Home | History | Annotate | Line # | Download | only in sun3x
      1  1.123    andvar /*	$NetBSD: pmap.c,v 1.123 2024/05/11 06:37:54 andvar Exp $	*/
      2    1.1       gwr 
      3    1.1       gwr /*-
      4   1.10    jeremy  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5    1.1       gwr  * All rights reserved.
      6    1.1       gwr  *
      7    1.1       gwr  * This code is derived from software contributed to The NetBSD Foundation
      8    1.1       gwr  * by Jeremy Cooper.
      9    1.1       gwr  *
     10    1.1       gwr  * Redistribution and use in source and binary forms, with or without
     11    1.1       gwr  * modification, are permitted provided that the following conditions
     12    1.1       gwr  * are met:
     13    1.1       gwr  * 1. Redistributions of source code must retain the above copyright
     14    1.1       gwr  *    notice, this list of conditions and the following disclaimer.
     15    1.1       gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1       gwr  *    notice, this list of conditions and the following disclaimer in the
     17    1.1       gwr  *    documentation and/or other materials provided with the distribution.
     18    1.1       gwr  *
     19    1.1       gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.1       gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.1       gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.1       gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.1       gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.1       gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.1       gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.1       gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.1       gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.1       gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.1       gwr  * POSSIBILITY OF SUCH DAMAGE.
     30    1.1       gwr  */
     31    1.1       gwr 
     32    1.1       gwr /*
     33    1.1       gwr  * XXX These comments aren't quite accurate.  Need to change.
     34    1.1       gwr  * The sun3x uses the MC68851 Memory Management Unit, which is built
     35    1.1       gwr  * into the CPU.  The 68851 maps virtual to physical addresses using
     36    1.1       gwr  * a multi-level table lookup, which is stored in the very memory that
     37    1.1       gwr  * it maps.  The number of levels of lookup is configurable from one
     38    1.1       gwr  * to four.  In this implementation, we use three, named 'A' through 'C'.
     39    1.1       gwr  *
     40  1.113   tsutsui  * The MMU translates virtual addresses into physical addresses by
     41  1.113   tsutsui  * traversing these tables in a process called a 'table walk'.  The most
     42  1.113   tsutsui  * significant 7 bits of the Virtual Address ('VA') being translated are
     43  1.113   tsutsui  * used as an index into the level A table, whose base in physical memory
     44  1.113   tsutsui  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     45    1.1       gwr  * address found at that index in the A table is used as the base
     46  1.113   tsutsui  * address for the next table, the B table.  The next six bits of the VA are
     47  1.113   tsutsui  * used as an index into the B table, which in turn gives the base address
     48    1.1       gwr  * of the third and final C table.
     49    1.1       gwr  *
     50    1.1       gwr  * The next six bits of the VA are used as an index into the C table to
     51    1.1       gwr  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     52    1.1       gwr  * to which the remaining 13 bits of the VA are added, producing the
     53    1.1       gwr  * mapped physical address.
     54    1.1       gwr  *
     55  1.113   tsutsui  * To map the entire memory space in this manner would require 2114296 bytes
     56  1.113   tsutsui  * of page tables per process - quite expensive.  Instead we will
     57  1.113   tsutsui  * allocate a fixed but considerably smaller space for the page tables at
     58    1.1       gwr  * the time the VM system is initialized.  When the pmap code is asked by
     59    1.1       gwr  * the kernel to map a VA to a PA, it allocates tables as needed from this
     60    1.1       gwr  * pool.  When there are no more tables in the pool, tables are stolen
     61  1.113   tsutsui  * from the oldest mapped entries in the tree.  This is only possible
     62    1.1       gwr  * because all memory mappings are stored in the kernel memory map
     63    1.1       gwr  * structures, independent of the pmap structures.  A VA which references
     64    1.1       gwr  * one of these invalidated maps will cause a page fault.  The kernel
     65  1.113   tsutsui  * will determine that the page fault was caused by a task using a valid
     66    1.1       gwr  * VA, but for some reason (which does not concern it), that address was
     67    1.1       gwr  * not mapped.  It will ask the pmap code to re-map the entry and then
     68    1.1       gwr  * it will resume executing the faulting task.
     69    1.1       gwr  *
     70    1.1       gwr  * In this manner the most efficient use of the page table space is
     71  1.113   tsutsui  * achieved.  Tasks which do not execute often will have their tables
     72    1.1       gwr  * stolen and reused by tasks which execute more frequently.  The best
     73  1.113   tsutsui  * size for the page table pool will probably be determined by
     74    1.1       gwr  * experimentation.
     75    1.1       gwr  *
     76    1.1       gwr  * You read all of the comments so far.  Good for you.
     77    1.1       gwr  * Now go play!
     78    1.1       gwr  */
     79    1.1       gwr 
     80    1.1       gwr /*** A Note About the 68851 Address Translation Cache
     81    1.1       gwr  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     82    1.1       gwr  * or 'ATC'.  This cache stores the most recently used page descriptors
     83    1.1       gwr  * accessed by the MMU when it does translations.  Using a marker called a
     84    1.1       gwr  * 'task alias' the MMU can store the descriptors from 8 different table
     85    1.1       gwr  * spaces concurrently.  The task alias is associated with the base
     86    1.1       gwr  * address of the level A table of that address space.  When an address
     87    1.1       gwr  * space is currently active (the CRP currently points to its A table)
     88    1.1       gwr  * the only cached descriptors that will be obeyed are ones which have a
     89    1.1       gwr  * matching task alias of the current space associated with them.
     90    1.1       gwr  *
     91    1.1       gwr  * Since the cache is always consulted before any table lookups are done,
     92    1.1       gwr  * it is important that it accurately reflect the state of the MMU tables.
     93    1.1       gwr  * Whenever a change has been made to a table that has been loaded into
     94    1.1       gwr  * the MMU, the code must be sure to flush any cached entries that are
     95    1.1       gwr  * affected by the change.  These instances are documented in the code at
     96    1.1       gwr  * various points.
     97    1.1       gwr  */
     98    1.1       gwr /*** A Note About the Note About the 68851 Address Translation Cache
     99    1.1       gwr  * 4 months into this code I discovered that the sun3x does not have
    100    1.1       gwr  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    101    1.1       gwr  * the 68030 CPU.
    102    1.1       gwr  * All though it behaves very similarly to the 68851, it only has 1 task
    103    1.8       gwr  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    104    1.8       gwr  * of the previous note does not apply to the sun3x pmap.
    105    1.1       gwr  */
    106   1.83     lukem 
    107   1.83     lukem #include <sys/cdefs.h>
    108  1.123    andvar __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.123 2024/05/11 06:37:54 andvar Exp $");
    109   1.45       gwr 
    110   1.45       gwr #include "opt_ddb.h"
    111   1.82    martin #include "opt_pmap_debug.h"
    112    1.1       gwr 
    113    1.1       gwr #include <sys/param.h>
    114    1.1       gwr #include <sys/systm.h>
    115    1.1       gwr #include <sys/proc.h>
    116   1.56   tsutsui #include <sys/pool.h>
    117    1.1       gwr #include <sys/queue.h>
    118   1.20   thorpej #include <sys/kcore.h>
    119  1.112   tsutsui #include <sys/atomic.h>
    120   1.38       gwr 
    121   1.38       gwr #include <uvm/uvm.h>
    122   1.43       mrg 
    123    1.1       gwr #include <machine/cpu.h>
    124   1.17       gwr #include <machine/kcore.h>
    125   1.33       gwr #include <machine/mon.h>
    126    1.1       gwr #include <machine/pmap.h>
    127    1.1       gwr #include <machine/pte.h>
    128   1.37       gwr #include <machine/vmparam.h>
    129   1.75       chs #include <m68k/cacheops.h>
    130   1.33       gwr 
    131   1.33       gwr #include <sun3/sun3/cache.h>
    132   1.33       gwr #include <sun3/sun3/machdep.h>
    133    1.1       gwr 
    134    1.1       gwr #include "pmap_pvt.h"
    135    1.1       gwr 
    136    1.1       gwr /* XXX - What headers declare these? */
    137    1.1       gwr extern struct pcb *curpcb;
    138    1.7       gwr 
    139    1.1       gwr /* Defined in locore.s */
    140    1.1       gwr extern char kernel_text[];
    141    1.1       gwr 
    142    1.1       gwr /* Defined by the linker */
    143    1.1       gwr extern char etext[], edata[], end[];
    144    1.1       gwr extern char *esym;	/* DDB */
    145    1.1       gwr 
    146    1.7       gwr /*************************** DEBUGGING DEFINITIONS ***********************
    147    1.7       gwr  * Macros, preprocessor defines and variables used in debugging can make *
    148    1.7       gwr  * code hard to read.  Anything used exclusively for debugging purposes  *
    149    1.7       gwr  * is defined here to avoid having such mess scattered around the file.  *
    150    1.7       gwr  *************************************************************************/
    151    1.8       gwr #ifdef	PMAP_DEBUG
    152    1.7       gwr /*
    153    1.7       gwr  * To aid the debugging process, macros should be expanded into smaller steps
    154    1.7       gwr  * that accomplish the same goal, yet provide convenient places for placing
    155    1.8       gwr  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    156    1.7       gwr  * 'INLINE' keyword is defined to an empty string.  This way, any function
    157    1.7       gwr  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    158    1.7       gwr  * a separate function, which is much easier to debug.
    159    1.7       gwr  */
    160    1.7       gwr #define	INLINE	/* nothing */
    161    1.7       gwr 
    162    1.1       gwr /*
    163    1.7       gwr  * It is sometimes convenient to watch the activity of a particular table
    164    1.7       gwr  * in the system.  The following variables are used for that purpose.
    165    1.1       gwr  */
    166    1.7       gwr a_tmgr_t *pmap_watch_atbl = 0;
    167    1.7       gwr b_tmgr_t *pmap_watch_btbl = 0;
    168    1.7       gwr c_tmgr_t *pmap_watch_ctbl = 0;
    169    1.1       gwr 
    170    1.7       gwr int pmap_debug = 0;
    171    1.7       gwr #define DPRINT(args) if (pmap_debug) printf args
    172    1.7       gwr 
    173    1.7       gwr #else	/********** Stuff below is defined if NOT debugging **************/
    174    1.7       gwr 
    175    1.7       gwr #define	INLINE	inline
    176   1.10    jeremy #define DPRINT(args)  /* nada */
    177    1.7       gwr 
    178   1.10    jeremy #endif	/* PMAP_DEBUG */
    179    1.7       gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/
    180    1.1       gwr 
    181    1.1       gwr /*** Management Structure - Memory Layout
    182    1.1       gwr  * For every MMU table in the sun3x pmap system there must be a way to
    183    1.1       gwr  * manage it; we must know which process is using it, what other tables
    184    1.1       gwr  * depend on it, and whether or not it contains any locked pages.  This
    185    1.1       gwr  * is solved by the creation of 'table management'  or 'tmgr'
    186    1.1       gwr  * structures.  One for each MMU table in the system.
    187    1.1       gwr  *
    188    1.1       gwr  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    189    1.1       gwr  *
    190    1.1       gwr  *      towards lower memory
    191    1.1       gwr  * kernAbase -> +-------------------------------------------------------+
    192    1.1       gwr  *              | Kernel     MMU A level table                          |
    193    1.1       gwr  * kernBbase -> +-------------------------------------------------------+
    194    1.1       gwr  *              | Kernel     MMU B level tables                         |
    195    1.1       gwr  * kernCbase -> +-------------------------------------------------------+
    196    1.1       gwr  *              |                                                       |
    197    1.1       gwr  *              | Kernel     MMU C level tables                         |
    198    1.1       gwr  *              |                                                       |
    199    1.7       gwr  * mmuCbase  -> +-------------------------------------------------------+
    200    1.7       gwr  *              | User       MMU C level tables                         |
    201    1.1       gwr  * mmuAbase  -> +-------------------------------------------------------+
    202    1.1       gwr  *              |                                                       |
    203    1.1       gwr  *              | User       MMU A level tables                         |
    204    1.1       gwr  *              |                                                       |
    205    1.1       gwr  * mmuBbase  -> +-------------------------------------------------------+
    206    1.1       gwr  *              | User       MMU B level tables                         |
    207    1.1       gwr  * tmgrAbase -> +-------------------------------------------------------+
    208    1.1       gwr  *              |  TMGR A level table structures                        |
    209    1.1       gwr  * tmgrBbase -> +-------------------------------------------------------+
    210    1.1       gwr  *              |  TMGR B level table structures                        |
    211    1.1       gwr  * tmgrCbase -> +-------------------------------------------------------+
    212    1.1       gwr  *              |  TMGR C level table structures                        |
    213    1.1       gwr  * pvbase    -> +-------------------------------------------------------+
    214    1.1       gwr  *              |  Physical to Virtual mapping table (list heads)       |
    215    1.1       gwr  * pvebase   -> +-------------------------------------------------------+
    216    1.1       gwr  *              |  Physical to Virtual mapping table (list elements)    |
    217    1.1       gwr  *              |                                                       |
    218    1.1       gwr  *              +-------------------------------------------------------+
    219    1.1       gwr  *      towards higher memory
    220    1.1       gwr  *
    221    1.1       gwr  * For every A table in the MMU A area, there will be a corresponding
    222    1.1       gwr  * a_tmgr structure in the TMGR A area.  The same will be true for
    223    1.1       gwr  * the B and C tables.  This arrangement will make it easy to find the
    224  1.120    andvar  * controlling tmgr structure for any table in the system by use of
    225    1.1       gwr  * (relatively) simple macros.
    226    1.1       gwr  */
    227    1.7       gwr 
    228    1.7       gwr /*
    229    1.8       gwr  * Global variables for storing the base addresses for the areas
    230    1.1       gwr  * labeled above.
    231    1.1       gwr  */
    232   1.69       chs static vaddr_t  	kernAphys;
    233    1.1       gwr static mmu_long_dte_t	*kernAbase;
    234    1.1       gwr static mmu_short_dte_t	*kernBbase;
    235    1.1       gwr static mmu_short_pte_t	*kernCbase;
    236   1.15       gwr static mmu_short_pte_t	*mmuCbase;
    237   1.15       gwr static mmu_short_dte_t	*mmuBbase;
    238    1.1       gwr static mmu_long_dte_t	*mmuAbase;
    239    1.1       gwr static a_tmgr_t		*Atmgrbase;
    240    1.1       gwr static b_tmgr_t		*Btmgrbase;
    241    1.1       gwr static c_tmgr_t		*Ctmgrbase;
    242   1.15       gwr static pv_t 		*pvbase;
    243    1.1       gwr static pv_elem_t	*pvebase;
    244  1.100     pooka static struct pmap	kernel_pmap;
    245  1.101     pooka struct pmap		*const kernel_pmap_ptr = &kernel_pmap;
    246    1.1       gwr 
    247    1.8       gwr /*
    248    1.8       gwr  * This holds the CRP currently loaded into the MMU.
    249    1.8       gwr  */
    250    1.8       gwr struct mmu_rootptr kernel_crp;
    251    1.8       gwr 
    252    1.8       gwr /*
    253    1.8       gwr  * Just all around global variables.
    254    1.1       gwr  */
    255    1.1       gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    256    1.1       gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    257    1.1       gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    258    1.7       gwr 
    259    1.7       gwr 
    260    1.7       gwr /*
    261    1.7       gwr  * Flags used to mark the safety/availability of certain operations or
    262    1.7       gwr  * resources.
    263    1.7       gwr  */
    264   1.92   tsutsui /* Safe to use pmap_bootstrap_alloc(). */
    265   1.95   thorpej static bool bootstrap_alloc_enabled = false;
    266   1.92   tsutsui /* Temporary virtual pages are in use */
    267   1.92   tsutsui int tmp_vpages_inuse;
    268    1.1       gwr 
    269    1.1       gwr /*
    270    1.1       gwr  * XXX:  For now, retain the traditional variables that were
    271    1.1       gwr  * used in the old pmap/vm interface (without NONCONTIG).
    272    1.1       gwr  */
    273   1.81   thorpej /* Kernel virtual address space available: */
    274   1.81   thorpej vaddr_t	virtual_avail, virtual_end;
    275    1.1       gwr /* Physical address space available: */
    276   1.69       chs paddr_t	avail_start, avail_end;
    277    1.1       gwr 
    278    1.7       gwr /* This keep track of the end of the contiguously mapped range. */
    279   1.69       chs vaddr_t virtual_contig_end;
    280    1.7       gwr 
    281    1.7       gwr /* Physical address used by pmap_next_page() */
    282   1.69       chs paddr_t avail_next;
    283    1.7       gwr 
    284    1.7       gwr /* These are used by pmap_copy_page(), etc. */
    285   1.69       chs vaddr_t tmp_vpages[2];
    286    1.1       gwr 
    287   1.56   tsutsui /* memory pool for pmap structures */
    288   1.56   tsutsui struct pool	pmap_pmap_pool;
    289   1.56   tsutsui 
    290    1.7       gwr /*
    291    1.7       gwr  * The 3/80 is the only member of the sun3x family that has non-contiguous
    292    1.1       gwr  * physical memory.  Memory is divided into 4 banks which are physically
    293    1.1       gwr  * locatable on the system board.  Although the size of these banks varies
    294    1.1       gwr  * with the size of memory they contain, their base addresses are
    295  1.120    andvar  * permanently fixed.  The following structure, which describes these
    296    1.1       gwr  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    297    1.1       gwr  * structure provided by the ROM Monitor.
    298    1.1       gwr  *
    299    1.1       gwr  * For the other machines in the sun3x architecture which do have contiguous
    300    1.1       gwr  * RAM, this list will have only one entry, which will describe the entire
    301    1.1       gwr  * range of available memory.
    302    1.1       gwr  */
    303   1.20   thorpej struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    304    1.1       gwr u_int total_phys_mem;
    305    1.1       gwr 
    306    1.7       gwr /*************************************************************************/
    307    1.7       gwr 
    308    1.7       gwr /*
    309    1.7       gwr  * XXX - Should "tune" these based on statistics.
    310    1.7       gwr  *
    311    1.7       gwr  * My first guess about the relative numbers of these needed is
    312    1.7       gwr  * based on the fact that a "typical" process will have several
    313    1.7       gwr  * pages mapped at low virtual addresses (text, data, bss), then
    314    1.7       gwr  * some mapped shared libraries, and then some stack pages mapped
    315    1.7       gwr  * near the high end of the VA space.  Each process can use only
    316    1.7       gwr  * one A table, and most will use only two B tables (maybe three)
    317    1.7       gwr  * and probably about four C tables.  Therefore, the first guess
    318    1.7       gwr  * at the relative numbers of these needed is 1:2:4 -gwr
    319    1.7       gwr  *
    320    1.7       gwr  * The number of C tables needed is closely related to the amount
    321    1.7       gwr  * of physical memory available plus a certain amount attributable
    322    1.7       gwr  * to the use of double mappings.  With a few simulation statistics
    323    1.7       gwr  * we can find a reasonably good estimation of this unknown value.
    324    1.7       gwr  * Armed with that and the above ratios, we have a good idea of what
    325    1.7       gwr  * is needed at each level. -j
    326    1.7       gwr  *
    327    1.7       gwr  * Note: It is not physical memory memory size, but the total mapped
    328    1.7       gwr  * virtual space required by the combined working sets of all the
    329    1.7       gwr  * currently _runnable_ processes.  (Sleeping ones don't count.)
    330    1.7       gwr  * The amount of physical memory should be irrelevant. -gwr
    331    1.7       gwr  */
    332   1.22    jeremy #ifdef	FIXED_NTABLES
    333    1.7       gwr #define NUM_A_TABLES	16
    334    1.7       gwr #define NUM_B_TABLES	32
    335    1.7       gwr #define NUM_C_TABLES	64
    336   1.22    jeremy #else
    337   1.22    jeremy unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    338   1.22    jeremy #endif	/* FIXED_NTABLES */
    339    1.7       gwr 
    340    1.7       gwr /*
    341    1.7       gwr  * This determines our total virtual mapping capacity.
    342    1.7       gwr  * Yes, it is a FIXED value so we can pre-allocate.
    343    1.7       gwr  */
    344    1.7       gwr #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    345   1.15       gwr 
    346   1.15       gwr /*
    347   1.15       gwr  * The size of the Kernel Virtual Address Space (KVAS)
    348   1.15       gwr  * for purposes of MMU table allocation is -KERNBASE
    349   1.15       gwr  * (length from KERNBASE to 0xFFFFffff)
    350   1.15       gwr  */
    351  1.111   tsutsui #define	KVAS_SIZE		(-KERNBASE3X)
    352   1.15       gwr 
    353   1.15       gwr /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    354   1.15       gwr #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    355   1.15       gwr #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    356   1.15       gwr #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    357    1.7       gwr 
    358  1.116   msaitoh /*************************** MISCELLANEOUS MACROS *************************/
    359   1.64   thorpej void *pmap_bootstrap_alloc(int);
    360    1.7       gwr 
    361   1.86       chs static INLINE void *mmu_ptov(paddr_t);
    362   1.86       chs static INLINE paddr_t mmu_vtop(void *);
    363    1.7       gwr 
    364    1.7       gwr #if	0
    365   1.92   tsutsui static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
    366   1.26    jeremy #endif /* 0 */
    367   1.92   tsutsui static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
    368   1.92   tsutsui static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
    369    1.7       gwr 
    370   1.86       chs static INLINE pv_t *pa2pv(paddr_t);
    371   1.86       chs static INLINE int   pteidx(mmu_short_pte_t *);
    372   1.86       chs static INLINE pmap_t current_pmap(void);
    373    1.7       gwr 
    374    1.7       gwr /*
    375    1.7       gwr  * We can always convert between virtual and physical addresses
    376    1.7       gwr  * for anything in the range [KERNBASE ... avail_start] because
    377    1.7       gwr  * that range is GUARANTEED to be mapped linearly.
    378    1.7       gwr  * We rely heavily upon this feature!
    379    1.7       gwr  */
    380    1.7       gwr static INLINE void *
    381   1.86       chs mmu_ptov(paddr_t pa)
    382    1.7       gwr {
    383   1.69       chs 	vaddr_t va;
    384    1.7       gwr 
    385  1.111   tsutsui 	va = (pa + KERNBASE3X);
    386    1.8       gwr #ifdef	PMAP_DEBUG
    387  1.111   tsutsui 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
    388    1.7       gwr 		panic("mmu_ptov");
    389    1.7       gwr #endif
    390   1.92   tsutsui 	return (void *)va;
    391    1.7       gwr }
    392   1.69       chs 
    393  1.113   tsutsui static INLINE paddr_t
    394   1.86       chs mmu_vtop(void *vva)
    395    1.7       gwr {
    396   1.69       chs 	vaddr_t va;
    397    1.7       gwr 
    398   1.69       chs 	va = (vaddr_t)vva;
    399    1.8       gwr #ifdef	PMAP_DEBUG
    400  1.111   tsutsui 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
    401   1.72   tsutsui 		panic("mmu_vtop");
    402    1.7       gwr #endif
    403  1.111   tsutsui 	return va - KERNBASE3X;
    404    1.7       gwr }
    405    1.7       gwr 
    406    1.7       gwr /*
    407    1.7       gwr  * These macros map MMU tables to their corresponding manager structures.
    408    1.1       gwr  * They are needed quite often because many of the pointers in the pmap
    409    1.1       gwr  * system reference MMU tables and not the structures that control them.
    410    1.1       gwr  * There needs to be a way to find one when given the other and these
    411    1.1       gwr  * macros do so by taking advantage of the memory layout described above.
    412    1.1       gwr  * Here's a quick step through the first macro, mmuA2tmgr():
    413    1.1       gwr  *
    414    1.1       gwr  * 1) find the offset of the given MMU A table from the base of its table
    415    1.1       gwr  *    pool (table - mmuAbase).
    416    1.1       gwr  * 2) convert this offset into a table index by dividing it by the
    417    1.1       gwr  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    418    1.1       gwr  * 3) use this index to select the corresponding 'A' table manager
    419    1.1       gwr  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    420    1.1       gwr  */
    421    1.7       gwr /*  This function is not currently used. */
    422    1.7       gwr #if	0
    423    1.7       gwr static INLINE a_tmgr_t *
    424   1.86       chs mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
    425    1.7       gwr {
    426   1.69       chs 	int idx;
    427    1.7       gwr 
    428    1.7       gwr 	/* Which table is this in? */
    429    1.7       gwr 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    430    1.8       gwr #ifdef	PMAP_DEBUG
    431    1.7       gwr 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    432    1.7       gwr 		panic("mmuA2tmgr");
    433    1.7       gwr #endif
    434   1.92   tsutsui 	return &Atmgrbase[idx];
    435    1.7       gwr }
    436    1.7       gwr #endif	/* 0 */
    437    1.7       gwr 
    438    1.7       gwr static INLINE b_tmgr_t *
    439   1.86       chs mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
    440    1.7       gwr {
    441   1.69       chs 	int idx;
    442    1.7       gwr 
    443    1.7       gwr 	/* Which table is this in? */
    444    1.7       gwr 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    445    1.8       gwr #ifdef	PMAP_DEBUG
    446    1.7       gwr 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    447    1.7       gwr 		panic("mmuB2tmgr");
    448    1.7       gwr #endif
    449   1.92   tsutsui 	return &Btmgrbase[idx];
    450    1.7       gwr }
    451    1.7       gwr 
    452    1.7       gwr /* mmuC2tmgr			INTERNAL
    453    1.7       gwr  **
    454    1.7       gwr  * Given a pte known to belong to a C table, return the address of
    455    1.7       gwr  * that table's management structure.
