; 3397 1.91 tsutsui uint8_t ct_wired; 3398 1.113 tsutsui 3399 1.91 tsutsui ct_wired = c_tbl->ct_wcnt; 3400 1.91 tsutsui 3401 1.88 tsutsui idx = MMU_TIC(sva); 3402 1.1 gwr c_pte = &c_tbl->ct_dtbl[idx]; 3403 1.92 tsutsui for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) { 3404 1.7 gwr if (MMU_VALID_DT(*c_pte)) { 3405 1.91 tsutsui if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) 3406 1.91 tsutsui c_tbl->ct_wcnt--; 3407 1.1 gwr pmap_remove_pte(c_pte); 3408 1.7 gwr c_tbl->ct_ecnt--; 3409 1.7 gwr } 3410 1.1 gwr } 3411 1.7 gwr 3412 1.7 gwr if (c_tbl->ct_ecnt == 0) { 3413 1.91 tsutsui KASSERT(c_tbl->ct_wcnt == 0); 3414 1.7 gwr c_tbl->ct_parent = NULL; 3415 1.91 tsutsui if (!ct_wired) 3416 1.91 tsutsui TAILQ_REMOVE(&c_pool, c_tbl, ct_link); 3417 1.9 gwr TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link); 3418 1.95 thorpej empty = true; 3419 1.9 gwr } else { 3420 1.91 tsutsui /* 3421 1.91 tsutsui * If the table doesn't have wired entries any longer 3422 1.91 tsutsui * but still has unwired entries, put it back into 3423 1.91 tsutsui * the available queue. 3424 1.91 tsutsui */ 3425 1.91 tsutsui if (ct_wired && c_tbl->ct_wcnt == 0) 3426 1.91 tsutsui TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link); 3427 1.95 thorpej empty = false; 3428 1.9 gwr } 3429 1.7 gwr 3430 1.9 gwr return empty; 3431 1.1 gwr } 3432 1.1 gwr 3433 1.1 gwr /* pmap_bootstrap_alloc INTERNAL 3434 1.1 gwr ** 3435 1.1 gwr * Used internally for memory allocation at startup when malloc is not 3436 1.1 gwr * available. This code will fail once it crosses the first memory 3437 1.1 gwr * bank boundary on the 3/80. Hopefully by then however, the VM system 3438 1.1 gwr * will be in charge of allocation. 3439 1.1 gwr */ 3440 1.1 gwr void * 3441 1.86 chs pmap_bootstrap_alloc(int size) 3442 1.1 gwr { 3443 1.1 gwr void *rtn; 3444 1.1 gwr 3445 1.8 gwr #ifdef PMAP_DEBUG 3446 1.95 thorpej if (bootstrap_alloc_enabled == false) { 3447 1.7 gwr mon_printf("pmap_bootstrap_alloc: disabled\n"); 3448 1.7 gwr sunmon_abort(); 3449 1.7 gwr } 3450 1.7 gwr #endif 3451 1.7 gwr 3452 1.1 gwr rtn = (void *) virtual_avail; 3453 1.1 gwr virtual_avail += size; 3454 1.1 gwr 3455 1.8 gwr #ifdef PMAP_DEBUG 3456 1.7 gwr if (virtual_avail > virtual_contig_end) { 3457 1.7 gwr mon_printf("pmap_bootstrap_alloc: out of mem\n"); 3458 1.7 gwr sunmon_abort(); 3459 1.1 gwr } 3460 1.7 gwr #endif 3461 1.1 gwr 3462 1.1 gwr return rtn; 3463 1.1 gwr } 3464 1.1 gwr 3465 1.123 andvar /* pmap_bootstrap_aalign INTERNAL 3466 1.1 gwr ** 3467 1.7 gwr * Used to insure that the next call to pmap_bootstrap_alloc() will 3468 1.7 gwr * return a chunk of memory aligned to the specified size. 3469 1.8 gwr * 3470 1.8 gwr * Note: This function will only support alignment sizes that are powers 3471 1.8 gwr * of two. 3472 1.1 gwr */ 3473 1.113 tsutsui void 3474 1.86 chs pmap_bootstrap_aalign(int size) 3475 1.1 gwr { 3476 1.7 gwr int off; 3477 1.7 gwr 3478 1.7 gwr off = virtual_avail & (size - 1); 3479 1.7 gwr if (off) { 3480 1.92 tsutsui (void)pmap_bootstrap_alloc(size - off); 3481 1.1 gwr } 3482 1.1 gwr } 3483 1.7 gwr 3484 1.8 gwr /* pmap_pa_exists 3485 1.8 gwr ** 3486 1.8 gwr * Used by the /dev/mem driver to see if a given PA is memory 3487 1.8 gwr * that can be mapped. (The PA is not in a hole.) 3488 1.8 gwr */ 3489 1.113 tsutsui int 3490 1.86 chs pmap_pa_exists(paddr_t pa) 3491 1.8 gwr { 3492 1.69 chs int i; 3493 1.21 gwr 3494 1.21 gwr for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3495 1.21 gwr if ((pa >= avail_mem[i].pmem_start) && 3496 1.21 gwr (pa < avail_mem[i].pmem_end)) 3497 1.92 tsutsui return 1; 3498 1.21 gwr if (avail_mem[i].pmem_next == NULL) 3499 1.21 gwr break; 3500 1.21 gwr } 3501 1.92 tsutsui return 0; 3502 1.8 gwr } 3503 1.8 gwr 3504 1.31 gwr /* Called only from locore.s and pmap.c */ 3505 1.86 chs void _pmap_switch(pmap_t pmap); 3506 1.31 gwr 3507 1.31 gwr /* 3508 1.31 gwr * _pmap_switch INTERNAL 3509 1.31 gwr * 3510 1.31 gwr * This is called by locore.s:cpu_switch() when it is 3511 1.31 gwr * switching to a new process. Load new translations. 3512 1.31 gwr * Note: done in-line by locore.s unless PMAP_DEBUG 3513 1.24 jeremy * 3514 1.31 gwr * Note that we do NOT allocate a context here, but 3515 1.31 gwr * share the "kernel only" context until we really 3516 1.31 gwr * need our own context for user-space mappings in 3517 1.31 gwr * pmap_enter_user(). [ s/context/mmu A table/ ] 3518 1.1 gwr */ 3519 1.113 tsutsui void 3520 1.86 chs _pmap_switch(pmap_t pmap) 3521 1.1 gwr { 3522 1.7 gwr u_long rootpa; 3523 1.7 gwr 3524 1.31 gwr /* 3525 1.31 gwr * Only do reload/flush if we have to. 3526 1.31 gwr * Note that if the old and new process 3527 1.31 gwr * were BOTH using the "null" context, 3528 1.31 gwr * then this will NOT flush the TLB. 3529 1.31 gwr */ 3530 1.7 gwr rootpa = pmap->pm_a_phys; 3531 1.31 gwr if (kernel_crp.rp_addr != rootpa) { 3532 1.31 gwr DPRINT(("pmap_activate(%p)\n", pmap)); 3533 1.7 gwr kernel_crp.rp_addr = rootpa; 3534 1.7 gwr loadcrp(&kernel_crp); 3535 1.8 gwr TBIAU(); 3536 1.31 gwr } 3537 1.31 gwr } 3538 1.31 gwr 3539 1.31 gwr /* 3540 1.31 gwr * Exported version of pmap_activate(). This is called from the 3541 1.31 gwr * machine-independent VM code when a process is given a new pmap. 3542 1.76 thorpej * If (p == curlwp) do like cpu_switch would do; otherwise just 3543 1.31 gwr * take this as notification that the process has a new pmap. 3544 1.31 gwr */ 3545 1.113 tsutsui void 3546 1.86 chs pmap_activate(struct lwp *l) 3547 1.31 gwr { 3548 1.92 tsutsui 3549 1.76 thorpej if (l->l_proc == curproc) { 3550 1.76 thorpej _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap); 3551 1.7 gwr } 3552 1.1 gwr } 3553 1.1 gwr 3554 1.30 thorpej /* 3555 1.30 thorpej * pmap_deactivate INTERFACE 3556 1.30 thorpej ** 3557 1.30 thorpej * This is called to deactivate the specified process's address space. 