Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.100
      1  1.100     pooka /*	$NetBSD: pmap.c,v 1.100 2008/12/09 20:45:46 pooka Exp $	*/
      2    1.1       gwr 
      3    1.1       gwr /*-
      4   1.10    jeremy  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5    1.1       gwr  * All rights reserved.
      6    1.1       gwr  *
      7    1.1       gwr  * This code is derived from software contributed to The NetBSD Foundation
      8    1.1       gwr  * by Jeremy Cooper.
      9    1.1       gwr  *
     10    1.1       gwr  * Redistribution and use in source and binary forms, with or without
     11    1.1       gwr  * modification, are permitted provided that the following conditions
     12    1.1       gwr  * are met:
     13    1.1       gwr  * 1. Redistributions of source code must retain the above copyright
     14    1.1       gwr  *    notice, this list of conditions and the following disclaimer.
     15    1.1       gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1       gwr  *    notice, this list of conditions and the following disclaimer in the
     17    1.1       gwr  *    documentation and/or other materials provided with the distribution.
     18    1.1       gwr  *
     19    1.1       gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.1       gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.1       gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.1       gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.1       gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.1       gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.1       gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.1       gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.1       gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.1       gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.1       gwr  * POSSIBILITY OF SUCH DAMAGE.
     30    1.1       gwr  */
     31    1.1       gwr 
     32    1.1       gwr /*
     33    1.1       gwr  * XXX These comments aren't quite accurate.  Need to change.
     34    1.1       gwr  * The sun3x uses the MC68851 Memory Management Unit, which is built
     35    1.1       gwr  * into the CPU.  The 68851 maps virtual to physical addresses using
     36    1.1       gwr  * a multi-level table lookup, which is stored in the very memory that
     37    1.1       gwr  * it maps.  The number of levels of lookup is configurable from one
     38    1.1       gwr  * to four.  In this implementation, we use three, named 'A' through 'C'.
     39    1.1       gwr  *
     40    1.1       gwr  * The MMU translates virtual addresses into physical addresses by
     41   1.84       wiz  * traversing these tables in a process called a 'table walk'.  The most
     42    1.1       gwr  * significant 7 bits of the Virtual Address ('VA') being translated are
     43    1.1       gwr  * used as an index into the level A table, whose base in physical memory
     44    1.1       gwr  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     45    1.1       gwr  * address found at that index in the A table is used as the base
     46    1.1       gwr  * address for the next table, the B table.  The next six bits of the VA are
     47    1.1       gwr  * used as an index into the B table, which in turn gives the base address
     48    1.1       gwr  * of the third and final C table.
     49    1.1       gwr  *
     50    1.1       gwr  * The next six bits of the VA are used as an index into the C table to
     51    1.1       gwr  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     52    1.1       gwr  * to which the remaining 13 bits of the VA are added, producing the
     53    1.1       gwr  * mapped physical address.
     54    1.1       gwr  *
     55    1.1       gwr  * To map the entire memory space in this manner would require 2114296 bytes
     56    1.1       gwr  * of page tables per process - quite expensive.  Instead we will
     57    1.1       gwr  * allocate a fixed but considerably smaller space for the page tables at
     58    1.1       gwr  * the time the VM system is initialized.  When the pmap code is asked by
     59    1.1       gwr  * the kernel to map a VA to a PA, it allocates tables as needed from this
     60    1.1       gwr  * pool.  When there are no more tables in the pool, tables are stolen
     61    1.1       gwr  * from the oldest mapped entries in the tree.  This is only possible
     62    1.1       gwr  * because all memory mappings are stored in the kernel memory map
     63    1.1       gwr  * structures, independent of the pmap structures.  A VA which references
     64    1.1       gwr  * one of these invalidated maps will cause a page fault.  The kernel
     65    1.1       gwr  * will determine that the page fault was caused by a task using a valid
     66    1.1       gwr  * VA, but for some reason (which does not concern it), that address was
     67    1.1       gwr  * not mapped.  It will ask the pmap code to re-map the entry and then
     68    1.1       gwr  * it will resume executing the faulting task.
     69    1.1       gwr  *
     70    1.1       gwr  * In this manner the most efficient use of the page table space is
     71    1.1       gwr  * achieved.  Tasks which do not execute often will have their tables
     72    1.1       gwr  * stolen and reused by tasks which execute more frequently.  The best
     73    1.1       gwr  * size for the page table pool will probably be determined by
     74    1.1       gwr  * experimentation.
     75    1.1       gwr  *
     76    1.1       gwr  * You read all of the comments so far.  Good for you.
     77    1.1       gwr  * Now go play!
     78    1.1       gwr  */
     79    1.1       gwr 
     80    1.1       gwr /*** A Note About the 68851 Address Translation Cache
     81    1.1       gwr  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     82    1.1       gwr  * or 'ATC'.  This cache stores the most recently used page descriptors
     83    1.1       gwr  * accessed by the MMU when it does translations.  Using a marker called a
     84    1.1       gwr  * 'task alias' the MMU can store the descriptors from 8 different table
     85    1.1       gwr  * spaces concurrently.  The task alias is associated with the base
     86    1.1       gwr  * address of the level A table of that address space.  When an address
     87    1.1       gwr  * space is currently active (the CRP currently points to its A table)
     88    1.1       gwr  * the only cached descriptors that will be obeyed are ones which have a
     89    1.1       gwr  * matching task alias of the current space associated with them.
     90    1.1       gwr  *
     91    1.1       gwr  * Since the cache is always consulted before any table lookups are done,
     92    1.1       gwr  * it is important that it accurately reflect the state of the MMU tables.
     93    1.1       gwr  * Whenever a change has been made to a table that has been loaded into
     94    1.1       gwr  * the MMU, the code must be sure to flush any cached entries that are
     95    1.1       gwr  * affected by the change.  These instances are documented in the code at
     96    1.1       gwr  * various points.
     97    1.1       gwr  */
     98    1.1       gwr /*** A Note About the Note About the 68851 Address Translation Cache
     99    1.1       gwr  * 4 months into this code I discovered that the sun3x does not have
    100    1.1       gwr  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    101    1.1       gwr  * the 68030 CPU.
    102    1.1       gwr  * All though it behaves very similarly to the 68851, it only has 1 task
    103    1.8       gwr  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    104    1.8       gwr  * of the previous note does not apply to the sun3x pmap.
    105    1.1       gwr  */
    106   1.83     lukem 
    107   1.83     lukem #include <sys/cdefs.h>
    108  1.100     pooka __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.100 2008/12/09 20:45:46 pooka Exp $");
    109   1.45       gwr 
    110   1.45       gwr #include "opt_ddb.h"
    111   1.82    martin #include "opt_pmap_debug.h"
    112    1.1       gwr 
    113    1.1       gwr #include <sys/param.h>
    114    1.1       gwr #include <sys/systm.h>
    115    1.1       gwr #include <sys/proc.h>
    116    1.1       gwr #include <sys/malloc.h>
    117   1.56   tsutsui #include <sys/pool.h>
    118    1.1       gwr #include <sys/user.h>
    119    1.1       gwr #include <sys/queue.h>
    120   1.20   thorpej #include <sys/kcore.h>
    121   1.38       gwr 
    122   1.38       gwr #include <uvm/uvm.h>
    123   1.43       mrg 
    124    1.1       gwr #include <machine/cpu.h>
    125   1.17       gwr #include <machine/kcore.h>
    126   1.33       gwr #include <machine/mon.h>
    127    1.1       gwr #include <machine/pmap.h>
    128    1.1       gwr #include <machine/pte.h>
    129   1.37       gwr #include <machine/vmparam.h>
    130   1.75       chs #include <m68k/cacheops.h>
    131   1.33       gwr 
    132   1.33       gwr #include <sun3/sun3/cache.h>
    133   1.33       gwr #include <sun3/sun3/machdep.h>
    134    1.1       gwr 
    135    1.1       gwr #include "pmap_pvt.h"
    136    1.1       gwr 
    137    1.1       gwr /* XXX - What headers declare these? */
    138    1.1       gwr extern struct pcb *curpcb;
    139    1.1       gwr extern int physmem;
    140    1.7       gwr 
    141    1.1       gwr /* Defined in locore.s */
    142    1.1       gwr extern char kernel_text[];
    143    1.1       gwr 
    144    1.1       gwr /* Defined by the linker */
    145    1.1       gwr extern char etext[], edata[], end[];
    146    1.1       gwr extern char *esym;	/* DDB */
    147    1.1       gwr 
    148    1.7       gwr /*************************** DEBUGGING DEFINITIONS ***********************
    149    1.7       gwr  * Macros, preprocessor defines and variables used in debugging can make *
    150    1.7       gwr  * code hard to read.  Anything used exclusively for debugging purposes  *
    151    1.7       gwr  * is defined here to avoid having such mess scattered around the file.  *
    152    1.7       gwr  *************************************************************************/
    153    1.8       gwr #ifdef	PMAP_DEBUG
    154    1.7       gwr /*
    155    1.7       gwr  * To aid the debugging process, macros should be expanded into smaller steps
    156    1.7       gwr  * that accomplish the same goal, yet provide convenient places for placing
    157    1.8       gwr  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    158    1.7       gwr  * 'INLINE' keyword is defined to an empty string.  This way, any function
    159    1.7       gwr  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    160    1.7       gwr  * a separate function, which is much easier to debug.
    161    1.7       gwr  */
    162    1.7       gwr #define	INLINE	/* nothing */
    163    1.7       gwr 
    164    1.1       gwr /*
    165    1.7       gwr  * It is sometimes convenient to watch the activity of a particular table
    166    1.7       gwr  * in the system.  The following variables are used for that purpose.
    167    1.1       gwr  */
    168    1.7       gwr a_tmgr_t *pmap_watch_atbl = 0;
    169    1.7       gwr b_tmgr_t *pmap_watch_btbl = 0;
    170    1.7       gwr c_tmgr_t *pmap_watch_ctbl = 0;
    171    1.1       gwr 
    172    1.7       gwr int pmap_debug = 0;
    173    1.7       gwr #define DPRINT(args) if (pmap_debug) printf args
    174    1.7       gwr 
    175    1.7       gwr #else	/********** Stuff below is defined if NOT debugging **************/
    176    1.7       gwr 
    177    1.7       gwr #define	INLINE	inline
    178   1.10    jeremy #define DPRINT(args)  /* nada */
    179    1.7       gwr 
    180   1.10    jeremy #endif	/* PMAP_DEBUG */
    181    1.7       gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/
    182    1.1       gwr 
    183    1.1       gwr /*** Management Structure - Memory Layout
    184    1.1       gwr  * For every MMU table in the sun3x pmap system there must be a way to
    185    1.1       gwr  * manage it; we must know which process is using it, what other tables
    186    1.1       gwr  * depend on it, and whether or not it contains any locked pages.  This
    187    1.1       gwr  * is solved by the creation of 'table management'  or 'tmgr'
    188    1.1       gwr  * structures.  One for each MMU table in the system.
    189    1.1       gwr  *
    190    1.1       gwr  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    191    1.1       gwr  *
    192    1.1       gwr  *      towards lower memory
    193    1.1       gwr  * kernAbase -> +-------------------------------------------------------+
    194    1.1       gwr  *              | Kernel     MMU A level table                          |
    195    1.1       gwr  * kernBbase -> +-------------------------------------------------------+
    196    1.1       gwr  *              | Kernel     MMU B level tables                         |
    197    1.1       gwr  * kernCbase -> +-------------------------------------------------------+
    198    1.1       gwr  *              |                                                       |
    199    1.1       gwr  *              | Kernel     MMU C level tables                         |
    200    1.1       gwr  *              |                                                       |
    201    1.7       gwr  * mmuCbase  -> +-------------------------------------------------------+
    202    1.7       gwr  *              | User       MMU C level tables                         |
    203    1.1       gwr  * mmuAbase  -> +-------------------------------------------------------+
    204    1.1       gwr  *              |                                                       |
    205    1.1       gwr  *              | User       MMU A level tables                         |
    206    1.1       gwr  *              |                                                       |
    207    1.1       gwr  * mmuBbase  -> +-------------------------------------------------------+
    208    1.1       gwr  *              | User       MMU B level tables                         |
    209    1.1       gwr  * tmgrAbase -> +-------------------------------------------------------+
    210    1.1       gwr  *              |  TMGR A level table structures                        |
    211    1.1       gwr  * tmgrBbase -> +-------------------------------------------------------+
    212    1.1       gwr  *              |  TMGR B level table structures                        |
    213    1.1       gwr  * tmgrCbase -> +-------------------------------------------------------+
    214    1.1       gwr  *              |  TMGR C level table structures                        |
    215    1.1       gwr  * pvbase    -> +-------------------------------------------------------+
    216    1.1       gwr  *              |  Physical to Virtual mapping table (list heads)       |
    217    1.1       gwr  * pvebase   -> +-------------------------------------------------------+
    218    1.1       gwr  *              |  Physical to Virtual mapping table (list elements)    |
    219    1.1       gwr  *              |                                                       |
    220    1.1       gwr  *              +-------------------------------------------------------+
    221    1.1       gwr  *      towards higher memory
    222    1.1       gwr  *
    223    1.1       gwr  * For every A table in the MMU A area, there will be a corresponding
    224    1.1       gwr  * a_tmgr structure in the TMGR A area.  The same will be true for
    225    1.1       gwr  * the B and C tables.  This arrangement will make it easy to find the
    226    1.1       gwr  * controling tmgr structure for any table in the system by use of
    227    1.1       gwr  * (relatively) simple macros.
    228    1.1       gwr  */
    229    1.7       gwr 
    230    1.7       gwr /*
    231    1.8       gwr  * Global variables for storing the base addresses for the areas
    232    1.1       gwr  * labeled above.
    233    1.1       gwr  */
    234   1.69       chs static vaddr_t  	kernAphys;
    235    1.1       gwr static mmu_long_dte_t	*kernAbase;
    236    1.1       gwr static mmu_short_dte_t	*kernBbase;
    237    1.1       gwr static mmu_short_pte_t	*kernCbase;
    238   1.15       gwr static mmu_short_pte_t	*mmuCbase;
    239   1.15       gwr static mmu_short_dte_t	*mmuBbase;
    240    1.1       gwr static mmu_long_dte_t	*mmuAbase;
    241    1.1       gwr static a_tmgr_t		*Atmgrbase;
    242    1.1       gwr static b_tmgr_t		*Btmgrbase;
    243    1.1       gwr static c_tmgr_t		*Ctmgrbase;
    244   1.15       gwr static pv_t 		*pvbase;
    245    1.1       gwr static pv_elem_t	*pvebase;
    246  1.100     pooka static struct pmap	kernel_pmap;
    247  1.100     pooka struct pmap		*kernel_pmap_ptr = &kernel_pmap;
    248    1.1       gwr 
    249    1.8       gwr /*
    250    1.8       gwr  * This holds the CRP currently loaded into the MMU.
    251    1.8       gwr  */
    252    1.8       gwr struct mmu_rootptr kernel_crp;
    253    1.8       gwr 
    254    1.8       gwr /*
    255    1.8       gwr  * Just all around global variables.
    256    1.1       gwr  */
    257    1.1       gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    258    1.1       gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    259    1.1       gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    260    1.7       gwr 
    261    1.7       gwr 
    262    1.7       gwr /*
    263    1.7       gwr  * Flags used to mark the safety/availability of certain operations or
    264    1.7       gwr  * resources.
    265    1.7       gwr  */
    266   1.92   tsutsui /* Safe to use pmap_bootstrap_alloc(). */
    267   1.95   thorpej static bool bootstrap_alloc_enabled = false;
    268   1.92   tsutsui /* Temporary virtual pages are in use */
    269   1.92   tsutsui int tmp_vpages_inuse;
    270    1.1       gwr 
    271    1.1       gwr /*
    272    1.1       gwr  * XXX:  For now, retain the traditional variables that were
    273    1.1       gwr  * used in the old pmap/vm interface (without NONCONTIG).
    274    1.1       gwr  */
    275   1.81   thorpej /* Kernel virtual address space available: */
    276   1.81   thorpej vaddr_t	virtual_avail, virtual_end;
    277    1.1       gwr /* Physical address space available: */
    278   1.69       chs paddr_t	avail_start, avail_end;
    279    1.1       gwr 
    280    1.7       gwr /* This keep track of the end of the contiguously mapped range. */
    281   1.69       chs vaddr_t virtual_contig_end;
    282    1.7       gwr 
    283    1.7       gwr /* Physical address used by pmap_next_page() */
    284   1.69       chs paddr_t avail_next;
    285    1.7       gwr 
    286    1.7       gwr /* These are used by pmap_copy_page(), etc. */
    287   1.69       chs vaddr_t tmp_vpages[2];
    288    1.1       gwr 
    289   1.56   tsutsui /* memory pool for pmap structures */
    290   1.56   tsutsui struct pool	pmap_pmap_pool;
    291   1.56   tsutsui 
    292    1.7       gwr /*
    293    1.7       gwr  * The 3/80 is the only member of the sun3x family that has non-contiguous
    294    1.1       gwr  * physical memory.  Memory is divided into 4 banks which are physically
    295    1.1       gwr  * locatable on the system board.  Although the size of these banks varies
    296    1.1       gwr  * with the size of memory they contain, their base addresses are
    297    1.1       gwr  * permenently fixed.  The following structure, which describes these
    298    1.1       gwr  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    299    1.1       gwr  * structure provided by the ROM Monitor.
    300    1.1       gwr  *
    301    1.1       gwr  * For the other machines in the sun3x architecture which do have contiguous
    302    1.1       gwr  * RAM, this list will have only one entry, which will describe the entire
    303    1.1       gwr  * range of available memory.
    304    1.1       gwr  */
    305   1.20   thorpej struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    306    1.1       gwr u_int total_phys_mem;
    307    1.1       gwr 
    308    1.7       gwr /*************************************************************************/
    309    1.7       gwr 
    310    1.7       gwr /*
    311    1.7       gwr  * XXX - Should "tune" these based on statistics.