    456    1.7       gwr  */
    457    1.7       gwr static INLINE c_tmgr_t *
    458   1.86       chs mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
    459    1.7       gwr {
    460   1.69       chs 	int idx;
    461    1.7       gwr 
    462    1.7       gwr 	/* Which table is this in? */
    463    1.7       gwr 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    464    1.8       gwr #ifdef	PMAP_DEBUG
    465    1.7       gwr 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    466    1.7       gwr 		panic("mmuC2tmgr");
    467    1.7       gwr #endif
    468   1.92   tsutsui 	return &Ctmgrbase[idx];
    469    1.7       gwr }
    470    1.7       gwr 
    471    1.8       gwr /* This is now a function call below.
    472    1.1       gwr  * #define pa2pv(pa) \
    473    1.1       gwr  *	(&pvbase[(unsigned long)\
    474   1.25     veego  *		m68k_btop(pa)\
    475    1.1       gwr  *	])
    476    1.1       gwr  */
    477    1.1       gwr 
    478    1.7       gwr /* pa2pv			INTERNAL
    479    1.7       gwr  **
    480    1.7       gwr  * Return the pv_list_head element which manages the given physical
    481    1.7       gwr  * address.
    482    1.7       gwr  */
    483    1.7       gwr static INLINE pv_t *
    484   1.86       chs pa2pv(paddr_t pa)
    485    1.7       gwr {
    486   1.69       chs 	struct pmap_physmem_struct *bank;
    487   1.69       chs 	int idx;
    488    1.7       gwr 
    489    1.7       gwr 	bank = &avail_mem[0];
    490    1.7       gwr 	while (pa >= bank->pmem_end)
    491    1.7       gwr 		bank = bank->pmem_next;
    492    1.7       gwr 
    493    1.7       gwr 	pa -= bank->pmem_start;
    494   1.25     veego 	idx = bank->pmem_pvbase + m68k_btop(pa);
    495    1.8       gwr #ifdef	PMAP_DEBUG
    496    1.7       gwr 	if ((idx < 0) || (idx >= physmem))
    497    1.7       gwr 		panic("pa2pv");
    498    1.7       gwr #endif
    499    1.7       gwr 	return &pvbase[idx];
    500    1.7       gwr }
    501    1.7       gwr 
    502    1.7       gwr /* pteidx			INTERNAL
    503    1.7       gwr  **
    504    1.7       gwr  * Return the index of the given PTE within the entire fixed table of
    505    1.7       gwr  * PTEs.
    506    1.7       gwr  */
    507    1.7       gwr static INLINE int
    508   1.86       chs pteidx(mmu_short_pte_t *pte)
    509    1.7       gwr {
    510   1.92   tsutsui 
    511   1.92   tsutsui 	return pte - kernCbase;
    512    1.7       gwr }
    513    1.7       gwr 
    514    1.7       gwr /*
    515    1.8       gwr  * This just offers a place to put some debugging checks,
    516   1.76   thorpej  * and reduces the number of places "curlwp" appears...
    517    1.7       gwr  */
    518  1.113   tsutsui static INLINE pmap_t
    519   1.86       chs current_pmap(void)
    520    1.7       gwr {
    521    1.7       gwr 	struct vmspace *vm;
    522   1.67       chs 	struct vm_map *map;
    523    1.7       gwr 	pmap_t	pmap;
    524    1.7       gwr 
    525   1.97   tsutsui 	vm = curproc->p_vmspace;
    526   1.97   tsutsui 	map = &vm->vm_map;
    527   1.97   tsutsui 	pmap = vm_map_pmap(map);
    528    1.7       gwr 
    529   1.92   tsutsui 	return pmap;
    530    1.7       gwr }
    531    1.7       gwr 
    532    1.7       gwr 
    533    1.1       gwr /*************************** FUNCTION DEFINITIONS ************************
    534    1.1       gwr  * These appear here merely for the compiler to enforce type checking on *
    535    1.1       gwr  * all function calls.                                                   *
    536    1.7       gwr  *************************************************************************/
    537    1.1       gwr 
    538   1.92   tsutsui /*
    539   1.92   tsutsui  * Internal functions
    540   1.92   tsutsui  */
    541   1.92   tsutsui a_tmgr_t *get_a_table(void);
    542   1.92   tsutsui b_tmgr_t *get_b_table(void);
    543   1.92   tsutsui c_tmgr_t *get_c_table(void);
    544   1.94   thorpej int free_a_table(a_tmgr_t *, bool);
    545   1.94   thorpej int free_b_table(b_tmgr_t *, bool);
    546   1.94   thorpej int free_c_table(c_tmgr_t *, bool);
    547   1.92   tsutsui 
    548   1.92   tsutsui void pmap_bootstrap_aalign(int);
    549   1.92   tsutsui void pmap_alloc_usermmu(void);
    550   1.92   tsutsui void pmap_alloc_usertmgr(void);
    551   1.92   tsutsui void pmap_alloc_pv(void);
    552   1.92   tsutsui void pmap_init_a_tables(void);
    553   1.92   tsutsui void pmap_init_b_tables(void);
    554   1.92   tsutsui void pmap_init_c_tables(void);
    555   1.92   tsutsui void pmap_init_pv(void);
    556   1.92   tsutsui void pmap_clear_pv(paddr_t, int);
    557   1.94   thorpej static INLINE bool is_managed(paddr_t);
    558   1.92   tsutsui 
    559   1.94   thorpej bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
    560   1.94   thorpej bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
    561   1.94   thorpej bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
    562   1.92   tsutsui void pmap_remove_pte(mmu_short_pte_t *);
    563   1.92   tsutsui 
    564   1.92   tsutsui void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
    565   1.92   tsutsui static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
    566   1.92   tsutsui static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
    567   1.94   thorpej static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
    568   1.92   tsutsui vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
    569   1.92   tsutsui static INLINE int pmap_dereference(pmap_t);
    570   1.92   tsutsui 
    571   1.94   thorpej bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
    572   1.92   tsutsui     mmu_short_pte_t **, int *, int *, int *);
    573   1.92   tsutsui void pmap_bootstrap_copyprom(void);
    574   1.92   tsutsui void pmap_takeover_mmu(void);
    575   1.92   tsutsui void pmap_bootstrap_setprom(void);
    576   1.86       chs static void pmap_page_upload(void);
    577    1.1       gwr 
    578   1.92   tsutsui #ifdef PMAP_DEBUG
    579   1.92   tsutsui /* Debugging function definitions */
    580   1.92   tsutsui void  pv_list(paddr_t, int);
    581   1.92   tsutsui #endif /* PMAP_DEBUG */
    582   1.92   tsutsui 
    583    1.1       gwr /** Interface functions
    584    1.1       gwr  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    585    1.1       gwr  **   defined.
    586   1.92   tsutsui  **   The new UVM doesn't require them so now INTERNAL.
    587    1.1       gwr  **/
    588   1.92   tsutsui static INLINE void pmap_pinit(pmap_t);
    589   1.92   tsutsui static INLINE void pmap_release(pmap_t);
    590    1.1       gwr 
    591    1.1       gwr /********************************** CODE ********************************
    592    1.1       gwr  * Functions that are called from other parts of the kernel are labeled *
    593    1.1       gwr  * as 'INTERFACE' functions.  Functions that are only called from       *
    594    1.1       gwr  * within the pmap module are labeled as 'INTERNAL' functions.          *
    595    1.1       gwr  * Functions that are internal, but are not (currently) used at all are *
    596    1.1       gwr  * labeled 'INTERNAL_X'.                                                *
    597  1.113   tsutsui  ************************************************************************/
    598    1.1       gwr 
    599    1.1       gwr /* pmap_bootstrap			INTERNAL
    600    1.1       gwr  **
    601   1.33       gwr  * Initializes the pmap system.  Called at boot time from
    602   1.33       gwr  * locore2.c:_vm_init()
    603    1.1       gwr  *
    604    1.1       gwr  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    605    1.1       gwr  *           system implement pmap_steal_memory() is redundant.
    606    1.1       gwr  *           Don't release this code without removing one or the other!
    607    1.1       gwr  */
    608  1.113   tsutsui void
    609   1.86       chs pmap_bootstrap(vaddr_t nextva)
    610    1.1       gwr {
    611    1.1       gwr 	struct physmemory *membank;
    612    1.1       gwr 	struct pmap_physmem_struct *pmap_membank;
    613   1.69       chs 	vaddr_t va, eva;
    614   1.69       chs 	paddr_t pa;
    615    1.1       gwr 	int b, c, i, j;	/* running table counts */
    616   1.40       gwr 	int size, resvmem;
    617    1.1       gwr 
    618    1.1       gwr 	/*
    619    1.1       gwr 	 * This function is called by __bootstrap after it has
    620    1.1       gwr 	 * determined the type of machine and made the appropriate
    621    1.1       gwr 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    622    1.1       gwr 	 * by that.)  It allocates and sets up enough of the pmap system
    623    1.1       gwr 	 * to manage the kernel's address space.
    624    1.1       gwr 	 */
    625    1.1       gwr 
    626    1.1       gwr 	/*
    627    1.7       gwr 	 * Determine the range of kernel virtual and physical
    628    1.7       gwr 	 * space available. Note that we ABSOLUTELY DEPEND on
    629    1.7       gwr 	 * the fact that the first bank of memory (4MB) is
    630    1.7       gwr 	 * mapped linearly to KERNBASE (which we guaranteed in
    631    1.7       gwr 	 * the first instructions of locore.s).
    632    1.7       gwr 	 * That is plenty for our bootstrap work.
    633    1.1       gwr 	 */
    634   1.25     veego 	virtual_avail = m68k_round_page(nextva);
    635  1.111   tsutsui 	virtual_contig_end = KERNBASE3X + 0x400000; /* +4MB */
    636    1.1       gwr 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    637    1.7       gwr 	/* Don't need avail_start til later. */
    638    1.1       gwr 
    639    1.7       gwr 	/* We may now call pmap_bootstrap_alloc(). */
    640   1.95   thorpej 	bootstrap_alloc_enabled = true;
    641    1.1       gwr 
    642    1.1       gwr 	/*
    643    1.1       gwr 	 * This is a somewhat unwrapped loop to deal with
    644    1.1       gwr 	 * copying the PROM's 'phsymem' banks into the pmap's
    645    1.1       gwr 	 * banks.  The following is always assumed:
    646    1.1       gwr 	 * 1. There is always at least one bank of memory.
    647    1.1       gwr 	 * 2. There is always a last bank of memory, and its
    648    1.1       gwr 	 *    pmem_next member must be set to NULL.
    649    1.1       gwr 	 */
    650    1.1       gwr 	membank = romVectorPtr->v_physmemory;
    651    1.1       gwr 	pmap_membank = avail_mem;
    652    1.1       gwr 	total_phys_mem = 0;
    653    1.1       gwr 
    654   1.40       gwr 	for (;;) { /* break on !membank */
    655    1.1       gwr 		pmap_membank->pmem_start = membank->address;
    656    1.1       gwr 		pmap_membank->pmem_end = membank->address + membank->size;
    657    1.1       gwr 		total_phys_mem += membank->size;
    658   1.40       gwr 		membank = membank->next;
    659   1.40       gwr 		if (!membank)
    660   1.40       gwr 			break;
    661    1.1       gwr 		/* This silly syntax arises because pmap_membank
    662    1.1       gwr 		 * is really a pre-allocated array, but it is put into
    663    1.1       gwr 		 * use as a linked list.
    664    1.1       gwr 		 */
    665    1.1       gwr 		pmap_membank->pmem_next = pmap_membank + 1;
    666    1.1       gwr 		pmap_membank = pmap_membank->pmem_next;
    667    1.1       gwr 	}
    668   1.40       gwr 	/* This is the last element. */
    669   1.40       gwr 	pmap_membank->pmem_next = NULL;
    670    1.1       gwr 
    671    1.1       gwr 	/*
    672   1.40       gwr 	 * Note: total_phys_mem, physmem represent
    673   1.40       gwr 	 * actual physical memory, including that
    674   1.40       gwr 	 * reserved for the PROM monitor.
    675    1.1       gwr 	 */
    676   1.40       gwr 	physmem = btoc(total_phys_mem);
    677    1.1       gwr 
    678    1.1       gwr 	/*
    679   1.60   tsutsui 	 * Avail_end is set to the first byte of physical memory
    680   1.60   tsutsui 	 * after the end of the last bank.  We use this only to
    681   1.60   tsutsui 	 * determine if a physical address is "managed" memory.
    682   1.60   tsutsui 	 * This address range should be reduced to prevent the
    683   1.40       gwr 	 * physical pages needed by the PROM monitor from being used
    684   1.40       gwr 	 * in the VM system.
    685    1.1       gwr 	 */
    686   1.40       gwr 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    687   1.40       gwr 	resvmem = m68k_round_page(resvmem);
    688   1.60   tsutsui 	avail_end = pmap_membank->pmem_end - resvmem;
    689    1.1       gwr 
    690    1.1       gwr 	/*
    691   1.15       gwr 	 * First allocate enough kernel MMU tables to map all
    692   1.15       gwr 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    693    1.1       gwr 	 * Note: All must be aligned on 256 byte boundaries.
    694   1.15       gwr 	 * Start with the level-A table (one of those).
    695    1.1       gwr 	 */
    696   1.69       chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    697    1.7       gwr 	kernAbase = pmap_bootstrap_alloc(size);
    698   1.71   tsutsui 	memset(kernAbase, 0, size);
    699    1.1       gwr 
    700   1.15       gwr 	/* Now the level-B kernel tables... */
    701   1.15       gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    702    1.7       gwr 	kernBbase = pmap_bootstrap_alloc(size);
    703   1.71   tsutsui 	memset(kernBbase, 0, size);
    704    1.1       gwr 
    705   1.15       gwr 	/* Now the level-C kernel tables... */
    706   1.15       gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    707   1.15       gwr 	kernCbase = pmap_bootstrap_alloc(size);
    708   1.71   tsutsui 	memset(kernCbase, 0, size);
    709    1.7       gwr 	/*
    710    1.7       gwr 	 * Note: In order for the PV system to work correctly, the kernel
    711    1.7       gwr 	 * and user-level C tables must be allocated contiguously.
    712    1.7       gwr 	 * Nothing should be allocated between here and the allocation of
    713    1.7       gwr 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    714    1.7       gwr 	 * then compute a pointer for mmuCbase instead of this...
    715   1.15       gwr 	 *
    716  1.113   tsutsui 	 * Allocate user MMU tables.
    717   1.70       wiz 	 * These must be contiguous with the preceding.
    718    1.7       gwr 	 */
    719   1.22    jeremy 
    720   1.22    jeremy #ifndef	FIXED_NTABLES
    721   1.22    jeremy 	/*
    722   1.22    jeremy 	 * The number of user-level C tables that should be allocated is
    723   1.22    jeremy 	 * related to the size of physical memory.  In general, there should
    724   1.22    jeremy 	 * be enough tables to map four times the amount of available RAM.
    725   1.22    jeremy 	 * The extra amount is needed because some table space is wasted by
    726   1.22    jeremy 	 * fragmentation.
    727   1.22    jeremy 	 */
    728   1.22    jeremy 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    729   1.22    jeremy 	NUM_B_TABLES = NUM_C_TABLES / 2;
    730   1.22    jeremy 	NUM_A_TABLES = NUM_B_TABLES / 2;
    731   1.22    jeremy #endif	/* !FIXED_NTABLES */
    732   1.22    jeremy 
    733   1.15       gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    734   1.15       gwr 	mmuCbase = pmap_bootstrap_alloc(size);
    735   1.15       gwr 
    736   1.15       gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    737   1.15       gwr 	mmuBbase = pmap_bootstrap_alloc(size);
    738    1.1       gwr 
    739   1.69       chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    740   1.15       gwr 	mmuAbase = pmap_bootstrap_alloc(size);
    741    1.7       gwr 
    742    1.7       gwr 	/*
    743    1.7       gwr 	 * Fill in the never-changing part of the kernel tables.
    744    1.7       gwr 	 * For simplicity, the kernel's mappings will be editable as a
    745    1.1       gwr 	 * flat array of page table entries at kernCbase.  The
    746    1.1       gwr 	 * higher level 'A' and 'B' tables must be initialized to point
    747  1.113   tsutsui 	 * to this lower one.
    748    1.1       gwr 	 */
    749    1.1       gwr 	b = c = 0;
    750    1.1       gwr 
    751    1.7       gwr 	/*
    752    1.7       gwr 	 * Invalidate all mappings below KERNBASE in the A table.
    753    1.1       gwr 	 * This area has already been zeroed out, but it is good
    754    1.1       gwr 	 * practice to explicitly show that we are interpreting
    755    1.1       gwr 	 * it as a list of A table descriptors.
    756    1.1       gwr 	 */
    757  1.111   tsutsui 	for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
    758    1.1       gwr 		kernAbase[i].addr.raw = 0;
    759    1.1       gwr 	}
    760    1.1       gwr 
    761    1.7       gwr 	/*
    762    1.7       gwr 	 * Set up the kernel A and B tables so that they will reference the
    763    1.1       gwr 	 * correct spots in the contiguous table of PTEs allocated for the
    764    1.1       gwr 	 * kernel's virtual memory space.
    765    1.1       gwr 	 */
    766  1.111   tsutsui 	for (i = MMU_TIA(KERNBASE3X); i < MMU_A_TBL_SIZE; i++) {
    767    1.1       gwr 		kernAbase[i].attr.raw =
    768   1.92   tsutsui 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    769    1.7       gwr 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    770    1.1       gwr 
    771   1.92   tsutsui 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
    772   1.92   tsutsui 			kernBbase[b + j].attr.raw =
    773   1.92   tsutsui 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
    774    1.1       gwr 			c += MMU_C_TBL_SIZE;
    775    1.1       gwr 		}
    776    1.1       gwr 		b += MMU_B_TBL_SIZE;
    777    1.1       gwr 	}
    778    1.1       gwr 
    779    1.7       gwr 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    780    1.7       gwr 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    781    1.7       gwr 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    782    1.7       gwr 
    783    1.7       gwr 	/*
    784    1.7       gwr 	 * We are now done with pmap_bootstrap_alloc().  Round up
    785    1.7       gwr 	 * `virtual_avail' to the nearest page, and set the flag
    786    1.7       gwr 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    787    1.7       gwr 	 */
    788   1.79   thorpej 	pmap_bootstrap_aalign(PAGE_SIZE);
    789   1.95   thorpej 	bootstrap_alloc_enabled = false;
    790    1.7       gwr 
    791    1.7       gwr 	/*
    792    1.7       gwr 	 * Now that we are done with pmap_bootstrap_alloc(), we
    793    1.7       gwr 	 * must save the virtual and physical addresses of the
    794    1.7       gwr 	 * end of the linearly mapped range, which are stored in
    795    1.7       gwr 	 * virtual_contig_end and avail_start, respectively.
    796    1.7       gwr 	 * These variables will never change after this point.
    797    1.7       gwr 	 */
    798    1.7       gwr 	virtual_contig_end = virtual_avail;
    799  1.111   tsutsui 	avail_start = virtual_avail - KERNBASE3X;
    800    1.7       gwr 
    801    1.7       gwr 	/*
    802    1.7       gwr 	 * `avail_next' is a running pointer used by pmap_next_page() to
    803    1.7       gwr 	 * keep track of the next available physical page to be handed
    804    1.7       gwr 	 * to the VM system during its initialization, in which it
    805    1.7       gwr 	 * asks for physical pages, one at a time.
    806    1.7       gwr 	 */
    807    1.7       gwr 	avail_next = avail_start;
    808    1.7       gwr 
    809    1.7       gwr 	/*
    810    1.7       gwr 	 * Now allocate some virtual addresses, but not the physical pages
    811    1.7       gwr 	 * behind them.  Note that virtual_avail is already page-aligned.
    812    1.7       gwr 	 *
    813    1.7       gwr 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    814    1.7       gwr 	 * kernel mappings in the pmap module to facilitate various physical
    815    1.7       gwr 	 * address-oritented operations.
    816    1.7       gwr 	 */
    817    1.7       gwr 	tmp_vpages[0] = virtual_avail;
    818   1.79   thorpej 	virtual_avail += PAGE_SIZE;
    819    1.7       gwr 	tmp_vpages[1] = virtual_avail;
    820   1.79   thorpej 	virtual_avail += PAGE_SIZE;
    821    1.7       gwr 
    822    1.7       gwr 	/** Initialize the PV system **/
    823    1.7       gwr 	pmap_init_pv();
    824    1.7       gwr 
    825    1.7       gwr 	/*
    826    1.7       gwr 	 * Fill in the kernel_pmap structure and kernel_crp.
    827    1.7       gwr 	 */
    828    1.7       gwr 	kernAphys = mmu_vtop(kernAbase);
    829    1.7       gwr 	kernel_pmap.pm_a_tmgr = NULL;
    830    1.7       gwr 	kernel_pmap.pm_a_phys = kernAphys;
    831    1.7       gwr 	kernel_pmap.pm_refcount = 1; /* always in use */
    832    1.7       gwr 
    833    1.7       gwr 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    834    1.7       gwr 	kernel_crp.rp_addr = kernAphys;
    835    1.7       gwr 
    836    1.1       gwr 	/*
    837    1.1       gwr 	 * Now pmap_enter_kernel() may be used safely and will be
    838    1.7       gwr 	 * the main interface used hereafter to modify the kernel's
    839    1.7       gwr 	 * virtual address space.  Note that since we are still running
    840    1.7       gwr 	 * under the PROM's address table, none of these table modifications
    841    1.7       gwr 	 * actually take effect until pmap_takeover_mmu() is called.
    842    1.1       gwr 	 *
    843    1.7       gwr 	 * Note: Our tables do NOT have the PROM linear mappings!
    844    1.7       gwr 	 * Only the mappings created here exist in our tables, so
    845    1.7       gwr 	 * remember to map anything we expect to use.
    846    1.1       gwr 	 */
    847  1.111   tsutsui 	va = (vaddr_t)KERNBASE3X;
    848    1.7       gwr 	pa = 0;
    849    1.1       gwr 
    850    1.1       gwr 	/*
    851    1.7       gwr 	 * The first page of the kernel virtual address space is the msgbuf
    852    1.7       gwr 	 * page.  The page attributes (data, non-cached) are set here, while
    853    1.7       gwr 	 * the address is assigned to this global pointer in cpu_startup().
    854   1.29       gwr 	 * It is non-cached, mostly due to paranoia.
    855    1.1       gwr 	 */
    856   1.29       gwr 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    857   1.92   tsutsui 	va += PAGE_SIZE;
    858   1.92   tsutsui 	pa += PAGE_SIZE;
    859    1.1       gwr 
    860    1.7       gwr 	/* Next page is used as the temporary stack. */
    861    1.1       gwr 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    862   1.92   tsutsui 	va += PAGE_SIZE;
    863   1.92   tsutsui 	pa += PAGE_SIZE;
    864    1.1       gwr 
    865    1.1       gwr 	/*
    866    1.1       gwr 	 * Map all of the kernel's text segment as read-only and cacheable.
    867    1.1       gwr 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    868    1.1       gwr 	 * of kernel text and the first bytes of kernel data will often be
    869    1.1       gwr 	 * sharing the same page.  Therefore, the last page of kernel text
    870   1.93  christos 	 * has to be mapped as read/write, to accommodate the data.
    871    1.1       gwr 	 */
    872   1.69       chs 	eva = m68k_trunc_page((vaddr_t)etext);
    873   1.79   thorpej 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    874    1.1       gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    875    1.1       gwr 
    876    1.7       gwr 	/*
    877    1.7       gwr 	 * Map all of the kernel's data as read/write and cacheable.
    878    1.7       gwr 	 * This includes: data, BSS, symbols, and everything in the
    879    1.7       gwr 	 * contiguous memory used by pmap_bootstrap_alloc()
    880    1.1       gwr 	 */
    881   1.79   thorpej 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    882    1.1       gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    883    1.1       gwr 
    884    1.7       gwr 	/*
    885    1.7       gwr 	 * At this point we are almost ready to take over the MMU.  But first
    886    1.7       gwr 	 * we must save the PROM's address space in our map, as we call its
    887    1.7       gwr 	 * routines and make references to its data later in the kernel.
    888    1.1       gwr 	 */
    889    1.7       gwr 	pmap_bootstrap_copyprom();
    890    1.7       gwr 	pmap_takeover_mmu();
    891   1.13       gwr 	pmap_bootstrap_setprom();
    892    1.1       gwr 
    893    1.1       gwr 	/* Notify the VM system of our page size. */
    894   1.79   thorpej 	uvmexp.pagesize = PAGE_SIZE;
    895  1.114    cherry 	uvm_md_init();
    896   1.37       gwr 
    897   1.37       gwr 	pmap_page_upload();
    898    1.1       gwr }
    899    1.1       gwr 
    900    1.1       gwr 
    901    1.1       gwr /* pmap_alloc_usermmu			INTERNAL
    902    1.1       gwr  **
    903    1.1       gwr  * Called from pmap_bootstrap() to allocate MMU tables that will
    904    1.1       gwr  * eventually be used for user mappings.
    905    1.1       gwr  */
    906  1.113   tsutsui void
    907   1.86       chs pmap_alloc_usermmu(void)
    908    1.1       gwr {
    909   1.92   tsutsui 
    910    1.7       gwr 	/* XXX: Moved into caller. */
    911    1.1       gwr }
    912    1.1       gwr 
    913    1.1       gwr /* pmap_alloc_pv			INTERNAL
    914    1.1       gwr  **
    915    1.1       gwr  * Called from pmap_bootstrap() to allocate the physical
    916    1.1       gwr  * to virtual mapping list.  Each physical page of memory
    917    1.1       gwr  * in the system has a corresponding element in this list.