3558 1.30 thorpej */ 3559 1.113 tsutsui void 3560 1.86 chs pmap_deactivate(struct lwp *l) 3561 1.1 gwr { 3562 1.92 tsutsui 3563 1.69 chs /* Nothing to do. */ 3564 1.1 gwr } 3565 1.1 gwr 3566 1.17 gwr /* 3567 1.28 gwr * Fill in the sun3x-specific part of the kernel core header 3568 1.28 gwr * for dumpsys(). (See machdep.c for the rest.) 3569 1.17 gwr */ 3570 1.113 tsutsui void 3571 1.86 chs pmap_kcore_hdr(struct sun3x_kcore_hdr *sh) 3572 1.17 gwr { 3573 1.17 gwr u_long spa, len; 3574 1.17 gwr int i; 3575 1.20 thorpej 3576 1.28 gwr sh->pg_frame = MMU_SHORT_PTE_BASEADDR; 3577 1.28 gwr sh->pg_valid = MMU_DT_PAGE; 3578 1.20 thorpej sh->contig_end = virtual_contig_end; 3579 1.69 chs sh->kernCbase = (u_long)kernCbase; 3580 1.20 thorpej for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3581 1.17 gwr spa = avail_mem[i].pmem_start; 3582 1.25 veego spa = m68k_trunc_page(spa); 3583 1.17 gwr len = avail_mem[i].pmem_end - spa; 3584 1.25 veego len = m68k_round_page(len); 3585 1.20 thorpej sh->ram_segs[i].start = spa; 3586 1.20 thorpej sh->ram_segs[i].size = len; 3587 1.17 gwr } 3588 1.17 gwr } 3589 1.17 gwr 3590 1.81 thorpej 3591 1.81 thorpej /* pmap_virtual_space INTERFACE 3592 1.81 thorpej ** 3593 1.81 thorpej * Return the current available range of virtual addresses in the 3594 1.120 andvar * arguments provided. Only really called once. 3595 1.81 thorpej */ 3596 1.113 tsutsui void 3597 1.86 chs pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend) 3598 1.81 thorpej { 3599 1.92 tsutsui 3600 1.81 thorpej *vstart = virtual_avail; 3601 1.81 thorpej *vend = virtual_end; 3602 1.81 thorpej } 3603 1.1 gwr 3604 1.37 gwr /* 3605 1.37 gwr * Provide memory to the VM system. 3606 1.37 gwr * 3607 1.37 gwr * Assume avail_start is always in the 3608 1.37 gwr * first segment as pmap_bootstrap does. 3609 1.37 gwr */ 3610 1.113 tsutsui static void 3611 1.86 chs pmap_page_upload(void) 3612 1.37 gwr { 3613 1.69 chs paddr_t a, b; /* memory range */ 3614 1.37 gwr int i; 3615 1.37 gwr 3616 1.37 gwr /* Supply the memory in segments. */ 3617 1.37 gwr for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) { 3618 1.37 gwr a = atop(avail_mem[i].pmem_start); 3619 1.37 gwr b = atop(avail_mem[i].pmem_end); 3620 1.37 gwr if (i == 0) 3621 1.37 gwr a = atop(avail_start); 3622 1.60 tsutsui if (avail_mem[i].pmem_end > avail_end) 3623 1.60 tsutsui b = atop(avail_end); 3624 1.37 gwr 3625 1.39 thorpej uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT); 3626 1.37 gwr 3627 1.37 gwr if (avail_mem[i].pmem_next == NULL) 3628 1.37 gwr break; 3629 1.37 gwr } 3630 1.1 gwr } 3631 1.8 gwr 3632 1.8 gwr /* pmap_count INTERFACE 3633 1.8 gwr ** 3634 1.8 gwr * Return the number of resident (valid) pages in the given pmap. 3635 1.8 gwr * 3636 1.8 gwr * Note: If this function is handed the kernel map, it will report 3637 1.8 gwr * that it has no mappings. Hopefully the VM system won't ask for kernel 3638 1.8 gwr * map statistics. 3639 1.8 gwr */ 3640 1.113 tsutsui segsz_t 3641 1.86 chs pmap_count(pmap_t pmap, int type) 3642 1.8 gwr { 3643 1.8 gwr u_int count; 3644 1.8 gwr int a_idx, b_idx; 3645 1.8 gwr a_tmgr_t *a_tbl; 3646 1.8 gwr b_tmgr_t *b_tbl; 3647 1.8 gwr c_tmgr_t *c_tbl; 3648 1.8 gwr 3649 1.8 gwr /* 3650 1.8 gwr * If the pmap does not have its own A table manager, it has no 3651 1.120 andvar * valid entries. 