    312    1.7       gwr  *
    313    1.7       gwr  * My first guess about the relative numbers of these needed is
    314    1.7       gwr  * based on the fact that a "typical" process will have several
    315    1.7       gwr  * pages mapped at low virtual addresses (text, data, bss), then
    316    1.7       gwr  * some mapped shared libraries, and then some stack pages mapped
    317    1.7       gwr  * near the high end of the VA space.  Each process can use only
    318    1.7       gwr  * one A table, and most will use only two B tables (maybe three)
    319    1.7       gwr  * and probably about four C tables.  Therefore, the first guess
    320    1.7       gwr  * at the relative numbers of these needed is 1:2:4 -gwr
    321    1.7       gwr  *
    322    1.7       gwr  * The number of C tables needed is closely related to the amount
    323    1.7       gwr  * of physical memory available plus a certain amount attributable
    324    1.7       gwr  * to the use of double mappings.  With a few simulation statistics
    325    1.7       gwr  * we can find a reasonably good estimation of this unknown value.
    326    1.7       gwr  * Armed with that and the above ratios, we have a good idea of what
    327    1.7       gwr  * is needed at each level. -j
    328    1.7       gwr  *
    329    1.7       gwr  * Note: It is not physical memory memory size, but the total mapped
    330    1.7       gwr  * virtual space required by the combined working sets of all the
    331    1.7       gwr  * currently _runnable_ processes.  (Sleeping ones don't count.)
    332    1.7       gwr  * The amount of physical memory should be irrelevant. -gwr
    333    1.7       gwr  */
    334   1.22    jeremy #ifdef	FIXED_NTABLES
    335    1.7       gwr #define NUM_A_TABLES	16
    336    1.7       gwr #define NUM_B_TABLES	32
    337    1.7       gwr #define NUM_C_TABLES	64
    338   1.22    jeremy #else
    339   1.22    jeremy unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    340   1.22    jeremy #endif	/* FIXED_NTABLES */
    341    1.7       gwr 
    342    1.7       gwr /*
    343    1.7       gwr  * This determines our total virtual mapping capacity.
    344    1.7       gwr  * Yes, it is a FIXED value so we can pre-allocate.
    345    1.7       gwr  */
    346    1.7       gwr #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    347   1.15       gwr 
    348   1.15       gwr /*
    349   1.15       gwr  * The size of the Kernel Virtual Address Space (KVAS)
    350   1.15       gwr  * for purposes of MMU table allocation is -KERNBASE
    351   1.15       gwr  * (length from KERNBASE to 0xFFFFffff)
    352   1.15       gwr  */
    353   1.15       gwr #define	KVAS_SIZE		(-KERNBASE)
    354   1.15       gwr 
    355   1.15       gwr /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    356   1.15       gwr #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    357   1.15       gwr #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    358   1.15       gwr #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    359    1.7       gwr 
    360    1.7       gwr /*************************** MISCELANEOUS MACROS *************************/
    361   1.55   tsutsui #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    362   1.55   tsutsui #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    363   1.55   tsutsui #define pmap_add_ref(pmap) ++pmap->pm_refcount
    364   1.55   tsutsui #define pmap_del_ref(pmap) --pmap->pm_refcount
    365   1.55   tsutsui #define pmap_refcount(pmap) pmap->pm_refcount
    366   1.64   thorpej 
    367   1.64   thorpej void *pmap_bootstrap_alloc(int);
    368    1.7       gwr 
    369   1.86       chs static INLINE void *mmu_ptov(paddr_t);
    370   1.86       chs static INLINE paddr_t mmu_vtop(void *);
    371    1.7       gwr 
    372    1.7       gwr #if	0
    373   1.92   tsutsui static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
    374   1.26    jeremy #endif /* 0 */
    375   1.92   tsutsui static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
    376   1.92   tsutsui static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
    377    1.7       gwr 
    378   1.86       chs static INLINE pv_t *pa2pv(paddr_t);
    379   1.86       chs static INLINE int   pteidx(mmu_short_pte_t *);
    380   1.86       chs static INLINE pmap_t current_pmap(void);
    381    1.7       gwr 
    382    1.7       gwr /*
    383    1.7       gwr  * We can always convert between virtual and physical addresses
    384    1.7       gwr  * for anything in the range [KERNBASE ... avail_start] because
    385    1.7       gwr  * that range is GUARANTEED to be mapped linearly.
    386    1.7       gwr  * We rely heavily upon this feature!
    387    1.7       gwr  */
    388    1.7       gwr static INLINE void *
    389   1.86       chs mmu_ptov(paddr_t pa)
    390    1.7       gwr {
    391   1.69       chs 	vaddr_t va;
    392    1.7       gwr 
    393    1.7       gwr 	va = (pa + KERNBASE);
    394    1.8       gwr #ifdef	PMAP_DEBUG
    395    1.7       gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    396    1.7       gwr 		panic("mmu_ptov");
    397    1.7       gwr #endif
    398   1.92   tsutsui 	return (void *)va;
    399    1.7       gwr }
    400   1.69       chs 
    401   1.86       chs static INLINE paddr_t
    402   1.86       chs mmu_vtop(void *vva)
    403    1.7       gwr {
    404   1.69       chs 	vaddr_t va;
    405    1.7       gwr 
    406   1.69       chs 	va = (vaddr_t)vva;
    407    1.8       gwr #ifdef	PMAP_DEBUG
    408    1.7       gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    409   1.72   tsutsui 		panic("mmu_vtop");
    410    1.7       gwr #endif
    411   1.92   tsutsui 	return va - KERNBASE;
    412    1.7       gwr }
    413    1.7       gwr 
    414    1.7       gwr /*
    415    1.7       gwr  * These macros map MMU tables to their corresponding manager structures.
    416    1.1       gwr  * They are needed quite often because many of the pointers in the pmap
    417    1.1       gwr  * system reference MMU tables and not the structures that control them.
    418    1.1       gwr  * There needs to be a way to find one when given the other and these
    419    1.1       gwr  * macros do so by taking advantage of the memory layout described above.
    420    1.1       gwr  * Here's a quick step through the first macro, mmuA2tmgr():
    421    1.1       gwr  *
    422    1.1       gwr  * 1) find the offset of the given MMU A table from the base of its table
    423    1.1       gwr  *    pool (table - mmuAbase).
    424    1.1       gwr  * 2) convert this offset into a table index by dividing it by the
    425    1.1       gwr  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    426    1.1       gwr  * 3) use this index to select the corresponding 'A' table manager
    427    1.1       gwr  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    428    1.1       gwr  */
    429    1.7       gwr /*  This function is not currently used. */
    430    1.7       gwr #if	0
    431    1.7       gwr static INLINE a_tmgr_t *
    432   1.86       chs mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
    433    1.7       gwr {
    434   1.69       chs 	int idx;
    435    1.7       gwr 
    436    1.7       gwr 	/* Which table is this in? */
    437    1.7       gwr 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    438    1.8       gwr #ifdef	PMAP_DEBUG
    439    1.7       gwr 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    440    1.7       gwr 		panic("mmuA2tmgr");
    441    1.7       gwr #endif
    442   1.92   tsutsui 	return &Atmgrbase[idx];
    443    1.7       gwr }
    444    1.7       gwr #endif	/* 0 */
    445    1.7       gwr 
    446    1.7       gwr static INLINE b_tmgr_t *
    447   1.86       chs mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
    448    1.7       gwr {
    449   1.69       chs 	int idx;
    450    1.7       gwr 
    451    1.7       gwr 	/* Which table is this in? */
    452    1.7       gwr 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    453    1.8       gwr #ifdef	PMAP_DEBUG
    454    1.7       gwr 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    455    1.7       gwr 		panic("mmuB2tmgr");
    456    1.7       gwr #endif
    457   1.92   tsutsui 	return &Btmgrbase[idx];
    458    1.7       gwr }
    459    1.7       gwr 
    460    1.7       gwr /* mmuC2tmgr			INTERNAL
    461    1.7       gwr  **
    462    1.7       gwr  * Given a pte known to belong to a C table, return the address of
    463    1.7       gwr  * that table's management structure.
    464    1.7       gwr  */
    465    1.7       gwr static INLINE c_tmgr_t *
    466   1.86       chs mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
    467    1.7       gwr {
    468   1.69       chs 	int idx;
    469    1.7       gwr 
    470    1.7       gwr 	/* Which table is this in? */
    471    1.7       gwr 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    472    1.8       gwr #ifdef	PMAP_DEBUG
    473    1.7       gwr 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    474    1.7       gwr 		panic("mmuC2tmgr");
    475    1.7       gwr #endif
    476   1.92   tsutsui 	return &Ctmgrbase[idx];
    477    1.7       gwr }
    478    1.7       gwr 
    479    1.8       gwr /* This is now a function call below.
    480    1.1       gwr  * #define pa2pv(pa) \
    481    1.1       gwr  *	(&pvbase[(unsigned long)\
    482   1.25     veego  *		m68k_btop(pa)\
    483    1.1       gwr  *	])
    484    1.1       gwr  */
    485    1.1       gwr 
    486    1.7       gwr /* pa2pv			INTERNAL
    487    1.7       gwr  **
    488    1.7       gwr  * Return the pv_list_head element which manages the given physical
    489    1.7       gwr  * address.
    490    1.7       gwr  */
    491    1.7       gwr static INLINE pv_t *
    492   1.86       chs pa2pv(paddr_t pa)
    493    1.7       gwr {
    494   1.69       chs 	struct pmap_physmem_struct *bank;
    495   1.69       chs 	int idx;
    496    1.7       gwr 
    497    1.7       gwr 	bank = &avail_mem[0];
    498    1.7       gwr 	while (pa >= bank->pmem_end)
    499    1.7       gwr 		bank = bank->pmem_next;
    500    1.7       gwr 
    501    1.7       gwr 	pa -= bank->pmem_start;
    502   1.25     veego 	idx = bank->pmem_pvbase + m68k_btop(pa);
    503    1.8       gwr #ifdef	PMAP_DEBUG
    504    1.7       gwr 	if ((idx < 0) || (idx >= physmem))
    505    1.7       gwr 		panic("pa2pv");
    506    1.7       gwr #endif
    507    1.7       gwr 	return &pvbase[idx];
    508    1.7       gwr }
    509    1.7       gwr 
    510    1.7       gwr /* pteidx			INTERNAL
    511    1.7       gwr  **
    512    1.7       gwr  * Return the index of the given PTE within the entire fixed table of
    513    1.7       gwr  * PTEs.
    514    1.7       gwr  */
    515    1.7       gwr static INLINE int
    516   1.86       chs pteidx(mmu_short_pte_t *pte)
    517    1.7       gwr {
    518   1.92   tsutsui 
    519   1.92   tsutsui 	return pte - kernCbase;
    520    1.7       gwr }
    521    1.7       gwr 
    522    1.7       gwr /*
    523    1.8       gwr  * This just offers a place to put some debugging checks,
    524   1.76   thorpej  * and reduces the number of places "curlwp" appears...
    525    1.7       gwr  */
    526   1.86       chs static INLINE pmap_t
    527   1.86       chs current_pmap(void)
    528    1.7       gwr {
    529    1.7       gwr 	struct vmspace *vm;
    530   1.67       chs 	struct vm_map *map;
    531    1.7       gwr 	pmap_t	pmap;
    532    1.7       gwr 
    533   1.97   tsutsui 	vm = curproc->p_vmspace;
    534   1.97   tsutsui 	map = &vm->vm_map;
    535   1.97   tsutsui 	pmap = vm_map_pmap(map);
    536    1.7       gwr 
    537   1.92   tsutsui 	return pmap;
    538    1.7       gwr }
    539    1.7       gwr 
    540    1.7       gwr 
    541    1.1       gwr /*************************** FUNCTION DEFINITIONS ************************
    542    1.1       gwr  * These appear here merely for the compiler to enforce type checking on *
    543    1.1       gwr  * all function calls.                                                   *
    544    1.7       gwr  *************************************************************************/
    545    1.1       gwr 
    546   1.92   tsutsui /*
    547   1.92   tsutsui  * Internal functions
    548   1.92   tsutsui  */
    549   1.92   tsutsui a_tmgr_t *get_a_table(void);
    550   1.92   tsutsui b_tmgr_t *get_b_table(void);
    551   1.92   tsutsui c_tmgr_t *get_c_table(void);
    552   1.94   thorpej int free_a_table(a_tmgr_t *, bool);
    553   1.94   thorpej int free_b_table(b_tmgr_t *, bool);
    554   1.94   thorpej int free_c_table(c_tmgr_t *, bool);
    555   1.92   tsutsui 
    556   1.92   tsutsui void pmap_bootstrap_aalign(int);
    557   1.92   tsutsui void pmap_alloc_usermmu(void);
    558   1.92   tsutsui void pmap_alloc_usertmgr(void);
    559   1.92   tsutsui void pmap_alloc_pv(void);
    560   1.92   tsutsui void pmap_init_a_tables(void);
    561   1.92   tsutsui void pmap_init_b_tables(void);
    562   1.92   tsutsui void pmap_init_c_tables(void);
    563   1.92   tsutsui void pmap_init_pv(void);
    564   1.92   tsutsui void pmap_clear_pv(paddr_t, int);
    565   1.94   thorpej static INLINE bool is_managed(paddr_t);
    566   1.92   tsutsui 
    567   1.94   thorpej bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
    568   1.94   thorpej bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
    569   1.94   thorpej bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
    570   1.92   tsutsui void pmap_remove_pte(mmu_short_pte_t *);
    571   1.92   tsutsui 
    572   1.92   tsutsui void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
    573   1.92   tsutsui static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
    574   1.92   tsutsui static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
    575   1.94   thorpej static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
    576   1.92   tsutsui vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
    577   1.92   tsutsui static INLINE int pmap_dereference(pmap_t);
    578   1.92   tsutsui 
    579   1.94   thorpej bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
    580   1.92   tsutsui     mmu_short_pte_t **, int *, int *, int *);
    581   1.92   tsutsui void pmap_bootstrap_copyprom(void);
    582   1.92   tsutsui void pmap_takeover_mmu(void);
    583   1.92   tsutsui void pmap_bootstrap_setprom(void);
    584   1.86       chs static void pmap_page_upload(void);
    585    1.1       gwr 
    586   1.92   tsutsui #ifdef PMAP_DEBUG
    587   1.92   tsutsui /* Debugging function definitions */
    588   1.92   tsutsui void  pv_list(paddr_t, int);
    589   1.92   tsutsui #endif /* PMAP_DEBUG */
    590   1.92   tsutsui 
    591    1.1       gwr /** Interface functions
    592    1.1       gwr  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    593    1.1       gwr  **   defined.
    594   1.92   tsutsui  **   The new UVM doesn't require them so now INTERNAL.
    595    1.1       gwr  **/
    596   1.92   tsutsui static INLINE void pmap_pinit(pmap_t);
    597   1.92   tsutsui static INLINE void pmap_release(pmap_t);
    598    1.1       gwr 
    599    1.1       gwr /********************************** CODE ********************************
    600    1.1       gwr  * Functions that are called from other parts of the kernel are labeled *
    601    1.1       gwr  * as 'INTERFACE' functions.  Functions that are only called from       *
    602    1.1       gwr  * within the pmap module are labeled as 'INTERNAL' functions.          *
    603    1.1       gwr  * Functions that are internal, but are not (currently) used at all are *
    604    1.1       gwr  * labeled 'INTERNAL_X'.                                                *
    605    1.1       gwr  ************************************************************************/
    606    1.1       gwr 
    607    1.1       gwr /* pmap_bootstrap			INTERNAL
    608    1.1       gwr  **
    609   1.33       gwr  * Initializes the pmap system.  Called at boot time from
    610   1.33       gwr  * locore2.c:_vm_init()
    611    1.1       gwr  *
    612    1.1       gwr  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    613    1.1       gwr  *           system implement pmap_steal_memory() is redundant.
    614    1.1       gwr  *           Don't release this code without removing one or the other!
    615    1.1       gwr  */
    616   1.86       chs void
    617   1.86       chs pmap_bootstrap(vaddr_t nextva)
    618    1.1       gwr {
    619    1.1       gwr 	struct physmemory *membank;
    620    1.1       gwr 	struct pmap_physmem_struct *pmap_membank;
    621   1.69       chs 	vaddr_t va, eva;
    622   1.69       chs 	paddr_t pa;
    623    1.1       gwr 	int b, c, i, j;	/* running table counts */
    624   1.40       gwr 	int size, resvmem;
    625    1.1       gwr 
    626    1.1       gwr 	/*
    627    1.1       gwr 	 * This function is called by __bootstrap after it has
    628    1.1       gwr 	 * determined the type of machine and made the appropriate
    629    1.1       gwr 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    630    1.1       gwr 	 * by that.)  It allocates and sets up enough of the pmap system
    631    1.1       gwr 	 * to manage the kernel's address space.
    632    1.1       gwr 	 */
    633    1.1       gwr 
    634    1.1       gwr 	/*
    635    1.7       gwr 	 * Determine the range of kernel virtual and physical
    636    1.7       gwr 	 * space available. Note that we ABSOLUTELY DEPEND on
    637    1.7       gwr 	 * the fact that the first bank of memory (4MB) is
    638    1.7       gwr 	 * mapped linearly to KERNBASE (which we guaranteed in
    639    1.7       gwr 	 * the first instructions of locore.s).
    640    1.7       gwr 	 * That is plenty for our bootstrap work.
    641    1.1       gwr 	 */
    642   1.25     veego 	virtual_avail = m68k_round_page(nextva);
    643    1.7       gwr 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    644    1.1       gwr 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    645    1.7       gwr 	/* Don't need avail_start til later. */
    646    1.1       gwr 
    647    1.7       gwr 	/* We may now call pmap_bootstrap_alloc(). */
    648   1.95   thorpej 	bootstrap_alloc_enabled = true;
    649    1.1       gwr 
    650    1.1       gwr 	/*
    651    1.1       gwr 	 * This is a somewhat unwrapped loop to deal with
    652    1.1       gwr 	 * copying the PROM's 'phsymem' banks into the pmap's
    653    1.1       gwr 	 * banks.  The following is always assumed:
    654    1.1       gwr 	 * 1. There is always at least one bank of memory.