    918    1.1       gwr  */
    919  1.113   tsutsui void
    920   1.86       chs pmap_alloc_pv(void)
    921    1.1       gwr {
    922    1.1       gwr 	int	i;
    923    1.1       gwr 	unsigned int	total_mem;
    924    1.1       gwr 
    925    1.7       gwr 	/*
    926    1.7       gwr 	 * Allocate a pv_head structure for every page of physical
    927    1.1       gwr 	 * memory that will be managed by the system.  Since memory on
    928    1.1       gwr 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    929    1.1       gwr 	 * count by subtraction of the lowest available address from the
    930    1.1       gwr 	 * highest, but rather we have to step through each memory
    931    1.1       gwr 	 * bank and add the number of pages in each to the total.
    932    1.1       gwr 	 *
    933    1.1       gwr 	 * At this time we also initialize the offset of each bank's
    934    1.1       gwr 	 * starting pv_head within the pv_head list so that the physical
    935    1.1       gwr 	 * memory state routines (pmap_is_referenced(),
    936  1.118   msaitoh 	 * pmap_is_modified(), et al.) can quickly find corresponding
    937    1.1       gwr 	 * pv_heads in spite of the non-contiguity.
    938    1.1       gwr 	 */
    939    1.1       gwr 	total_mem = 0;
    940   1.20   thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    941   1.25     veego 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    942   1.92   tsutsui 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
    943    1.1       gwr 		if (avail_mem[i].pmem_next == NULL)
    944    1.1       gwr 			break;
    945    1.1       gwr 	}
    946   1.92   tsutsui 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
    947   1.92   tsutsui 	    m68k_btop(total_phys_mem));
    948    1.1       gwr }
    949    1.1       gwr 
    950    1.1       gwr /* pmap_alloc_usertmgr			INTERNAL
    951    1.1       gwr  **
    952    1.1       gwr  * Called from pmap_bootstrap() to allocate the structures which
    953    1.1       gwr  * facilitate management of user MMU tables.  Each user MMU table
    954    1.1       gwr  * in the system has one such structure associated with it.
    955    1.1       gwr  */
    956  1.113   tsutsui void
    957   1.86       chs pmap_alloc_usertmgr(void)
    958    1.1       gwr {
    959    1.1       gwr 	/* Allocate user MMU table managers */
    960    1.7       gwr 	/* It would be a lot simpler to just make these BSS, but */
    961    1.7       gwr 	/* we may want to change their size at boot time... -j */
    962   1.92   tsutsui 	Atmgrbase =
    963   1.92   tsutsui 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
    964   1.92   tsutsui 	Btmgrbase =
    965   1.92   tsutsui 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
    966   1.92   tsutsui 	Ctmgrbase =
    967   1.92   tsutsui 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
    968    1.1       gwr 
    969    1.7       gwr 	/*
    970    1.7       gwr 	 * Allocate PV list elements for the physical to virtual
    971    1.1       gwr 	 * mapping system.
    972    1.1       gwr 	 */
    973   1.92   tsutsui 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
    974   1.92   tsutsui 	    (NUM_USER_PTES + NUM_KERN_PTES));
    975    1.1       gwr }
    976    1.1       gwr 
    977    1.1       gwr /* pmap_bootstrap_copyprom()			INTERNAL
    978    1.1       gwr  **
    979    1.1       gwr  * Copy the PROM mappings into our own tables.  Note, we
    980    1.1       gwr  * can use physical addresses until __bootstrap returns.
    981    1.1       gwr  */
    982  1.113   tsutsui void
    983   1.86       chs pmap_bootstrap_copyprom(void)
    984    1.1       gwr {
    985   1.33       gwr 	struct sunromvec *romp;
    986    1.1       gwr 	int *mon_ctbl;
    987    1.1       gwr 	mmu_short_pte_t *kpte;
    988    1.1       gwr 	int i, len;
    989    1.1       gwr 
    990    1.1       gwr 	romp = romVectorPtr;
    991    1.1       gwr 
    992    1.1       gwr 	/*
    993   1.33       gwr 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    994   1.33       gwr 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    995    1.1       gwr 	 */
    996    1.1       gwr 	mon_ctbl = *romp->monptaddr;
    997  1.111   tsutsui 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE3X);
    998    1.1       gwr 	kpte = &kernCbase[i];
    999   1.33       gwr 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
   1000    1.1       gwr 
   1001    1.1       gwr 	for (i = 0; i < len; i++) {
   1002    1.1       gwr 		kpte[i].attr.raw = mon_ctbl[i];
   1003    1.1       gwr 	}
   1004    1.1       gwr 
   1005    1.1       gwr 	/*
   1006    1.1       gwr 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1007    1.1       gwr 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1008   1.32       gwr 	 * Actually, we only want the last page, which the
   1009   1.32       gwr 	 * PROM has set up for use by the "ie" driver.
   1010   1.32       gwr 	 * (The i82686 needs its SCP there.)
   1011   1.32       gwr 	 * If we copy all the mappings, pmap_enter_kernel
   1012   1.32       gwr 	 * may complain about finding valid PTEs that are
   1013   1.32       gwr 	 * not recorded in our PV lists...
   1014    1.1       gwr 	 */
   1015    1.1       gwr 	mon_ctbl = *romp->shadowpteaddr;
   1016  1.111   tsutsui 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE3X);
   1017    1.1       gwr 	kpte = &kernCbase[i];
   1018   1.33       gwr 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1019   1.92   tsutsui 	for (i = (len - 1); i < len; i++) {
   1020    1.1       gwr 		kpte[i].attr.raw = mon_ctbl[i];
   1021    1.1       gwr 	}
   1022    1.1       gwr }
   1023  1.113   tsutsui 
   1024    1.1       gwr /* pmap_takeover_mmu			INTERNAL
   1025    1.1       gwr  **
   1026    1.1       gwr  * Called from pmap_bootstrap() after it has copied enough of the
   1027    1.1       gwr  * PROM mappings into the kernel map so that we can use our own
   1028    1.1       gwr  * MMU table.
   1029    1.1       gwr  */
   1030  1.113   tsutsui void
   1031   1.86       chs pmap_takeover_mmu(void)
   1032    1.1       gwr {
   1033    1.1       gwr 
   1034   1.13       gwr 	loadcrp(&kernel_crp);
   1035    1.1       gwr }
   1036    1.1       gwr 
   1037   1.13       gwr /* pmap_bootstrap_setprom()			INTERNAL
   1038   1.13       gwr  **
   1039   1.13       gwr  * Set the PROM mappings so it can see kernel space.
   1040   1.13       gwr  * Note that physical addresses are used here, which
   1041   1.13       gwr  * we can get away with because this runs with the
   1042   1.13       gwr  * low 1GB set for transparent translation.
   1043   1.13       gwr  */
   1044  1.113   tsutsui void
   1045   1.86       chs pmap_bootstrap_setprom(void)
   1046   1.13       gwr {
   1047   1.13       gwr 	mmu_long_dte_t *mon_dte;
   1048   1.13       gwr 	extern struct mmu_rootptr mon_crp;
   1049   1.13       gwr 	int i;
   1050   1.13       gwr 
   1051   1.92   tsutsui 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
   1052  1.111   tsutsui 	for (i = MMU_TIA(KERNBASE3X); i < MMU_TIA(KERN_END3X); i++) {
   1053   1.13       gwr 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1054   1.13       gwr 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1055   1.13       gwr 	}
   1056   1.13       gwr }
   1057   1.13       gwr 
   1058   1.13       gwr 
   1059    1.1       gwr /* pmap_init			INTERFACE
   1060    1.1       gwr  **
   1061    1.1       gwr  * Called at the end of vm_init() to set up the pmap system to go
   1062    1.7       gwr  * into full time operation.  All initialization of kernel_pmap
   1063    1.7       gwr  * should be already done by now, so this should just do things
   1064    1.7       gwr  * needed for user-level pmaps to work.
   1065    1.1       gwr  */
   1066  1.113   tsutsui void
   1067   1.86       chs pmap_init(void)
   1068    1.1       gwr {
   1069   1.92   tsutsui 
   1070    1.1       gwr 	/** Initialize the manager pools **/
   1071    1.1       gwr 	TAILQ_INIT(&a_pool);
   1072    1.1       gwr 	TAILQ_INIT(&b_pool);
   1073    1.1       gwr 	TAILQ_INIT(&c_pool);
   1074    1.1       gwr 
   1075    1.1       gwr 	/**************************************************************
   1076    1.1       gwr 	 * Initialize all tmgr structures and MMU tables they manage. *
   1077    1.1       gwr 	 **************************************************************/
   1078    1.1       gwr 	/** Initialize A tables **/
   1079    1.1       gwr 	pmap_init_a_tables();
   1080    1.1       gwr 	/** Initialize B tables **/
   1081    1.1       gwr 	pmap_init_b_tables();
   1082    1.1       gwr 	/** Initialize C tables **/
   1083    1.1       gwr 	pmap_init_c_tables();
   1084   1.56   tsutsui 
   1085   1.56   tsutsui 	/** Initialize the pmap pools **/
   1086   1.56   tsutsui 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1087   1.96        ad 	    &pool_allocator_nointr, IPL_NONE);
   1088    1.1       gwr }
   1089    1.1       gwr 
   1090    1.1       gwr /* pmap_init_a_tables()			INTERNAL
   1091    1.1       gwr  **
   1092    1.1       gwr  * Initializes all A managers, their MMU A tables, and inserts
   1093    1.1       gwr  * them into the A manager pool for use by the system.
   1094    1.1       gwr  */
   1095  1.113   tsutsui void
   1096   1.86       chs pmap_init_a_tables(void)
   1097    1.1       gwr {
   1098    1.1       gwr 	int i;
   1099    1.1       gwr 	a_tmgr_t *a_tbl;
   1100    1.1       gwr 
   1101   1.86       chs 	for (i = 0; i < NUM_A_TABLES; i++) {
   1102    1.1       gwr 		/* Select the next available A manager from the pool */
   1103    1.1       gwr 		a_tbl = &Atmgrbase[i];
   1104    1.1       gwr 
   1105    1.7       gwr 		/*
   1106    1.7       gwr 		 * Clear its parent entry.  Set its wired and valid
   1107    1.1       gwr 		 * entry count to zero.
   1108    1.1       gwr 		 */
   1109    1.1       gwr 		a_tbl->at_parent = NULL;
   1110    1.1       gwr 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1111    1.1       gwr 
   1112    1.1       gwr 		/* Assign it the next available MMU A table from the pool */
   1113    1.1       gwr 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1114    1.1       gwr 
   1115    1.7       gwr 		/*
   1116  1.110      matt 		 * Initialize the MMU A table with the table in the `lwp0',
   1117    1.1       gwr 		 * or kernel, mapping.  This ensures that every process has
   1118    1.1       gwr 		 * the kernel mapped in the top part of its address space.
   1119    1.1       gwr 		 */
   1120   1.92   tsutsui 		memcpy(a_tbl->at_dtbl, kernAbase,
   1121   1.92   tsutsui 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
   1122    1.1       gwr 
   1123    1.7       gwr 		/*
   1124    1.7       gwr 		 * Finally, insert the manager into the A pool,
   1125    1.1       gwr 		 * making it ready to be used by the system.
   1126    1.1       gwr 		 */
   1127    1.1       gwr 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1128  1.113   tsutsui 	}
   1129    1.1       gwr }
   1130    1.1       gwr 
   1131    1.1       gwr /* pmap_init_b_tables()			INTERNAL
   1132    1.1       gwr  **
   1133    1.1       gwr  * Initializes all B table managers, their MMU B tables, and
   1134    1.1       gwr  * inserts them into the B manager pool for use by the system.
   1135    1.1       gwr  */
   1136  1.113   tsutsui void
   1137   1.86       chs pmap_init_b_tables(void)
   1138    1.1       gwr {
   1139   1.86       chs 	int i, j;
   1140    1.1       gwr 	b_tmgr_t *b_tbl;
   1141    1.1       gwr 
   1142   1.86       chs 	for (i = 0; i < NUM_B_TABLES; i++) {
   1143    1.1       gwr 		/* Select the next available B manager from the pool */
   1144    1.1       gwr 		b_tbl = &Btmgrbase[i];
   1145    1.1       gwr 
   1146    1.1       gwr 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1147    1.1       gwr 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1148    1.1       gwr 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1149    1.1       gwr 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1150    1.1       gwr 
   1151    1.1       gwr 		/* Assign it the next available MMU B table from the pool */
   1152    1.1       gwr 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1153    1.1       gwr 
   1154    1.1       gwr 		/* Invalidate every descriptor in the table */
   1155   1.92   tsutsui 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
   1156    1.1       gwr 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1157    1.1       gwr 
   1158    1.1       gwr 		/* Insert the manager into the B pool */
   1159    1.1       gwr 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1160    1.1       gwr 	}
   1161    1.1       gwr }
   1162    1.1       gwr 
   1163    1.1       gwr /* pmap_init_c_tables()			INTERNAL
   1164    1.1       gwr  **
   1165    1.1       gwr  * Initializes all C table managers, their MMU C tables, and
   1166    1.1       gwr  * inserts them into the C manager pool for use by the system.
   1167    1.1       gwr  */
   1168  1.113   tsutsui void
   1169   1.86       chs pmap_init_c_tables(void)
   1170    1.1       gwr {
   1171   1.86       chs 	int i, j;
   1172    1.1       gwr 	c_tmgr_t *c_tbl;
   1173    1.1       gwr 
   1174   1.86       chs 	for (i = 0; i < NUM_C_TABLES; i++) {
   1175    1.1       gwr 		/* Select the next available C manager from the pool */
   1176    1.1       gwr 		c_tbl = &Ctmgrbase[i];
   1177    1.1       gwr 
   1178    1.1       gwr 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1179    1.1       gwr 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1180    1.1       gwr 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1181   1.26    jeremy 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1182   1.26    jeremy 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1183   1.26    jeremy 		c_tbl->ct_va = 0;		/* base of managed range */
   1184    1.1       gwr 
   1185  1.113   tsutsui 		/* Assign it the next available MMU C table from the pool */
   1186    1.1       gwr 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1187    1.1       gwr 
   1188   1.92   tsutsui 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
   1189    1.1       gwr 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1190    1.1       gwr 
   1191    1.1       gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1192    1.1       gwr 	}
   1193    1.1       gwr }
   1194    1.1       gwr 
   1195    1.1       gwr /* pmap_init_pv()			INTERNAL
   1196    1.1       gwr  **
   1197    1.1       gwr  * Initializes the Physical to Virtual mapping system.
   1198    1.1       gwr  */
   1199  1.113   tsutsui void
   1200   1.86       chs pmap_init_pv(void)
   1201    1.1       gwr {
   1202   1.86       chs 	int i;
   1203    1.7       gwr 
   1204    1.7       gwr 	/* Initialize every PV head. */
   1205   1.25     veego 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1206    1.7       gwr 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1207    1.7       gwr 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1208    1.7       gwr 	}
   1209    1.1       gwr }
   1210    1.1       gwr 
   1211   1.92   tsutsui /* is_managed				INTERNAL
   1212   1.92   tsutsui  **
   1213   1.92   tsutsui  * Determine if the given physical address is managed by the PV system.
   1214   1.92   tsutsui  * Note that this logic assumes that no one will ask for the status of
   1215   1.92   tsutsui  * addresses which lie in-between the memory banks on the 3/80.  If they
   1216   1.92   tsutsui  * do so, it will falsely report that it is managed.
   1217   1.92   tsutsui  *
   1218  1.113   tsutsui  * Note: A "managed" address is one that was reported to the VM system as
   1219   1.92   tsutsui  * a "usable page" during system startup.  As such, the VM system expects the
   1220  1.120    andvar  * pmap module to keep an accurate track of the usage of those pages.
   1221  1.113   tsutsui  * Any page not given to the VM system at startup does not exist (as far as
   1222   1.92   tsutsui  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   1223   1.92   tsutsui  * those pages which belong to the ROM monitor and the memory allocated before
   1224   1.92   tsutsui  * the VM system was started.
   1225   1.92   tsutsui  */
   1226  1.113   tsutsui static INLINE bool
   1227   1.92   tsutsui is_managed(paddr_t pa)
   1228   1.92   tsutsui {
   1229   1.92   tsutsui 	if (pa >= avail_start && pa < avail_end)
   1230   1.95   thorpej 		return true;
   1231   1.92   tsutsui 	else
   1232   1.95   thorpej 		return false;
   1233   1.92   tsutsui }
   1234   1.92   tsutsui 
   1235    1.1       gwr /* get_a_table			INTERNAL
   1236    1.1       gwr  **
   1237    1.1       gwr  * Retrieve and return a level A table for use in a user map.
   1238    1.1       gwr  */
   1239    1.1       gwr a_tmgr_t *
   1240   1.86       chs get_a_table(void)
   1241    1.1       gwr {
   1242    1.1       gwr 	a_tmgr_t *tbl;
   1243    1.7       gwr 	pmap_t pmap;
   1244    1.1       gwr 
   1245    1.1       gwr 	/* Get the top A table in the pool */
   1246   1.86       chs 	tbl = TAILQ_FIRST(&a_pool);
   1247    1.7       gwr 	if (tbl == NULL) {
   1248    1.7       gwr 		/*
   1249   1.85       wiz 		 * XXX - Instead of panicking here and in other get_x_table
   1250    1.7       gwr 		 * functions, we do have the option of sleeping on the head of
   1251    1.7       gwr 		 * the table pool.  Any function which updates the table pool
   1252    1.7       gwr 		 * would then issue a wakeup() on the head, thus waking up any
   1253    1.7       gwr 		 * processes waiting for a table.
   1254    1.7       gwr 		 *
   1255    1.7       gwr 		 * Actually, the place to sleep would be when some process
   1256    1.7       gwr 		 * asks for a "wired" mapping that would run us short of
   1257    1.7       gwr 		 * mapping resources.  This design DEPENDS on always having
   1258    1.7       gwr 		 * some mapping resources in the pool for stealing, so we
   1259    1.7       gwr 		 * must make sure we NEVER let the pool become empty. -gwr
   1260    1.7       gwr 		 */
   1261    1.1       gwr 		panic("get_a_table: out of A tables.");
   1262    1.7       gwr 	}
   1263    1.7       gwr 
   1264    1.1       gwr 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1265    1.7       gwr 	/*
   1266    1.7       gwr 	 * If the table has a non-null parent pointer then it is in use.
   1267    1.1       gwr 	 * Forcibly abduct it from its parent and clear its entries.
   1268    1.1       gwr 	 * No re-entrancy worries here.  This table would not be in the
   1269    1.1       gwr 	 * table pool unless it was available for use.
   1270    1.7       gwr 	 *
   1271   1.95   thorpej 	 * Note that the second argument to free_a_table() is false.  This
   1272    1.7       gwr 	 * indicates that the table should not be relinked into the A table
   1273    1.7       gwr 	 * pool.  That is a job for the function that called us.
   1274    1.1       gwr 	 */
   1275    1.1       gwr 	if (tbl->at_parent) {
   1276   1.91   tsutsui 		KASSERT(tbl->at_wcnt == 0);
   1277    1.7       gwr 		pmap = tbl->at_parent;
   1278   1.95   thorpej 		free_a_table(tbl, false);
   1279    1.7       gwr 		pmap->pm_a_tmgr = NULL;
   1280    1.7       gwr 		pmap->pm_a_phys = kernAphys;
   1281    1.1       gwr 	}
   1282    1.1       gwr 	return tbl;
   1283    1.1       gwr }
   1284    1.1       gwr 
   1285    1.1       gwr /* get_b_table			INTERNAL
   1286    1.1       gwr  **
   1287    1.1       gwr  * Return a level B table for use.
   1288    1.1       gwr  */
   1289    1.1       gwr b_tmgr_t *
   1290   1.86       chs get_b_table(void)
   1291    1.1       gwr {
   1292    1.1       gwr 	b_tmgr_t *tbl;
   1293    1.1       gwr 
   1294    1.1       gwr 	/* See 'get_a_table' for comments. */
   1295   1.86       chs 	tbl = TAILQ_FIRST(&b_pool);
   1296    1.1       gwr 	if (tbl == NULL)
   1297    1.1       gwr 		panic("get_b_table: out of B tables.");
   1298    1.1       gwr 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1299    1.1       gwr 	if (tbl->bt_parent) {
   1300   1.91   tsutsui 		KASSERT(tbl->bt_wcnt == 0);
   1301    1.1       gwr 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1302    1.1       gwr 		tbl->bt_parent->at_ecnt--;
   1303   1.95   thorpej 		free_b_table(tbl, false);
   1304    1.1       gwr 	}
   1305    1.1       gwr 	return tbl;
   1306    1.1       gwr }
   1307    1.1       gwr 
   1308    1.1       gwr /* get_c_table			INTERNAL
   1309    1.1       gwr  **
   1310    1.1       gwr  * Return a level C table for use.
   1311    1.1       gwr  */
   1312    1.1       gwr c_tmgr_t *
   1313   1.86       chs get_c_table(void)
   1314    1.1       gwr {
   1315    1.1       gwr 	c_tmgr_t *tbl;
   1316    1.1       gwr 
   1317    1.1       gwr 	/* See 'get_a_table' for comments */
   1318   1.86       chs 	tbl = TAILQ_FIRST(&c_pool);
   1319    1.1       gwr 	if (tbl == NULL)
   1320    1.1       gwr 		panic("get_c_table: out of C tables.");
   1321    1.1       gwr 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1322    1.1       gwr 	if (tbl->ct_parent) {
   1323   1.91   tsutsui 		KASSERT(tbl->ct_wcnt == 0);
   1324    1.1       gwr 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1325    1.1       gwr 		tbl->ct_parent->bt_ecnt--;
   1326   1.95   thorpej 		free_c_table(tbl, false);
   1327    1.1       gwr 	}
   1328    1.1       gwr 	return tbl;
   1329    1.1       gwr }
   1330    1.1       gwr 
   1331    1.7       gwr /*
   1332    1.7       gwr  * The following 'free_table' and 'steal_table' functions are called to
   1333    1.1       gwr  * detach tables from their current obligations (parents and children) and
   1334    1.1       gwr  * prepare them for reuse in another mapping.
   1335    1.1       gwr  *
   1336    1.1       gwr  * Free_table is used when the calling function will handle the fate
   1337    1.1       gwr  * of the parent table, such as returning it to the free pool when it has
   1338    1.1       gwr  * no valid entries.  Functions that do not want to handle this should
   1339    1.1       gwr  * call steal_table, in which the parent table's descriptors and entry
   1340    1.1       gwr  * count are automatically modified when this table is removed.
   1341    1.1       gwr  */
   1342    1.1       gwr 
   1343    1.1       gwr /* free_a_table			INTERNAL
   1344    1.1       gwr  **
   1345    1.1       gwr  * Unmaps the given A table and all child tables from their current
   1346    1.1       gwr  * mappings.  Returns the number of pages that were invalidated.
   1347    1.7       gwr  * If 'relink' is true, the function will return the table to the head
   1348    1.7       gwr  * of the available table pool.
   1349    1.1       gwr  *
   1350    1.1       gwr  * Cache note: The MC68851 will automatically flush all
   1351    1.1       gwr  * descriptors derived from a given A table from its
   1352    1.1       gwr  * Automatic Translation Cache (ATC) if we issue a
   1353    1.1       gwr  * 'PFLUSHR' instruction with the base address of the
   1354    1.1       gwr  * table.  This function should do, and does so.
   1355    1.1       gwr  * Note note: We are using an MC68030 - there is no
   1356    1.1       gwr  * PFLUSHR.
   1357    1.1       gwr  */
   1358  1.113   tsutsui int
   1359   1.94   thorpej free_a_table(a_tmgr_t *a_tbl, bool relink)
   1360    1.1       gwr {
   1361    1.1       gwr 	int i, removed_cnt;
   1362    1.1       gwr 	mmu_long_dte_t	*dte;
   1363    1.1       gwr 	mmu_short_dte_t *dtbl;
   1364   1.91   tsutsui 	b_tmgr_t	*b_tbl;
   1365   1.91   tsutsui 	uint8_t at_wired, bt_wired;
   1366    1.1       gwr 
   1367    1.7       gwr 	/*
   1368    1.7       gwr 	 * Flush the ATC cache of all cached descriptors derived
   1369    1.1       gwr 	 * from this table.
   1370   1.22    jeremy 	 * Sun3x does not use 68851's cached table feature
   1371    1.1       gwr 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1372    1.1       gwr 	 */
   1373    1.1       gwr 
   1374    1.7       gwr 	/*
   1375    1.7       gwr 	 * Remove any pending cache flushes that were designated
   1376    1.1       gwr 	 * for the pmap this A table belongs to.
   1377    1.1       gwr 	 * a_tbl->parent->atc_flushq[0] = 0;
   1378   1.22    jeremy 	 * Not implemented in sun3x.
   1379    1.1       gwr 	 */
   1380    1.1       gwr 
   1381    1.7       gwr 	/*
   1382    1.7       gwr 	 * All A tables in the system should retain a map for the
   1383    1.1       gwr 	 * kernel. If the table contains any valid descriptors
   1384    1.1       gwr 	 * (other than those for the kernel area), invalidate them all,
   1385    1.1       gwr 	 * stopping short of the kernel's entries.
   1386    1.1       gwr 	 */
   1387    1.1       gwr 	removed_cnt = 0;
   1388   1.91   tsutsui 	at_wired = a_tbl->at_wcnt;
   1389    1.1       gwr 	if (a_tbl->at_ecnt) {
   1390    1.1       gwr 		dte = a_tbl->at_dtbl;
   1391  1.111   tsutsui 		for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
   1392    1.7       gwr 			/*
   1393    1.7       gwr 			 * If a table entry points to a valid B table, free
   1394    1.1       gwr 			 * it and its children.