3652 1.8 gwr */ 3653 1.8 gwr if (pmap->pm_a_tmgr == NULL) 3654 1.8 gwr return 0; 3655 1.8 gwr 3656 1.8 gwr a_tbl = pmap->pm_a_tmgr; 3657 1.8 gwr 3658 1.8 gwr count = 0; 3659 1.111 tsutsui for (a_idx = 0; a_idx < MMU_TIA(KERNBASE3X); a_idx++) { 3660 1.8 gwr if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) { 3661 1.8 gwr b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw)); 3662 1.8 gwr for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) { 3663 1.8 gwr if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) { 3664 1.8 gwr c_tbl = mmuC2tmgr( 3665 1.8 gwr mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]))); 3666 1.8 gwr if (type == 0) 3667 1.8 gwr /* 3668 1.8 gwr * A resident entry count has been requested. 3669 1.8 gwr */ 3670 1.8 gwr count += c_tbl->ct_ecnt; 3671 1.8 gwr else 3672 1.8 gwr /* 3673 1.8 gwr * A wired entry count has been requested. 3674 1.8 gwr */ 3675 1.8 gwr count += c_tbl->ct_wcnt; 3676 1.8 gwr } 3677 1.8 gwr } 3678 1.8 gwr } 3679 1.8 gwr } 3680 1.8 gwr 3681 1.8 gwr return count; 3682 1.8 gwr } 3683 1.8 gwr 3684 1.1 gwr /************************ SUN3 COMPATIBILITY ROUTINES ******************** 3685 1.1 gwr * The following routines are only used by DDB for tricky kernel text * 3686 1.1 gwr * text operations in db_memrw.c. They are provided for sun3 * 3687 1.1 gwr * compatibility. * 3688 1.1 gwr *************************************************************************/ 3689 1.1 gwr /* get_pte INTERNAL 3690 1.1 gwr ** 3691 1.1 gwr * Return the page descriptor the describes the kernel mapping 3692 1.1 gwr * of the given virtual address. 3693 1.1 gwr */ 3694 1.86 chs extern u_long ptest_addr(u_long); /* XXX: locore.s */ 3695 1.113 tsutsui u_int 3696 1.86 chs get_pte(vaddr_t va) 3697 1.13 gwr { 3698 1.13 gwr u_long pte_pa; 3699 1.13 gwr mmu_short_pte_t *pte; 3700 1.13 gwr 3701 1.13 gwr /* Get the physical address of the PTE */ 3702 1.13 gwr pte_pa = ptest_addr(va & ~PGOFSET); 3703 1.13 gwr 3704 1.13 gwr /* Convert to a virtual address... */ 3705 1.111 tsutsui pte = (mmu_short_pte_t *) (KERNBASE3X + pte_pa); 3706 1.13 gwr 3707 1.13 gwr /* Make sure it is in our level-C tables... */ 3708 1.13 gwr if ((pte < kernCbase) || 3709 1.13 gwr (pte >= &mmuCbase[NUM_USER_PTES])) 3710 1.13 gwr return 0; 3711 1.13 gwr 3712 1.13 gwr /* ... and just return its contents. */ 3713 1.13 gwr return (pte->attr.raw); 3714 1.13 gwr } 3715 1.13 gwr 3716 1.1 gwr 3717 1.1 gwr /* set_pte INTERNAL 3718 1.1 gwr ** 3719 1.1 gwr * Set the page descriptor that describes the kernel mapping 3720 1.1 gwr * of the given virtual address. 