    655    1.1       gwr 	 * 2. There is always a last bank of memory, and its
    656    1.1       gwr 	 *    pmem_next member must be set to NULL.
    657    1.1       gwr 	 */
    658    1.1       gwr 	membank = romVectorPtr->v_physmemory;
    659    1.1       gwr 	pmap_membank = avail_mem;
    660    1.1       gwr 	total_phys_mem = 0;
    661    1.1       gwr 
    662   1.40       gwr 	for (;;) { /* break on !membank */
    663    1.1       gwr 		pmap_membank->pmem_start = membank->address;
    664    1.1       gwr 		pmap_membank->pmem_end = membank->address + membank->size;
    665    1.1       gwr 		total_phys_mem += membank->size;
    666   1.40       gwr 		membank = membank->next;
    667   1.40       gwr 		if (!membank)
    668   1.40       gwr 			break;
    669    1.1       gwr 		/* This silly syntax arises because pmap_membank
    670    1.1       gwr 		 * is really a pre-allocated array, but it is put into
    671    1.1       gwr 		 * use as a linked list.
    672    1.1       gwr 		 */
    673    1.1       gwr 		pmap_membank->pmem_next = pmap_membank + 1;
    674    1.1       gwr 		pmap_membank = pmap_membank->pmem_next;
    675    1.1       gwr 	}
    676   1.40       gwr 	/* This is the last element. */
    677   1.40       gwr 	pmap_membank->pmem_next = NULL;
    678    1.1       gwr 
    679    1.1       gwr 	/*
    680   1.40       gwr 	 * Note: total_phys_mem, physmem represent
    681   1.40       gwr 	 * actual physical memory, including that
    682   1.40       gwr 	 * reserved for the PROM monitor.
    683    1.1       gwr 	 */
    684   1.40       gwr 	physmem = btoc(total_phys_mem);
    685    1.1       gwr 
    686    1.1       gwr 	/*
    687   1.60   tsutsui 	 * Avail_end is set to the first byte of physical memory
    688   1.60   tsutsui 	 * after the end of the last bank.  We use this only to
    689   1.60   tsutsui 	 * determine if a physical address is "managed" memory.
    690   1.60   tsutsui 	 * This address range should be reduced to prevent the
    691   1.40       gwr 	 * physical pages needed by the PROM monitor from being used
    692   1.40       gwr 	 * in the VM system.
    693    1.1       gwr 	 */
    694   1.40       gwr 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    695   1.40       gwr 	resvmem = m68k_round_page(resvmem);
    696   1.60   tsutsui 	avail_end = pmap_membank->pmem_end - resvmem;
    697    1.1       gwr 
    698    1.1       gwr 	/*
    699   1.15       gwr 	 * First allocate enough kernel MMU tables to map all
    700   1.15       gwr 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    701    1.1       gwr 	 * Note: All must be aligned on 256 byte boundaries.
    702   1.15       gwr 	 * Start with the level-A table (one of those).
    703    1.1       gwr 	 */
    704   1.69       chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    705    1.7       gwr 	kernAbase = pmap_bootstrap_alloc(size);
    706   1.71   tsutsui 	memset(kernAbase, 0, size);
    707    1.1       gwr 
    708   1.15       gwr 	/* Now the level-B kernel tables... */
    709   1.15       gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    710    1.7       gwr 	kernBbase = pmap_bootstrap_alloc(size);
    711   1.71   tsutsui 	memset(kernBbase, 0, size);
    712    1.1       gwr 
    713   1.15       gwr 	/* Now the level-C kernel tables... */
    714   1.15       gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    715   1.15       gwr 	kernCbase = pmap_bootstrap_alloc(size);
    716   1.71   tsutsui 	memset(kernCbase, 0, size);
    717    1.7       gwr 	/*
    718    1.7       gwr 	 * Note: In order for the PV system to work correctly, the kernel
    719    1.7       gwr 	 * and user-level C tables must be allocated contiguously.
    720    1.7       gwr 	 * Nothing should be allocated between here and the allocation of
    721    1.7       gwr 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    722    1.7       gwr 	 * then compute a pointer for mmuCbase instead of this...
    723   1.15       gwr 	 *
    724   1.15       gwr 	 * Allocate user MMU tables.
    725   1.70       wiz 	 * These must be contiguous with the preceding.
    726    1.7       gwr 	 */
    727   1.22    jeremy 
    728   1.22    jeremy #ifndef	FIXED_NTABLES
    729   1.22    jeremy 	/*
    730   1.22    jeremy 	 * The number of user-level C tables that should be allocated is
    731   1.22    jeremy 	 * related to the size of physical memory.  In general, there should
    732   1.22    jeremy 	 * be enough tables to map four times the amount of available RAM.
    733   1.22    jeremy 	 * The extra amount is needed because some table space is wasted by
    734   1.22    jeremy 	 * fragmentation.
    735   1.22    jeremy 	 */
    736   1.22    jeremy 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    737   1.22    jeremy 	NUM_B_TABLES = NUM_C_TABLES / 2;
    738   1.22    jeremy 	NUM_A_TABLES = NUM_B_TABLES / 2;
    739   1.22    jeremy #endif	/* !FIXED_NTABLES */
    740   1.22    jeremy 
    741   1.15       gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    742   1.15       gwr 	mmuCbase = pmap_bootstrap_alloc(size);
    743   1.15       gwr 
    744   1.15       gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    745   1.15       gwr 	mmuBbase = pmap_bootstrap_alloc(size);
    746    1.1       gwr 
    747   1.69       chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    748   1.15       gwr 	mmuAbase = pmap_bootstrap_alloc(size);
    749    1.7       gwr 
    750    1.7       gwr 	/*
    751    1.7       gwr 	 * Fill in the never-changing part of the kernel tables.
    752    1.7       gwr 	 * For simplicity, the kernel's mappings will be editable as a
    753    1.1       gwr 	 * flat array of page table entries at kernCbase.  The
    754    1.1       gwr 	 * higher level 'A' and 'B' tables must be initialized to point
    755    1.1       gwr 	 * to this lower one.
    756    1.1       gwr 	 */
    757    1.1       gwr 	b = c = 0;
    758    1.1       gwr 
    759    1.7       gwr 	/*
    760    1.7       gwr 	 * Invalidate all mappings below KERNBASE in the A table.
    761    1.1       gwr 	 * This area has already been zeroed out, but it is good
    762    1.1       gwr 	 * practice to explicitly show that we are interpreting
    763    1.1       gwr 	 * it as a list of A table descriptors.
    764    1.1       gwr 	 */
    765    1.1       gwr 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    766    1.1       gwr 		kernAbase[i].addr.raw = 0;
    767    1.1       gwr 	}
    768    1.1       gwr 
    769    1.7       gwr 	/*
    770    1.7       gwr 	 * Set up the kernel A and B tables so that they will reference the
    771    1.1       gwr 	 * correct spots in the contiguous table of PTEs allocated for the
    772    1.1       gwr 	 * kernel's virtual memory space.
    773    1.1       gwr 	 */
    774    1.1       gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    775    1.1       gwr 		kernAbase[i].attr.raw =
    776   1.92   tsutsui 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    777    1.7       gwr 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    778    1.1       gwr 
    779   1.92   tsutsui 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
    780   1.92   tsutsui 			kernBbase[b + j].attr.raw =
    781   1.92   tsutsui 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
    782    1.1       gwr 			c += MMU_C_TBL_SIZE;
    783    1.1       gwr 		}
    784    1.1       gwr 		b += MMU_B_TBL_SIZE;
    785    1.1       gwr 	}
    786    1.1       gwr 
    787    1.7       gwr 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    788    1.7       gwr 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    789    1.7       gwr 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    790    1.7       gwr 
    791    1.7       gwr 	/*
    792    1.7       gwr 	 * We are now done with pmap_bootstrap_alloc().  Round up
    793    1.7       gwr 	 * `virtual_avail' to the nearest page, and set the flag
    794    1.7       gwr 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    795    1.7       gwr 	 */
    796   1.79   thorpej 	pmap_bootstrap_aalign(PAGE_SIZE);
    797   1.95   thorpej 	bootstrap_alloc_enabled = false;
    798    1.7       gwr 
    799    1.7       gwr 	/*
    800    1.7       gwr 	 * Now that we are done with pmap_bootstrap_alloc(), we
    801    1.7       gwr 	 * must save the virtual and physical addresses of the
    802    1.7       gwr 	 * end of the linearly mapped range, which are stored in
    803    1.7       gwr 	 * virtual_contig_end and avail_start, respectively.
    804    1.7       gwr 	 * These variables will never change after this point.
    805    1.7       gwr 	 */
    806    1.7       gwr 	virtual_contig_end = virtual_avail;
    807    1.7       gwr 	avail_start = virtual_avail - KERNBASE;
    808    1.7       gwr 
    809    1.7       gwr 	/*
    810    1.7       gwr 	 * `avail_next' is a running pointer used by pmap_next_page() to
    811    1.7       gwr 	 * keep track of the next available physical page to be handed
    812    1.7       gwr 	 * to the VM system during its initialization, in which it
    813    1.7       gwr 	 * asks for physical pages, one at a time.
    814    1.7       gwr 	 */
    815    1.7       gwr 	avail_next = avail_start;
    816    1.7       gwr 
    817    1.7       gwr 	/*
    818    1.7       gwr 	 * Now allocate some virtual addresses, but not the physical pages
    819    1.7       gwr 	 * behind them.  Note that virtual_avail is already page-aligned.
    820    1.7       gwr 	 *
    821    1.7       gwr 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    822    1.7       gwr 	 * kernel mappings in the pmap module to facilitate various physical
    823    1.7       gwr 	 * address-oritented operations.
    824    1.7       gwr 	 */
    825    1.7       gwr 	tmp_vpages[0] = virtual_avail;
    826   1.79   thorpej 	virtual_avail += PAGE_SIZE;
    827    1.7       gwr 	tmp_vpages[1] = virtual_avail;
    828   1.79   thorpej 	virtual_avail += PAGE_SIZE;
    829    1.7       gwr 
    830    1.7       gwr 	/** Initialize the PV system **/
    831    1.7       gwr 	pmap_init_pv();
    832    1.7       gwr 
    833    1.7       gwr 	/*
    834    1.7       gwr 	 * Fill in the kernel_pmap structure and kernel_crp.
    835    1.7       gwr 	 */
    836    1.7       gwr 	kernAphys = mmu_vtop(kernAbase);
    837    1.7       gwr 	kernel_pmap.pm_a_tmgr = NULL;
    838    1.7       gwr 	kernel_pmap.pm_a_phys = kernAphys;
    839    1.7       gwr 	kernel_pmap.pm_refcount = 1; /* always in use */
    840   1.55   tsutsui 	simple_lock_init(&kernel_pmap.pm_lock);
    841    1.7       gwr 
    842    1.7       gwr 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    843    1.7       gwr 	kernel_crp.rp_addr = kernAphys;
    844    1.7       gwr 
    845    1.1       gwr 	/*
    846    1.1       gwr 	 * Now pmap_enter_kernel() may be used safely and will be
    847    1.7       gwr 	 * the main interface used hereafter to modify the kernel's
    848    1.7       gwr 	 * virtual address space.  Note that since we are still running
    849    1.7       gwr 	 * under the PROM's address table, none of these table modifications
    850    1.7       gwr 	 * actually take effect until pmap_takeover_mmu() is called.
    851    1.1       gwr 	 *
    852    1.7       gwr 	 * Note: Our tables do NOT have the PROM linear mappings!
    853    1.7       gwr 	 * Only the mappings created here exist in our tables, so
    854    1.7       gwr 	 * remember to map anything we expect to use.
    855    1.1       gwr 	 */
    856   1.69       chs 	va = (vaddr_t)KERNBASE;
    857    1.7       gwr 	pa = 0;
    858    1.1       gwr 
    859    1.1       gwr 	/*
    860    1.7       gwr 	 * The first page of the kernel virtual address space is the msgbuf
    861    1.7       gwr 	 * page.  The page attributes (data, non-cached) are set here, while
    862    1.7       gwr 	 * the address is assigned to this global pointer in cpu_startup().
    863   1.29       gwr 	 * It is non-cached, mostly due to paranoia.
    864    1.1       gwr 	 */
    865   1.29       gwr 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    866   1.92   tsutsui 	va += PAGE_SIZE;
    867   1.92   tsutsui 	pa += PAGE_SIZE;
    868    1.1       gwr 
    869    1.7       gwr 	/* Next page is used as the temporary stack. */
    870    1.1       gwr 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    871   1.92   tsutsui 	va += PAGE_SIZE;
    872   1.92   tsutsui 	pa += PAGE_SIZE;
    873    1.1       gwr 
    874    1.1       gwr 	/*
    875    1.1       gwr 	 * Map all of the kernel's text segment as read-only and cacheable.
    876    1.1       gwr 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    877    1.1       gwr 	 * of kernel text and the first bytes of kernel data will often be
    878    1.1       gwr 	 * sharing the same page.  Therefore, the last page of kernel text
    879   1.93  christos 	 * has to be mapped as read/write, to accommodate the data.
    880    1.1       gwr 	 */
    881   1.69       chs 	eva = m68k_trunc_page((vaddr_t)etext);
    882   1.79   thorpej 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    883    1.1       gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    884    1.1       gwr 
    885    1.7       gwr 	/*
    886    1.7       gwr 	 * Map all of the kernel's data as read/write and cacheable.
    887    1.7       gwr 	 * This includes: data, BSS, symbols, and everything in the
    888    1.7       gwr 	 * contiguous memory used by pmap_bootstrap_alloc()
    889    1.1       gwr 	 */
    890   1.79   thorpej 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    891    1.1       gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    892    1.1       gwr 
    893    1.7       gwr 	/*
    894    1.7       gwr 	 * At this point we are almost ready to take over the MMU.  But first
    895    1.7       gwr 	 * we must save the PROM's address space in our map, as we call its
    896    1.7       gwr 	 * routines and make references to its data later in the kernel.
    897    1.1       gwr 	 */
    898    1.7       gwr 	pmap_bootstrap_copyprom();
    899    1.7       gwr 	pmap_takeover_mmu();
    900   1.13       gwr 	pmap_bootstrap_setprom();
    901    1.1       gwr 
    902    1.1       gwr 	/* Notify the VM system of our page size. */
    903   1.79   thorpej 	uvmexp.pagesize = PAGE_SIZE;
    904   1.43       mrg 	uvm_setpagesize();
    905   1.37       gwr 
    906   1.37       gwr 	pmap_page_upload();
    907    1.1       gwr }
    908    1.1       gwr 
    909    1.1       gwr 
    910    1.1       gwr /* pmap_alloc_usermmu			INTERNAL
    911    1.1       gwr  **
    912    1.1       gwr  * Called from pmap_bootstrap() to allocate MMU tables that will
    913    1.1       gwr  * eventually be used for user mappings.
    914    1.1       gwr  */
    915   1.86       chs void
    916   1.86       chs pmap_alloc_usermmu(void)
    917    1.1       gwr {
    918   1.92   tsutsui 
    919    1.7       gwr 	/* XXX: Moved into caller. */
    920    1.1       gwr }
    921    1.1       gwr 
    922    1.1       gwr /* pmap_alloc_pv			INTERNAL
    923    1.1       gwr  **
    924    1.1       gwr  * Called from pmap_bootstrap() to allocate the physical
    925    1.1       gwr  * to virtual mapping list.  Each physical page of memory
    926    1.1       gwr  * in the system has a corresponding element in this list.
    927    1.1       gwr  */
    928   1.86       chs void
    929   1.86       chs pmap_alloc_pv(void)
    930    1.1       gwr {
    931    1.1       gwr 	int	i;
    932    1.1       gwr 	unsigned int	total_mem;
    933    1.1       gwr 
    934    1.7       gwr 	/*
    935    1.7       gwr 	 * Allocate a pv_head structure for every page of physical
    936    1.1       gwr 	 * memory that will be managed by the system.  Since memory on
    937    1.1       gwr 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    938    1.1       gwr 	 * count by subtraction of the lowest available address from the
    939    1.1       gwr 	 * highest, but rather we have to step through each memory
    940    1.1       gwr 	 * bank and add the number of pages in each to the total.
    941    1.1       gwr 	 *
    942    1.1       gwr 	 * At this time we also initialize the offset of each bank's
    943    1.1       gwr 	 * starting pv_head within the pv_head list so that the physical
    944    1.1       gwr 	 * memory state routines (pmap_is_referenced(),
    945    1.1       gwr 	 * pmap_is_modified(), et al.) can quickly find coresponding
    946    1.1       gwr 	 * pv_heads in spite of the non-contiguity.
    947    1.1       gwr 	 */
    948    1.1       gwr 	total_mem = 0;
    949   1.20   thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    950   1.25     veego 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    951   1.92   tsutsui 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
    952    1.1       gwr 		if (avail_mem[i].pmem_next == NULL)
    953    1.1       gwr 			break;
    954    1.1       gwr 	}
    955   1.92   tsutsui 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
    956   1.92   tsutsui 	    m68k_btop(total_phys_mem));
    957    1.1       gwr }
    958    1.1       gwr 
    959    1.1       gwr /* pmap_alloc_usertmgr			INTERNAL
    960    1.1       gwr  **
    961    1.1       gwr  * Called from pmap_bootstrap() to allocate the structures which
    962    1.1       gwr  * facilitate management of user MMU tables.  Each user MMU table
    963    1.1       gwr  * in the system has one such structure associated with it.