   1395    1.1       gwr 			 */
   1396    1.1       gwr 			if (MMU_VALID_DT(dte[i])) {
   1397    1.7       gwr 				/*
   1398    1.7       gwr 				 * The following block does several things,
   1399    1.1       gwr 				 * from innermost expression to the
   1400    1.1       gwr 				 * outermost:
   1401    1.1       gwr 				 * 1) It extracts the base (cc 1996)
   1402    1.1       gwr 				 *    address of the B table pointed
   1403    1.1       gwr 				 *    to in the A table entry dte[i].
   1404    1.1       gwr 				 * 2) It converts this base address into
   1405    1.1       gwr 				 *    the virtual address it can be
   1406    1.1       gwr 				 *    accessed with. (all MMU tables point
   1407    1.1       gwr 				 *    to physical addresses.)
   1408    1.1       gwr 				 * 3) It finds the corresponding manager
   1409    1.1       gwr 				 *    structure which manages this MMU table.
   1410    1.1       gwr 				 * 4) It frees the manager structure.
   1411    1.1       gwr 				 *    (This frees the MMU table and all
   1412    1.1       gwr 				 *    child tables. See 'free_b_table' for
   1413    1.1       gwr 				 *    details.)
   1414    1.1       gwr 				 */
   1415    1.7       gwr 				dtbl = mmu_ptov(dte[i].addr.raw);
   1416   1.91   tsutsui 				b_tbl = mmuB2tmgr(dtbl);
   1417   1.91   tsutsui 				bt_wired = b_tbl->bt_wcnt;
   1418   1.95   thorpej 				removed_cnt += free_b_table(b_tbl, true);
   1419   1.91   tsutsui 				if (bt_wired)
   1420   1.91   tsutsui 					a_tbl->at_wcnt--;
   1421    1.8       gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1422    1.1       gwr 			}
   1423    1.8       gwr 		}
   1424    1.8       gwr 		a_tbl->at_ecnt = 0;
   1425    1.1       gwr 	}
   1426   1.91   tsutsui 	KASSERT(a_tbl->at_wcnt == 0);
   1427   1.91   tsutsui 
   1428    1.7       gwr 	if (relink) {
   1429    1.7       gwr 		a_tbl->at_parent = NULL;
   1430   1.91   tsutsui 		if (!at_wired)
   1431   1.91   tsutsui 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1432    1.7       gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1433    1.7       gwr 	}
   1434    1.1       gwr 	return removed_cnt;
   1435    1.1       gwr }
   1436    1.1       gwr 
   1437    1.1       gwr /* free_b_table			INTERNAL
   1438    1.1       gwr  **
   1439    1.1       gwr  * Unmaps the given B table and all its children from their current
   1440    1.1       gwr  * mappings.  Returns the number of pages that were invalidated.
   1441    1.1       gwr  * (For comments, see 'free_a_table()').
   1442    1.1       gwr  */
   1443  1.113   tsutsui int
   1444   1.94   thorpej free_b_table(b_tmgr_t *b_tbl, bool relink)
   1445    1.1       gwr {
   1446    1.1       gwr 	int i, removed_cnt;
   1447    1.1       gwr 	mmu_short_dte_t *dte;
   1448    1.1       gwr 	mmu_short_pte_t	*dtbl;
   1449   1.91   tsutsui 	c_tmgr_t	*c_tbl;
   1450   1.91   tsutsui 	uint8_t bt_wired, ct_wired;
   1451    1.1       gwr 
   1452    1.1       gwr 	removed_cnt = 0;
   1453   1.91   tsutsui 	bt_wired = b_tbl->bt_wcnt;
   1454    1.1       gwr 	if (b_tbl->bt_ecnt) {
   1455    1.1       gwr 		dte = b_tbl->bt_dtbl;
   1456   1.92   tsutsui 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
   1457    1.1       gwr 			if (MMU_VALID_DT(dte[i])) {
   1458    1.7       gwr 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1459   1.91   tsutsui 				c_tbl = mmuC2tmgr(dtbl);
   1460   1.91   tsutsui 				ct_wired = c_tbl->ct_wcnt;
   1461   1.95   thorpej 				removed_cnt += free_c_table(c_tbl, true);
   1462   1.91   tsutsui 				if (ct_wired)
   1463   1.91   tsutsui 					b_tbl->bt_wcnt--;
   1464    1.8       gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1465    1.1       gwr 			}
   1466    1.8       gwr 		}
   1467    1.8       gwr 		b_tbl->bt_ecnt = 0;
   1468    1.1       gwr 	}
   1469   1.91   tsutsui 	KASSERT(b_tbl->bt_wcnt == 0);
   1470    1.1       gwr 
   1471    1.7       gwr 	if (relink) {
   1472    1.7       gwr 		b_tbl->bt_parent = NULL;
   1473   1.91   tsutsui 		if (!bt_wired)
   1474   1.91   tsutsui 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1475    1.7       gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1476    1.7       gwr 	}
   1477    1.1       gwr 	return removed_cnt;
   1478    1.1       gwr }
   1479    1.1       gwr 
   1480    1.1       gwr /* free_c_table			INTERNAL
   1481    1.1       gwr  **
   1482    1.1       gwr  * Unmaps the given C table from use and returns it to the pool for
   1483    1.1       gwr  * re-use.  Returns the number of pages that were invalidated.
   1484    1.1       gwr  *
   1485  1.113   tsutsui  * This function preserves any physical page modification information
   1486    1.1       gwr  * contained in the page descriptors within the C table by calling
   1487    1.1       gwr  * 'pmap_remove_pte().'
   1488    1.1       gwr  */
   1489  1.113   tsutsui int
   1490   1.94   thorpej free_c_table(c_tmgr_t *c_tbl, bool relink)
   1491    1.1       gwr {
   1492   1.91   tsutsui 	mmu_short_pte_t *c_pte;
   1493    1.1       gwr 	int i, removed_cnt;
   1494   1.91   tsutsui 	uint8_t ct_wired;
   1495    1.1       gwr 
   1496    1.1       gwr 	removed_cnt = 0;
   1497   1.91   tsutsui 	ct_wired = c_tbl->ct_wcnt;
   1498    1.8       gwr 	if (c_tbl->ct_ecnt) {
   1499   1.92   tsutsui 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
   1500   1.91   tsutsui 			c_pte = &c_tbl->ct_dtbl[i];
   1501   1.91   tsutsui 			if (MMU_VALID_DT(*c_pte)) {
   1502   1.91   tsutsui 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   1503   1.91   tsutsui 					c_tbl->ct_wcnt--;
   1504   1.91   tsutsui 				pmap_remove_pte(c_pte);
   1505    1.1       gwr 				removed_cnt++;
   1506    1.1       gwr 			}
   1507    1.8       gwr 		}
   1508    1.8       gwr 		c_tbl->ct_ecnt = 0;
   1509    1.8       gwr 	}
   1510   1.91   tsutsui 	KASSERT(c_tbl->ct_wcnt == 0);
   1511    1.8       gwr 
   1512    1.7       gwr 	if (relink) {
   1513    1.7       gwr 		c_tbl->ct_parent = NULL;
   1514   1.91   tsutsui 		if (!ct_wired)
   1515   1.91   tsutsui 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1516    1.7       gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1517    1.7       gwr 	}
   1518    1.1       gwr 	return removed_cnt;
   1519    1.1       gwr }
   1520    1.1       gwr 
   1521    1.1       gwr 
   1522    1.1       gwr /* pmap_remove_pte			INTERNAL
   1523    1.1       gwr  **
   1524    1.1       gwr  * Unmap the given pte and preserve any page modification
   1525  1.119    andvar  * information by transferring it to the pv head of the
   1526    1.1       gwr  * physical page it maps to.  This function does not update
   1527    1.1       gwr  * any reference counts because it is assumed that the calling
   1528    1.8       gwr  * function will do so.
   1529    1.1       gwr  */
   1530    1.1       gwr void
   1531   1.86       chs pmap_remove_pte(mmu_short_pte_t *pte)
   1532    1.1       gwr {
   1533    1.7       gwr 	u_short     pv_idx, targ_idx;
   1534   1.69       chs 	paddr_t     pa;
   1535    1.1       gwr 	pv_t       *pv;
   1536    1.1       gwr 
   1537    1.1       gwr 	pa = MMU_PTE_PA(*pte);
   1538    1.1       gwr 	if (is_managed(pa)) {
   1539    1.1       gwr 		pv = pa2pv(pa);
   1540    1.7       gwr 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1541    1.7       gwr 
   1542    1.7       gwr 		/*
   1543    1.7       gwr 		 * If the PTE being removed is the first (or only) PTE in
   1544    1.7       gwr 		 * the list of PTEs currently mapped to this page, remove the
   1545    1.7       gwr 		 * PTE by changing the index found on the PV head.  Otherwise
   1546  1.113   tsutsui 		 * a linear search through the list will have to be executed
   1547    1.7       gwr 		 * in order to find the PVE which points to the PTE being
   1548    1.7       gwr 		 * removed, so that it may be modified to point to its new
   1549    1.7       gwr 		 * neighbor.
   1550    1.7       gwr 		 */
   1551   1.69       chs 
   1552    1.7       gwr 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1553    1.7       gwr 		if (pv_idx == targ_idx) {
   1554    1.7       gwr 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1555    1.7       gwr 		} else {
   1556   1.69       chs 
   1557    1.7       gwr 			/*
   1558   1.32       gwr 			 * Find the PV element pointing to the target
   1559   1.32       gwr 			 * element.  Note: may have pv_idx==PVE_EOL
   1560    1.7       gwr 			 */
   1561   1.69       chs 
   1562   1.32       gwr 			for (;;) {
   1563   1.32       gwr 				if (pv_idx == PVE_EOL) {
   1564   1.32       gwr 					goto pv_not_found;
   1565   1.32       gwr 				}
   1566   1.32       gwr 				if (pvebase[pv_idx].pve_next == targ_idx)
   1567   1.32       gwr 					break;
   1568    1.7       gwr 				pv_idx = pvebase[pv_idx].pve_next;
   1569    1.7       gwr 			}
   1570   1.69       chs 
   1571    1.7       gwr 			/*
   1572    1.7       gwr 			 * At this point, pv_idx is the index of the PV
   1573    1.7       gwr 			 * element just before the target element in the list.
   1574    1.7       gwr 			 * Unlink the target.
   1575    1.7       gwr 			 */
   1576   1.69       chs 
   1577    1.7       gwr 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1578    1.7       gwr 		}
   1579   1.69       chs 
   1580    1.7       gwr 		/*
   1581    1.7       gwr 		 * Save the mod/ref bits of the pte by simply
   1582    1.1       gwr 		 * ORing the entire pte onto the pv_flags member
   1583    1.1       gwr 		 * of the pv structure.
   1584    1.1       gwr 		 * There is no need to use a separate bit pattern
   1585    1.1       gwr 		 * for usage information on the pv head than that
   1586    1.1       gwr 		 * which is used on the MMU ptes.
   1587    1.1       gwr 		 */
   1588   1.69       chs 
   1589   1.92   tsutsui  pv_not_found:
   1590    1.7       gwr 		pv->pv_flags |= (u_short) pte->attr.raw;
   1591    1.1       gwr 	}
   1592    1.1       gwr 	pte->attr.raw = MMU_DT_INVALID;
   1593    1.1       gwr }
   1594    1.1       gwr 
   1595    1.1       gwr /* pmap_stroll			INTERNAL
   1596    1.1       gwr  **
   1597    1.1       gwr  * Retrieve the addresses of all table managers involved in the mapping of
   1598   1.77       wiz  * the given virtual address.  If the table walk completed successfully,
   1599   1.95   thorpej  * return true.  If it was only partially successful, return false.
   1600    1.1       gwr  * The table walk performed by this function is important to many other
   1601    1.1       gwr  * functions in this module.
   1602    1.7       gwr  *
   1603    1.7       gwr  * Note: This function ought to be easier to read.
   1604    1.1       gwr  */
   1605   1.94   thorpej bool
   1606   1.86       chs pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   1607   1.86       chs     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   1608   1.86       chs     int *pte_idx)
   1609    1.1       gwr {
   1610    1.1       gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1611    1.1       gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1612    1.1       gwr 
   1613    1.1       gwr 	if (pmap == pmap_kernel())
   1614   1.95   thorpej 		return false;
   1615    1.1       gwr 
   1616    1.7       gwr 	/* Does the given pmap have its own A table? */
   1617    1.7       gwr 	*a_tbl = pmap->pm_a_tmgr;
   1618    1.1       gwr 	if (*a_tbl == NULL)
   1619   1.95   thorpej 		return false; /* No.  Return unknown. */
   1620    1.1       gwr 	/* Does the A table have a valid B table
   1621    1.1       gwr 	 * under the corresponding table entry?
   1622    1.1       gwr 	 */
   1623    1.1       gwr 	*a_idx = MMU_TIA(va);
   1624    1.1       gwr 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1625    1.1       gwr 	if (!MMU_VALID_DT(*a_dte))
   1626   1.95   thorpej 		return false; /* No. Return unknown. */
   1627    1.1       gwr 	/* Yes. Extract B table from the A table. */
   1628    1.7       gwr 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1629   1.92   tsutsui 	/*
   1630   1.92   tsutsui 	 * Does the B table have a valid C table
   1631    1.1       gwr 	 * under the corresponding table entry?
   1632    1.1       gwr 	 */
   1633    1.1       gwr 	*b_idx = MMU_TIB(va);
   1634    1.1       gwr 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1635    1.1       gwr 	if (!MMU_VALID_DT(*b_dte))
   1636   1.95   thorpej 		return false; /* No. Return unknown. */
   1637    1.1       gwr 	/* Yes. Extract C table from the B table. */
   1638    1.7       gwr 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1639    1.1       gwr 	*pte_idx = MMU_TIC(va);
   1640    1.1       gwr 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1641  1.113   tsutsui 
   1642   1.95   thorpej 	return true;
   1643    1.1       gwr }
   1644  1.113   tsutsui 
   1645    1.1       gwr /* pmap_enter			INTERFACE
   1646    1.1       gwr  **
   1647    1.1       gwr  * Called by the kernel to map a virtual address
   1648  1.113   tsutsui  * to a physical address in the given process map.
   1649    1.1       gwr  *
   1650    1.1       gwr  * Note: this function should apply an exclusive lock
   1651    1.1       gwr  * on the pmap system for its duration.  (it certainly
   1652    1.1       gwr  * would save my hair!!)
   1653    1.7       gwr  * This function ought to be easier to read.
   1654    1.1       gwr  */
   1655  1.113   tsutsui int
   1656  1.104    cegger pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1657    1.1       gwr {
   1658   1.94   thorpej 	bool insert, managed; /* Marks the need for PV insertion.*/
   1659    1.7       gwr 	u_short nidx;            /* PV list index                     */
   1660   1.52    jeremy 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1661    1.8       gwr 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1662    1.1       gwr 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1663    1.1       gwr 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1664    1.1       gwr 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1665    1.1       gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1666    1.1       gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1667    1.1       gwr 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1668    1.1       gwr 	pv_t      *pv;           /* pv list head                      */
   1669   1.94   thorpej 	bool wired;         /* is the mapping to be wired?       */
   1670    1.1       gwr 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1671    1.1       gwr 
   1672    1.1       gwr 	if (pmap == pmap_kernel()) {
   1673    1.1       gwr 		pmap_enter_kernel(va, pa, prot);
   1674   1.61       chs 		return 0;
   1675    1.1       gwr 	}
   1676    1.7       gwr 
   1677   1.52    jeremy 	/*
   1678   1.52    jeremy 	 * Determine if the mapping should be wired.
   1679   1.52    jeremy 	 */
   1680   1.52    jeremy 	wired = ((flags & PMAP_WIRED) != 0);
   1681   1.52    jeremy 
   1682   1.52    jeremy 	/*
   1683   1.52    jeremy 	 * NOTE1:
   1684   1.52    jeremy 	 *
   1685   1.52    jeremy 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1686   1.52    jeremy 	 * that it now accepts a 'flags' argument.  This new argument
   1687   1.52    jeremy 	 * contains bit-flags for the architecture-independent (UVM) system to
   1688   1.52    jeremy 	 * use in signalling certain mapping requirements to the architecture-
   1689   1.52    jeremy 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1690   1.52    jeremy 	 * one of the flags within it.
   1691   1.52    jeremy 	 *
   1692   1.52    jeremy 	 * In addition to flags signaled by the architecture-independent
   1693   1.52    jeremy 	 * system, parts of the architecture-dependent section of the sun3x
   1694   1.52    jeremy 	 * kernel pass their own flags in the lower, unused bits of the
   1695   1.52    jeremy 	 * physical address supplied to this function.  These flags are
   1696   1.52    jeremy 	 * extracted and stored in the temporary variable 'mapflags'.
   1697   1.52    jeremy 	 *
   1698   1.52    jeremy 	 * Extract sun3x specific flags from the physical address.
   1699  1.113   tsutsui 	 */
   1700   1.92   tsutsui 	mapflags = (pa & ~MMU_PAGE_MASK);
   1701   1.92   tsutsui 	pa &= MMU_PAGE_MASK;
   1702    1.7       gwr 
   1703    1.7       gwr 	/*
   1704   1.22    jeremy 	 * Determine if the physical address being mapped is on-board RAM.
   1705   1.22    jeremy 	 * Any other area of the address space is likely to belong to a
   1706  1.120    andvar 	 * device and hence it would be disastrous to cache its contents.
   1707    1.7       gwr 	 */
   1708   1.95   thorpej 	if ((managed = is_managed(pa)) == false)
   1709   1.52    jeremy 		mapflags |= PMAP_NC;
   1710    1.7       gwr 
   1711    1.7       gwr 	/*
   1712    1.7       gwr 	 * For user mappings we walk along the MMU tables of the given
   1713    1.1       gwr 	 * pmap, reaching a PTE which describes the virtual page being
   1714    1.1       gwr 	 * mapped or changed.  If any level of the walk ends in an invalid
   1715    1.1       gwr 	 * entry, a table must be allocated and the entry must be updated
   1716    1.1       gwr 	 * to point to it.
   1717    1.1       gwr 	 * There is a bit of confusion as to whether this code must be
   1718    1.1       gwr 	 * re-entrant.  For now we will assume it is.  To support
   1719    1.1       gwr 	 * re-entrancy we must unlink tables from the table pool before
   1720    1.1       gwr 	 * we assume we may use them.  Tables are re-linked into the pool
   1721    1.1       gwr 	 * when we are finished with them at the end of the function.
   1722    1.1       gwr 	 * But I don't feel like doing that until we have proof that this
   1723    1.1       gwr 	 * needs to be re-entrant.
   1724    1.1       gwr 	 * 'llevel' records which tables need to be relinked.
   1725    1.1       gwr 	 */
   1726    1.1       gwr 	llevel = NONE;
   1727    1.1       gwr 
   1728    1.7       gwr 	/*
   1729    1.7       gwr 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1730    1.7       gwr 	 * A table, allocate a new one from the available pool.
   1731    1.1       gwr 	 */
   1732    1.1       gwr 
   1733    1.7       gwr 	a_tbl = pmap->pm_a_tmgr;
   1734    1.7       gwr 	if (a_tbl == NULL) {
   1735    1.7       gwr 		/*
   1736    1.7       gwr 		 * This pmap does not currently have an A table.  Allocate
   1737    1.7       gwr 		 * a new one.
   1738    1.7       gwr 		 */
   1739    1.7       gwr 		a_tbl = get_a_table();
   1740    1.7       gwr 		a_tbl->at_parent = pmap;
   1741    1.7       gwr 
   1742    1.7       gwr 		/*
   1743    1.7       gwr 		 * Assign this new A table to the pmap, and calculate its
   1744    1.7       gwr 		 * physical address so that loadcrp() can be used to make
   1745    1.7       gwr 		 * the table active.
   1746    1.7       gwr 		 */
   1747    1.7       gwr 		pmap->pm_a_tmgr = a_tbl;
   1748    1.7       gwr 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1749    1.7       gwr 
   1750    1.7       gwr 		/*
   1751    1.7       gwr 		 * If the process receiving a new A table is the current
   1752    1.7       gwr 		 * process, we are responsible for setting the MMU so that
   1753    1.9       gwr 		 * it becomes the current address space.  This only adds
   1754    1.9       gwr 		 * new mappings, so no need to flush anything.
   1755    1.7       gwr 		 */
   1756    1.9       gwr 		if (pmap == current_pmap()) {
   1757    1.9       gwr 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1758    1.9       gwr 			loadcrp(&kernel_crp);
   1759    1.9       gwr 		}
   1760    1.7       gwr 
   1761    1.1       gwr 		if (!wired)
   1762    1.1       gwr 			llevel = NEWA;
   1763    1.1       gwr 	} else {
   1764    1.7       gwr 		/*
   1765    1.7       gwr 		 * Use the A table already allocated for this pmap.
   1766    1.1       gwr 		 * Unlink it from the A table pool if necessary.
   1767    1.1       gwr 		 */
   1768    1.1       gwr 		if (wired && !a_tbl->at_wcnt)
   1769    1.1       gwr 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1770    1.1       gwr 	}
   1771    1.1       gwr 
   1772    1.7       gwr 	/*
   1773    1.7       gwr 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1774    1.1       gwr 	 * allocate one.
   1775    1.1       gwr 	 */
   1776    1.1       gwr 
   1777    1.1       gwr 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1778    1.1       gwr 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1779    1.1       gwr 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1780    1.7       gwr 		/* The descriptor is valid.  Use the B table it points to. */
   1781    1.1       gwr 		/*************************************
   1782    1.1       gwr 		 *               a_idx               *
   1783    1.1       gwr 		 *                 v                 *
   1784    1.1       gwr 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1785    1.1       gwr 		 *          | | | | | | | | | | | |  *
   1786    1.1       gwr 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1787    1.1       gwr 		 *                 |                 *
   1788    1.1       gwr 		 *                 \- b_tbl -> +-+-  *
   1789    1.1       gwr 		 *                             | |   *
   1790    1.1       gwr 		 *                             +-+-  *
   1791    1.1       gwr 		 *************************************/
   1792    1.7       gwr 		b_dte = mmu_ptov(a_dte->addr.raw);
   1793    1.1       gwr 		b_tbl = mmuB2tmgr(b_dte);
   1794    1.7       gwr 
   1795    1.7       gwr 		/*
   1796    1.7       gwr 		 * If the requested mapping must be wired, but this table
   1797    1.7       gwr 		 * being used to map it is not, the table must be removed
   1798    1.7       gwr 		 * from the available pool and its wired entry count
   1799    1.7       gwr 		 * incremented.
   1800    1.7       gwr 		 */
   1801    1.1       gwr 		if (wired && !b_tbl->bt_wcnt) {
   1802    1.1       gwr 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1803    1.7       gwr 			a_tbl->at_wcnt++;
   1804    1.1       gwr 		}
   1805    1.1       gwr 	} else {
   1806    1.7       gwr 		/* The descriptor is invalid.  Allocate a new B table. */
   1807    1.7       gwr 		b_tbl = get_b_table();
   1808    1.7       gwr 
   1809    1.1       gwr 		/* Point the parent A table descriptor to this new B table. */
   1810    1.7       gwr 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1811    1.7       gwr 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1812    1.7       gwr 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1813    1.7       gwr 
   1814    1.1       gwr 		/* Create the necessary back references to the parent table */
   1815    1.1       gwr 		b_tbl->bt_parent = a_tbl;
   1816    1.1       gwr 		b_tbl->bt_pidx = a_idx;
   1817    1.7       gwr 
   1818    1.7       gwr 		/*
   1819    1.7       gwr 		 * If this table is to be wired, make sure the parent A table
   1820    1.1       gwr 		 * wired count is updated to reflect that it has another wired
   1821    1.1       gwr 		 * entry.
   1822    1.1       gwr 		 */
   1823    1.1       gwr 		if (wired)
   1824    1.1       gwr 			a_tbl->at_wcnt++;
   1825    1.1       gwr 		else if (llevel == NONE)
   1826    1.1       gwr 			llevel = NEWB;
   1827    1.1       gwr 	}
   1828    1.1       gwr 
   1829    1.7       gwr 	/*
   1830    1.7       gwr 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1831    1.1       gwr 	 * allocate one.
   1832    1.1       gwr 	 */
   1833    1.1       gwr 
   1834    1.1       gwr 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1835    1.1       gwr 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1836    1.1       gwr 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1837    1.7       gwr 		/* The descriptor is valid.  Use the C table it points to. */
   1838    1.1       gwr 		/**************************************
   1839    1.1       gwr 		 *               c_idx                *
   1840    1.1       gwr 		 * |                v                 *
   1841    1.1       gwr 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1842    1.1       gwr 		 *             | | | | | | | | | | |  *
   1843    1.1       gwr 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1844    1.1       gwr 		 *                  |                 *
   1845    1.1       gwr 		 *                  \- c_tbl -> +-+-- *
   1846    1.1       gwr 		 *                              | | | *
   1847    1.1       gwr 		 *                              +-+-- *
   1848    1.1       gwr 		 **************************************/
   1849    1.7       gwr 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1850    1.1       gwr 		c_tbl = mmuC2tmgr(c_pte);
   1851    1.7       gwr 
   1852    1.7       gwr 		/* If mapping is wired and table is not */
   1853    1.1       gwr 		if (wired && !c_tbl->ct_wcnt) {
   1854    1.1       gwr 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1855    1.1       gwr 			b_tbl->bt_wcnt++;
   1856    1.1       gwr 		}
   1857    1.1       gwr 	} else {
   1858    1.7       gwr 		/* The descriptor is invalid.  Allocate a new C table. */
   1859    1.7       gwr 		c_tbl = get_c_table();
   1860    1.7       gwr 
   1861    1.1       gwr 		/* Point the parent B table descriptor to this new C table. */
   1862    1.7       gwr 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1863    1.7       gwr 		b_dte->attr.raw |= MMU_DT_SHORT;
   1864    1.7       gwr 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1865    1.7       gwr 
   1866    1.1       gwr 		/* Create the necessary back references to the parent table */
   1867    1.1       gwr 		c_tbl->ct_parent = b_tbl;
   1868    1.1       gwr 		c_tbl->ct_pidx = b_idx;
   1869   1.26    jeremy 		/*
   1870   1.26    jeremy 		 * Store the pmap and base virtual managed address for faster
   1871   1.26    jeremy 		 * retrieval in the PV functions.