3721 1.1 gwr */ 3722 1.113 tsutsui void 3723 1.86 chs set_pte(vaddr_t va, u_int pte) 3724 1.1 gwr { 3725 1.1 gwr u_long idx; 3726 1.1 gwr 3727 1.111 tsutsui if (va < KERNBASE3X) 3728 1.7 gwr return; 3729 1.7 gwr 3730 1.111 tsutsui idx = (unsigned long) m68k_btop(va - KERNBASE3X); 3731 1.1 gwr kernCbase[idx].attr.raw = pte; 3732 1.33 gwr TBIS(va); 3733 1.1 gwr } 3734 1.42 is 3735 1.42 is /* 3736 1.42 is * Routine: pmap_procwr 3737 1.113 tsutsui * 3738 1.42 is * Function: 3739 1.42 is * Synchronize caches corresponding to [addr, addr+len) in p. 3740 1.113 tsutsui */ 3741 1.113 tsutsui void 3742 1.86 chs pmap_procwr(struct proc *p, vaddr_t va, size_t len) 3743 1.42 is { 3744 1.92 tsutsui 3745 1.42 is (void)cachectl1(0x80000004, va, len, p); 3746 1.42 is } 3747 1.42 is 3748 1.7 gwr 3749 1.8 gwr #ifdef PMAP_DEBUG 3750 1.7 gwr /************************** DEBUGGING ROUTINES ************************** 3751 1.7 gwr * The following routines are meant to be an aid to debugging the pmap * 3752 1.7 gwr * system. They are callable from the DDB command line and should be * 3753 1.7 gwr * prepared to be handed unstable or incomplete states of the system. * 3754 1.7 gwr ************************************************************************/ 3755 1.7 gwr 3756 1.7 gwr /* pv_list 3757 1.7 gwr ** 3758 1.7 gwr * List all pages found on the pv list for the given physical page. 3759 1.8 gwr * To avoid endless loops, the listing will stop at the end of the list 3760 1.7 gwr * or after 'n' entries - whichever comes first. 3761 1.7 gwr */ 3762 1.113 tsutsui void 3763 1.86 chs pv_list(paddr_t pa, int n) 3764 1.7 gwr { 3765 1.7 gwr int idx; 3766 1.69 chs vaddr_t va; 3767 1.7 gwr pv_t *pv; 3768 1.7 gwr c_tmgr_t *c_tbl; 3769 1.7 gwr pmap_t pmap; 3770 1.113 tsutsui 3771 1.7 gwr pv = pa2pv(pa); 3772 1.7 gwr idx = pv->pv_idx; 3773 1.69 chs for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) { 3774 1.8 gwr va = pmap_get_pteinfo(idx, &pmap, &c_tbl); 3775 1.7 gwr printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n", 3776 1.7 gwr idx, (u_int) pmap, (u_int) va, (u_int) c_tbl); 3777 1.7 gwr } 3778 1.7 gwr } 3779 1.8 gwr #endif /* PMAP_DEBUG */ 3780 1.1 gwr 3781 1.1 gwr #ifdef NOT_YET 3782 1.1 gwr /* and maybe not ever */ 3783 1.1 gwr /************************** LOW-LEVEL ROUTINES ************************** 3784 1.78 wiz * These routines will eventually be re-written into assembly and placed* 3785 1.1 gwr * in locore.s. They are here now as stubs so that the pmap module can * 3786 1.1 gwr * be linked as a standalone user program for testing. * 3787 1.1 gwr ************************************************************************/ 3788 1.1 gwr /* flush_atc_crp INTERNAL 3789 1.1 gwr ** 3790 1.1 gwr * Flush all page descriptors derived from the given CPU Root Pointer 3791 1.1 gwr * (CRP), or 'A' table as it is known here, from the 68851's automatic 3792 1.1 gwr * cache. 3793 1.1 gwr */ 3794 1.113 tsutsui void 3795 1.86 chs flush_atc_crp(int a_tbl) 3796 1.1 gwr { 3797 1.1 gwr mmu_long_rp_t rp; 3798 1.1 gwr 3799 1.1 gwr /* Create a temporary root table pointer that points to the 3800 1.1 gwr * given A table. 3801 1.1 gwr */ 3802 1.1 gwr rp.attr.raw = ~MMU_LONG_RP_LU; 3803 1.1 gwr rp.addr.raw = (unsigned int) a_tbl; 3804 1.1 gwr 3805 1.1 gwr mmu_pflushr(&rp); 3806 1.1 gwr /* mmu_pflushr: 3807 1.1 gwr * movel sp(4)@,a0 3808 1.1 gwr * pflushr a0@ 3809 1.1 gwr * rts 3810 1.1 gwr */ 3811 1.1 gwr } 3812 1.1 gwr #endif /* NOT_YET */ 3813