    964    1.1       gwr  */
    965   1.86       chs void
    966   1.86       chs pmap_alloc_usertmgr(void)
    967    1.1       gwr {
    968    1.1       gwr 	/* Allocate user MMU table managers */
    969    1.7       gwr 	/* It would be a lot simpler to just make these BSS, but */
    970    1.7       gwr 	/* we may want to change their size at boot time... -j */
    971   1.92   tsutsui 	Atmgrbase =
    972   1.92   tsutsui 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
    973   1.92   tsutsui 	Btmgrbase =
    974   1.92   tsutsui 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
    975   1.92   tsutsui 	Ctmgrbase =
    976   1.92   tsutsui 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
    977    1.1       gwr 
    978    1.7       gwr 	/*
    979    1.7       gwr 	 * Allocate PV list elements for the physical to virtual
    980    1.1       gwr 	 * mapping system.
    981    1.1       gwr 	 */
    982   1.92   tsutsui 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
    983   1.92   tsutsui 	    (NUM_USER_PTES + NUM_KERN_PTES));
    984    1.1       gwr }
    985    1.1       gwr 
    986    1.1       gwr /* pmap_bootstrap_copyprom()			INTERNAL
    987    1.1       gwr  **
    988    1.1       gwr  * Copy the PROM mappings into our own tables.  Note, we
    989    1.1       gwr  * can use physical addresses until __bootstrap returns.
    990    1.1       gwr  */
    991   1.86       chs void
    992   1.86       chs pmap_bootstrap_copyprom(void)
    993    1.1       gwr {
    994   1.33       gwr 	struct sunromvec *romp;
    995    1.1       gwr 	int *mon_ctbl;
    996    1.1       gwr 	mmu_short_pte_t *kpte;
    997    1.1       gwr 	int i, len;
    998    1.1       gwr 
    999    1.1       gwr 	romp = romVectorPtr;
   1000    1.1       gwr 
   1001    1.1       gwr 	/*
   1002   1.33       gwr 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
   1003   1.33       gwr 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
   1004    1.1       gwr 	 */
   1005    1.1       gwr 	mon_ctbl = *romp->monptaddr;
   1006   1.33       gwr 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
   1007    1.1       gwr 	kpte = &kernCbase[i];
   1008   1.33       gwr 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
   1009    1.1       gwr 
   1010    1.1       gwr 	for (i = 0; i < len; i++) {
   1011    1.1       gwr 		kpte[i].attr.raw = mon_ctbl[i];
   1012    1.1       gwr 	}
   1013    1.1       gwr 
   1014    1.1       gwr 	/*
   1015    1.1       gwr 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1016    1.1       gwr 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1017   1.32       gwr 	 * Actually, we only want the last page, which the
   1018   1.32       gwr 	 * PROM has set up for use by the "ie" driver.
   1019   1.32       gwr 	 * (The i82686 needs its SCP there.)
   1020   1.32       gwr 	 * If we copy all the mappings, pmap_enter_kernel
   1021   1.32       gwr 	 * may complain about finding valid PTEs that are
   1022   1.32       gwr 	 * not recorded in our PV lists...
   1023    1.1       gwr 	 */
   1024    1.1       gwr 	mon_ctbl = *romp->shadowpteaddr;
   1025   1.33       gwr 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
   1026    1.1       gwr 	kpte = &kernCbase[i];
   1027   1.33       gwr 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1028   1.92   tsutsui 	for (i = (len - 1); i < len; i++) {
   1029    1.1       gwr 		kpte[i].attr.raw = mon_ctbl[i];
   1030    1.1       gwr 	}
   1031    1.1       gwr }
   1032    1.1       gwr 
   1033    1.1       gwr /* pmap_takeover_mmu			INTERNAL
   1034    1.1       gwr  **
   1035    1.1       gwr  * Called from pmap_bootstrap() after it has copied enough of the
   1036    1.1       gwr  * PROM mappings into the kernel map so that we can use our own
   1037    1.1       gwr  * MMU table.
   1038    1.1       gwr  */
   1039   1.86       chs void
   1040   1.86       chs pmap_takeover_mmu(void)
   1041    1.1       gwr {
   1042    1.1       gwr 
   1043   1.13       gwr 	loadcrp(&kernel_crp);
   1044    1.1       gwr }
   1045    1.1       gwr 
   1046   1.13       gwr /* pmap_bootstrap_setprom()			INTERNAL
   1047   1.13       gwr  **
   1048   1.13       gwr  * Set the PROM mappings so it can see kernel space.
   1049   1.13       gwr  * Note that physical addresses are used here, which
   1050   1.13       gwr  * we can get away with because this runs with the
   1051   1.13       gwr  * low 1GB set for transparent translation.
   1052   1.13       gwr  */
   1053   1.86       chs void
   1054   1.86       chs pmap_bootstrap_setprom(void)
   1055   1.13       gwr {
   1056   1.13       gwr 	mmu_long_dte_t *mon_dte;
   1057   1.13       gwr 	extern struct mmu_rootptr mon_crp;
   1058   1.13       gwr 	int i;
   1059   1.13       gwr 
   1060   1.92   tsutsui 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
   1061   1.13       gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1062   1.13       gwr 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1063   1.13       gwr 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1064   1.13       gwr 	}
   1065   1.13       gwr }
   1066   1.13       gwr 
   1067   1.13       gwr 
   1068    1.1       gwr /* pmap_init			INTERFACE
   1069    1.1       gwr  **
   1070    1.1       gwr  * Called at the end of vm_init() to set up the pmap system to go
   1071    1.7       gwr  * into full time operation.  All initialization of kernel_pmap
   1072    1.7       gwr  * should be already done by now, so this should just do things
   1073    1.7       gwr  * needed for user-level pmaps to work.
   1074    1.1       gwr  */
   1075   1.86       chs void
   1076   1.86       chs pmap_init(void)
   1077    1.1       gwr {
   1078   1.92   tsutsui 
   1079    1.1       gwr 	/** Initialize the manager pools **/
   1080    1.1       gwr 	TAILQ_INIT(&a_pool);
   1081    1.1       gwr 	TAILQ_INIT(&b_pool);
   1082    1.1       gwr 	TAILQ_INIT(&c_pool);
   1083    1.1       gwr 
   1084    1.1       gwr 	/**************************************************************
   1085    1.1       gwr 	 * Initialize all tmgr structures and MMU tables they manage. *
   1086    1.1       gwr 	 **************************************************************/
   1087    1.1       gwr 	/** Initialize A tables **/
   1088    1.1       gwr 	pmap_init_a_tables();
   1089    1.1       gwr 	/** Initialize B tables **/
   1090    1.1       gwr 	pmap_init_b_tables();
   1091    1.1       gwr 	/** Initialize C tables **/
   1092    1.1       gwr 	pmap_init_c_tables();
   1093   1.56   tsutsui 
   1094   1.56   tsutsui 	/** Initialize the pmap pools **/
   1095   1.56   tsutsui 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1096   1.96        ad 	    &pool_allocator_nointr, IPL_NONE);
   1097    1.1       gwr }
   1098    1.1       gwr 
   1099    1.1       gwr /* pmap_init_a_tables()			INTERNAL
   1100    1.1       gwr  **
   1101    1.1       gwr  * Initializes all A managers, their MMU A tables, and inserts
   1102    1.1       gwr  * them into the A manager pool for use by the system.
   1103    1.1       gwr  */
   1104   1.86       chs void
   1105   1.86       chs pmap_init_a_tables(void)
   1106    1.1       gwr {
   1107    1.1       gwr 	int i;
   1108    1.1       gwr 	a_tmgr_t *a_tbl;
   1109    1.1       gwr 
   1110   1.86       chs 	for (i = 0; i < NUM_A_TABLES; i++) {
   1111    1.1       gwr 		/* Select the next available A manager from the pool */
   1112    1.1       gwr 		a_tbl = &Atmgrbase[i];
   1113    1.1       gwr 
   1114    1.7       gwr 		/*
   1115    1.7       gwr 		 * Clear its parent entry.  Set its wired and valid
   1116    1.1       gwr 		 * entry count to zero.
   1117    1.1       gwr 		 */
   1118    1.1       gwr 		a_tbl->at_parent = NULL;
   1119    1.1       gwr 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1120    1.1       gwr 
   1121    1.1       gwr 		/* Assign it the next available MMU A table from the pool */
   1122    1.1       gwr 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1123    1.1       gwr 
   1124    1.7       gwr 		/*
   1125    1.7       gwr 		 * Initialize the MMU A table with the table in the `proc0',
   1126    1.1       gwr 		 * or kernel, mapping.  This ensures that every process has
   1127    1.1       gwr 		 * the kernel mapped in the top part of its address space.
   1128    1.1       gwr 		 */
   1129   1.92   tsutsui 		memcpy(a_tbl->at_dtbl, kernAbase,
   1130   1.92   tsutsui 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
   1131    1.1       gwr 
   1132    1.7       gwr 		/*
   1133    1.7       gwr 		 * Finally, insert the manager into the A pool,
   1134    1.1       gwr 		 * making it ready to be used by the system.
   1135    1.1       gwr 		 */
   1136    1.1       gwr 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1137    1.1       gwr     }
   1138    1.1       gwr }
   1139    1.1       gwr 
   1140    1.1       gwr /* pmap_init_b_tables()			INTERNAL
   1141    1.1       gwr  **
   1142    1.1       gwr  * Initializes all B table managers, their MMU B tables, and
   1143    1.1       gwr  * inserts them into the B manager pool for use by the system.
   1144    1.1       gwr  */
   1145   1.86       chs void
   1146   1.86       chs pmap_init_b_tables(void)
   1147    1.1       gwr {
   1148   1.86       chs 	int i, j;
   1149    1.1       gwr 	b_tmgr_t *b_tbl;
   1150    1.1       gwr 
   1151   1.86       chs 	for (i = 0; i < NUM_B_TABLES; i++) {
   1152    1.1       gwr 		/* Select the next available B manager from the pool */
   1153    1.1       gwr 		b_tbl = &Btmgrbase[i];
   1154    1.1       gwr 
   1155    1.1       gwr 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1156    1.1       gwr 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1157    1.1       gwr 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1158    1.1       gwr 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1159    1.1       gwr 
   1160    1.1       gwr 		/* Assign it the next available MMU B table from the pool */
   1161    1.1       gwr 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1162    1.1       gwr 
   1163    1.1       gwr 		/* Invalidate every descriptor in the table */
   1164   1.92   tsutsui 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
   1165    1.1       gwr 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1166    1.1       gwr 
   1167    1.1       gwr 		/* Insert the manager into the B pool */
   1168    1.1       gwr 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1169    1.1       gwr 	}
   1170    1.1       gwr }
   1171    1.1       gwr 
   1172    1.1       gwr /* pmap_init_c_tables()			INTERNAL
   1173    1.1       gwr  **
   1174    1.1       gwr  * Initializes all C table managers, their MMU C tables, and
   1175    1.1       gwr  * inserts them into the C manager pool for use by the system.
   1176    1.1       gwr  */
   1177   1.86       chs void
   1178   1.86       chs pmap_init_c_tables(void)
   1179    1.1       gwr {
   1180   1.86       chs 	int i, j;
   1181    1.1       gwr 	c_tmgr_t *c_tbl;
   1182    1.1       gwr 
   1183   1.86       chs 	for (i = 0; i < NUM_C_TABLES; i++) {
   1184    1.1       gwr 		/* Select the next available C manager from the pool */
   1185    1.1       gwr 		c_tbl = &Ctmgrbase[i];
   1186    1.1       gwr 
   1187    1.1       gwr 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1188    1.1       gwr 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1189    1.1       gwr 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1190   1.26    jeremy 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1191   1.26    jeremy 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1192   1.26    jeremy 		c_tbl->ct_va = 0;		/* base of managed range */
   1193    1.1       gwr 
   1194    1.1       gwr 		/* Assign it the next available MMU C table from the pool */
   1195    1.1       gwr 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1196    1.1       gwr 
   1197   1.92   tsutsui 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
   1198    1.1       gwr 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1199    1.1       gwr 
   1200    1.1       gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1201    1.1       gwr 	}
   1202    1.1       gwr }
   1203    1.1       gwr 
   1204    1.1       gwr /* pmap_init_pv()			INTERNAL
   1205    1.1       gwr  **
   1206    1.1       gwr  * Initializes the Physical to Virtual mapping system.
   1207    1.1       gwr  */
   1208   1.86       chs void
   1209   1.86       chs pmap_init_pv(void)
   1210    1.1       gwr {
   1211   1.86       chs 	int i;
   1212    1.7       gwr 
   1213    1.7       gwr 	/* Initialize every PV head. */
   1214   1.25     veego 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1215    1.7       gwr 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1216    1.7       gwr 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1217    1.7       gwr 	}
   1218    1.1       gwr }
   1219    1.1       gwr 
   1220   1.92   tsutsui /* is_managed				INTERNAL
   1221   1.92   tsutsui  **
   1222   1.92   tsutsui  * Determine if the given physical address is managed by the PV system.
   1223   1.92   tsutsui  * Note that this logic assumes that no one will ask for the status of
   1224   1.92   tsutsui  * addresses which lie in-between the memory banks on the 3/80.  If they
   1225   1.92   tsutsui  * do so, it will falsely report that it is managed.
   1226   1.92   tsutsui  *
   1227   1.92   tsutsui  * Note: A "managed" address is one that was reported to the VM system as
   1228   1.92   tsutsui  * a "usable page" during system startup.  As such, the VM system expects the
   1229   1.92   tsutsui  * pmap module to keep an accurate track of the useage of those pages.
   1230   1.92   tsutsui  * Any page not given to the VM system at startup does not exist (as far as
   1231   1.92   tsutsui  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   1232   1.92   tsutsui  * those pages which belong to the ROM monitor and the memory allocated before
   1233   1.92   tsutsui  * the VM system was started.
   1234   1.92   tsutsui  */
   1235   1.94   thorpej static INLINE bool
   1236   1.92   tsutsui is_managed(paddr_t pa)
   1237   1.92   tsutsui {
   1238   1.92   tsutsui 	if (pa >= avail_start && pa < avail_end)
   1239   1.95   thorpej 		return true;
   1240   1.92   tsutsui 	else
   1241   1.95   thorpej 		return false;
   1242   1.92   tsutsui }
   1243   1.92   tsutsui 
   1244    1.1       gwr /* get_a_table			INTERNAL
   1245    1.1       gwr  **
   1246    1.1       gwr  * Retrieve and return a level A table for use in a user map.
   1247    1.1       gwr  */
   1248    1.1       gwr a_tmgr_t *
   1249   1.86       chs get_a_table(void)
   1250    1.1       gwr {
   1251    1.1       gwr 	a_tmgr_t *tbl;
   1252    1.7       gwr 	pmap_t pmap;
   1253    1.1       gwr 
   1254    1.1       gwr 	/* Get the top A table in the pool */
   1255   1.86       chs 	tbl = TAILQ_FIRST(&a_pool);
   1256    1.7       gwr 	if (tbl == NULL) {
   1257    1.7       gwr 		/*
   1258   1.85       wiz 		 * XXX - Instead of panicking here and in other get_x_table
   1259    1.7       gwr 		 * functions, we do have the option of sleeping on the head of
   1260    1.7       gwr 		 * the table pool.  Any function which updates the table pool
   1261    1.7       gwr 		 * would then issue a wakeup() on the head, thus waking up any
   1262    1.7       gwr 		 * processes waiting for a table.
   1263    1.7       gwr 		 *
   1264    1.7       gwr 		 * Actually, the place to sleep would be when some process
   1265    1.7       gwr 		 * asks for a "wired" mapping that would run us short of
   1266    1.7       gwr 		 * mapping resources.  This design DEPENDS on always having
   1267    1.7       gwr 		 * some mapping resources in the pool for stealing, so we
   1268    1.7       gwr 		 * must make sure we NEVER let the pool become empty. -gwr
   1269    1.7       gwr 		 */
   1270    1.1       gwr 		panic("get_a_table: out of A tables.");
   1271    1.7       gwr 	}
   1272    1.7       gwr 
   1273    1.1       gwr 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1274    1.7       gwr 	/*
   1275    1.7       gwr 	 * If the table has a non-null parent pointer then it is in use.
   1276    1.1       gwr 	 * Forcibly abduct it from its parent and clear its entries.
   1277    1.1       gwr 	 * No re-entrancy worries here.  This table would not be in the
   1278    1.1       gwr 	 * table pool unless it was available for use.
   1279    1.7       gwr 	 *
   1280   1.95   thorpej 	 * Note that the second argument to free_a_table() is false.  This
   1281    1.7       gwr 	 * indicates that the table should not be relinked into the A table
   1282    1.7       gwr 	 * pool.  That is a job for the function that called us.
   1283    1.1       gwr 	 */
   1284    1.1       gwr 	if (tbl->at_parent) {
   1285   1.91   tsutsui 		KASSERT(tbl->at_wcnt == 0);
   1286    1.7       gwr 		pmap = tbl->at_parent;
   1287   1.95   thorpej 		free_a_table(tbl, false);
   1288    1.7       gwr 		pmap->pm_a_tmgr = NULL;
   1289    1.7       gwr 		pmap->pm_a_phys = kernAphys;
   1290    1.1       gwr 	}
   1291    1.1       gwr 	return tbl;
   1292    1.1       gwr }
   1293    1.1       gwr 
   1294    1.1       gwr /* get_b_table			INTERNAL
   1295    1.1       gwr  **
   1296    1.1       gwr  * Return a level B table for use.