   1872   1.26    jeremy 		 */
   1873   1.26    jeremy 		c_tbl->ct_pmap = pmap;
   1874   1.26    jeremy 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1875    1.7       gwr 
   1876    1.7       gwr 		/*
   1877    1.7       gwr 		 * If this table is to be wired, make sure the parent B table
   1878    1.1       gwr 		 * wired count is updated to reflect that it has another wired
   1879    1.1       gwr 		 * entry.
   1880    1.1       gwr 		 */
   1881    1.1       gwr 		if (wired)
   1882    1.1       gwr 			b_tbl->bt_wcnt++;
   1883    1.1       gwr 		else if (llevel == NONE)
   1884    1.1       gwr 			llevel = NEWC;
   1885    1.1       gwr 	}
   1886    1.1       gwr 
   1887    1.7       gwr 	/*
   1888    1.7       gwr 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1889    1.1       gwr 	 * slot of the C table, describing the PA to which the VA is mapped.
   1890    1.1       gwr 	 */
   1891    1.1       gwr 
   1892    1.1       gwr 	pte_idx = MMU_TIC(va);
   1893    1.1       gwr 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1894    1.1       gwr 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1895    1.7       gwr 		/*
   1896    1.7       gwr 		 * The PTE is currently valid.  This particular call
   1897    1.1       gwr 		 * is just a synonym for one (or more) of the following
   1898    1.1       gwr 		 * operations:
   1899    1.7       gwr 		 *     change protection of a page
   1900    1.1       gwr 		 *     change wiring status of a page
   1901    1.1       gwr 		 *     remove the mapping of a page
   1902    1.1       gwr 		 */
   1903    1.7       gwr 
   1904    1.7       gwr 		/* First check if this is a wiring operation. */
   1905   1.91   tsutsui 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
   1906    1.7       gwr 			/*
   1907   1.91   tsutsui 			 * The existing mapping is wired, so adjust wired
   1908   1.91   tsutsui 			 * entry count here. If new mapping is still wired,
   1909   1.91   tsutsui 			 * wired entry count will be incremented again later.
   1910    1.7       gwr 			 */
   1911   1.91   tsutsui 			c_tbl->ct_wcnt--;
   1912   1.91   tsutsui 			if (!wired) {
   1913   1.91   tsutsui 				/*
   1914   1.91   tsutsui 				 * The mapping of this PTE is being changed
   1915   1.91   tsutsui 				 * from wired to unwired.
   1916   1.91   tsutsui 				 * Adjust wired entry counts in each table and
   1917   1.91   tsutsui 				 * set llevel flag to put unwired tables back
   1918   1.91   tsutsui 				 * into the active pool.
   1919   1.91   tsutsui 				 */
   1920   1.91   tsutsui 				if (c_tbl->ct_wcnt == 0) {
   1921   1.91   tsutsui 					llevel = NEWC;
   1922   1.91   tsutsui 					if (--b_tbl->bt_wcnt == 0) {
   1923   1.91   tsutsui 						llevel = NEWB;
   1924   1.91   tsutsui 						if (--a_tbl->at_wcnt == 0) {
   1925   1.91   tsutsui 							llevel = NEWA;
   1926   1.91   tsutsui 						}
   1927   1.91   tsutsui 					}
   1928   1.91   tsutsui 				}
   1929   1.91   tsutsui 			}
   1930    1.7       gwr 		}
   1931    1.7       gwr 
   1932    1.1       gwr 		/* Is the new address the same as the old? */
   1933    1.1       gwr 		if (MMU_PTE_PA(*c_pte) == pa) {
   1934    1.7       gwr 			/*
   1935    1.7       gwr 			 * Yes, mark that it does not need to be reinserted
   1936    1.7       gwr 			 * into the PV list.
   1937    1.7       gwr 			 */
   1938   1.95   thorpej 			insert = false;
   1939    1.7       gwr 
   1940    1.7       gwr 			/*
   1941    1.7       gwr 			 * Clear all but the modified, referenced and wired
   1942    1.7       gwr 			 * bits on the PTE.
   1943    1.7       gwr 			 */
   1944    1.7       gwr 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1945   1.92   tsutsui 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1946    1.1       gwr 		} else {
   1947    1.1       gwr 			/* No, remove the old entry */
   1948    1.1       gwr 			pmap_remove_pte(c_pte);
   1949   1.95   thorpej 			insert = true;
   1950    1.1       gwr 		}
   1951    1.8       gwr 
   1952    1.8       gwr 		/*
   1953    1.8       gwr 		 * TLB flush is only necessary if modifying current map.
   1954    1.8       gwr 		 * However, in pmap_enter(), the pmap almost always IS
   1955    1.8       gwr 		 * the current pmap, so don't even bother to check.
   1956    1.8       gwr 		 */
   1957    1.8       gwr 		TBIS(va);
   1958    1.1       gwr 	} else {
   1959    1.7       gwr 		/*
   1960    1.7       gwr 		 * The PTE is invalid.  Increment the valid entry count in
   1961    1.8       gwr 		 * the C table manager to reflect the addition of a new entry.
   1962    1.7       gwr 		 */
   1963    1.1       gwr 		c_tbl->ct_ecnt++;
   1964    1.8       gwr 
   1965    1.8       gwr 		/* XXX - temporarily make sure the PTE is cleared. */
   1966    1.8       gwr 		c_pte->attr.raw = 0;
   1967    1.1       gwr 
   1968    1.7       gwr 		/* It will also need to be inserted into the PV list. */
   1969   1.95   thorpej 		insert = true;
   1970    1.7       gwr 	}
   1971    1.7       gwr 
   1972    1.7       gwr 	/*
   1973    1.7       gwr 	 * If page is changing from unwired to wired status, set an unused bit
   1974    1.7       gwr 	 * within the PTE to indicate that it is wired.  Also increment the
   1975    1.7       gwr 	 * wired entry count in the C table manager.
   1976    1.7       gwr 	 */
   1977    1.7       gwr 	if (wired) {
   1978    1.1       gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1979    1.7       gwr 		c_tbl->ct_wcnt++;
   1980    1.1       gwr 	}
   1981    1.1       gwr 
   1982    1.7       gwr 	/*
   1983    1.7       gwr 	 * Map the page, being careful to preserve modify/reference/wired
   1984    1.7       gwr 	 * bits.  At this point it is assumed that the PTE either has no bits
   1985    1.7       gwr 	 * set, or if there are set bits, they are only modified, reference or
   1986    1.7       gwr 	 * wired bits.  If not, the following statement will cause erratic
   1987    1.7       gwr 	 * behavior.
   1988    1.7       gwr 	 */
   1989    1.8       gwr #ifdef	PMAP_DEBUG
   1990    1.7       gwr 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1991    1.7       gwr 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1992    1.7       gwr 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1993    1.7       gwr 		Debugger();
   1994    1.7       gwr 	}
   1995    1.7       gwr #endif
   1996    1.7       gwr 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   1997    1.7       gwr 
   1998    1.7       gwr 	/*
   1999    1.7       gwr 	 * If the mapping should be read-only, set the write protect
   2000    1.7       gwr 	 * bit in the PTE.
   2001    1.7       gwr 	 */
   2002    1.7       gwr 	if (!(prot & VM_PROT_WRITE))
   2003    1.7       gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2004    1.7       gwr 
   2005    1.7       gwr 	/*
   2006   1.87       chs 	 * Mark the PTE as used and/or modified as specified by the flags arg.
   2007   1.87       chs 	 */
   2008   1.87       chs 	if (flags & VM_PROT_ALL) {
   2009   1.87       chs 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
   2010   1.87       chs 		if (flags & VM_PROT_WRITE) {
   2011   1.87       chs 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
   2012   1.87       chs 		}
   2013   1.87       chs 	}
   2014   1.87       chs 
   2015   1.87       chs 	/*
   2016    1.7       gwr 	 * If the mapping should be cache inhibited (indicated by the flag
   2017    1.7       gwr 	 * bits found on the lower order of the physical address.)
   2018    1.7       gwr 	 * mark the PTE as a cache inhibited page.
   2019    1.7       gwr 	 */
   2020   1.52    jeremy 	if (mapflags & PMAP_NC)
   2021    1.7       gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2022    1.7       gwr 
   2023    1.7       gwr 	/*
   2024    1.7       gwr 	 * If the physical address being mapped is managed by the PV
   2025    1.7       gwr 	 * system then link the pte into the list of pages mapped to that
   2026    1.7       gwr 	 * address.
   2027    1.7       gwr 	 */
   2028    1.7       gwr 	if (insert && managed) {
   2029    1.7       gwr 		pv = pa2pv(pa);
   2030    1.7       gwr 		nidx = pteidx(c_pte);
   2031    1.7       gwr 
   2032    1.7       gwr 		pvebase[nidx].pve_next = pv->pv_idx;
   2033    1.7       gwr 		pv->pv_idx = nidx;
   2034    1.7       gwr 	}
   2035    1.1       gwr 
   2036   1.91   tsutsui 	/* Move any allocated or unwired tables back into the active pool. */
   2037  1.113   tsutsui 
   2038    1.1       gwr 	switch (llevel) {
   2039    1.1       gwr 		case NEWA:
   2040    1.1       gwr 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2041    1.1       gwr 			/* FALLTHROUGH */
   2042    1.1       gwr 		case NEWB:
   2043    1.1       gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2044    1.1       gwr 			/* FALLTHROUGH */
   2045    1.1       gwr 		case NEWC:
   2046    1.1       gwr 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2047    1.1       gwr 			/* FALLTHROUGH */
   2048    1.1       gwr 		default:
   2049    1.1       gwr 			break;
   2050    1.1       gwr 	}
   2051   1.51   thorpej 
   2052   1.61       chs 	return 0;
   2053    1.1       gwr }
   2054    1.1       gwr 
   2055    1.1       gwr /* pmap_enter_kernel			INTERNAL
   2056    1.1       gwr  **
   2057    1.1       gwr  * Map the given virtual address to the given physical address within the
   2058    1.1       gwr  * kernel address space.  This function exists because the kernel map does
   2059    1.1       gwr  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2060    1.1       gwr  * and can be edited directly without the need to walk through any tables.
   2061  1.113   tsutsui  *
   2062    1.1       gwr  * XXX: "Danger, Will Robinson!"
   2063    1.1       gwr  * Note that the kernel should never take a fault on any page
   2064    1.1       gwr  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2065    1.1       gwr  * trap.c for kernel-mode MMU faults.  This means that mappings
   2066  1.120    andvar  * created in that range must be implicitly wired. -gwr
   2067    1.1       gwr  */
   2068  1.113   tsutsui void
   2069   1.86       chs pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2070    1.1       gwr {
   2071   1.94   thorpej 	bool       was_valid, insert;
   2072   1.32       gwr 	u_short         pte_idx;
   2073   1.69       chs 	int             flags;
   2074    1.1       gwr 	mmu_short_pte_t *pte;
   2075    1.7       gwr 	pv_t            *pv;
   2076   1.69       chs 	paddr_t     old_pa;
   2077    1.7       gwr 
   2078   1.32       gwr 	flags = (pa & ~MMU_PAGE_MASK);
   2079   1.32       gwr 	pa &= MMU_PAGE_MASK;
   2080   1.32       gwr 
   2081   1.32       gwr 	if (is_managed(pa))
   2082  1.113   tsutsui 		insert = true;
   2083   1.32       gwr 	else
   2084   1.95   thorpej 		insert = false;
   2085    1.7       gwr 
   2086    1.7       gwr 	/*
   2087    1.7       gwr 	 * Calculate the index of the PTE being modified.
   2088    1.7       gwr 	 */
   2089  1.111   tsutsui 	pte_idx = (u_long)m68k_btop(va - KERNBASE3X);
   2090    1.1       gwr 
   2091   1.22    jeremy 	/* This array is traditionally named "Sysmap" */
   2092    1.7       gwr 	pte = &kernCbase[pte_idx];
   2093    1.7       gwr 
   2094    1.7       gwr 	if (MMU_VALID_DT(*pte)) {
   2095   1.95   thorpej 		was_valid = true;
   2096    1.7       gwr 		/*
   2097   1.32       gwr 		 * If the PTE already maps a different
   2098   1.32       gwr 		 * physical address, umap and pv_unlink.
   2099   1.24    jeremy 		 */
   2100   1.24    jeremy 		old_pa = MMU_PTE_PA(*pte);
   2101   1.32       gwr 		if (pa != old_pa)
   2102   1.32       gwr 			pmap_remove_pte(pte);
   2103   1.32       gwr 		else {
   2104   1.24    jeremy 		    /*
   2105   1.32       gwr 		     * Old PA and new PA are the same.  No need to
   2106   1.32       gwr 		     * relink the mapping within the PV list.
   2107   1.24    jeremy 		     */
   2108   1.95   thorpej 		     insert = false;
   2109    1.8       gwr 
   2110    1.7       gwr 		    /*
   2111   1.24    jeremy 		     * Save any mod/ref bits on the PTE.
   2112    1.7       gwr 		     */
   2113   1.24    jeremy 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2114    1.7       gwr 		}
   2115    1.7       gwr 	} else {
   2116    1.8       gwr 		pte->attr.raw = MMU_DT_INVALID;
   2117   1.95   thorpej 		was_valid = false;
   2118    1.7       gwr 	}
   2119    1.7       gwr 
   2120    1.7       gwr 	/*
   2121    1.8       gwr 	 * Map the page.  Being careful to preserve modified/referenced bits
   2122    1.8       gwr 	 * on the PTE.
   2123    1.7       gwr 	 */
   2124    1.7       gwr 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2125    1.1       gwr 
   2126    1.1       gwr 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2127    1.1       gwr 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2128    1.7       gwr 	if (flags & PMAP_NC)
   2129    1.1       gwr 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2130    1.8       gwr 	if (was_valid)
   2131    1.7       gwr 		TBIS(va);
   2132    1.1       gwr 
   2133    1.7       gwr 	/*
   2134    1.7       gwr 	 * Insert the PTE into the PV system, if need be.
   2135    1.7       gwr 	 */
   2136    1.7       gwr 	if (insert) {
   2137    1.7       gwr 		pv = pa2pv(pa);
   2138    1.7       gwr 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2139    1.7       gwr 		pv->pv_idx = pte_idx;
   2140    1.7       gwr 	}
   2141   1.34       gwr }
   2142   1.34       gwr 
   2143  1.113   tsutsui void
   2144  1.108    cegger pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2145   1.49       chs {
   2146   1.69       chs 	mmu_short_pte_t	*pte;
   2147  1.117   tsutsui 	u_int mapflags;
   2148  1.117   tsutsui 
   2149  1.117   tsutsui 	/* XXX: MD PMAP_NC should be replaced by MI PMAP_NOCACHE in flags. */
   2150  1.117   tsutsui 	mapflags = (pa & ~MMU_PAGE_MASK);
   2151  1.117   tsutsui 	if ((mapflags & PMAP_NC) != 0)
   2152  1.117   tsutsui 		flags |= PMAP_NOCACHE;
   2153   1.69       chs 
   2154   1.69       chs 	/* This array is traditionally named "Sysmap" */
   2155  1.111   tsutsui 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE3X)];
   2156   1.69       chs 
   2157   1.69       chs 	KASSERT(!MMU_VALID_DT(*pte));
   2158   1.69       chs 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2159   1.69       chs 	if (!(prot & VM_PROT_WRITE))
   2160   1.69       chs 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2161  1.117   tsutsui 	if ((flags & PMAP_NOCACHE) != 0)
   2162  1.117   tsutsui 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2163   1.49       chs }
   2164   1.49       chs 
   2165  1.113   tsutsui void
   2166   1.86       chs pmap_kremove(vaddr_t va, vsize_t len)
   2167   1.49       chs {
   2168   1.69       chs 	int idx, eidx;
   2169   1.69       chs 
   2170   1.69       chs #ifdef	PMAP_DEBUG
   2171   1.91   tsutsui 	if ((va & PGOFSET) || (len & PGOFSET))
   2172   1.72   tsutsui 		panic("pmap_kremove: alignment");
   2173   1.69       chs #endif
   2174   1.69       chs 
   2175  1.111   tsutsui 	idx  = m68k_btop(va - KERNBASE3X);
   2176  1.111   tsutsui 	eidx = m68k_btop(va + len - KERNBASE3X);
   2177   1.69       chs 
   2178   1.69       chs 	while (idx < eidx) {
   2179   1.69       chs 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2180   1.69       chs 		TBIS(va);
   2181   1.79   thorpej 		va += PAGE_SIZE;
   2182   1.49       chs 	}
   2183   1.49       chs }
   2184   1.49       chs 
   2185   1.35    jeremy /* pmap_map			INTERNAL
   2186   1.35    jeremy  **
   2187   1.35    jeremy  * Map a contiguous range of physical memory into a contiguous range of
   2188   1.35    jeremy  * the kernel virtual address space.
   2189   1.35    jeremy  *
   2190   1.35    jeremy  * Used for device mappings and early mapping of the kernel text/data/bss.
   2191   1.35    jeremy  * Returns the first virtual address beyond the end of the range.
   2192   1.34       gwr  */
   2193  1.113   tsutsui vaddr_t
   2194   1.86       chs pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
   2195   1.34       gwr {
   2196   1.34       gwr 	int sz;
   2197   1.34       gwr 
   2198   1.34       gwr 	sz = endpa - pa;
   2199   1.34       gwr 	do {
   2200   1.34       gwr 		pmap_enter_kernel(va, pa, prot);
   2201   1.79   thorpej 		va += PAGE_SIZE;
   2202   1.79   thorpej 		pa += PAGE_SIZE;
   2203   1.79   thorpej 		sz -= PAGE_SIZE;
   2204   1.34       gwr 	} while (sz > 0);
   2205   1.73     chris 	pmap_update(pmap_kernel());
   2206   1.92   tsutsui 	return va;
   2207   1.92   tsutsui }
   2208   1.92   tsutsui 
   2209   1.92   tsutsui /* pmap_protect_kernel			INTERNAL
   2210   1.92   tsutsui  **
   2211   1.92   tsutsui  * Apply the given protection code to a kernel address range.
   2212   1.92   tsutsui  */
   2213  1.113   tsutsui static INLINE void
   2214   1.92   tsutsui pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2215   1.92   tsutsui {
   2216   1.92   tsutsui 	vaddr_t va;
   2217   1.92   tsutsui 	mmu_short_pte_t *pte;
   2218   1.92   tsutsui 
   2219  1.111   tsutsui 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE3X)];
   2220   1.92   tsutsui 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2221   1.92   tsutsui 		if (MMU_VALID_DT(*pte)) {
   2222   1.92   tsutsui 		    switch (prot) {
   2223   1.92   tsutsui 		        case VM_PROT_ALL:
   2224   1.92   tsutsui 		            break;
   2225   1.92   tsutsui 		        case VM_PROT_EXECUTE:
   2226   1.92   tsutsui 		        case VM_PROT_READ:
   2227   1.92   tsutsui 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2228   1.92   tsutsui 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2229   1.92   tsutsui 		            break;
   2230   1.92   tsutsui 		        case VM_PROT_NONE:
   2231   1.92   tsutsui 		            /* this is an alias for 'pmap_remove_kernel' */
   2232   1.92   tsutsui 		            pmap_remove_pte(pte);
   2233   1.92   tsutsui 		            break;
   2234   1.92   tsutsui 		        default:
   2235   1.92   tsutsui 		            break;
   2236   1.92   tsutsui 		    }
   2237   1.92   tsutsui 		    /*
   2238   1.92   tsutsui 		     * since this is the kernel, immediately flush any cached
   2239   1.92   tsutsui 		     * descriptors for this address.
   2240   1.92   tsutsui 		     */
   2241   1.92   tsutsui 		    TBIS(va);
   2242   1.92   tsutsui 		}
   2243   1.92   tsutsui 	}
   2244    1.1       gwr }
   2245    1.1       gwr 
   2246    1.1       gwr /* pmap_protect			INTERFACE
   2247    1.1       gwr  **
   2248    1.7       gwr  * Apply the given protection to the given virtual address range within
   2249    1.1       gwr  * the given map.
   2250    1.1       gwr  *
   2251    1.1       gwr  * It is ok for the protection applied to be stronger than what is
   2252    1.1       gwr  * specified.  We use this to our advantage when the given map has no
   2253    1.7       gwr  * mapping for the virtual address.  By skipping a page when this
   2254    1.1       gwr  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2255    1.1       gwr  * and therefore do not need to map the page just to apply a protection
   2256    1.1       gwr  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2257    1.7       gwr  *
   2258  1.121    andvar  * XXX - This function could be speeded up by using pmap_stroll() for initial
   2259    1.7       gwr  *       setup, and then manual scrolling in the for() loop.
   2260    1.1       gwr  */
   2261  1.113   tsutsui void
   2262   1.86       chs pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2263    1.1       gwr {
   2264   1.94   thorpej 	bool iscurpmap;
   2265    1.1       gwr 	int a_idx, b_idx, c_idx;
   2266    1.1       gwr 	a_tmgr_t *a_tbl;
   2267    1.1       gwr 	b_tmgr_t *b_tbl;
   2268    1.1       gwr 	c_tmgr_t *c_tbl;
   2269    1.1       gwr 	mmu_short_pte_t *pte;
   2270    1.1       gwr 
   2271    1.1       gwr 	if (pmap == pmap_kernel()) {
   2272    1.7       gwr 		pmap_protect_kernel(startva, endva, prot);
   2273    1.1       gwr 		return;
   2274    1.1       gwr 	}
   2275    1.1       gwr 
   2276   1.11    jeremy 	/*
   2277   1.12    jeremy 	 * In this particular pmap implementation, there are only three
   2278   1.12    jeremy 	 * types of memory protection: 'all' (read/write/execute),
   2279   1.12    jeremy 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2280   1.12    jeremy 	 * It is not possible for us to treat 'executable' as a separate
   2281   1.12    jeremy 	 * protection type.  Therefore, protection requests that seek to
   2282   1.12    jeremy 	 * remove execute permission while retaining read or write, and those
   2283   1.12    jeremy 	 * that make little sense (write-only for example) are ignored.
   2284   1.11    jeremy 	 */
   2285   1.12    jeremy 	switch (prot) {
   2286   1.12    jeremy 		case VM_PROT_NONE:
   2287   1.12    jeremy 			/*
   2288   1.12    jeremy 			 * A request to apply the protection code of
   2289   1.12    jeremy 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2290   1.12    jeremy 			 */
   2291   1.12    jeremy 			pmap_remove(pmap, startva, endva);
   2292   1.12    jeremy 			return;
   2293   1.12    jeremy 		case	VM_PROT_EXECUTE:
   2294   1.12    jeremy 		case	VM_PROT_READ:
   2295   1.12    jeremy 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2296   1.12    jeremy 			/* continue */
   2297   1.12    jeremy 			break;
   2298   1.12    jeremy 		case	VM_PROT_WRITE:
   2299   1.12    jeremy 		case	VM_PROT_WRITE|VM_PROT_READ:
   2300   1.12    jeremy 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2301   1.12    jeremy 		case	VM_PROT_ALL:
   2302   1.12    jeremy 			/* None of these should happen in a sane system. */
   2303   1.12    jeremy 			return;
   2304   1.11    jeremy 	}
   2305   1.11    jeremy 
   2306   1.11    jeremy 	/*
   2307   1.11    jeremy 	 * If the pmap has no A table, it has no mappings and therefore
   2308   1.11    jeremy 	 * there is nothing to protect.
   2309   1.11    jeremy 	 */
   2310   1.11    jeremy 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2311   1.11    jeremy 		return;
   2312   1.11    jeremy 
   2313   1.11    jeremy 	a_idx = MMU_TIA(startva);
   2314   1.11    jeremy 	b_idx = MMU_TIB(startva);
   2315   1.11    jeremy 	c_idx = MMU_TIC(startva);
   2316   1.90     skrll 	b_tbl = NULL;
   2317   1.90     skrll 	c_tbl = NULL;
   2318   1.11    jeremy 
   2319    1.7       gwr 	iscurpmap = (pmap == current_pmap());
   2320   1.11    jeremy 	while (startva < endva) {
   2321   1.11    jeremy 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2322   1.11    jeremy 		  if (b_tbl == NULL) {
   2323   1.11    jeremy 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2324   1.69       chs 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2325   1.69       chs 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2326   1.11    jeremy 		  }
   2327   1.11    jeremy 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2328   1.11    jeremy 		    if (c_tbl == NULL) {
   2329   1.11    jeremy 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2330   1.69       chs 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2331   1.69       chs 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2332   1.11    jeremy 		    }
   2333   1.11    jeremy 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2334   1.11    jeremy 		      pte = &c_tbl->ct_dtbl[c_idx];
   2335   1.12    jeremy 		      /* make the mapping read-only */
   2336   1.12    jeremy 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2337   1.11    jeremy 		      /*
   2338   1.11    jeremy 		       * If we just modified the current address space,
   2339   1.11    jeremy 		       * flush any translations for the modified page from
   2340   1.11    jeremy 		       * the translation cache and any data from it in the
   2341   1.11    jeremy 		       * data cache.
   2342   1.11    jeremy 		       */
   2343   1.11    jeremy 		      if (iscurpmap)
   2344   1.11    jeremy 		          TBIS(startva);
   2345   1.11    jeremy 		    }
   2346   1.79   thorpej 		    startva += PAGE_SIZE;
   2347    1.1       gwr 
   2348   1.11    jeremy 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2349   1.11    jeremy 		      c_tbl = NULL;
   2350   1.11    jeremy 		      c_idx = 0;
   2351   1.11    jeremy 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2352   1.11    jeremy 		        b_tbl = NULL;
   2353   1.11    jeremy 		        b_idx = 0;
   2354   1.11    jeremy 		      }
   2355   1.11    jeremy 		    }
   2356   1.11    jeremy 		  } else { /* C table wasn't valid */
   2357   1.11    jeremy 		    c_tbl = NULL;
   2358   1.11    jeremy 		    c_idx = 0;
   2359   1.11    jeremy 		    startva += MMU_TIB_RANGE;
   2360   1.11    jeremy 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2361   1.11    jeremy 		      b_tbl = NULL;
   2362   1.11    jeremy 		      b_idx = 0;
   2363   1.11    jeremy 		    }
   2364   1.11    jeremy 		  } /* C table */
   2365   1.11    jeremy 		} else { /* B table wasn't valid */
   2366   1.11    jeremy 		  b_tbl = NULL;
   2367   1.11    jeremy 		  b_idx = 0;
   2368   1.11    jeremy 		  startva += MMU_TIA_RANGE;
   2369   1.11    jeremy 		  a_idx++;
   2370   1.11    jeremy 		} /* B table */
   2371    1.1       gwr 	}
   2372    1.1       gwr }
   2373    1.1       gwr 
   2374   1.47   thorpej /* pmap_unwire				INTERFACE
   2375    1.1       gwr  **
   2376   1.47   thorpej  * Clear the wired attribute of the specified page.
   2377    1.1       gwr  *
   2378    1.1       gwr  * This function is called from vm_fault.c to unwire
   2379   1.47   thorpej  * a mapping.
   2380    1.1       gwr  */
   2381  1.113   tsutsui void
   2382   1.86       chs pmap_unwire(pmap_t pmap, vaddr_t va)
   2383    1.1       gwr {
   2384    1.1       gwr 	int a_idx, b_idx, c_idx;
   2385    1.1       gwr 	a_tmgr_t *a_tbl;
   2386    1.1       gwr 	b_tmgr_t *b_tbl;
   2387    1.1       gwr 	c_tmgr_t *c_tbl;
   2388    1.1       gwr 	mmu_short_pte_t *pte;
   2389  1.113   tsutsui 
   2390    1.1       gwr 	/* Kernel mappings always remain wired. */
   2391    1.1       gwr 	if (pmap == pmap_kernel())
   2392    1.1       gwr 		return;
   2393    1.1       gwr 
   2394    1.7       gwr 	/*
   2395    1.7       gwr 	 * Walk through the tables.  If the walk terminates without
   2396    1.1       gwr 	 * a valid PTE then the address wasn't wired in the first place.
   2397    1.1       gwr 	 * Return immediately.
   2398    1.1       gwr 	 */
   2399    1.1       gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2400   1.95   thorpej 		&b_idx, &c_idx) == false)
   2401    1.1       gwr 		return;
   2402    1.1       gwr 
   2403    1.1       gwr 
   2404    1.1       gwr 	/* Is the PTE wired?  If not, return. */
   2405    1.1       gwr 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2406    1.1       gwr 		return;
   2407    1.1       gwr 
   2408    1.1       gwr 	/* Remove the wiring bit. */
   2409    1.1       gwr 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2410    1.1       gwr 
   2411    1.7       gwr 	/*
   2412    1.7       gwr 	 * Decrement the wired entry count in the C table.
   2413    1.1       gwr 	 * If it reaches zero the following things happen:
   2414  1.113   tsutsui 	 * 1. The table no longer has any wired entries and is considered
   2415    1.1       gwr 	 *    unwired.
   2416    1.1       gwr 	 * 2. It is placed on the available queue.
   2417    1.1       gwr 	 * 3. The parent table's wired entry count is decremented.
   2418    1.1       gwr 	 * 4. If it reaches zero, this process repeats at step 1 and
   2419    1.1       gwr 	 *    stops at after reaching the A table.
   2420    1.1       gwr 	 */
   2421    1.7       gwr 	if (--c_tbl->ct_wcnt == 0) {
   2422    1.1       gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2423    1.7       gwr 		if (--b_tbl->bt_wcnt == 0) {
   2424    1.1       gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2425    1.7       gwr 			if (--a_tbl->at_wcnt == 0) {
   2426    1.1       gwr 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2427    1.1       gwr 			}
   2428    1.1       gwr 		}
   2429    1.1       gwr 	}
   2430    1.1       gwr }
   2431    1.1       gwr 
   2432    1.1       gwr /* pmap_copy				INTERFACE
   2433    1.1       gwr  **
   2434    1.1       gwr  * Copy the mappings of a range of addresses in one pmap, into
   2435    1.1       gwr  * the destination address of another.
   2436    1.1       gwr  *
   2437    1.1       gwr  * This routine is advisory.  Should we one day decide that MMU tables
   2438    1.1       gwr  * may be shared by more than one pmap, this function should be used to
   2439    1.1       gwr  * link them together.  Until that day however, we do nothing.
   2440    1.1       gwr  */
   2441    1.1       gwr void
   2442   1.86       chs pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
   2443    1.1       gwr {
   2444   1.92   tsutsui 
   2445    1.1       gwr 	/* not implemented. */
   2446    1.1       gwr }
   2447    1.1       gwr 
   2448    1.1       gwr /* pmap_copy_page			INTERFACE
   2449    1.1       gwr  **
   2450    1.1       gwr  * Copy the contents of one physical page into another.
   2451    1.1       gwr  *
   2452    1.7       gwr  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2453   1.24    jeremy  * to map the two specified physical pages into the kernel address space.
   2454    1.7       gwr  *
   2455    1.7       gwr  * Note: We could use the transparent translation registers to make the
   2456    1.7       gwr  * mappings.  If we do so, be sure to disable interrupts before using them.
   2457    1.1       gwr  */
   2458  1.113   tsutsui void
   2459   1.86       chs pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
   2460    1.1       gwr {
   2461   1.69       chs 	vaddr_t srcva, dstva;
   2462   1.23    jeremy 	int s;
   2463   1.24    jeremy 
   2464   1.24    jeremy 	srcva = tmp_vpages[0];
   2465   1.24    jeremy 	dstva = tmp_vpages[1];
   2466    1.1       gwr 
   2467   1.58   thorpej 	s = splvm();
   2468   1.69       chs #ifdef DIAGNOSTIC
   2469   1.24    jeremy 	if (tmp_vpages_inuse++)
   2470   1.24    jeremy 		panic("pmap_copy_page: temporary vpages are in use.");
   2471   1.69       chs #endif
   2472   1.23    jeremy 
   2473   1.23    jeremy 	/* Map pages as non-cacheable to avoid cache polution? */
   2474  1.108    cegger 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ, 0);
   2475  1.108    cegger 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
   2476    1.7       gwr 
   2477  1.105   tsutsui 	/* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */
   2478   1.92   tsutsui 	copypage((char *)srcva, (char *)dstva);
   2479   1.24    jeremy 
   2480   1.79   thorpej 	pmap_kremove(srcva, PAGE_SIZE);
   2481   1.79   thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2482   1.24    jeremy 
   2483   1.69       chs #ifdef DIAGNOSTIC
   2484   1.24    jeremy 	--tmp_vpages_inuse;
   2485   1.69       chs #endif
   2486   1.23    jeremy 	splx(s);
   2487    1.1       gwr }
   2488    1.1       gwr 
   2489    1.1       gwr /* pmap_zero_page			INTERFACE
   2490    1.1       gwr  **
   2491    1.1       gwr  * Zero the contents of the specified physical page.
   2492    1.1       gwr  *
   2493  1.115     skrll  * Uses one of the virtual pages allocated in pmap_bootstrap()
   2494   1.24    jeremy  * to map the specified page into the kernel address space.
   2495    1.1       gwr  */
   2496  1.113   tsutsui void
   2497   1.86       chs pmap_zero_page(paddr_t dstpa)
   2498    1.1       gwr {
   2499   1.69       chs 	vaddr_t dstva;
   2500   1.23    jeremy 	int s;
   2501   1.23    jeremy 
   2502   1.24    jeremy 	dstva = tmp_vpages[1];
   2503   1.58   thorpej 	s = splvm();
   2504   1.69       chs #ifdef DIAGNOSTIC
   2505   1.26    jeremy 	if (tmp_vpages_inuse++)
   2506   1.24    jeremy 		panic("pmap_zero_page: temporary vpages are in use.");
   2507   1.69       chs #endif
   2508   1.24    jeremy 
   2509   1.24    jeremy 	/* The comments in pmap_copy_page() above apply here also. */
   2510  1.108    cegger 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
   2511   1.24    jeremy 
   2512  1.102    cegger 	/* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */
   2513   1.92   tsutsui 	zeropage((char *)dstva);
   2514    1.1       gwr 
   2515   1.79   thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2516   1.69       chs #ifdef DIAGNOSTIC
   2517   1.24    jeremy 	--tmp_vpages_inuse;
   2518   1.69       chs #endif
   2519   1.23    jeremy 	splx(s);
   2520    1.1       gwr }
   2521    1.1       gwr 
   2522   1.92   tsutsui /* pmap_pinit			INTERNAL
   2523   1.92   tsutsui  **
   2524   1.92   tsutsui  * Initialize a pmap structure.
   2525   1.92   tsutsui  */
   2526  1.113   tsutsui static INLINE void
   2527   1.92   tsutsui pmap_pinit(pmap_t pmap)
   2528   1.92   tsutsui {
   2529   1.92   tsutsui 
   2530   1.92   tsutsui 	memset(pmap, 0, sizeof(struct pmap));
   2531   1.92   tsutsui 	pmap->pm_a_tmgr = NULL;
   2532   1.92   tsutsui 	pmap->pm_a_phys = kernAphys;
   2533   1.92   tsutsui 	pmap->pm_refcount = 1;
   2534   1.92   tsutsui }
   2535   1.92   tsutsui 
   2536    1.1       gwr /* pmap_create			INTERFACE
   2537    1.1       gwr  **
   2538    1.1       gwr  * Create and return a pmap structure.
   2539    1.1       gwr  */
   2540  1.113   tsutsui pmap_t
   2541   1.86       chs pmap_create(void)
   2542    1.1       gwr {
   2543    1.1       gwr 	pmap_t	pmap;
   2544    1.1       gwr 
   2545   1.56   tsutsui 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2546    1.1       gwr 	pmap_pinit(pmap);
   2547    1.1       gwr 	return pmap;
   2548    1.1       gwr }
   2549    1.1       gwr 
   2550   1.92   tsutsui /* pmap_release				INTERNAL
   2551    1.1       gwr  **
   2552    1.1       gwr  * Release any resources held by the given pmap.
   2553    1.1       gwr  *
   2554    1.1       gwr  * This is the reverse analog to pmap_pinit.  It does not
   2555    1.1       gwr  * necessarily mean for the pmap structure to be deallocated,
   2556    1.1       gwr  * as in pmap_destroy.
   2557    1.1       gwr  */
   2558  1.113   tsutsui static INLINE void
   2559   1.86       chs pmap_release(pmap_t pmap)
   2560    1.1       gwr {
   2561   1.92   tsutsui 
   2562    1.7       gwr 	/*
   2563    1.7       gwr 	 * As long as the pmap contains no mappings,
   2564    1.1       gwr 	 * which always should be the case whenever
   2565    1.1       gwr 	 * this function is called, there really should
   2566    1.1       gwr 	 * be nothing to do.
   2567    1.1       gwr 	 */
   2568    1.1       gwr #ifdef	PMAP_DEBUG
   2569    1.1       gwr 	if (pmap == pmap_kernel())
   2570    1.9       gwr 		panic("pmap_release: kernel pmap");
   2571    1.1       gwr #endif
   2572    1.9       gwr 	/*
   2573    1.9       gwr 	 * XXX - If this pmap has an A table, give it back.
   2574    1.9       gwr 	 * The pmap SHOULD be empty by now, and pmap_remove
   2575    1.9       gwr 	 * should have already given back the A table...
   2576    1.9       gwr 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2577    1.9       gwr 	 * at this point, which means some mapping was not
   2578    1.9       gwr 	 * removed when it should have been. -gwr
   2579    1.9       gwr 	 */
   2580    1.7       gwr 	if (pmap->pm_a_tmgr != NULL) {
   2581    1.9       gwr 		/* First make sure we are not using it! */
   2582    1.9       gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2583    1.9       gwr 			kernel_crp.rp_addr = kernAphys;
   2584    1.9       gwr 			loadcrp(&kernel_crp);
   2585    1.9       gwr 		}
   2586   1.13       gwr #ifdef	PMAP_DEBUG /* XXX - todo! */
   2587   1.13       gwr 		/* XXX - Now complain... */
   2588   1.13       gwr 		printf("pmap_release: still have table\n");
   2589   1.13       gwr 		Debugger();
   2590   1.13       gwr #endif
   2591   1.95   thorpej 		free_a_table(pmap->pm_a_tmgr, true);
   2592    1.7       gwr 		pmap->pm_a_tmgr = NULL;
   2593    1.7       gwr 		pmap->pm_a_phys = kernAphys;
   2594    1.7       gwr 	}
   2595    1.1       gwr }
   2596    1.1       gwr 
   2597    1.1       gwr /* pmap_reference			INTERFACE
   2598    1.1       gwr  **
   2599    1.1       gwr  * Increment the reference count of a pmap.
   2600    1.1       gwr  */
   2601  1.113   tsutsui void
   2602   1.86       chs pmap_reference(pmap_t pmap)
   2603    1.1       gwr {
   2604  1.112   tsutsui 
   2605  1.112   tsutsui 	atomic_inc_uint(&pmap->pm_refcount);
   2606    1.1       gwr }
   2607    1.1       gwr 
   2608    1.1       gwr /* pmap_dereference			INTERNAL
   2609    1.1       gwr  **
   2610    1.1       gwr  * Decrease the reference count on the given pmap
   2611    1.1       gwr  * by one and return the current count.
   2612    1.1       gwr  */
   2613  1.113   tsutsui static INLINE int
   2614   1.86       chs pmap_dereference(pmap_t pmap)
   2615    1.1       gwr {
   2616    1.1       gwr 	int rtn;
   2617    1.1       gwr 
   2618  1.112   tsutsui 	rtn = atomic_dec_uint_nv(&pmap->pm_refcount);
   2619    1.1       gwr 
   2620    1.1       gwr 	return rtn;
   2621    1.1       gwr }
   2622  1.113   tsutsui 
   2623    1.1       gwr /* pmap_destroy			INTERFACE
   2624    1.1       gwr  **
   2625    1.1       gwr  * Decrement a pmap's reference count and delete
   2626    1.1       gwr  * the pmap if it becomes zero.  Will be called
   2627    1.1       gwr  * only after all mappings have been removed.
   2628    1.1       gwr  */
   2629  1.113   tsutsui void
   2630   1.86       chs pmap_destroy(pmap_t pmap)
   2631    1.1       gwr {
   2632   1.92   tsutsui 
   2633    1.1       gwr 	if (pmap_dereference(pmap) == 0) {
   2634    1.1       gwr 		pmap_release(pmap);
   2635   1.56   tsutsui 		pool_put(&pmap_pmap_pool, pmap);
   2636    1.1       gwr 	}
   2637    1.1       gwr }
   2638    1.1       gwr 
   2639    1.1       gwr /* pmap_is_referenced			INTERFACE
   2640    1.1       gwr  **
   2641    1.1       gwr  * Determine if the given physical page has been
   2642    1.1       gwr  * referenced (read from [or written to.])
   2643    1.1       gwr  */
   2644   1.94   thorpej bool
   2645   1.86       chs pmap_is_referenced(struct vm_page *pg)
   2646    1.1       gwr {
   2647   1.49       chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2648    1.1       gwr 	pv_t      *pv;
   2649   1.69       chs 	int       idx;
   2650    1.1       gwr 
   2651    1.7       gwr 	/*
   2652    1.7       gwr 	 * Check the flags on the pv head.  If they are set,
   2653    1.1       gwr 	 * return immediately.  Otherwise a search must be done.
   2654    1.7       gwr 	 */
   2655   1.69       chs 
   2656   1.69       chs 	pv = pa2pv(pa);
   2657    1.1       gwr 	if (pv->pv_flags & PV_FLAGS_USED)
   2658   1.95   thorpej 		return true;
   2659   1.32       gwr 
   2660   1.32       gwr 	/*
   2661   1.32       gwr 	 * Search through all pv elements pointing
   2662   1.32       gwr 	 * to this page and query their reference bits
   2663   1.32       gwr 	 */
   2664   1.32       gwr 
   2665   1.69       chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2666   1.32       gwr 		if (MMU_PTE_USED(kernCbase[idx])) {
   2667   1.95   thorpej 			return true;
   2668   1.32       gwr 		}
   2669    1.7       gwr 	}
   2670   1.95   thorpej 	return false;
   2671    1.1       gwr }
   2672    1.1       gwr 
   2673    1.1       gwr /* pmap_is_modified			INTERFACE
   2674    1.1       gwr  **
   2675    1.1       gwr  * Determine if the given physical page has been
   2676    1.1       gwr  * modified (written to.)
   2677    1.1       gwr  */
   2678   1.94   thorpej bool
   2679   1.86       chs pmap_is_modified(struct vm_page *pg)
   2680    1.1       gwr {
   2681   1.49       chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2682    1.1       gwr 	pv_t      *pv;
   2683   1.69       chs 	int       idx;
   2684    1.1       gwr 
   2685    1.1       gwr 	/* see comments in pmap_is_referenced() */
   2686    1.1       gwr 	pv = pa2pv(pa);
   2687   1.32       gwr 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2688   1.95   thorpej 		return true;
   2689   1.32       gwr 
   2690   1.32       gwr 	for (idx = pv->pv_idx;
   2691   1.32       gwr 		 idx != PVE_EOL;
   2692   1.32       gwr 		 idx = pvebase[idx].pve_next) {
   2693   1.32       gwr 
   2694   1.32       gwr 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2695   1.95   thorpej 			return true;
   2696   1.32       gwr 		}
   2697    1.7       gwr 	}
   2698    1.7       gwr 
   2699   1.95   thorpej 	return false;
   2700    1.1       gwr }
   2701    1.1       gwr 
   2702    1.1       gwr /* pmap_page_protect			INTERFACE
   2703    1.1       gwr  **
   2704    1.1       gwr  * Applies the given protection to all mappings to the given
   2705    1.1       gwr  * physical page.
   2706    1.1       gwr  */
   2707  1.113   tsutsui void
   2708   1.86       chs pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2709    1.1       gwr {
   2710   1.49       chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2711    1.1       gwr 	pv_t      *pv;
   2712   1.69       chs 	int       idx;
   2713   1.69       chs 	vaddr_t va;
   2714    1.1       gwr 	struct mmu_short_pte_struct *pte;
   2715    1.8       gwr 	c_tmgr_t  *c_tbl;
   2716    1.8       gwr 	pmap_t    pmap, curpmap;
   2717    1.1       gwr 
   2718    1.8       gwr 	curpmap = current_pmap();
   2719    1.1       gwr 	pv = pa2pv(pa);
   2720   1.32       gwr 
   2721   1.69       chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2722    1.7       gwr 		pte = &kernCbase[idx];
   2723    1.1       gwr 		switch (prot) {
   2724    1.1       gwr 			case VM_PROT_ALL:
   2725    1.1       gwr 				/* do nothing */
   2726    1.1       gwr 				break;
   2727    1.7       gwr 			case VM_PROT_EXECUTE:
   2728    1.1       gwr 			case VM_PROT_READ:
   2729    1.1       gwr 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2730    1.8       gwr 				/*
   2731    1.8       gwr 				 * Determine the virtual address mapped by
   2732    1.8       gwr 				 * the PTE and flush ATC entries if necessary.
   2733    1.8       gwr 				 */
   2734    1.8       gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2735   1.69       chs 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2736    1.8       gwr 				if (pmap == curpmap || pmap == pmap_kernel())
   2737    1.8       gwr 					TBIS(va);
   2738    1.1       gwr 				break;
   2739    1.1       gwr 			case VM_PROT_NONE:
   2740    1.7       gwr 				/* Save the mod/ref bits. */
   2741    1.7       gwr 				pv->pv_flags |= pte->attr.raw;
   2742    1.7       gwr 				/* Invalidate the PTE. */
   2743    1.7       gwr 				pte->attr.raw = MMU_DT_INVALID;
   2744    1.8       gwr 
   2745    1.8       gwr 				/*
   2746    1.8       gwr 				 * Update table counts.  And flush ATC entries
   2747    1.8       gwr 				 * if necessary.
   2748    1.8       gwr 				 */
   2749    1.8       gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2750    1.8       gwr 
   2751    1.8       gwr 				/*
   2752    1.8       gwr 				 * If the PTE belongs to the kernel map,
   2753    1.8       gwr 				 * be sure to flush the page it maps.
   2754    1.8       gwr 				 */
   2755    1.8       gwr 				if (pmap == pmap_kernel()) {
   2756    1.8       gwr 					TBIS(va);
   2757    1.8       gwr 				} else {
   2758    1.8       gwr 					/*
   2759    1.8       gwr 					 * The PTE belongs to a user map.
   2760    1.8       gwr 					 * update the entry count in the C
   2761    1.8       gwr 					 * table to which it belongs and flush
   2762    1.8       gwr 					 * the ATC if the mapping belongs to
   2763    1.8       gwr 					 * the current pmap.
   2764    1.8       gwr 					 */
   2765    1.8       gwr 					c_tbl->ct_ecnt--;
   2766    1.8       gwr 					if (pmap == curpmap)
   2767    1.8       gwr 						TBIS(va);
   2768    1.8       gwr 				}
   2769    1.1       gwr 				break;
   2770    1.1       gwr 			default:
   2771    1.1       gwr 				break;
   2772    1.1       gwr 		}
   2773    1.1       gwr 	}
   2774    1.8       gwr 
   2775    1.8       gwr 	/*
   2776    1.8       gwr 	 * If the protection code indicates that all mappings to the page
   2777    1.8       gwr 	 * be removed, truncate the PV list to zero entries.
   2778    1.8       gwr 	 */
   2779    1.7       gwr 	if (prot == VM_PROT_NONE)
   2780    1.7       gwr 		pv->pv_idx = PVE_EOL;
   2781    1.1       gwr }
   2782    1.1       gwr 
   2783    1.7       gwr /* pmap_get_pteinfo		INTERNAL
   2784    1.1       gwr  **
   2785    1.7       gwr  * Called internally to find the pmap and virtual address within that
   2786    1.8       gwr  * map to which the pte at the given index maps.  Also includes the PTE's C
   2787    1.8       gwr  * table manager.
   2788    1.1       gwr  *
   2789    1.7       gwr  * Returns the pmap in the argument provided, and the virtual address
   2790    1.7       gwr  * by return value.
   2791    1.1       gwr  */
   2792  1.113   tsutsui vaddr_t
   2793   1.86       chs pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
   2794    1.1       gwr {
   2795   1.69       chs 	vaddr_t     va = 0;
   2796    1.1       gwr 
   2797    1.7       gwr 	/*
   2798    1.7       gwr 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2799    1.1       gwr 	 */
   2800    1.8       gwr 	if (idx >= NUM_KERN_PTES) {
   2801    1.7       gwr 		/*
   2802    1.7       gwr 		 * The PTE belongs to a user mapping.
   2803    1.7       gwr 		 */
   2804    1.8       gwr 		/* XXX: Would like an inline for this to validate idx... */
   2805   1.26    jeremy 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2806   1.26    jeremy 
   2807   1.26    jeremy 		*pmap = (*tbl)->ct_pmap;
   2808   1.26    jeremy 		/*
   2809   1.26    jeremy 		 * To find the va to which the PTE maps, we first take
   2810   1.26    jeremy 		 * the table's base virtual address mapping which is stored
   2811   1.26    jeremy 		 * in ct_va.  We then increment this address by a page for
   2812   1.26    jeremy 		 * every slot skipped until we reach the PTE.
   2813   1.26    jeremy 		 */
   2814   1.92   tsutsui 		va = (*tbl)->ct_va;
   2815   1.26    jeremy 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2816    1.7       gwr 	} else {
   2817    1.7       gwr 		/*
   2818    1.7       gwr 		 * The PTE belongs to the kernel map.
   2819    1.7       gwr 		 */
   2820    1.8       gwr 		*pmap = pmap_kernel();
   2821    1.8       gwr 
   2822   1.25     veego 		va = m68k_ptob(idx);
   2823  1.111   tsutsui 		va += KERNBASE3X;
   2824    1.7       gwr 	}
   2825  1.113   tsutsui 
   2826    1.1       gwr 	return va;
   2827    1.1       gwr }
   2828    1.1       gwr 
   2829    1.1       gwr /* pmap_clear_modify			INTERFACE
   2830    1.1       gwr  **
   2831    1.1       gwr  * Clear the modification bit on the page at the specified
   2832    1.1       gwr  * physical address.
   2833    1.1       gwr  *
   2834    1.1       gwr  */
   2835   1.94   thorpej bool
   2836   1.86       chs pmap_clear_modify(struct vm_page *pg)
   2837    1.1       gwr {
   2838   1.49       chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2839   1.94   thorpej 	bool rv;
   2840   1.49       chs 
   2841   1.49       chs 	rv = pmap_is_modified(pg);
   2842    1.1       gwr 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2843   1.49       chs 	return rv;
   2844    1.1       gwr }
   2845    1.1       gwr 
   2846    1.1       gwr /* pmap_clear_reference			INTERFACE
   2847    1.1       gwr  **
   2848    1.1       gwr  * Clear the referenced bit on the page at the specified
   2849    1.1       gwr  * physical address.