   1297    1.1       gwr  */
   1298    1.1       gwr b_tmgr_t *
   1299   1.86       chs get_b_table(void)
   1300    1.1       gwr {
   1301    1.1       gwr 	b_tmgr_t *tbl;
   1302    1.1       gwr 
   1303    1.1       gwr 	/* See 'get_a_table' for comments. */
   1304   1.86       chs 	tbl = TAILQ_FIRST(&b_pool);
   1305    1.1       gwr 	if (tbl == NULL)
   1306    1.1       gwr 		panic("get_b_table: out of B tables.");
   1307    1.1       gwr 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1308    1.1       gwr 	if (tbl->bt_parent) {
   1309   1.91   tsutsui 		KASSERT(tbl->bt_wcnt == 0);
   1310    1.1       gwr 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1311    1.1       gwr 		tbl->bt_parent->at_ecnt--;
   1312   1.95   thorpej 		free_b_table(tbl, false);
   1313    1.1       gwr 	}
   1314    1.1       gwr 	return tbl;
   1315    1.1       gwr }
   1316    1.1       gwr 
   1317    1.1       gwr /* get_c_table			INTERNAL
   1318    1.1       gwr  **
   1319    1.1       gwr  * Return a level C table for use.
   1320    1.1       gwr  */
   1321    1.1       gwr c_tmgr_t *
   1322   1.86       chs get_c_table(void)
   1323    1.1       gwr {
   1324    1.1       gwr 	c_tmgr_t *tbl;
   1325    1.1       gwr 
   1326    1.1       gwr 	/* See 'get_a_table' for comments */
   1327   1.86       chs 	tbl = TAILQ_FIRST(&c_pool);
   1328    1.1       gwr 	if (tbl == NULL)
   1329    1.1       gwr 		panic("get_c_table: out of C tables.");
   1330    1.1       gwr 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1331    1.1       gwr 	if (tbl->ct_parent) {
   1332   1.91   tsutsui 		KASSERT(tbl->ct_wcnt == 0);
   1333    1.1       gwr 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1334    1.1       gwr 		tbl->ct_parent->bt_ecnt--;
   1335   1.95   thorpej 		free_c_table(tbl, false);
   1336    1.1       gwr 	}
   1337    1.1       gwr 	return tbl;
   1338    1.1       gwr }
   1339    1.1       gwr 
   1340    1.7       gwr /*
   1341    1.7       gwr  * The following 'free_table' and 'steal_table' functions are called to
   1342    1.1       gwr  * detach tables from their current obligations (parents and children) and
   1343    1.1       gwr  * prepare them for reuse in another mapping.
   1344    1.1       gwr  *
   1345    1.1       gwr  * Free_table is used when the calling function will handle the fate
   1346    1.1       gwr  * of the parent table, such as returning it to the free pool when it has
   1347    1.1       gwr  * no valid entries.  Functions that do not want to handle this should
   1348    1.1       gwr  * call steal_table, in which the parent table's descriptors and entry
   1349    1.1       gwr  * count are automatically modified when this table is removed.
   1350    1.1       gwr  */
   1351    1.1       gwr 
   1352    1.1       gwr /* free_a_table			INTERNAL
   1353    1.1       gwr  **
   1354    1.1       gwr  * Unmaps the given A table and all child tables from their current
   1355    1.1       gwr  * mappings.  Returns the number of pages that were invalidated.
   1356    1.7       gwr  * If 'relink' is true, the function will return the table to the head
   1357    1.7       gwr  * of the available table pool.
   1358    1.1       gwr  *
   1359    1.1       gwr  * Cache note: The MC68851 will automatically flush all
   1360    1.1       gwr  * descriptors derived from a given A table from its
   1361    1.1       gwr  * Automatic Translation Cache (ATC) if we issue a
   1362    1.1       gwr  * 'PFLUSHR' instruction with the base address of the
   1363    1.1       gwr  * table.  This function should do, and does so.
   1364    1.1       gwr  * Note note: We are using an MC68030 - there is no
   1365    1.1       gwr  * PFLUSHR.
   1366    1.1       gwr  */
   1367   1.86       chs int
   1368   1.94   thorpej free_a_table(a_tmgr_t *a_tbl, bool relink)
   1369    1.1       gwr {
   1370    1.1       gwr 	int i, removed_cnt;
   1371    1.1       gwr 	mmu_long_dte_t	*dte;
   1372    1.1       gwr 	mmu_short_dte_t *dtbl;
   1373   1.91   tsutsui 	b_tmgr_t	*b_tbl;
   1374   1.91   tsutsui 	uint8_t at_wired, bt_wired;
   1375    1.1       gwr 
   1376    1.7       gwr 	/*
   1377    1.7       gwr 	 * Flush the ATC cache of all cached descriptors derived
   1378    1.1       gwr 	 * from this table.
   1379   1.22    jeremy 	 * Sun3x does not use 68851's cached table feature
   1380    1.1       gwr 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1381    1.1       gwr 	 */
   1382    1.1       gwr 
   1383    1.7       gwr 	/*
   1384    1.7       gwr 	 * Remove any pending cache flushes that were designated
   1385    1.1       gwr 	 * for the pmap this A table belongs to.
   1386    1.1       gwr 	 * a_tbl->parent->atc_flushq[0] = 0;
   1387   1.22    jeremy 	 * Not implemented in sun3x.
   1388    1.1       gwr 	 */
   1389    1.1       gwr 
   1390    1.7       gwr 	/*
   1391    1.7       gwr 	 * All A tables in the system should retain a map for the
   1392    1.1       gwr 	 * kernel. If the table contains any valid descriptors
   1393    1.1       gwr 	 * (other than those for the kernel area), invalidate them all,
   1394    1.1       gwr 	 * stopping short of the kernel's entries.
   1395    1.1       gwr 	 */
   1396    1.1       gwr 	removed_cnt = 0;
   1397   1.91   tsutsui 	at_wired = a_tbl->at_wcnt;
   1398    1.1       gwr 	if (a_tbl->at_ecnt) {
   1399    1.1       gwr 		dte = a_tbl->at_dtbl;
   1400   1.92   tsutsui 		for (i = 0; i < MMU_TIA(KERNBASE); i++) {
   1401    1.7       gwr 			/*
   1402    1.7       gwr 			 * If a table entry points to a valid B table, free
   1403    1.1       gwr 			 * it and its children.
   1404    1.1       gwr 			 */
   1405    1.1       gwr 			if (MMU_VALID_DT(dte[i])) {
   1406    1.7       gwr 				/*
   1407    1.7       gwr 				 * The following block does several things,
   1408    1.1       gwr 				 * from innermost expression to the
   1409    1.1       gwr 				 * outermost:
   1410    1.1       gwr 				 * 1) It extracts the base (cc 1996)
   1411    1.1       gwr 				 *    address of the B table pointed
   1412    1.1       gwr 				 *    to in the A table entry dte[i].
   1413    1.1       gwr 				 * 2) It converts this base address into
   1414    1.1       gwr 				 *    the virtual address it can be
   1415    1.1       gwr 				 *    accessed with. (all MMU tables point
   1416    1.1       gwr 				 *    to physical addresses.)
   1417    1.1       gwr 				 * 3) It finds the corresponding manager
   1418    1.1       gwr 				 *    structure which manages this MMU table.
   1419    1.1       gwr 				 * 4) It frees the manager structure.
   1420    1.1       gwr 				 *    (This frees the MMU table and all
   1421    1.1       gwr 				 *    child tables. See 'free_b_table' for
   1422    1.1       gwr 				 *    details.)
   1423    1.1       gwr 				 */
   1424    1.7       gwr 				dtbl = mmu_ptov(dte[i].addr.raw);
   1425   1.91   tsutsui 				b_tbl = mmuB2tmgr(dtbl);
   1426   1.91   tsutsui 				bt_wired = b_tbl->bt_wcnt;
   1427   1.95   thorpej 				removed_cnt += free_b_table(b_tbl, true);
   1428   1.91   tsutsui 				if (bt_wired)
   1429   1.91   tsutsui 					a_tbl->at_wcnt--;
   1430    1.8       gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1431    1.1       gwr 			}
   1432    1.8       gwr 		}
   1433    1.8       gwr 		a_tbl->at_ecnt = 0;
   1434    1.1       gwr 	}
   1435   1.91   tsutsui 	KASSERT(a_tbl->at_wcnt == 0);
   1436   1.91   tsutsui 
   1437    1.7       gwr 	if (relink) {
   1438    1.7       gwr 		a_tbl->at_parent = NULL;
   1439   1.91   tsutsui 		if (!at_wired)
   1440   1.91   tsutsui 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1441    1.7       gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1442    1.7       gwr 	}
   1443    1.1       gwr 	return removed_cnt;
   1444    1.1       gwr }
   1445    1.1       gwr 
   1446    1.1       gwr /* free_b_table			INTERNAL
   1447    1.1       gwr  **
   1448    1.1       gwr  * Unmaps the given B table and all its children from their current
   1449    1.1       gwr  * mappings.  Returns the number of pages that were invalidated.
   1450    1.1       gwr  * (For comments, see 'free_a_table()').
   1451    1.1       gwr  */
   1452   1.86       chs int
   1453   1.94   thorpej free_b_table(b_tmgr_t *b_tbl, bool relink)
   1454    1.1       gwr {
   1455    1.1       gwr 	int i, removed_cnt;
   1456    1.1       gwr 	mmu_short_dte_t *dte;
   1457    1.1       gwr 	mmu_short_pte_t	*dtbl;
   1458   1.91   tsutsui 	c_tmgr_t	*c_tbl;
   1459   1.91   tsutsui 	uint8_t bt_wired, ct_wired;
   1460    1.1       gwr 
   1461    1.1       gwr 	removed_cnt = 0;
   1462   1.91   tsutsui 	bt_wired = b_tbl->bt_wcnt;
   1463    1.1       gwr 	if (b_tbl->bt_ecnt) {
   1464    1.1       gwr 		dte = b_tbl->bt_dtbl;
   1465   1.92   tsutsui 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
   1466    1.1       gwr 			if (MMU_VALID_DT(dte[i])) {
   1467    1.7       gwr 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1468   1.91   tsutsui 				c_tbl = mmuC2tmgr(dtbl);
   1469   1.91   tsutsui 				ct_wired = c_tbl->ct_wcnt;
   1470   1.95   thorpej 				removed_cnt += free_c_table(c_tbl, true);
   1471   1.91   tsutsui 				if (ct_wired)
   1472   1.91   tsutsui 					b_tbl->bt_wcnt--;
   1473    1.8       gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1474    1.1       gwr 			}
   1475    1.8       gwr 		}
   1476    1.8       gwr 		b_tbl->bt_ecnt = 0;
   1477    1.1       gwr 	}
   1478   1.91   tsutsui 	KASSERT(b_tbl->bt_wcnt == 0);
   1479    1.1       gwr 
   1480    1.7       gwr 	if (relink) {
   1481    1.7       gwr 		b_tbl->bt_parent = NULL;
   1482   1.91   tsutsui 		if (!bt_wired)
   1483   1.91   tsutsui 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1484    1.7       gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1485    1.7       gwr 	}
   1486    1.1       gwr 	return removed_cnt;
   1487    1.1       gwr }
   1488    1.1       gwr 
   1489    1.1       gwr /* free_c_table			INTERNAL
   1490    1.1       gwr  **
   1491    1.1       gwr  * Unmaps the given C table from use and returns it to the pool for
   1492    1.1       gwr  * re-use.  Returns the number of pages that were invalidated.
   1493    1.1       gwr  *
   1494    1.1       gwr  * This function preserves any physical page modification information
   1495    1.1       gwr  * contained in the page descriptors within the C table by calling
   1496    1.1       gwr  * 'pmap_remove_pte().'
   1497    1.1       gwr  */
   1498   1.86       chs int
   1499   1.94   thorpej free_c_table(c_tmgr_t *c_tbl, bool relink)
   1500    1.1       gwr {
   1501   1.91   tsutsui 	mmu_short_pte_t *c_pte;
   1502    1.1       gwr 	int i, removed_cnt;
   1503   1.91   tsutsui 	uint8_t ct_wired;
   1504    1.1       gwr 
   1505    1.1       gwr 	removed_cnt = 0;
   1506   1.91   tsutsui 	ct_wired = c_tbl->ct_wcnt;
   1507    1.8       gwr 	if (c_tbl->ct_ecnt) {
   1508   1.92   tsutsui 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
   1509   1.91   tsutsui 			c_pte = &c_tbl->ct_dtbl[i];
   1510   1.91   tsutsui 			if (MMU_VALID_DT(*c_pte)) {
   1511   1.91   tsutsui 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   1512   1.91   tsutsui 					c_tbl->ct_wcnt--;
   1513   1.91   tsutsui 				pmap_remove_pte(c_pte);
   1514    1.1       gwr 				removed_cnt++;
   1515    1.1       gwr 			}
   1516    1.8       gwr 		}
   1517    1.8       gwr 		c_tbl->ct_ecnt = 0;
   1518    1.8       gwr 	}
   1519   1.91   tsutsui 	KASSERT(c_tbl->ct_wcnt == 0);
   1520    1.8       gwr 
   1521    1.7       gwr 	if (relink) {
   1522    1.7       gwr 		c_tbl->ct_parent = NULL;
   1523   1.91   tsutsui 		if (!ct_wired)
   1524   1.91   tsutsui 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1525    1.7       gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1526    1.7       gwr 	}
   1527    1.1       gwr 	return removed_cnt;
   1528    1.1       gwr }
   1529    1.1       gwr 
   1530    1.1       gwr 
   1531    1.1       gwr /* pmap_remove_pte			INTERNAL
   1532    1.1       gwr  **
   1533    1.1       gwr  * Unmap the given pte and preserve any page modification
   1534    1.1       gwr  * information by transfering it to the pv head of the
   1535    1.1       gwr  * physical page it maps to.  This function does not update
   1536    1.1       gwr  * any reference counts because it is assumed that the calling
   1537    1.8       gwr  * function will do so.
   1538    1.1       gwr  */
   1539    1.1       gwr void
   1540   1.86       chs pmap_remove_pte(mmu_short_pte_t *pte)
   1541    1.1       gwr {
   1542    1.7       gwr 	u_short     pv_idx, targ_idx;
   1543   1.69       chs 	paddr_t     pa;
   1544    1.1       gwr 	pv_t       *pv;
   1545    1.1       gwr 
   1546    1.1       gwr 	pa = MMU_PTE_PA(*pte);
   1547    1.1       gwr 	if (is_managed(pa)) {
   1548    1.1       gwr 		pv = pa2pv(pa);
   1549    1.7       gwr 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1550    1.7       gwr 
   1551    1.7       gwr 		/*
   1552    1.7       gwr 		 * If the PTE being removed is the first (or only) PTE in
   1553    1.7       gwr 		 * the list of PTEs currently mapped to this page, remove the
   1554    1.7       gwr 		 * PTE by changing the index found on the PV head.  Otherwise
   1555    1.7       gwr 		 * a linear search through the list will have to be executed
   1556    1.7       gwr 		 * in order to find the PVE which points to the PTE being
   1557    1.7       gwr 		 * removed, so that it may be modified to point to its new
   1558    1.7       gwr 		 * neighbor.
   1559    1.7       gwr 		 */
   1560   1.69       chs 
   1561    1.7       gwr 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1562    1.7       gwr 		if (pv_idx == targ_idx) {
   1563    1.7       gwr 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1564    1.7       gwr 		} else {
   1565   1.69       chs 
   1566    1.7       gwr 			/*
   1567   1.32       gwr 			 * Find the PV element pointing to the target
   1568   1.32       gwr 			 * element.  Note: may have pv_idx==PVE_EOL
   1569    1.7       gwr 			 */
   1570   1.69       chs 
   1571   1.32       gwr 			for (;;) {
   1572   1.32       gwr 				if (pv_idx == PVE_EOL) {
   1573   1.32       gwr 					goto pv_not_found;
   1574   1.32       gwr 				}
   1575   1.32       gwr 				if (pvebase[pv_idx].pve_next == targ_idx)
   1576   1.32       gwr 					break;
   1577    1.7       gwr 				pv_idx = pvebase[pv_idx].pve_next;
   1578    1.7       gwr 			}
   1579   1.69       chs 
   1580    1.7       gwr 			/*
   1581    1.7       gwr 			 * At this point, pv_idx is the index of the PV
   1582    1.7       gwr 			 * element just before the target element in the list.
   1583    1.7       gwr 			 * Unlink the target.
   1584    1.7       gwr 			 */
   1585   1.69       chs 
   1586    1.7       gwr 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1587    1.7       gwr 		}
   1588   1.69       chs 
   1589    1.7       gwr 		/*
   1590    1.7       gwr 		 * Save the mod/ref bits of the pte by simply
   1591    1.1       gwr 		 * ORing the entire pte onto the pv_flags member
   1592    1.1       gwr 		 * of the pv structure.
   1593    1.1       gwr 		 * There is no need to use a separate bit pattern
   1594    1.1       gwr 		 * for usage information on the pv head than that
   1595    1.1       gwr 		 * which is used on the MMU ptes.
   1596    1.1       gwr 		 */
   1597   1.69       chs 
   1598   1.92   tsutsui  pv_not_found:
   1599    1.7       gwr 		pv->pv_flags |= (u_short) pte->attr.raw;
   1600    1.1       gwr 	}
   1601    1.1       gwr 	pte->attr.raw = MMU_DT_INVALID;
   1602    1.1       gwr }
   1603    1.1       gwr 
   1604    1.1       gwr /* pmap_stroll			INTERNAL
   1605    1.1       gwr  **
   1606    1.1       gwr  * Retrieve the addresses of all table managers involved in the mapping of
   1607   1.77       wiz  * the given virtual address.  If the table walk completed successfully,
   1608   1.95   thorpej  * return true.  If it was only partially successful, return false.
   1609    1.1       gwr  * The table walk performed by this function is important to many other
   1610    1.1       gwr  * functions in this module.
   1611    1.7       gwr  *
   1612    1.7       gwr  * Note: This function ought to be easier to read.
   1613    1.1       gwr  */
   1614   1.94   thorpej bool
   1615   1.86       chs pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   1616   1.86       chs     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   1617   1.86       chs     int *pte_idx)
   1618    1.1       gwr {
   1619    1.1       gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1620    1.1       gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1621    1.1       gwr 
   1622    1.1       gwr 	if (pmap == pmap_kernel())
   1623   1.95   thorpej 		return false;
   1624    1.1       gwr 
   1625    1.7       gwr 	/* Does the given pmap have its own A table? */
   1626    1.7       gwr 	*a_tbl = pmap->pm_a_tmgr;
   1627    1.1       gwr 	if (*a_tbl == NULL)
   1628   1.95   thorpej 		return false; /* No.  Return unknown. */
   1629    1.1       gwr 	/* Does the A table have a valid B table
   1630    1.1       gwr 	 * under the corresponding table entry?
   1631    1.1       gwr 	 */
   1632    1.1       gwr 	*a_idx = MMU_TIA(va);
   1633    1.1       gwr 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1634    1.1       gwr 	if (!MMU_VALID_DT(*a_dte))
   1635   1.95   thorpej 		return false; /* No. Return unknown. */
   1636    1.1       gwr 	/* Yes. Extract B table from the A table. */
   1637    1.7       gwr 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1638   1.92   tsutsui 	/*
   1639   1.92   tsutsui 	 * Does the B table have a valid C table
   1640    1.1       gwr 	 * under the corresponding table entry?
   1641    1.1       gwr 	 */
   1642    1.1       gwr 	*b_idx = MMU_TIB(va);
   1643    1.1       gwr 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1644    1.1       gwr 	if (!MMU_VALID_DT(*b_dte))
   1645   1.95   thorpej 		return false; /* No. Return unknown. */
   1646    1.1       gwr 	/* Yes. Extract C table from the B table. */
   1647    1.7       gwr 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1648    1.1       gwr 	*pte_idx = MMU_TIC(va);
   1649    1.1       gwr 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1650    1.1       gwr 
   1651   1.95   thorpej 	return true;
   1652    1.1       gwr }
   1653    1.1       gwr 
   1654    1.1       gwr /* pmap_enter			INTERFACE
   1655    1.1       gwr  **
   1656    1.1       gwr  * Called by the kernel to map a virtual address
   1657    1.1       gwr  * to a physical address in the given process map.
   1658    1.1       gwr  *
   1659    1.1       gwr  * Note: this function should apply an exclusive lock
   1660    1.1       gwr  * on the pmap system for its duration.  (it certainly
   1661    1.1       gwr  * would save my hair!!)
   1662    1.7       gwr  * This function ought to be easier to read.
   1663    1.1       gwr  */
   1664   1.86       chs int
   1665   1.86       chs pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1666    1.1       gwr {
   1667   1.94   thorpej 	bool insert, managed; /* Marks the need for PV insertion.*/
   1668    1.7       gwr 	u_short nidx;            /* PV list index                     */
   1669   1.52    jeremy 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1670    1.8       gwr 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1671    1.1       gwr 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1672    1.1       gwr 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1673    1.1       gwr 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1674    1.1       gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1675    1.1       gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1676    1.1       gwr 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1677    1.1       gwr 	pv_t      *pv;           /* pv list head                      */
   1678   1.94   thorpej 	bool wired;         /* is the mapping to be wired?       */
   1679    1.1       gwr 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1680    1.1       gwr 
   1681    1.1       gwr 	if (pmap == pmap_kernel()) {
   1682    1.1       gwr 		pmap_enter_kernel(va, pa, prot);
   1683   1.61       chs 		return 0;
   1684    1.1       gwr 	}
   1685    1.7       gwr 
   1686   1.52    jeremy 	/*
   1687   1.52    jeremy 	 * Determine if the mapping should be wired.
   1688   1.52    jeremy 	 */
   1689   1.52    jeremy 	wired = ((flags & PMAP_WIRED) != 0);
   1690   1.52    jeremy 
   1691   1.52    jeremy 	/*
   1692   1.52    jeremy 	 * NOTE1:
   1693   1.52    jeremy 	 *
   1694   1.52    jeremy 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1695   1.52    jeremy 	 * that it now accepts a 'flags' argument.  This new argument
   1696   1.52    jeremy 	 * contains bit-flags for the architecture-independent (UVM) system to
   1697   1.52    jeremy 	 * use in signalling certain mapping requirements to the architecture-
   1698   1.52    jeremy 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1699   1.52    jeremy 	 * one of the flags within it.
   1700   1.52    jeremy 	 *
   1701   1.52    jeremy 	 * In addition to flags signaled by the architecture-independent
   1702   1.52    jeremy 	 * system, parts of the architecture-dependent section of the sun3x
   1703   1.52    jeremy 	 * kernel pass their own flags in the lower, unused bits of the
   1704   1.52    jeremy 	 * physical address supplied to this function.  These flags are
   1705   1.52    jeremy 	 * extracted and stored in the temporary variable 'mapflags'.
   1706   1.52    jeremy 	 *
   1707   1.52    jeremy 	 * Extract sun3x specific flags from the physical address.
   1708   1.52    jeremy 	 */
   1709   1.92   tsutsui 	mapflags = (pa & ~MMU_PAGE_MASK);
   1710   1.92   tsutsui 	pa &= MMU_PAGE_MASK;
   1711    1.7       gwr 
   1712    1.7       gwr 	/*
   1713   1.22    jeremy 	 * Determine if the physical address being mapped is on-board RAM.
   1714   1.22    jeremy 	 * Any other area of the address space is likely to belong to a
   1715   1.22    jeremy 	 * device and hence it would be disasterous to cache its contents.
   1716    1.7       gwr 	 */
   1717   1.95   thorpej 	if ((managed = is_managed(pa)) == false)
   1718   1.52    jeremy 		mapflags |= PMAP_NC;
   1719    1.7       gwr 
   1720    1.7       gwr 	/*
   1721    1.7       gwr 	 * For user mappings we walk along the MMU tables of the given
   1722    1.1       gwr 	 * pmap, reaching a PTE which describes the virtual page being
   1723    1.1       gwr 	 * mapped or changed.  If any level of the walk ends in an invalid
   1724    1.1       gwr 	 * entry, a table must be allocated and the entry must be updated
   1725    1.1       gwr 	 * to point to it.
   1726    1.1       gwr 	 * There is a bit of confusion as to whether this code must be
   1727    1.1       gwr 	 * re-entrant.  For now we will assume it is.  To support
   1728    1.1       gwr 	 * re-entrancy we must unlink tables from the table pool before
   1729    1.1       gwr 	 * we assume we may use them.  Tables are re-linked into the pool
   1730    1.1       gwr 	 * when we are finished with them at the end of the function.
   1731    1.1       gwr 	 * But I don't feel like doing that until we have proof that this
   1732    1.1       gwr 	 * needs to be re-entrant.
   1733    1.1       gwr 	 * 'llevel' records which tables need to be relinked.
   1734    1.1       gwr 	 */
   1735    1.1       gwr 	llevel = NONE;
   1736    1.1       gwr 
   1737    1.7       gwr 	/*
   1738    1.7       gwr 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1739    1.7       gwr 	 * A table, allocate a new one from the available pool.
   1740    1.1       gwr 	 */
   1741    1.1       gwr 
   1742    1.7       gwr 	a_tbl = pmap->pm_a_tmgr;
   1743    1.7       gwr 	if (a_tbl == NULL) {
   1744    1.7       gwr 		/*
   1745    1.7       gwr 		 * This pmap does not currently have an A table.  Allocate
   1746    1.7       gwr 		 * a new one.
   1747    1.7       gwr 		 */
   1748    1.7       gwr 		a_tbl = get_a_table();
   1749    1.7       gwr 		a_tbl->at_parent = pmap;
   1750    1.7       gwr 
   1751    1.7       gwr 		/*
   1752    1.7       gwr 		 * Assign this new A table to the pmap, and calculate its
   1753    1.7       gwr 		 * physical address so that loadcrp() can be used to make
   1754    1.7       gwr 		 * the table active.
   1755    1.7       gwr 		 */
   1756    1.7       gwr 		pmap->pm_a_tmgr = a_tbl;
   1757    1.7       gwr 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1758    1.7       gwr 
   1759    1.7       gwr 		/*
   1760    1.7       gwr 		 * If the process receiving a new A table is the current
   1761    1.7       gwr 		 * process, we are responsible for setting the MMU so that
   1762    1.9       gwr 		 * it becomes the current address space.  This only adds
   1763    1.9       gwr 		 * new mappings, so no need to flush anything.
   1764    1.7       gwr 		 */
   1765    1.9       gwr 		if (pmap == current_pmap()) {
   1766    1.9       gwr 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1767    1.9       gwr 			loadcrp(&kernel_crp);
   1768    1.9       gwr 		}
   1769    1.7       gwr 
   1770    1.1       gwr 		if (!wired)
   1771    1.1       gwr 			llevel = NEWA;
   1772    1.1       gwr 	} else {
   1773    1.7       gwr 		/*
   1774    1.7       gwr 		 * Use the A table already allocated for this pmap.
   1775    1.1       gwr 		 * Unlink it from the A table pool if necessary.
   1776    1.1       gwr 		 */
   1777    1.1       gwr 		if (wired && !a_tbl->at_wcnt)
   1778    1.1       gwr 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1779    1.1       gwr 	}
   1780    1.1       gwr 
   1781    1.7       gwr 	/*
   1782    1.7       gwr 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1783    1.1       gwr 	 * allocate one.
   1784    1.1       gwr 	 */
   1785    1.1       gwr 
   1786    1.1       gwr 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1787    1.1       gwr 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1788    1.1       gwr 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1789    1.7       gwr 		/* The descriptor is valid.  Use the B table it points to. */
   1790    1.1       gwr 		/*************************************
   1791    1.1       gwr 		 *               a_idx               *
   1792    1.1       gwr 		 *                 v                 *
   1793    1.1       gwr 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1794    1.1       gwr 		 *          | | | | | | | | | | | |  *
   1795    1.1       gwr 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1796    1.1       gwr 		 *                 |                 *
   1797    1.1       gwr 		 *                 \- b_tbl -> +-+-  *
   1798    1.1       gwr 		 *                             | |   *
   1799    1.1       gwr 		 *                             +-+-  *
   1800    1.1       gwr 		 *************************************/
   1801    1.7       gwr 		b_dte = mmu_ptov(a_dte->addr.raw);
   1802    1.1       gwr 		b_tbl = mmuB2tmgr(b_dte);
   1803    1.7       gwr 
   1804    1.7       gwr 		/*
   1805    1.7       gwr 		 * If the requested mapping must be wired, but this table
   1806    1.7       gwr 		 * being used to map it is not, the table must be removed
   1807    1.7       gwr 		 * from the available pool and its wired entry count
   1808    1.7       gwr 		 * incremented.
   1809    1.7       gwr 		 */
   1810    1.1       gwr 		if (wired && !b_tbl->bt_wcnt) {
   1811    1.1       gwr 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1812    1.7       gwr 			a_tbl->at_wcnt++;
   1813    1.1       gwr 		}
   1814    1.1       gwr 	} else {
   1815    1.7       gwr 		/* The descriptor is invalid.  Allocate a new B table. */
   1816    1.7       gwr 		b_tbl = get_b_table();
   1817    1.7       gwr 
   1818    1.1       gwr 		/* Point the parent A table descriptor to this new B table. */
   1819    1.7       gwr 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1820    1.7       gwr 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1821    1.7       gwr 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1822    1.7       gwr 
   1823    1.1       gwr 		/* Create the necessary back references to the parent table */
   1824    1.1       gwr 		b_tbl->bt_parent = a_tbl;
   1825    1.1       gwr 		b_tbl->bt_pidx = a_idx;
   1826    1.7       gwr 
   1827    1.7       gwr 		/*
   1828    1.7       gwr 		 * If this table is to be wired, make sure the parent A table
   1829    1.1       gwr 		 * wired count is updated to reflect that it has another wired
   1830    1.1       gwr 		 * entry.
   1831    1.1       gwr 		 */
   1832    1.1       gwr 		if (wired)
   1833    1.1       gwr 			a_tbl->at_wcnt++;
   1834    1.1       gwr 		else if (llevel == NONE)
   1835    1.1       gwr 			llevel = NEWB;
   1836    1.1       gwr 	}
   1837    1.1       gwr 
   1838    1.7       gwr 	/*
   1839    1.7       gwr 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1840    1.1       gwr 	 * allocate one.
   1841    1.1       gwr 	 */
   1842    1.1       gwr 
   1843    1.1       gwr 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1844    1.1       gwr 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1845    1.1       gwr 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1846    1.7       gwr 		/* The descriptor is valid.  Use the C table it points to. */
   1847    1.1       gwr 		/**************************************
   1848    1.1       gwr 		 *               c_idx                *
   1849    1.1       gwr 		 * |                v                 *
   1850    1.1       gwr 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1851    1.1       gwr 		 *             | | | | | | | | | | |  *
   1852    1.1       gwr 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1853    1.1       gwr 		 *                  |                 *
   1854    1.1       gwr 		 *                  \- c_tbl -> +-+-- *
   1855    1.1       gwr 		 *                              | | | *
   1856    1.1       gwr 		 *                              +-+-- *
   1857    1.1       gwr 		 **************************************/
   1858    1.7       gwr 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1859    1.1       gwr 		c_tbl = mmuC2tmgr(c_pte);
   1860    1.7       gwr 
   1861    1.7       gwr 		/* If mapping is wired and table is not */
   1862    1.1       gwr 		if (wired && !c_tbl->ct_wcnt) {
   1863    1.1       gwr 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1864    1.1       gwr 			b_tbl->bt_wcnt++;
   1865    1.1       gwr 		}
   1866    1.1       gwr 	} else {
   1867    1.7       gwr 		/* The descriptor is invalid.  Allocate a new C table. */
   1868    1.7       gwr 		c_tbl = get_c_table();
   1869    1.7       gwr 
   1870    1.1       gwr 		/* Point the parent B table descriptor to this new C table. */
   1871    1.7       gwr 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1872    1.7       gwr 		b_dte->attr.raw |= MMU_DT_SHORT;
   1873    1.7       gwr 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1874    1.7       gwr 
   1875    1.1       gwr 		/* Create the necessary back references to the parent table */
   1876    1.1       gwr 		c_tbl->ct_parent = b_tbl;
   1877    1.1       gwr 		c_tbl->ct_pidx = b_idx;
   1878   1.26    jeremy 		/*
   1879   1.26    jeremy 		 * Store the pmap and base virtual managed address for faster
   1880   1.26    jeremy 		 * retrieval in the PV functions.
   1881   1.26    jeremy 		 */
   1882   1.26    jeremy 		c_tbl->ct_pmap = pmap;
   1883   1.26    jeremy 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1884    1.7       gwr 
   1885    1.7       gwr 		/*
   1886    1.7       gwr 		 * If this table is to be wired, make sure the parent B table
   1887    1.1       gwr 		 * wired count is updated to reflect that it has another wired
   1888    1.1       gwr 		 * entry.
   1889    1.1       gwr 		 */
   1890    1.1       gwr 		if (wired)
   1891    1.1       gwr 			b_tbl->bt_wcnt++;
   1892    1.1       gwr 		else if (llevel == NONE)
   1893    1.1       gwr 			llevel = NEWC;
   1894    1.1       gwr 	}
   1895    1.1       gwr 
   1896    1.7       gwr 	/*
   1897    1.7       gwr 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1898    1.1       gwr 	 * slot of the C table, describing the PA to which the VA is mapped.
   1899    1.1       gwr 	 */
   1900    1.1       gwr 
   1901    1.1       gwr 	pte_idx = MMU_TIC(va);
   1902    1.1       gwr 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1903    1.1       gwr 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1904    1.7       gwr 		/*
   1905    1.7       gwr 		 * The PTE is currently valid.  This particular call
   1906    1.1       gwr 		 * is just a synonym for one (or more) of the following
   1907    1.1       gwr 		 * operations:
   1908    1.7       gwr 		 *     change protection of a page
   1909    1.1       gwr 		 *     change wiring status of a page
   1910    1.1       gwr 		 *     remove the mapping of a page
   1911    1.1       gwr 		 */
   1912    1.7       gwr 
   1913    1.7       gwr 		/* First check if this is a wiring operation. */
   1914   1.91   tsutsui 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
   1915    1.7       gwr 			/*
   1916   1.91   tsutsui 			 * The existing mapping is wired, so adjust wired
   1917   1.91   tsutsui 			 * entry count here. If new mapping is still wired,
   1918   1.91   tsutsui 			 * wired entry count will be incremented again later.
   1919    1.7       gwr 			 */
   1920   1.91   tsutsui 			c_tbl->ct_wcnt--;
   1921   1.91   tsutsui 			if (!wired) {
   1922   1.91   tsutsui 				/*
   1923   1.91   tsutsui 				 * The mapping of this PTE is being changed
   1924   1.91   tsutsui 				 * from wired to unwired.
   1925   1.91   tsutsui 				 * Adjust wired entry counts in each table and
   1926   1.91   tsutsui 				 * set llevel flag to put unwired tables back
   1927   1.91   tsutsui 				 * into the active pool.
   1928   1.91   tsutsui 				 */
   1929   1.91   tsutsui 				if (c_tbl->ct_wcnt == 0) {
   1930   1.91   tsutsui 					llevel = NEWC;
   1931   1.91   tsutsui 					if (--b_tbl->bt_wcnt == 0) {
   1932   1.91   tsutsui 						llevel = NEWB;
   1933   1.91   tsutsui 						if (--a_tbl->at_wcnt == 0) {
   1934   1.91   tsutsui 							llevel = NEWA;
   1935   1.91   tsutsui 						}
   1936   1.91   tsutsui 					}
   1937   1.91   tsutsui 				}
   1938   1.91   tsutsui 			}
   1939    1.7       gwr 		}
   1940    1.7       gwr 
   1941    1.1       gwr 		/* Is the new address the same as the old? */
   1942    1.1       gwr 		if (MMU_PTE_PA(*c_pte) == pa) {
   1943    1.7       gwr 			/*
   1944    1.7       gwr 			 * Yes, mark that it does not need to be reinserted
   1945    1.7       gwr 			 * into the PV list.