   2850    1.1       gwr  */
   2851   1.94   thorpej bool
   2852   1.86       chs pmap_clear_reference(struct vm_page *pg)
   2853    1.1       gwr {
   2854   1.49       chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2855   1.94   thorpej 	bool rv;
   2856   1.49       chs 
   2857   1.49       chs 	rv = pmap_is_referenced(pg);
   2858    1.1       gwr 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2859   1.49       chs 	return rv;
   2860    1.1       gwr }
   2861  1.113   tsutsui 
   2862    1.1       gwr /* pmap_clear_pv			INTERNAL
   2863    1.1       gwr  **
   2864    1.1       gwr  * Clears the specified flag from the specified physical address.
   2865    1.1       gwr  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2866    1.1       gwr  *
   2867    1.1       gwr  * Flag is one of:
   2868    1.1       gwr  *   PV_FLAGS_MDFY - Page modified bit.
   2869    1.1       gwr  *   PV_FLAGS_USED - Page used (referenced) bit.
   2870    1.1       gwr  *
   2871    1.1       gwr  * This routine must not only clear the flag on the pv list
   2872    1.1       gwr  * head.  It must also clear the bit on every pte in the pv
   2873    1.1       gwr  * list associated with the address.
   2874    1.1       gwr  */
   2875  1.113   tsutsui void
   2876   1.86       chs pmap_clear_pv(paddr_t pa, int flag)
   2877    1.1       gwr {
   2878    1.1       gwr 	pv_t      *pv;
   2879   1.69       chs 	int       idx;
   2880   1.69       chs 	vaddr_t   va;
   2881    1.7       gwr 	pmap_t          pmap;
   2882    1.1       gwr 	mmu_short_pte_t *pte;
   2883    1.7       gwr 	c_tmgr_t        *c_tbl;
   2884    1.1       gwr 
   2885    1.1       gwr 	pv = pa2pv(pa);
   2886    1.1       gwr 	pv->pv_flags &= ~(flag);
   2887   1.69       chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2888    1.7       gwr 		pte = &kernCbase[idx];
   2889    1.1       gwr 		pte->attr.raw &= ~(flag);
   2890   1.69       chs 
   2891    1.7       gwr 		/*
   2892    1.7       gwr 		 * The MC68030 MMU will not set the modified or
   2893    1.7       gwr 		 * referenced bits on any MMU tables for which it has
   2894    1.7       gwr 		 * a cached descriptor with its modify bit set.  To insure
   2895    1.7       gwr 		 * that it will modify these bits on the PTE during the next
   2896    1.7       gwr 		 * time it is written to or read from, we must flush it from
   2897    1.7       gwr 		 * the ATC.
   2898    1.7       gwr 		 *
   2899    1.7       gwr 		 * Ordinarily it is only necessary to flush the descriptor
   2900    1.7       gwr 		 * if it is used in the current address space.  But since I
   2901    1.7       gwr 		 * am not sure that there will always be a notion of
   2902    1.7       gwr 		 * 'the current address space' when this function is called,
   2903    1.7       gwr 		 * I will skip the test and always flush the address.  It
   2904    1.7       gwr 		 * does no harm.
   2905    1.7       gwr 		 */
   2906   1.69       chs 
   2907    1.8       gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2908    1.7       gwr 		TBIS(va);
   2909    1.1       gwr 	}
   2910    1.1       gwr }
   2911    1.1       gwr 
   2912   1.92   tsutsui /* pmap_extract_kernel		INTERNAL
   2913   1.92   tsutsui  **
   2914   1.92   tsutsui  * Extract a translation from the kernel address space.
   2915   1.92   tsutsui  */
   2916  1.113   tsutsui static INLINE bool
   2917   1.92   tsutsui pmap_extract_kernel(vaddr_t va, paddr_t *pap)
   2918   1.92   tsutsui {
   2919   1.92   tsutsui 	mmu_short_pte_t *pte;
   2920   1.92   tsutsui 
   2921  1.111   tsutsui 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE3X)];
   2922   1.92   tsutsui 	if (!MMU_VALID_DT(*pte))
   2923   1.95   thorpej 		return false;
   2924   1.92   tsutsui 	if (pap != NULL)
   2925   1.92   tsutsui 		*pap = MMU_PTE_PA(*pte);
   2926   1.95   thorpej 	return true;
   2927   1.92   tsutsui }
   2928   1.92   tsutsui 
   2929    1.1       gwr /* pmap_extract			INTERFACE
   2930    1.1       gwr  **
   2931    1.1       gwr  * Return the physical address mapped by the virtual address
   2932   1.48   thorpej  * in the specified pmap.
   2933    1.1       gwr  *
   2934    1.1       gwr  * Note: this function should also apply an exclusive lock
   2935    1.1       gwr  * on the pmap system during its duration.
   2936    1.1       gwr  */
   2937  1.113   tsutsui bool
   2938   1.86       chs pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   2939    1.1       gwr {
   2940    1.1       gwr 	int a_idx, b_idx, pte_idx;
   2941    1.1       gwr 	a_tmgr_t	*a_tbl;
   2942    1.1       gwr 	b_tmgr_t	*b_tbl;
   2943    1.1       gwr 	c_tmgr_t	*c_tbl;
   2944    1.1       gwr 	mmu_short_pte_t	*c_pte;
   2945    1.1       gwr 
   2946    1.1       gwr 	if (pmap == pmap_kernel())
   2947   1.48   thorpej 		return pmap_extract_kernel(va, pap);
   2948    1.1       gwr 
   2949    1.1       gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2950   1.95   thorpej 		&c_pte, &a_idx, &b_idx, &pte_idx) == false)
   2951   1.95   thorpej 		return false;
   2952    1.1       gwr 
   2953    1.7       gwr 	if (!MMU_VALID_DT(*c_pte))
   2954   1.95   thorpej 		return false;
   2955    1.7       gwr 
   2956   1.48   thorpej 	if (pap != NULL)
   2957   1.48   thorpej 		*pap = MMU_PTE_PA(*c_pte);
   2958   1.95   thorpej 	return true;
   2959    1.1       gwr }
   2960    1.1       gwr 
   2961    1.1       gwr /* pmap_remove_kernel		INTERNAL
   2962    1.1       gwr  **
   2963    1.1       gwr  * Remove the mapping of a range of virtual addresses from the kernel map.
   2964    1.9       gwr  * The arguments are already page-aligned.
   2965    1.1       gwr  */
   2966  1.113   tsutsui static INLINE void
   2967   1.86       chs pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
   2968    1.1       gwr {
   2969    1.9       gwr 	int idx, eidx;
   2970    1.9       gwr 
   2971    1.9       gwr #ifdef	PMAP_DEBUG
   2972    1.9       gwr 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2973    1.9       gwr 		panic("pmap_remove_kernel: alignment");
   2974    1.9       gwr #endif
   2975    1.1       gwr 
   2976  1.111   tsutsui 	idx  = m68k_btop(sva - KERNBASE3X);
   2977  1.111   tsutsui 	eidx = m68k_btop(eva - KERNBASE3X);
   2978    1.9       gwr 
   2979   1.24    jeremy 	while (idx < eidx) {
   2980    1.9       gwr 		pmap_remove_pte(&kernCbase[idx++]);
   2981   1.24    jeremy 		TBIS(sva);
   2982   1.79   thorpej 		sva += PAGE_SIZE;
   2983   1.24    jeremy 	}
   2984    1.1       gwr }
   2985    1.1       gwr 
   2986    1.1       gwr /* pmap_remove			INTERFACE
   2987    1.1       gwr  **
   2988    1.1       gwr  * Remove the mapping of a range of virtual addresses from the given pmap.
   2989    1.7       gwr  *
   2990    1.1       gwr  */
   2991  1.113   tsutsui void
   2992   1.88   tsutsui pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
   2993    1.1       gwr {
   2994    1.7       gwr 
   2995    1.1       gwr 	if (pmap == pmap_kernel()) {
   2996   1.88   tsutsui 		pmap_remove_kernel(sva, eva);
   2997    1.1       gwr 		return;
   2998    1.1       gwr 	}
   2999    1.1       gwr 
   3000    1.7       gwr 	/*
   3001    1.7       gwr 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3002    1.7       gwr 	 * that can be removed.
   3003    1.1       gwr 	 */
   3004    1.7       gwr 	if (pmap->pm_a_tmgr == NULL)
   3005    1.7       gwr 		return;
   3006    1.7       gwr 
   3007    1.7       gwr 	/*
   3008    1.7       gwr 	 * Remove the specified range from the pmap.  If the function
   3009    1.7       gwr 	 * returns true, the operation removed all the valid mappings
   3010    1.7       gwr 	 * in the pmap and freed its A table.  If this happened to the
   3011    1.7       gwr 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3012    1.7       gwr 	 * with the default 'kernel' map.
   3013  1.113   tsutsui 	 */
   3014   1.88   tsutsui 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
   3015    1.9       gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3016    1.9       gwr 			kernel_crp.rp_addr = kernAphys;
   3017    1.9       gwr 			loadcrp(&kernel_crp);
   3018    1.9       gwr 			/* will do TLB flush below */
   3019    1.9       gwr 		}
   3020    1.7       gwr 		pmap->pm_a_tmgr = NULL;
   3021    1.7       gwr 		pmap->pm_a_phys = kernAphys;
   3022    1.1       gwr 	}
   3023    1.9       gwr 
   3024    1.9       gwr 	/*
   3025    1.9       gwr 	 * If we just modified the current address space,
   3026    1.9       gwr 	 * make sure to flush the MMU cache.
   3027    1.9       gwr 	 *
   3028  1.120    andvar 	 * XXX - this could be an unnecessarily large flush.
   3029    1.9       gwr 	 * XXX - Could decide, based on the size of the VA range
   3030    1.9       gwr 	 * to be removed, whether to flush "by pages" or "all".
   3031    1.9       gwr 	 */
   3032    1.9       gwr 	if (pmap == current_pmap())
   3033    1.9       gwr 		TBIAU();
   3034    1.1       gwr }
   3035    1.1       gwr 
   3036    1.1       gwr /* pmap_remove_a			INTERNAL
   3037    1.1       gwr  **
   3038    1.1       gwr  * This is function number one in a set of three that removes a range
   3039    1.1       gwr  * of memory in the most efficient manner by removing the highest possible
   3040    1.1       gwr  * tables from the memory space.  This particular function attempts to remove
   3041    1.1       gwr  * as many B tables as it can, delegating the remaining fragmented ranges to
   3042    1.1       gwr  * pmap_remove_b().
   3043    1.1       gwr  *
   3044    1.7       gwr  * If the removal operation results in an empty A table, the function returns
   3045   1.95   thorpej  * true.
   3046    1.7       gwr  *
   3047    1.1       gwr  * It's ugly but will do for now.
   3048    1.1       gwr  */
   3049  1.113   tsutsui bool
   3050   1.88   tsutsui pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
   3051    1.1       gwr {
   3052   1.94   thorpej 	bool empty;
   3053    1.1       gwr 	int idx;
   3054   1.69       chs 	vaddr_t nstart, nend;
   3055    1.1       gwr 	b_tmgr_t *b_tbl;
   3056    1.1       gwr 	mmu_long_dte_t  *a_dte;
   3057    1.1       gwr 	mmu_short_dte_t *b_dte;
   3058   1.91   tsutsui 	uint8_t at_wired, bt_wired;
   3059    1.8       gwr 
   3060    1.7       gwr 	/*
   3061    1.7       gwr 	 * The following code works with what I call a 'granularity
   3062  1.120    andvar 	 * reduction algorithm'.  A range of addresses will always have
   3063    1.7       gwr 	 * the following properties, which are classified according to
   3064    1.7       gwr 	 * how the range relates to the size of the current granularity
   3065    1.7       gwr 	 * - an A table entry:
   3066    1.7       gwr 	 *
   3067    1.7       gwr 	 *            1 2       3 4
   3068    1.7       gwr 	 * -+---+---+---+---+---+---+---+-
   3069    1.7       gwr 	 * -+---+---+---+---+---+---+---+-
   3070    1.7       gwr 	 *
   3071    1.7       gwr 	 * A range will always start on a granularity boundary, illustrated
   3072    1.7       gwr 	 * by '+' signs in the table above, or it will start at some point
   3073  1.120    andvar 	 * in-between a granularity boundary, as illustrated by point 1.
   3074    1.7       gwr 	 * The first step in removing a range of addresses is to remove the
   3075    1.7       gwr 	 * range between 1 and 2, the nearest granularity boundary.  This
   3076    1.7       gwr 	 * job is handled by the section of code governed by the
   3077    1.7       gwr 	 * 'if (start < nstart)' statement.
   3078  1.113   tsutsui 	 *
   3079  1.120    andvar 	 * A range will always encompass zero or more integral granules,
   3080    1.7       gwr 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3081    1.7       gwr 	 * remove.  The removal of these granules is the second step, and
   3082    1.7       gwr 	 * is handled by the code block 'if (nstart < nend)'.
   3083    1.7       gwr 	 *
   3084    1.7       gwr 	 * Lastly, a range will always end on a granularity boundary,
   3085    1.7       gwr 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3086    1.7       gwr 	 * 4.  The last step involves removing this range and is handled by
   3087    1.7       gwr 	 * the code block 'if (nend < end)'.
   3088    1.7       gwr 	 */
   3089   1.88   tsutsui 	nstart = MMU_ROUND_UP_A(sva);
   3090   1.88   tsutsui 	nend = MMU_ROUND_A(eva);
   3091    1.1       gwr 
   3092   1.91   tsutsui 	at_wired = a_tbl->at_wcnt;
   3093   1.91   tsutsui 
   3094   1.88   tsutsui 	if (sva < nstart) {
   3095    1.7       gwr 		/*
   3096    1.7       gwr 		 * This block is executed if the range starts between
   3097    1.7       gwr 		 * a granularity boundary.
   3098    1.7       gwr 		 *
   3099    1.7       gwr 		 * First find the DTE which is responsible for mapping
   3100    1.7       gwr 		 * the start of the range.
   3101    1.7       gwr 		 */
   3102   1.88   tsutsui 		idx = MMU_TIA(sva);
   3103    1.1       gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3104    1.7       gwr 
   3105    1.7       gwr 		/*
   3106    1.7       gwr 		 * If the DTE is valid then delegate the removal of the sub
   3107    1.7       gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3108    1.7       gwr 		 * a finer granularity.
   3109    1.7       gwr 		 */
   3110    1.1       gwr 		if (MMU_VALID_DT(*a_dte)) {
   3111    1.7       gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3112    1.1       gwr 			b_tbl = mmuB2tmgr(b_dte);
   3113   1.91   tsutsui 			bt_wired = b_tbl->bt_wcnt;
   3114    1.7       gwr 
   3115    1.7       gwr 			/*
   3116    1.7       gwr 			 * The sub range to be removed starts at the start
   3117    1.7       gwr 			 * of the full range we were asked to remove, and ends
   3118    1.7       gwr 			 * at the greater of:
   3119    1.7       gwr 			 * 1. The end of the full range, -or-
   3120    1.7       gwr 			 * 2. The end of the full range, rounded down to the
   3121    1.7       gwr 			 *    nearest granularity boundary.
   3122    1.7       gwr 			 */
   3123   1.88   tsutsui 			if (eva < nstart)
   3124   1.88   tsutsui 				empty = pmap_remove_b(b_tbl, sva, eva);
   3125    1.7       gwr 			else
   3126   1.88   tsutsui 				empty = pmap_remove_b(b_tbl, sva, nstart);
   3127    1.7       gwr 
   3128    1.7       gwr 			/*
   3129   1.91   tsutsui 			 * If the child table no longer has wired entries,
   3130   1.91   tsutsui 			 * decrement wired entry count.
   3131   1.91   tsutsui 			 */
   3132   1.91   tsutsui 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3133   1.91   tsutsui 				a_tbl->at_wcnt--;
   3134   1.91   tsutsui 
   3135   1.91   tsutsui 			/*
   3136    1.7       gwr 			 * If the removal resulted in an empty B table,
   3137    1.7       gwr 			 * invalidate the DTE that points to it and decrement
   3138    1.7       gwr 			 * the valid entry count of the A table.
   3139    1.7       gwr 			 */
   3140    1.7       gwr 			if (empty) {
   3141    1.7       gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3142    1.7       gwr 				a_tbl->at_ecnt--;
   3143    1.1       gwr 			}
   3144    1.1       gwr 		}
   3145    1.7       gwr 		/*
   3146    1.7       gwr 		 * If the DTE is invalid, the address range is already non-
   3147   1.68       wiz 		 * existent and can simply be skipped.
   3148    1.7       gwr 		 */
   3149    1.1       gwr 	}
   3150    1.1       gwr 	if (nstart < nend) {
   3151    1.7       gwr 		/*
   3152    1.8       gwr 		 * This block is executed if the range spans a whole number
   3153    1.7       gwr 		 * multiple of granules (A table entries.)
   3154    1.7       gwr 		 *
   3155    1.7       gwr 		 * First find the DTE which is responsible for mapping
   3156    1.7       gwr 		 * the start of the first granule involved.
   3157    1.7       gwr 		 */
   3158    1.1       gwr 		idx = MMU_TIA(nstart);
   3159    1.1       gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3160    1.7       gwr 
   3161    1.7       gwr 		/*
   3162    1.7       gwr 		 * Remove entire sub-granules (B tables) one at a time,
   3163    1.7       gwr 		 * until reaching the end of the range.
   3164    1.7       gwr 		 */
   3165    1.7       gwr 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3166    1.1       gwr 			if (MMU_VALID_DT(*a_dte)) {
   3167    1.7       gwr 				/*
   3168    1.7       gwr 				 * Find the B table manager for the
   3169    1.7       gwr 				 * entry and free it.
   3170    1.7       gwr 				 */
   3171    1.7       gwr 				b_dte = mmu_ptov(a_dte->addr.raw);
   3172    1.1       gwr 				b_tbl = mmuB2tmgr(b_dte);
   3173   1.91   tsutsui 				bt_wired = b_tbl->bt_wcnt;
   3174   1.91   tsutsui 
   3175   1.95   thorpej 				free_b_table(b_tbl, true);
   3176    1.7       gwr 
   3177    1.7       gwr 				/*
   3178   1.91   tsutsui 				 * All child entries has been removed.
   3179   1.91   tsutsui 				 * If there were any wired entries in it,
   3180   1.91   tsutsui 				 * decrement wired entry count.
   3181   1.91   tsutsui 				 */
   3182   1.91   tsutsui 				if (bt_wired)
   3183   1.91   tsutsui 					a_tbl->at_wcnt--;
   3184   1.91   tsutsui 
   3185   1.91   tsutsui 				/*
   3186    1.7       gwr 				 * Invalidate the DTE that points to the
   3187    1.7       gwr 				 * B table and decrement the valid entry
   3188    1.7       gwr 				 * count of the A table.
   3189    1.7       gwr 				 */
   3190    1.1       gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3191    1.1       gwr 				a_tbl->at_ecnt--;
   3192    1.1       gwr 			}
   3193    1.1       gwr 	}
   3194   1.88   tsutsui 	if (nend < eva) {
   3195    1.7       gwr 		/*
   3196    1.7       gwr 		 * This block is executed if the range ends beyond a
   3197    1.7       gwr 		 * granularity boundary.
   3198    1.7       gwr 		 *
   3199    1.7       gwr 		 * First find the DTE which is responsible for mapping
   3200    1.7       gwr 		 * the start of the nearest (rounded down) granularity
   3201    1.7       gwr 		 * boundary.
   3202    1.7       gwr 		 */
   3203    1.1       gwr 		idx = MMU_TIA(nend);
   3204    1.1       gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3205    1.7       gwr 
   3206    1.7       gwr 		/*
   3207    1.7       gwr 		 * If the DTE is valid then delegate the removal of the sub
   3208    1.7       gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3209    1.7       gwr 		 * a finer granularity.
   3210    1.7       gwr 		 */
   3211    1.1       gwr 		if (MMU_VALID_DT(*a_dte)) {
   3212    1.7       gwr 			/*
   3213    1.7       gwr 			 * Find the B table manager for the entry
   3214    1.7       gwr 			 * and hand it to pmap_remove_b() along with
   3215    1.7       gwr 			 * the sub range.
   3216    1.7       gwr 			 */
   3217    1.7       gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3218    1.1       gwr 			b_tbl = mmuB2tmgr(b_dte);
   3219   1.91   tsutsui 			bt_wired = b_tbl->bt_wcnt;
   3220    1.7       gwr 
   3221   1.88   tsutsui 			empty = pmap_remove_b(b_tbl, nend, eva);
   3222    1.7       gwr 
   3223    1.7       gwr 			/*
   3224   1.91   tsutsui 			 * If the child table no longer has wired entries,
   3225   1.91   tsutsui 			 * decrement wired entry count.
   3226   1.91   tsutsui 			 */
   3227   1.91   tsutsui 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3228   1.91   tsutsui 				a_tbl->at_wcnt--;
   3229   1.91   tsutsui 			/*
   3230    1.7       gwr 			 * If the removal resulted in an empty B table,
   3231    1.7       gwr 			 * invalidate the DTE that points to it and decrement
   3232    1.7       gwr 			 * the valid entry count of the A table.
   3233    1.7       gwr 			 */
   3234    1.7       gwr 			if (empty) {
   3235    1.7       gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3236    1.7       gwr 				a_tbl->at_ecnt--;
   3237    1.7       gwr 			}
   3238    1.1       gwr 		}
   3239    1.1       gwr 	}
   3240    1.7       gwr 
   3241    1.7       gwr 	/*
   3242    1.7       gwr 	 * If there are no more entries in the A table, release it
   3243   1.95   thorpej 	 * back to the available pool and return true.
   3244    1.7       gwr 	 */
   3245    1.7       gwr 	if (a_tbl->at_ecnt == 0) {
   3246   1.91   tsutsui 		KASSERT(a_tbl->at_wcnt == 0);
   3247    1.7       gwr 		a_tbl->at_parent = NULL;
   3248   1.91   tsutsui 		if (!at_wired)
   3249   1.91   tsutsui 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3250    1.7       gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3251   1.95   thorpej 		empty = true;
   3252    1.7       gwr 	} else {
   3253   1.91   tsutsui 		/*
   3254   1.91   tsutsui 		 * If the table doesn't have wired entries any longer
   3255   1.91   tsutsui 		 * but still has unwired entries, put it back into
   3256   1.91   tsutsui 		 * the available queue.
   3257   1.91   tsutsui 		 */
   3258   1.91   tsutsui 		if (at_wired && a_tbl->at_wcnt == 0)
   3259   1.91   tsutsui 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   3260   1.95   thorpej 		empty = false;
   3261    1.7       gwr 	}
   3262    1.7       gwr 
   3263    1.7       gwr 	return empty;
   3264    1.1       gwr }
   3265    1.1       gwr 
   3266    1.1       gwr /* pmap_remove_b			INTERNAL
   3267    1.1       gwr  **
   3268    1.1       gwr  * Remove a range of addresses from an address space, trying to remove entire
   3269    1.1       gwr  * C tables if possible.
   3270    1.7       gwr  *
   3271   1.95   thorpej  * If the operation results in an empty B table, the function returns true.
   3272    1.1       gwr  */
   3273  1.113   tsutsui bool
   3274   1.88   tsutsui pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
   3275    1.1       gwr {
   3276   1.94   thorpej 	bool empty;
   3277    1.1       gwr 	int idx;
   3278   1.69       chs 	vaddr_t nstart, nend, rstart;
   3279    1.1       gwr 	c_tmgr_t *c_tbl;
   3280    1.1       gwr 	mmu_short_dte_t  *b_dte;
   3281    1.1       gwr 	mmu_short_pte_t  *c_dte;
   3282   1.91   tsutsui 	uint8_t bt_wired, ct_wired;
   3283  1.113   tsutsui 
   3284   1.88   tsutsui 	nstart = MMU_ROUND_UP_B(sva);
   3285   1.88   tsutsui 	nend = MMU_ROUND_B(eva);
   3286    1.1       gwr 
   3287   1.91   tsutsui 	bt_wired = b_tbl->bt_wcnt;
   3288   1.91   tsutsui 
   3289   1.88   tsutsui 	if (sva < nstart) {
   3290   1.88   tsutsui 		idx = MMU_TIB(sva);
   3291    1.1       gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3292    1.1       gwr 		if (MMU_VALID_DT(*b_dte)) {
   3293    1.7       gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3294    1.1       gwr 			c_tbl = mmuC2tmgr(c_dte);
   3295   1.91   tsutsui 			ct_wired = c_tbl->ct_wcnt;
   3296   1.91   tsutsui 
   3297   1.88   tsutsui 			if (eva < nstart)
   3298   1.88   tsutsui 				empty = pmap_remove_c(c_tbl, sva, eva);
   3299    1.7       gwr 			else
   3300   1.88   tsutsui 				empty = pmap_remove_c(c_tbl, sva, nstart);
   3301   1.91   tsutsui 
   3302   1.91   tsutsui 			/*
   3303   1.91   tsutsui 			 * If the child table no longer has wired entries,
   3304   1.91   tsutsui 			 * decrement wired entry count.