   1946    1.7       gwr 			 */
   1947   1.95   thorpej 			insert = false;
   1948    1.7       gwr 
   1949    1.7       gwr 			/*
   1950    1.7       gwr 			 * Clear all but the modified, referenced and wired
   1951    1.7       gwr 			 * bits on the PTE.
   1952    1.7       gwr 			 */
   1953    1.7       gwr 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1954   1.92   tsutsui 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1955    1.1       gwr 		} else {
   1956    1.1       gwr 			/* No, remove the old entry */
   1957    1.1       gwr 			pmap_remove_pte(c_pte);
   1958   1.95   thorpej 			insert = true;
   1959    1.1       gwr 		}
   1960    1.8       gwr 
   1961    1.8       gwr 		/*
   1962    1.8       gwr 		 * TLB flush is only necessary if modifying current map.
   1963    1.8       gwr 		 * However, in pmap_enter(), the pmap almost always IS
   1964    1.8       gwr 		 * the current pmap, so don't even bother to check.
   1965    1.8       gwr 		 */
   1966    1.8       gwr 		TBIS(va);
   1967    1.1       gwr 	} else {
   1968    1.7       gwr 		/*
   1969    1.7       gwr 		 * The PTE is invalid.  Increment the valid entry count in
   1970    1.8       gwr 		 * the C table manager to reflect the addition of a new entry.
   1971    1.7       gwr 		 */
   1972    1.1       gwr 		c_tbl->ct_ecnt++;
   1973    1.8       gwr 
   1974    1.8       gwr 		/* XXX - temporarily make sure the PTE is cleared. */
   1975    1.8       gwr 		c_pte->attr.raw = 0;
   1976    1.1       gwr 
   1977    1.7       gwr 		/* It will also need to be inserted into the PV list. */
   1978   1.95   thorpej 		insert = true;
   1979    1.7       gwr 	}
   1980    1.7       gwr 
   1981    1.7       gwr 	/*
   1982    1.7       gwr 	 * If page is changing from unwired to wired status, set an unused bit
   1983    1.7       gwr 	 * within the PTE to indicate that it is wired.  Also increment the
   1984    1.7       gwr 	 * wired entry count in the C table manager.
   1985    1.7       gwr 	 */
   1986    1.7       gwr 	if (wired) {
   1987    1.1       gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1988    1.7       gwr 		c_tbl->ct_wcnt++;
   1989    1.1       gwr 	}
   1990    1.1       gwr 
   1991    1.7       gwr 	/*
   1992    1.7       gwr 	 * Map the page, being careful to preserve modify/reference/wired
   1993    1.7       gwr 	 * bits.  At this point it is assumed that the PTE either has no bits
   1994    1.7       gwr 	 * set, or if there are set bits, they are only modified, reference or
   1995    1.7       gwr 	 * wired bits.  If not, the following statement will cause erratic
   1996    1.7       gwr 	 * behavior.
   1997    1.7       gwr 	 */
   1998    1.8       gwr #ifdef	PMAP_DEBUG
   1999    1.7       gwr 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2000    1.7       gwr 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2001    1.7       gwr 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2002    1.7       gwr 		Debugger();
   2003    1.7       gwr 	}
   2004    1.7       gwr #endif
   2005    1.7       gwr 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2006    1.7       gwr 
   2007    1.7       gwr 	/*
   2008    1.7       gwr 	 * If the mapping should be read-only, set the write protect
   2009    1.7       gwr 	 * bit in the PTE.
   2010    1.7       gwr 	 */
   2011    1.7       gwr 	if (!(prot & VM_PROT_WRITE))
   2012    1.7       gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2013    1.7       gwr 
   2014    1.7       gwr 	/*
   2015   1.87       chs 	 * Mark the PTE as used and/or modified as specified by the flags arg.
   2016   1.87       chs 	 */
   2017   1.87       chs 	if (flags & VM_PROT_ALL) {
   2018   1.87       chs 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
   2019   1.87       chs 		if (flags & VM_PROT_WRITE) {
   2020   1.87       chs 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
   2021   1.87       chs 		}
   2022   1.87       chs 	}
   2023   1.87       chs 
   2024   1.87       chs 	/*
   2025    1.7       gwr 	 * If the mapping should be cache inhibited (indicated by the flag
   2026    1.7       gwr 	 * bits found on the lower order of the physical address.)
   2027    1.7       gwr 	 * mark the PTE as a cache inhibited page.
   2028    1.7       gwr 	 */
   2029   1.52    jeremy 	if (mapflags & PMAP_NC)
   2030    1.7       gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2031    1.7       gwr 
   2032    1.7       gwr 	/*
   2033    1.7       gwr 	 * If the physical address being mapped is managed by the PV
   2034    1.7       gwr 	 * system then link the pte into the list of pages mapped to that
   2035    1.7       gwr 	 * address.
   2036    1.7       gwr 	 */
   2037    1.7       gwr 	if (insert && managed) {
   2038    1.7       gwr 		pv = pa2pv(pa);
   2039    1.7       gwr 		nidx = pteidx(c_pte);
   2040    1.7       gwr 
   2041    1.7       gwr 		pvebase[nidx].pve_next = pv->pv_idx;
   2042    1.7       gwr 		pv->pv_idx = nidx;
   2043    1.7       gwr 	}
   2044    1.1       gwr 
   2045   1.91   tsutsui 	/* Move any allocated or unwired tables back into the active pool. */
   2046    1.1       gwr 
   2047    1.1       gwr 	switch (llevel) {
   2048    1.1       gwr 		case NEWA:
   2049    1.1       gwr 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2050    1.1       gwr 			/* FALLTHROUGH */
   2051    1.1       gwr 		case NEWB:
   2052    1.1       gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2053    1.1       gwr 			/* FALLTHROUGH */
   2054    1.1       gwr 		case NEWC:
   2055    1.1       gwr 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2056    1.1       gwr 			/* FALLTHROUGH */
   2057    1.1       gwr 		default:
   2058    1.1       gwr 			break;
   2059    1.1       gwr 	}
   2060   1.51   thorpej 
   2061   1.61       chs 	return 0;
   2062    1.1       gwr }
   2063    1.1       gwr 
   2064    1.1       gwr /* pmap_enter_kernel			INTERNAL
   2065    1.1       gwr  **
   2066    1.1       gwr  * Map the given virtual address to the given physical address within the
   2067    1.1       gwr  * kernel address space.  This function exists because the kernel map does
   2068    1.1       gwr  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2069    1.1       gwr  * and can be edited directly without the need to walk through any tables.
   2070    1.1       gwr  *
   2071    1.1       gwr  * XXX: "Danger, Will Robinson!"
   2072    1.1       gwr  * Note that the kernel should never take a fault on any page
   2073    1.1       gwr  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2074    1.1       gwr  * trap.c for kernel-mode MMU faults.  This means that mappings
   2075    1.1       gwr  * created in that range must be implicily wired. -gwr
   2076    1.1       gwr  */
   2077   1.86       chs void
   2078   1.86       chs pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2079    1.1       gwr {
   2080   1.94   thorpej 	bool       was_valid, insert;
   2081   1.32       gwr 	u_short         pte_idx;
   2082   1.69       chs 	int             flags;
   2083    1.1       gwr 	mmu_short_pte_t *pte;
   2084    1.7       gwr 	pv_t            *pv;
   2085   1.69       chs 	paddr_t     old_pa;
   2086    1.7       gwr 
   2087   1.32       gwr 	flags = (pa & ~MMU_PAGE_MASK);
   2088   1.32       gwr 	pa &= MMU_PAGE_MASK;
   2089   1.32       gwr 
   2090   1.32       gwr 	if (is_managed(pa))
   2091   1.95   thorpej 		insert = true;
   2092   1.32       gwr 	else
   2093   1.95   thorpej 		insert = false;
   2094    1.7       gwr 
   2095    1.7       gwr 	/*
   2096    1.7       gwr 	 * Calculate the index of the PTE being modified.
   2097    1.7       gwr 	 */
   2098   1.92   tsutsui 	pte_idx = (u_long)m68k_btop(va - KERNBASE);
   2099    1.1       gwr 
   2100   1.22    jeremy 	/* This array is traditionally named "Sysmap" */
   2101    1.7       gwr 	pte = &kernCbase[pte_idx];
   2102    1.7       gwr 
   2103    1.7       gwr 	if (MMU_VALID_DT(*pte)) {
   2104   1.95   thorpej 		was_valid = true;
   2105    1.7       gwr 		/*
   2106   1.32       gwr 		 * If the PTE already maps a different
   2107   1.32       gwr 		 * physical address, umap and pv_unlink.
   2108   1.24    jeremy 		 */
   2109   1.24    jeremy 		old_pa = MMU_PTE_PA(*pte);
   2110   1.32       gwr 		if (pa != old_pa)
   2111   1.32       gwr 			pmap_remove_pte(pte);
   2112   1.32       gwr 		else {
   2113   1.24    jeremy 		    /*
   2114   1.32       gwr 		     * Old PA and new PA are the same.  No need to
   2115   1.32       gwr 		     * relink the mapping within the PV list.
   2116   1.24    jeremy 		     */
   2117   1.95   thorpej 		     insert = false;
   2118    1.8       gwr 
   2119    1.7       gwr 		    /*
   2120   1.24    jeremy 		     * Save any mod/ref bits on the PTE.
   2121    1.7       gwr 		     */
   2122   1.24    jeremy 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2123    1.7       gwr 		}
   2124    1.7       gwr 	} else {
   2125    1.8       gwr 		pte->attr.raw = MMU_DT_INVALID;
   2126   1.95   thorpej 		was_valid = false;
   2127    1.7       gwr 	}
   2128    1.7       gwr 
   2129    1.7       gwr 	/*
   2130    1.8       gwr 	 * Map the page.  Being careful to preserve modified/referenced bits
   2131    1.8       gwr 	 * on the PTE.
   2132    1.7       gwr 	 */
   2133    1.7       gwr 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2134    1.1       gwr 
   2135    1.1       gwr 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2136    1.1       gwr 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2137    1.7       gwr 	if (flags & PMAP_NC)
   2138    1.1       gwr 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2139    1.8       gwr 	if (was_valid)
   2140    1.7       gwr 		TBIS(va);
   2141    1.1       gwr 
   2142    1.7       gwr 	/*
   2143    1.7       gwr 	 * Insert the PTE into the PV system, if need be.
   2144    1.7       gwr 	 */
   2145    1.7       gwr 	if (insert) {
   2146    1.7       gwr 		pv = pa2pv(pa);
   2147    1.7       gwr 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2148    1.7       gwr 		pv->pv_idx = pte_idx;
   2149    1.7       gwr 	}
   2150   1.34       gwr }
   2151   1.34       gwr 
   2152   1.86       chs void
   2153   1.86       chs pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2154   1.49       chs {
   2155   1.69       chs 	mmu_short_pte_t	*pte;
   2156   1.69       chs 
   2157   1.69       chs 	/* This array is traditionally named "Sysmap" */
   2158   1.69       chs 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
   2159   1.69       chs 
   2160   1.69       chs 	KASSERT(!MMU_VALID_DT(*pte));
   2161   1.69       chs 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2162   1.69       chs 	if (!(prot & VM_PROT_WRITE))
   2163   1.69       chs 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2164   1.49       chs }
   2165   1.49       chs 
   2166   1.86       chs void
   2167   1.86       chs pmap_kremove(vaddr_t va, vsize_t len)
   2168   1.49       chs {
   2169   1.69       chs 	int idx, eidx;
   2170   1.69       chs 
   2171   1.69       chs #ifdef	PMAP_DEBUG
   2172   1.91   tsutsui 	if ((va & PGOFSET) || (len & PGOFSET))
   2173   1.72   tsutsui 		panic("pmap_kremove: alignment");
   2174   1.69       chs #endif
   2175   1.69       chs 
   2176   1.69       chs 	idx  = m68k_btop(va - KERNBASE);
   2177   1.69       chs 	eidx = m68k_btop(va + len - KERNBASE);
   2178   1.69       chs 
   2179   1.69       chs 	while (idx < eidx) {
   2180   1.69       chs 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2181   1.69       chs 		TBIS(va);
   2182   1.79   thorpej 		va += PAGE_SIZE;
   2183   1.49       chs 	}
   2184   1.49       chs }
   2185   1.49       chs 
   2186   1.35    jeremy /* pmap_map			INTERNAL
   2187   1.35    jeremy  **
   2188   1.35    jeremy  * Map a contiguous range of physical memory into a contiguous range of
   2189   1.35    jeremy  * the kernel virtual address space.
   2190   1.35    jeremy  *
   2191   1.35    jeremy  * Used for device mappings and early mapping of the kernel text/data/bss.
   2192   1.35    jeremy  * Returns the first virtual address beyond the end of the range.
   2193   1.34       gwr  */
   2194   1.86       chs vaddr_t
   2195   1.86       chs pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
   2196   1.34       gwr {
   2197   1.34       gwr 	int sz;
   2198   1.34       gwr 
   2199   1.34       gwr 	sz = endpa - pa;
   2200   1.34       gwr 	do {
   2201   1.34       gwr 		pmap_enter_kernel(va, pa, prot);
   2202   1.79   thorpej 		va += PAGE_SIZE;
   2203   1.79   thorpej 		pa += PAGE_SIZE;
   2204   1.79   thorpej 		sz -= PAGE_SIZE;
   2205   1.34       gwr 	} while (sz > 0);
   2206   1.73     chris 	pmap_update(pmap_kernel());
   2207   1.92   tsutsui 	return va;
   2208   1.92   tsutsui }
   2209   1.92   tsutsui 
   2210   1.92   tsutsui /* pmap_protect_kernel			INTERNAL
   2211   1.92   tsutsui  **
   2212   1.92   tsutsui  * Apply the given protection code to a kernel address range.
   2213   1.92   tsutsui  */
   2214   1.92   tsutsui static INLINE void
   2215   1.92   tsutsui pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2216   1.92   tsutsui {
   2217   1.92   tsutsui 	vaddr_t va;
   2218   1.92   tsutsui 	mmu_short_pte_t *pte;
   2219   1.92   tsutsui 
   2220   1.92   tsutsui 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2221   1.92   tsutsui 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2222   1.92   tsutsui 		if (MMU_VALID_DT(*pte)) {
   2223   1.92   tsutsui 		    switch (prot) {
   2224   1.92   tsutsui 		        case VM_PROT_ALL:
   2225   1.92   tsutsui 		            break;
   2226   1.92   tsutsui 		        case VM_PROT_EXECUTE:
   2227   1.92   tsutsui 		        case VM_PROT_READ:
   2228   1.92   tsutsui 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2229   1.92   tsutsui 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2230   1.92   tsutsui 		            break;
   2231   1.92   tsutsui 		        case VM_PROT_NONE:
   2232   1.92   tsutsui 		            /* this is an alias for 'pmap_remove_kernel' */
   2233   1.92   tsutsui 		            pmap_remove_pte(pte);
   2234   1.92   tsutsui 		            break;
   2235   1.92   tsutsui 		        default:
   2236   1.92   tsutsui 		            break;
   2237   1.92   tsutsui 		    }
   2238   1.92   tsutsui 		    /*
   2239   1.92   tsutsui 		     * since this is the kernel, immediately flush any cached
   2240   1.92   tsutsui 		     * descriptors for this address.
   2241   1.92   tsutsui 		     */
   2242   1.92   tsutsui 		    TBIS(va);
   2243   1.92   tsutsui 		}
   2244   1.92   tsutsui 	}
   2245    1.1       gwr }
   2246    1.1       gwr 
   2247    1.1       gwr /* pmap_protect			INTERFACE
   2248    1.1       gwr  **
   2249    1.7       gwr  * Apply the given protection to the given virtual address range within
   2250    1.1       gwr  * the given map.
   2251    1.1       gwr  *
   2252    1.1       gwr  * It is ok for the protection applied to be stronger than what is
   2253    1.1       gwr  * specified.  We use this to our advantage when the given map has no
   2254    1.7       gwr  * mapping for the virtual address.  By skipping a page when this
   2255    1.1       gwr  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2256    1.1       gwr  * and therefore do not need to map the page just to apply a protection
   2257    1.1       gwr  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2258    1.7       gwr  *
   2259    1.7       gwr  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2260    1.7       gwr  *       setup, and then manual scrolling in the for() loop.
   2261    1.1       gwr  */
   2262   1.86       chs void
   2263   1.86       chs pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2264    1.1       gwr {
   2265   1.94   thorpej 	bool iscurpmap;
   2266    1.1       gwr 	int a_idx, b_idx, c_idx;
   2267    1.1       gwr 	a_tmgr_t *a_tbl;
   2268    1.1       gwr 	b_tmgr_t *b_tbl;
   2269    1.1       gwr 	c_tmgr_t *c_tbl;
   2270    1.1       gwr 	mmu_short_pte_t *pte;
   2271    1.1       gwr 
   2272    1.1       gwr 	if (pmap == pmap_kernel()) {
   2273    1.7       gwr 		pmap_protect_kernel(startva, endva, prot);
   2274    1.1       gwr 		return;
   2275    1.1       gwr 	}
   2276    1.1       gwr 
   2277   1.11    jeremy 	/*
   2278   1.12    jeremy 	 * In this particular pmap implementation, there are only three
   2279   1.12    jeremy 	 * types of memory protection: 'all' (read/write/execute),
   2280   1.12    jeremy 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2281   1.12    jeremy 	 * It is not possible for us to treat 'executable' as a separate
   2282   1.12    jeremy 	 * protection type.  Therefore, protection requests that seek to
   2283   1.12    jeremy 	 * remove execute permission while retaining read or write, and those
   2284   1.12    jeremy 	 * that make little sense (write-only for example) are ignored.