   3305   1.91   tsutsui 			 */
   3306   1.91   tsutsui 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3307   1.91   tsutsui 				b_tbl->bt_wcnt--;
   3308   1.91   tsutsui 
   3309    1.7       gwr 			if (empty) {
   3310    1.7       gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3311    1.7       gwr 				b_tbl->bt_ecnt--;
   3312    1.1       gwr 			}
   3313    1.1       gwr 		}
   3314    1.1       gwr 	}
   3315    1.1       gwr 	if (nstart < nend) {
   3316    1.1       gwr 		idx = MMU_TIB(nstart);
   3317    1.1       gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3318    1.1       gwr 		rstart = nstart;
   3319    1.1       gwr 		while (rstart < nend) {
   3320    1.1       gwr 			if (MMU_VALID_DT(*b_dte)) {
   3321    1.7       gwr 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3322    1.1       gwr 				c_tbl = mmuC2tmgr(c_dte);
   3323   1.91   tsutsui 				ct_wired = c_tbl->ct_wcnt;
   3324   1.91   tsutsui 
   3325   1.95   thorpej 				free_c_table(c_tbl, true);
   3326   1.91   tsutsui 
   3327   1.91   tsutsui 				/*
   3328   1.91   tsutsui 				 * All child entries has been removed.
   3329   1.91   tsutsui 				 * If there were any wired entries in it,
   3330   1.91   tsutsui 				 * decrement wired entry count.
   3331   1.91   tsutsui 				 */
   3332   1.91   tsutsui 				if (ct_wired)
   3333   1.91   tsutsui 					b_tbl->bt_wcnt--;
   3334   1.91   tsutsui 
   3335    1.1       gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3336    1.1       gwr 				b_tbl->bt_ecnt--;
   3337    1.1       gwr 			}
   3338    1.1       gwr 			b_dte++;
   3339    1.1       gwr 			rstart += MMU_TIB_RANGE;
   3340    1.1       gwr 		}
   3341    1.1       gwr 	}
   3342   1.88   tsutsui 	if (nend < eva) {
   3343    1.1       gwr 		idx = MMU_TIB(nend);
   3344    1.1       gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3345    1.1       gwr 		if (MMU_VALID_DT(*b_dte)) {
   3346    1.7       gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3347    1.1       gwr 			c_tbl = mmuC2tmgr(c_dte);
   3348   1.91   tsutsui 			ct_wired = c_tbl->ct_wcnt;
   3349   1.88   tsutsui 			empty = pmap_remove_c(c_tbl, nend, eva);
   3350   1.91   tsutsui 
   3351   1.91   tsutsui 			/*
   3352   1.91   tsutsui 			 * If the child table no longer has wired entries,
   3353   1.91   tsutsui 			 * decrement wired entry count.
   3354   1.91   tsutsui 			 */
   3355   1.91   tsutsui 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3356   1.91   tsutsui 				b_tbl->bt_wcnt--;
   3357   1.91   tsutsui 
   3358    1.7       gwr 			if (empty) {
   3359    1.7       gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3360    1.7       gwr 				b_tbl->bt_ecnt--;
   3361    1.7       gwr 			}
   3362    1.1       gwr 		}
   3363    1.1       gwr 	}
   3364    1.7       gwr 
   3365    1.7       gwr 	if (b_tbl->bt_ecnt == 0) {
   3366   1.91   tsutsui 		KASSERT(b_tbl->bt_wcnt == 0);
   3367    1.7       gwr 		b_tbl->bt_parent = NULL;
   3368   1.91   tsutsui 		if (!bt_wired)
   3369   1.91   tsutsui 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3370    1.7       gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3371   1.95   thorpej 		empty = true;
   3372    1.7       gwr 	} else {
   3373   1.91   tsutsui 		/*
   3374   1.91   tsutsui 		 * If the table doesn't have wired entries any longer
   3375   1.91   tsutsui 		 * but still has unwired entries, put it back into
   3376   1.91   tsutsui 		 * the available queue.
   3377   1.91   tsutsui 		 */
   3378   1.91   tsutsui 		if (bt_wired && b_tbl->bt_wcnt == 0)
   3379   1.91   tsutsui 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   3380   1.91   tsutsui 
   3381   1.95   thorpej 		empty = false;
   3382    1.7       gwr 	}
   3383    1.7       gwr 
   3384    1.7       gwr 	return empty;
   3385    1.1       gwr }
   3386    1.1       gwr 
   3387    1.1       gwr /* pmap_remove_c			INTERNAL
   3388    1.1       gwr  **
   3389    1.1       gwr  * Remove a range of addresses from the given C table.
   3390    1.1       gwr  */
   3391  1.113   tsutsui bool
   3392   1.88   tsutsui pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
   3393    1.1       gwr {
   3394   1.94   thorpej 	bool empty;
   3395    1.1       gwr 	int idx;
   3396    1.1       gwr 	mmu_short_pte_t *c_pte;
   3397   1.91   tsutsui 	uint8_t ct_wired;
   3398  1.113   tsutsui 
   3399   1.91   tsutsui 	ct_wired = c_tbl->ct_wcnt;
   3400   1.91   tsutsui 
   3401   1.88   tsutsui 	idx = MMU_TIC(sva);
   3402    1.1       gwr 	c_pte = &c_tbl->ct_dtbl[idx];
   3403   1.92   tsutsui 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
   3404    1.7       gwr 		if (MMU_VALID_DT(*c_pte)) {
   3405   1.91   tsutsui 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   3406   1.91   tsutsui 				c_tbl->ct_wcnt--;
   3407    1.1       gwr 			pmap_remove_pte(c_pte);
   3408    1.7       gwr 			c_tbl->ct_ecnt--;
   3409    1.7       gwr 		}
   3410    1.1       gwr 	}
   3411    1.7       gwr 
   3412    1.7       gwr 	if (c_tbl->ct_ecnt == 0) {
   3413   1.91   tsutsui 		KASSERT(c_tbl->ct_wcnt == 0);
   3414    1.7       gwr 		c_tbl->ct_parent = NULL;
   3415   1.91   tsutsui 		if (!ct_wired)
   3416   1.91   tsutsui 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3417    1.9       gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3418   1.95   thorpej 		empty = true;
   3419    1.9       gwr 	} else {
   3420   1.91   tsutsui 		/*
   3421   1.91   tsutsui 		 * If the table doesn't have wired entries any longer
   3422   1.91   tsutsui 		 * but still has unwired entries, put it back into
   3423   1.91   tsutsui 		 * the available queue.
   3424   1.91   tsutsui 		 */
   3425   1.91   tsutsui 		if (ct_wired && c_tbl->ct_wcnt == 0)
   3426   1.91   tsutsui 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   3427   1.95   thorpej 		empty = false;
   3428    1.9       gwr 	}
   3429    1.7       gwr 
   3430    1.9       gwr 	return empty;
   3431    1.1       gwr }
   3432    1.1       gwr 
   3433    1.1       gwr /* pmap_bootstrap_alloc			INTERNAL
   3434    1.1       gwr  **
   3435    1.1       gwr  * Used internally for memory allocation at startup when malloc is not
   3436    1.1       gwr  * available.  This code will fail once it crosses the first memory
   3437    1.1       gwr  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3438    1.1       gwr  * will be in charge of allocation.
   3439    1.1       gwr  */
   3440    1.1       gwr void *
   3441   1.86       chs pmap_bootstrap_alloc(int size)
   3442    1.1       gwr {
   3443    1.1       gwr 	void *rtn;
   3444    1.1       gwr 
   3445    1.8       gwr #ifdef	PMAP_DEBUG
   3446   1.95   thorpej 	if (bootstrap_alloc_enabled == false) {
   3447    1.7       gwr 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3448    1.7       gwr 		sunmon_abort();
   3449    1.7       gwr 	}
   3450    1.7       gwr #endif
   3451    1.7       gwr 
   3452    1.1       gwr 	rtn = (void *) virtual_avail;
   3453    1.1       gwr 	virtual_avail += size;
   3454    1.1       gwr 
   3455    1.8       gwr #ifdef	PMAP_DEBUG
   3456    1.7       gwr 	if (virtual_avail > virtual_contig_end) {
   3457    1.7       gwr 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3458    1.7       gwr 		sunmon_abort();
   3459    1.1       gwr 	}
   3460    1.7       gwr #endif
   3461    1.1       gwr 
   3462    1.1       gwr 	return rtn;
   3463    1.1       gwr }
   3464    1.1       gwr 
   3465  1.123    andvar /* pmap_bootstrap_aalign			INTERNAL
   3466    1.1       gwr  **
   3467    1.7       gwr  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3468    1.7       gwr  * return a chunk of memory aligned to the specified size.
   3469    1.8       gwr  *
   3470    1.8       gwr  * Note: This function will only support alignment sizes that are powers
   3471    1.8       gwr  * of two.
   3472    1.1       gwr  */
   3473  1.113   tsutsui void
   3474   1.86       chs pmap_bootstrap_aalign(int size)
   3475    1.1       gwr {
   3476    1.7       gwr 	int off;
   3477    1.7       gwr 
   3478    1.7       gwr 	off = virtual_avail & (size - 1);
   3479    1.7       gwr 	if (off) {
   3480   1.92   tsutsui 		(void)pmap_bootstrap_alloc(size - off);
   3481    1.1       gwr 	}
   3482    1.1       gwr }
   3483    1.7       gwr 
   3484    1.8       gwr /* pmap_pa_exists
   3485    1.8       gwr  **
   3486    1.8       gwr  * Used by the /dev/mem driver to see if a given PA is memory
   3487    1.8       gwr  * that can be mapped.  (The PA is not in a hole.)
   3488    1.8       gwr  */
   3489  1.113   tsutsui int
   3490   1.86       chs pmap_pa_exists(paddr_t pa)
   3491    1.8       gwr {
   3492   1.69       chs 	int i;
   3493   1.21       gwr 
   3494   1.21       gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3495   1.21       gwr 		if ((pa >= avail_mem[i].pmem_start) &&
   3496   1.21       gwr 			(pa <  avail_mem[i].pmem_end))
   3497   1.92   tsutsui 			return 1;
   3498   1.21       gwr 		if (avail_mem[i].pmem_next == NULL)
   3499   1.21       gwr 			break;
   3500   1.21       gwr 	}
   3501   1.92   tsutsui 	return 0;
   3502    1.8       gwr }
   3503    1.8       gwr 
   3504   1.31       gwr /* Called only from locore.s and pmap.c */
   3505   1.86       chs void	_pmap_switch(pmap_t pmap);
   3506   1.31       gwr 
   3507   1.31       gwr /*
   3508   1.31       gwr  * _pmap_switch			INTERNAL
   3509   1.31       gwr  *
   3510   1.31       gwr  * This is called by locore.s:cpu_switch() when it is
   3511   1.31       gwr  * switching to a new process.  Load new translations.
   3512   1.31       gwr  * Note: done in-line by locore.s unless PMAP_DEBUG
   3513   1.24    jeremy  *
   3514   1.31       gwr  * Note that we do NOT allocate a context here, but
   3515   1.31       gwr  * share the "kernel only" context until we really
   3516   1.31       gwr  * need our own context for user-space mappings in
   3517   1.31       gwr  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3518    1.1       gwr  */
   3519  1.113   tsutsui void
   3520   1.86       chs _pmap_switch(pmap_t pmap)
   3521    1.1       gwr {
   3522    1.7       gwr 	u_long rootpa;
   3523    1.7       gwr 
   3524   1.31       gwr 	/*
   3525   1.31       gwr 	 * Only do reload/flush if we have to.
   3526   1.31       gwr 	 * Note that if the old and new process
   3527   1.31       gwr 	 * were BOTH using the "null" context,
   3528   1.31       gwr 	 * then this will NOT flush the TLB.
   3529   1.31       gwr 	 */
   3530    1.7       gwr 	rootpa = pmap->pm_a_phys;
   3531   1.31       gwr 	if (kernel_crp.rp_addr != rootpa) {
   3532   1.31       gwr 		DPRINT(("pmap_activate(%p)\n", pmap));
   3533    1.7       gwr 		kernel_crp.rp_addr = rootpa;
   3534    1.7       gwr 		loadcrp(&kernel_crp);
   3535    1.8       gwr 		TBIAU();
   3536   1.31       gwr 	}
   3537   1.31       gwr }
   3538   1.31       gwr 
   3539   1.31       gwr /*
   3540   1.31       gwr  * Exported version of pmap_activate().  This is called from the
   3541   1.31       gwr  * machine-independent VM code when a process is given a new pmap.
   3542   1.76   thorpej  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3543   1.31       gwr  * take this as notification that the process has a new pmap.
   3544   1.31       gwr  */
   3545  1.113   tsutsui void
   3546   1.86       chs pmap_activate(struct lwp *l)
   3547   1.31       gwr {
   3548   1.92   tsutsui 
   3549   1.76   thorpej 	if (l->l_proc == curproc) {
   3550   1.76   thorpej 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3551    1.7       gwr 	}
   3552    1.1       gwr }
   3553    1.1       gwr 
   3554   1.30   thorpej /*
   3555   1.30   thorpej  * pmap_deactivate			INTERFACE
   3556   1.30   thorpej  **
   3557   1.30   thorpej  * This is called to deactivate the specified process's address space.
   3558   1.30   thorpej  */
   3559  1.113   tsutsui void
   3560   1.86       chs pmap_deactivate(struct lwp *l)
   3561    1.1       gwr {
   3562   1.92   tsutsui 
   3563   1.69       chs 	/* Nothing to do. */
   3564    1.1       gwr }
   3565    1.1       gwr 
   3566   1.17       gwr /*
   3567   1.28       gwr  * Fill in the sun3x-specific part of the kernel core header
   3568   1.28       gwr  * for dumpsys().  (See machdep.c for the rest.)
   3569   1.17       gwr  */
   3570  1.113   tsutsui void
   3571   1.86       chs pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
   3572   1.17       gwr {
   3573   1.17       gwr 	u_long spa, len;
   3574   1.17       gwr 	int i;
   3575   1.20   thorpej 
   3576   1.28       gwr 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3577   1.28       gwr 	sh->pg_valid = MMU_DT_PAGE;
   3578   1.20   thorpej 	sh->contig_end = virtual_contig_end;
   3579   1.69       chs 	sh->kernCbase = (u_long)kernCbase;
   3580   1.20   thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3581   1.17       gwr 		spa = avail_mem[i].pmem_start;
   3582   1.25     veego 		spa = m68k_trunc_page(spa);
   3583   1.17       gwr 		len = avail_mem[i].pmem_end - spa;
   3584   1.25     veego 		len = m68k_round_page(len);
   3585   1.20   thorpej 		sh->ram_segs[i].start = spa;
   3586   1.20   thorpej 		sh->ram_segs[i].size  = len;
   3587   1.17       gwr 	}
   3588   1.17       gwr }
   3589   1.17       gwr 
   3590   1.81   thorpej 
   3591   1.81   thorpej /* pmap_virtual_space			INTERFACE
   3592   1.81   thorpej  **
   3593   1.81   thorpej  * Return the current available range of virtual addresses in the
   3594  1.120    andvar  * arguments provided.  Only really called once.
   3595   1.81   thorpej  */
   3596  1.113   tsutsui void
   3597   1.86       chs pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
   3598   1.81   thorpej {
   3599   1.92   tsutsui 
   3600   1.81   thorpej 	*vstart = virtual_avail;
   3601   1.81   thorpej 	*vend = virtual_end;
   3602   1.81   thorpej }
   3603    1.1       gwr 
   3604   1.37       gwr /*
   3605   1.37       gwr  * Provide memory to the VM system.
   3606   1.37       gwr  *
   3607   1.37       gwr  * Assume avail_start is always in the
   3608   1.37       gwr  * first segment as pmap_bootstrap does.
   3609   1.37       gwr  */
   3610  1.113   tsutsui static void
   3611   1.86       chs pmap_page_upload(void)
   3612   1.37       gwr {
   3613   1.69       chs 	paddr_t	a, b;	/* memory range */
   3614   1.37       gwr 	int i;
   3615   1.37       gwr 
   3616   1.37       gwr 	/* Supply the memory in segments. */
   3617   1.37       gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3618   1.37       gwr 		a = atop(avail_mem[i].pmem_start);
   3619   1.37       gwr 		b = atop(avail_mem[i].pmem_end);
   3620   1.37       gwr 		if (i == 0)
   3621   1.37       gwr 			a = atop(avail_start);
   3622   1.60   tsutsui 		if (avail_mem[i].pmem_end > avail_end)
   3623   1.60   tsutsui 			b = atop(avail_end);
   3624   1.37       gwr 
   3625   1.39   thorpej 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3626   1.37       gwr 
   3627   1.37       gwr 		if (avail_mem[i].pmem_next == NULL)
   3628   1.37       gwr 			break;
   3629   1.37       gwr 	}
   3630    1.1       gwr }
   3631    1.8       gwr 
   3632    1.8       gwr /* pmap_count			INTERFACE
   3633    1.8       gwr  **
   3634    1.8       gwr  * Return the number of resident (valid) pages in the given pmap.
   3635    1.8       gwr  *
   3636    1.8       gwr  * Note:  If this function is handed the kernel map, it will report
   3637    1.8       gwr  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3638    1.8       gwr  * map statistics.
   3639    1.8       gwr  */
   3640  1.113   tsutsui segsz_t
   3641   1.86       chs pmap_count(pmap_t pmap, int type)
   3642    1.8       gwr {
   3643    1.8       gwr 	u_int     count;
   3644    1.8       gwr 	int       a_idx, b_idx;
   3645    1.8       gwr 	a_tmgr_t *a_tbl;
   3646    1.8       gwr 	b_tmgr_t *b_tbl;
   3647    1.8       gwr 	c_tmgr_t *c_tbl;
   3648    1.8       gwr 
   3649    1.8       gwr 	/*
   3650    1.8       gwr 	 * If the pmap does not have its own A table manager, it has no
   3651  1.120    andvar 	 * valid entries.
   3652    1.8       gwr 	 */
   3653    1.8       gwr 	if (pmap->pm_a_tmgr == NULL)
   3654    1.8       gwr 		return 0;
   3655    1.8       gwr 
   3656    1.8       gwr 	a_tbl = pmap->pm_a_tmgr;
   3657    1.8       gwr 
   3658    1.8       gwr 	count = 0;
   3659  1.111   tsutsui 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE3X); a_idx++) {
   3660    1.8       gwr 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3661    1.8       gwr 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3662    1.8       gwr 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3663    1.8       gwr 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3664    1.8       gwr 	                c_tbl = mmuC2tmgr(
   3665    1.8       gwr 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3666    1.8       gwr 	                if (type == 0)
   3667    1.8       gwr 	                    /*
   3668    1.8       gwr 	                     * A resident entry count has been requested.
   3669    1.8       gwr 	                     */
   3670    1.8       gwr 	                    count += c_tbl->ct_ecnt;
   3671    1.8       gwr 	                else
   3672    1.8       gwr 	                    /*
   3673    1.8       gwr 	                     * A wired entry count has been requested.
   3674    1.8       gwr 	                     */
   3675    1.8       gwr 	                    count += c_tbl->ct_wcnt;
   3676    1.8       gwr 	            }
   3677    1.8       gwr 	        }
   3678    1.8       gwr 	    }
   3679    1.8       gwr 	}
   3680    1.8       gwr 
   3681    1.8       gwr 	return count;
   3682    1.8       gwr }
   3683    1.8       gwr 
   3684    1.1       gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3685    1.1       gwr  * The following routines are only used by DDB for tricky kernel text    *
   3686    1.1       gwr  * text operations in db_memrw.c.  They are provided for sun3            *
   3687    1.1       gwr  * compatibility.                                                        *
   3688    1.1       gwr  *************************************************************************/
   3689    1.1       gwr /* get_pte			INTERNAL
   3690    1.1       gwr  **
   3691    1.1       gwr  * Return the page descriptor the describes the kernel mapping
   3692    1.1       gwr  * of the given virtual address.
   3693    1.1       gwr  */
   3694   1.86       chs extern u_long ptest_addr(u_long);	/* XXX: locore.s */
   3695  1.113   tsutsui u_int
   3696   1.86       chs get_pte(vaddr_t va)
   3697   1.13       gwr {
   3698   1.13       gwr 	u_long pte_pa;
   3699   1.13       gwr 	mmu_short_pte_t *pte;
   3700   1.13       gwr 
   3701   1.13       gwr 	/* Get the physical address of the PTE */
   3702   1.13       gwr 	pte_pa = ptest_addr(va & ~PGOFSET);
   3703   1.13       gwr 
   3704   1.13       gwr 	/* Convert to a virtual address... */
   3705  1.111   tsutsui 	pte = (mmu_short_pte_t *) (KERNBASE3X + pte_pa);
   3706   1.13       gwr 
   3707   1.13       gwr 	/* Make sure it is in our level-C tables... */
   3708   1.13       gwr 	if ((pte < kernCbase) ||
   3709   1.13       gwr 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3710   1.13       gwr 		return 0;
   3711   1.13       gwr 
   3712   1.13       gwr 	/* ... and just return its contents. */
   3713   1.13       gwr 	return (pte->attr.raw);
   3714   1.13       gwr }
   3715   1.13       gwr 
   3716    1.1       gwr 
   3717    1.1       gwr /* set_pte			INTERNAL
   3718    1.1       gwr  **
   3719    1.1       gwr  * Set the page descriptor that describes the kernel mapping
   3720    1.1       gwr  * of the given virtual address.
   3721    1.1       gwr  */
   3722  1.113   tsutsui void
   3723   1.86       chs set_pte(vaddr_t va, u_int pte)
   3724    1.1       gwr {
   3725    1.1       gwr 	u_long idx;
   3726    1.1       gwr 
   3727  1.111   tsutsui 	if (va < KERNBASE3X)
   3728    1.7       gwr 		return;
   3729    1.7       gwr 
   3730  1.111   tsutsui 	idx = (unsigned long) m68k_btop(va - KERNBASE3X);
   3731    1.1       gwr 	kernCbase[idx].attr.raw = pte;
   3732   1.33       gwr 	TBIS(va);
   3733    1.1       gwr }
   3734   1.42        is 
   3735   1.42        is /*
   3736   1.42        is  *	Routine:        pmap_procwr
   3737  1.113   tsutsui  *
   3738   1.42        is  *	Function:
   3739   1.42        is  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3740  1.113   tsutsui  */
   3741  1.113   tsutsui void
   3742   1.86       chs pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   3743   1.42        is {
   3744   1.92   tsutsui 
   3745   1.42        is 	(void)cachectl1(0x80000004, va, len, p);
   3746   1.42        is }
   3747   1.42        is 
   3748    1.7       gwr 
   3749    1.8       gwr #ifdef	PMAP_DEBUG
   3750    1.7       gwr /************************** DEBUGGING ROUTINES **************************
   3751    1.7       gwr  * The following routines are meant to be an aid to debugging the pmap  *
   3752    1.7       gwr  * system.  They are callable from the DDB command line and should be   *
   3753    1.7       gwr  * prepared to be handed unstable or incomplete states of the system.   *
   3754    1.7       gwr  ************************************************************************/
   3755    1.7       gwr 
   3756    1.7       gwr /* pv_list
   3757    1.7       gwr  **
   3758    1.7       gwr  * List all pages found on the pv list for the given physical page.
   3759    1.8       gwr  * To avoid endless loops, the listing will stop at the end of the list
   3760    1.7       gwr  * or after 'n' entries - whichever comes first.
   3761    1.7       gwr  */
   3762  1.113   tsutsui void
   3763   1.86       chs pv_list(paddr_t pa, int n)
   3764    1.7       gwr {
   3765    1.7       gwr 	int  idx;
   3766   1.69       chs 	vaddr_t va;
   3767    1.7       gwr 	pv_t *pv;
   3768    1.7       gwr 	c_tmgr_t *c_tbl;
   3769    1.7       gwr 	pmap_t pmap;
   3770  1.113   tsutsui 
   3771    1.7       gwr 	pv = pa2pv(pa);
   3772    1.7       gwr 	idx = pv->pv_idx;
   3773   1.69       chs 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3774    1.8       gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3775    1.7       gwr 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3776    1.7       gwr 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3777    1.7       gwr 	}
   3778    1.7       gwr }
   3779    1.8       gwr #endif	/* PMAP_DEBUG */
   3780    1.1       gwr 
   3781    1.1       gwr #ifdef NOT_YET
   3782    1.1       gwr /* and maybe not ever */
   3783    1.1       gwr /************************** LOW-LEVEL ROUTINES **************************
   3784   1.78       wiz  * These routines will eventually be re-written into assembly and placed*
   3785    1.1       gwr  * in locore.s.  They are here now as stubs so that the pmap module can *
   3786    1.1       gwr  * be linked as a standalone user program for testing.                  *
   3787    1.1       gwr  ************************************************************************/
   3788    1.1       gwr /* flush_atc_crp			INTERNAL
   3789    1.1       gwr  **
   3790    1.1       gwr  * Flush all page descriptors derived from the given CPU Root Pointer
   3791    1.1       gwr  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3792    1.1       gwr  * cache.
   3793    1.1       gwr  */
   3794  1.113   tsutsui void
   3795   1.86       chs flush_atc_crp(int a_tbl)
   3796    1.1       gwr {
   3797    1.1       gwr 	mmu_long_rp_t rp;
   3798    1.1       gwr 
   3799    1.1       gwr 	/* Create a temporary root table pointer that points to the
   3800    1.1       gwr 	 * given A table.
   3801    1.1       gwr 	 */
   3802    1.1       gwr 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3803    1.1       gwr 	rp.addr.raw = (unsigned int) a_tbl;
   3804    1.1       gwr 
   3805    1.1       gwr 	mmu_pflushr(&rp);
   3806    1.1       gwr 	/* mmu_pflushr:
   3807    1.1       gwr 	 * 	movel   sp(4)@,a0
   3808    1.1       gwr 	 * 	pflushr a0@
   3809    1.1       gwr 	 *	rts
   3810    1.1       gwr 	 */
   3811    1.1       gwr }
   3812    1.1       gwr #endif /* NOT_YET */
   3813