   2285   1.11    jeremy 	 */
   2286   1.12    jeremy 	switch (prot) {
   2287   1.12    jeremy 		case VM_PROT_NONE:
   2288   1.12    jeremy 			/*
   2289   1.12    jeremy 			 * A request to apply the protection code of
   2290   1.12    jeremy 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2291   1.12    jeremy 			 */
   2292   1.12    jeremy 			pmap_remove(pmap, startva, endva);
   2293   1.12    jeremy 			return;
   2294   1.12    jeremy 		case	VM_PROT_EXECUTE:
   2295   1.12    jeremy 		case	VM_PROT_READ:
   2296   1.12    jeremy 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2297   1.12    jeremy 			/* continue */
   2298   1.12    jeremy 			break;
   2299   1.12    jeremy 		case	VM_PROT_WRITE:
   2300   1.12    jeremy 		case	VM_PROT_WRITE|VM_PROT_READ:
   2301   1.12    jeremy 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2302   1.12    jeremy 		case	VM_PROT_ALL:
   2303   1.12    jeremy 			/* None of these should happen in a sane system. */
   2304   1.12    jeremy 			return;
   2305   1.11    jeremy 	}
   2306   1.11    jeremy 
   2307   1.11    jeremy 	/*
   2308   1.11    jeremy 	 * If the pmap has no A table, it has no mappings and therefore
   2309   1.11    jeremy 	 * there is nothing to protect.
   2310   1.11    jeremy 	 */
   2311   1.11    jeremy 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2312   1.11    jeremy 		return;
   2313   1.11    jeremy 
   2314   1.11    jeremy 	a_idx = MMU_TIA(startva);
   2315   1.11    jeremy 	b_idx = MMU_TIB(startva);
   2316   1.11    jeremy 	c_idx = MMU_TIC(startva);
   2317   1.90     skrll 	b_tbl = NULL;
   2318   1.90     skrll 	c_tbl = NULL;
   2319   1.11    jeremy 
   2320    1.7       gwr 	iscurpmap = (pmap == current_pmap());
   2321   1.11    jeremy 	while (startva < endva) {
   2322   1.11    jeremy 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2323   1.11    jeremy 		  if (b_tbl == NULL) {
   2324   1.11    jeremy 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2325   1.69       chs 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2326   1.69       chs 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2327   1.11    jeremy 		  }
   2328   1.11    jeremy 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2329   1.11    jeremy 		    if (c_tbl == NULL) {
   2330   1.11    jeremy 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2331   1.69       chs 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2332   1.69       chs 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2333   1.11    jeremy 		    }
   2334   1.11    jeremy 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2335   1.11    jeremy 		      pte = &c_tbl->ct_dtbl[c_idx];
   2336   1.12    jeremy 		      /* make the mapping read-only */
   2337   1.12    jeremy 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2338   1.11    jeremy 		      /*
   2339   1.11    jeremy 		       * If we just modified the current address space,
   2340   1.11    jeremy 		       * flush any translations for the modified page from
   2341   1.11    jeremy 		       * the translation cache and any data from it in the
   2342   1.11    jeremy 		       * data cache.
   2343   1.11    jeremy 		       */
   2344   1.11    jeremy 		      if (iscurpmap)
   2345   1.11    jeremy 		          TBIS(startva);
   2346   1.11    jeremy 		    }
   2347   1.79   thorpej 		    startva += PAGE_SIZE;
   2348    1.1       gwr 
   2349   1.11    jeremy 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2350   1.11    jeremy 		      c_tbl = NULL;
   2351   1.11    jeremy 		      c_idx = 0;
   2352   1.11    jeremy 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2353   1.11    jeremy 		        b_tbl = NULL;
   2354   1.11    jeremy 		        b_idx = 0;
   2355   1.11    jeremy 		      }
   2356   1.11    jeremy 		    }
   2357   1.11    jeremy 		  } else { /* C table wasn't valid */
   2358   1.11    jeremy 		    c_tbl = NULL;
   2359   1.11    jeremy 		    c_idx = 0;
   2360   1.11    jeremy 		    startva += MMU_TIB_RANGE;
   2361   1.11    jeremy 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2362   1.11    jeremy 		      b_tbl = NULL;
   2363   1.11    jeremy 		      b_idx = 0;
   2364   1.11    jeremy 		    }
   2365   1.11    jeremy 		  } /* C table */
   2366   1.11    jeremy 		} else { /* B table wasn't valid */
   2367   1.11    jeremy 		  b_tbl = NULL;
   2368   1.11    jeremy 		  b_idx = 0;
   2369   1.11    jeremy 		  startva += MMU_TIA_RANGE;
   2370   1.11    jeremy 		  a_idx++;
   2371   1.11    jeremy 		} /* B table */
   2372    1.1       gwr 	}
   2373    1.1       gwr }
   2374    1.1       gwr 
   2375   1.47   thorpej /* pmap_unwire				INTERFACE
   2376    1.1       gwr  **
   2377   1.47   thorpej  * Clear the wired attribute of the specified page.
   2378    1.1       gwr  *
   2379    1.1       gwr  * This function is called from vm_fault.c to unwire
   2380   1.47   thorpej  * a mapping.
   2381    1.1       gwr  */
   2382   1.86       chs void
   2383   1.86       chs pmap_unwire(pmap_t pmap, vaddr_t va)
   2384    1.1       gwr {
   2385    1.1       gwr 	int a_idx, b_idx, c_idx;
   2386    1.1       gwr 	a_tmgr_t *a_tbl;
   2387    1.1       gwr 	b_tmgr_t *b_tbl;
   2388    1.1       gwr 	c_tmgr_t *c_tbl;
   2389    1.1       gwr 	mmu_short_pte_t *pte;
   2390    1.1       gwr 
   2391    1.1       gwr 	/* Kernel mappings always remain wired. */
   2392    1.1       gwr 	if (pmap == pmap_kernel())
   2393    1.1       gwr 		return;
   2394    1.1       gwr 
   2395    1.7       gwr 	/*
   2396    1.7       gwr 	 * Walk through the tables.  If the walk terminates without
   2397    1.1       gwr 	 * a valid PTE then the address wasn't wired in the first place.
   2398    1.1       gwr 	 * Return immediately.
   2399    1.1       gwr 	 */
   2400    1.1       gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2401   1.95   thorpej 		&b_idx, &c_idx) == false)
   2402    1.1       gwr 		return;
   2403    1.1       gwr 
   2404    1.1       gwr 
   2405    1.1       gwr 	/* Is the PTE wired?  If not, return. */
   2406    1.1       gwr 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2407    1.1       gwr 		return;
   2408    1.1       gwr 
   2409    1.1       gwr 	/* Remove the wiring bit. */
   2410    1.1       gwr 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2411    1.1       gwr 
   2412    1.7       gwr 	/*
   2413    1.7       gwr 	 * Decrement the wired entry count in the C table.
   2414    1.1       gwr 	 * If it reaches zero the following things happen:
   2415    1.1       gwr 	 * 1. The table no longer has any wired entries and is considered
   2416    1.1       gwr 	 *    unwired.
   2417    1.1       gwr 	 * 2. It is placed on the available queue.
   2418    1.1       gwr 	 * 3. The parent table's wired entry count is decremented.
   2419    1.1       gwr 	 * 4. If it reaches zero, this process repeats at step 1 and
   2420    1.1       gwr 	 *    stops at after reaching the A table.
   2421    1.1       gwr 	 */
   2422    1.7       gwr 	if (--c_tbl->ct_wcnt == 0) {
   2423    1.1       gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2424    1.7       gwr 		if (--b_tbl->bt_wcnt == 0) {
   2425    1.1       gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2426    1.7       gwr 			if (--a_tbl->at_wcnt == 0) {
   2427    1.1       gwr 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2428    1.1       gwr 			}
   2429    1.1       gwr 		}
   2430    1.1       gwr 	}
   2431    1.1       gwr }
   2432    1.1       gwr 
   2433    1.1       gwr /* pmap_copy				INTERFACE
   2434    1.1       gwr  **
   2435    1.1       gwr  * Copy the mappings of a range of addresses in one pmap, into
   2436    1.1       gwr  * the destination address of another.
   2437    1.1       gwr  *
   2438    1.1       gwr  * This routine is advisory.  Should we one day decide that MMU tables
   2439    1.1       gwr  * may be shared by more than one pmap, this function should be used to
   2440    1.1       gwr  * link them together.  Until that day however, we do nothing.
   2441    1.1       gwr  */
   2442    1.1       gwr void
   2443   1.86       chs pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
   2444    1.1       gwr {
   2445   1.92   tsutsui 
   2446    1.1       gwr 	/* not implemented. */
   2447    1.1       gwr }
   2448    1.1       gwr 
   2449    1.1       gwr /* pmap_copy_page			INTERFACE
   2450    1.1       gwr  **
   2451    1.1       gwr  * Copy the contents of one physical page into another.
   2452    1.1       gwr  *
   2453    1.7       gwr  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2454   1.24    jeremy  * to map the two specified physical pages into the kernel address space.
   2455    1.7       gwr  *
   2456    1.7       gwr  * Note: We could use the transparent translation registers to make the
   2457    1.7       gwr  * mappings.  If we do so, be sure to disable interrupts before using them.
   2458    1.1       gwr  */
   2459   1.86       chs void
   2460   1.86       chs pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
   2461    1.1       gwr {
   2462   1.69       chs 	vaddr_t srcva, dstva;
   2463   1.23    jeremy 	int s;
   2464   1.24    jeremy 
   2465   1.24    jeremy 	srcva = tmp_vpages[0];
   2466   1.24    jeremy 	dstva = tmp_vpages[1];
   2467    1.1       gwr 
   2468   1.58   thorpej 	s = splvm();
   2469   1.69       chs #ifdef DIAGNOSTIC
   2470   1.24    jeremy 	if (tmp_vpages_inuse++)
   2471   1.24    jeremy 		panic("pmap_copy_page: temporary vpages are in use.");
   2472   1.69       chs #endif
   2473   1.23    jeremy 
   2474   1.23    jeremy 	/* Map pages as non-cacheable to avoid cache polution? */
   2475   1.69       chs 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
   2476   1.92   tsutsui 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
   2477    1.7       gwr 
   2478   1.79   thorpej 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
   2479   1.92   tsutsui 	copypage((char *)srcva, (char *)dstva);
   2480   1.24    jeremy 
   2481   1.79   thorpej 	pmap_kremove(srcva, PAGE_SIZE);
   2482   1.79   thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2483   1.24    jeremy 
   2484   1.69       chs #ifdef DIAGNOSTIC
   2485   1.24    jeremy 	--tmp_vpages_inuse;
   2486   1.69       chs #endif
   2487   1.23    jeremy 	splx(s);
   2488    1.1       gwr }
   2489    1.1       gwr 
   2490    1.1       gwr /* pmap_zero_page			INTERFACE
   2491    1.1       gwr  **
   2492    1.1       gwr  * Zero the contents of the specified physical page.
   2493    1.1       gwr  *
   2494    1.7       gwr  * Uses one of the virtual pages allocated in pmap_boostrap()
   2495   1.24    jeremy  * to map the specified page into the kernel address space.
   2496    1.1       gwr  */
   2497   1.86       chs void
   2498   1.86       chs pmap_zero_page(paddr_t dstpa)
   2499    1.1       gwr {
   2500   1.69       chs 	vaddr_t dstva;
   2501   1.23    jeremy 	int s;
   2502   1.23    jeremy 
   2503   1.24    jeremy 	dstva = tmp_vpages[1];
   2504   1.58   thorpej 	s = splvm();
   2505   1.69       chs #ifdef DIAGNOSTIC
   2506   1.26    jeremy 	if (tmp_vpages_inuse++)
   2507   1.24    jeremy 		panic("pmap_zero_page: temporary vpages are in use.");
   2508   1.69       chs #endif
   2509   1.24    jeremy 
   2510   1.24    jeremy 	/* The comments in pmap_copy_page() above apply here also. */
   2511   1.92   tsutsui 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE);
   2512   1.24    jeremy 
   2513   1.79   thorpej 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
   2514   1.92   tsutsui 	zeropage((char *)dstva);
   2515    1.1       gwr 
   2516   1.79   thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2517   1.69       chs #ifdef DIAGNOSTIC
   2518   1.24    jeremy 	--tmp_vpages_inuse;
   2519   1.69       chs #endif
   2520   1.23    jeremy 	splx(s);
   2521    1.1       gwr }
   2522    1.1       gwr 
   2523    1.1       gwr /* pmap_collect			INTERFACE
   2524    1.1       gwr  **
   2525    1.7       gwr  * Called from the VM system when we are about to swap out
   2526    1.7       gwr  * the process using this pmap.  This should give up any
   2527    1.7       gwr  * resources held here, including all its MMU tables.
   2528    1.1       gwr  */
   2529   1.86       chs void
   2530   1.86       chs pmap_collect(pmap_t pmap)
   2531    1.1       gwr {
   2532   1.92   tsutsui 
   2533    1.7       gwr 	/* XXX - todo... */
   2534    1.1       gwr }
   2535    1.1       gwr 
   2536   1.92   tsutsui /* pmap_pinit			INTERNAL
   2537   1.92   tsutsui  **
   2538   1.92   tsutsui  * Initialize a pmap structure.
   2539   1.92   tsutsui  */
   2540   1.92   tsutsui static INLINE void
   2541   1.92   tsutsui pmap_pinit(pmap_t pmap)
   2542   1.92   tsutsui {
   2543   1.92   tsutsui 
   2544   1.92   tsutsui 	memset(pmap, 0, sizeof(struct pmap));
   2545   1.92   tsutsui 	pmap->pm_a_tmgr = NULL;
   2546   1.92   tsutsui 	pmap->pm_a_phys = kernAphys;
   2547   1.92   tsutsui 	pmap->pm_refcount = 1;
   2548   1.92   tsutsui 	simple_lock_init(&pmap->pm_lock);
   2549   1.92   tsutsui }
   2550   1.92   tsutsui 
   2551    1.1       gwr /* pmap_create			INTERFACE
   2552    1.1       gwr  **
   2553    1.1       gwr  * Create and return a pmap structure.
   2554    1.1       gwr  */
   2555   1.86       chs pmap_t
   2556   1.86       chs pmap_create(void)
   2557    1.1       gwr {
   2558    1.1       gwr 	pmap_t	pmap;
   2559    1.1       gwr 
   2560   1.56   tsutsui 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2561    1.1       gwr 	pmap_pinit(pmap);
   2562    1.1       gwr 	return pmap;
   2563    1.1       gwr }
   2564    1.1       gwr 
   2565   1.92   tsutsui /* pmap_release				INTERNAL
   2566    1.1       gwr  **
   2567    1.1       gwr  * Release any resources held by the given pmap.
   2568    1.1       gwr  *
   2569    1.1       gwr  * This is the reverse analog to pmap_pinit.  It does not
   2570    1.1       gwr  * necessarily mean for the pmap structure to be deallocated,
   2571    1.1       gwr  * as in pmap_destroy.
   2572    1.1       gwr  */
   2573   1.92   tsutsui static INLINE void
   2574   1.86       chs pmap_release(pmap_t pmap)
   2575    1.1       gwr {
   2576   1.92   tsutsui 
   2577    1.7       gwr 	/*
   2578    1.7       gwr 	 * As long as the pmap contains no mappings,
   2579    1.1       gwr 	 * which always should be the case whenever
   2580    1.1       gwr 	 * this function is called, there really should
   2581    1.1       gwr 	 * be nothing to do.
   2582    1.1       gwr 	 */
   2583    1.1       gwr #ifdef	PMAP_DEBUG
   2584    1.1       gwr 	if (pmap == pmap_kernel())
   2585    1.9       gwr 		panic("pmap_release: kernel pmap");
   2586    1.1       gwr #endif
   2587    1.9       gwr 	/*
   2588    1.9       gwr 	 * XXX - If this pmap has an A table, give it back.
   2589    1.9       gwr 	 * The pmap SHOULD be empty by now, and pmap_remove
   2590    1.9       gwr 	 * should have already given back the A table...
   2591    1.9       gwr 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2592    1.9       gwr 	 * at this point, which means some mapping was not
   2593    1.9       gwr 	 * removed when it should have been. -gwr
   2594    1.9       gwr 	 */
   2595    1.7       gwr 	if (pmap->pm_a_tmgr != NULL) {
   2596    1.9       gwr 		/* First make sure we are not using it! */
   2597    1.9       gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2598    1.9       gwr 			kernel_crp.rp_addr = kernAphys;
   2599    1.9       gwr 			loadcrp(&kernel_crp);
   2600    1.9       gwr 		}
   2601   1.13       gwr #ifdef	PMAP_DEBUG /* XXX - todo! */
   2602   1.13       gwr 		/* XXX - Now complain... */
   2603   1.13       gwr 		printf("pmap_release: still have table\n");
   2604   1.13       gwr 		Debugger();
   2605   1.13       gwr #endif
   2606   1.95   thorpej 		free_a_table(pmap->pm_a_tmgr, true);
   2607    1.7       gwr 		pmap->pm_a_tmgr = NULL;
   2608    1.7       gwr 		pmap->pm_a_phys = kernAphys;
   2609    1.7       gwr 	}
   2610    1.1       gwr }
   2611    1.1       gwr 
   2612    1.1       gwr /* pmap_reference			INTERFACE
   2613    1.1       gwr  **
   2614    1.1       gwr  * Increment the reference count of a pmap.
   2615    1.1       gwr  */
   2616   1.86       chs void
   2617   1.86       chs pmap_reference(pmap_t pmap)
   2618    1.1       gwr {
   2619   1.55   tsutsui 	pmap_lock(pmap);
   2620   1.55   tsutsui 	pmap_add_ref(pmap);
   2621   1.55   tsutsui 	pmap_unlock(pmap);
   2622    1.1       gwr }
   2623    1.1       gwr 
   2624    1.1       gwr /* pmap_dereference			INTERNAL
   2625    1.1       gwr  **
   2626    1.1       gwr  * Decrease the reference count on the given pmap
   2627    1.1       gwr  * by one and return the current count.
   2628    1.1       gwr  */
   2629   1.92   tsutsui static INLINE int
   2630   1.86       chs pmap_dereference(pmap_t pmap)
   2631    1.1       gwr {
   2632    1.1       gwr 	int rtn;
   2633    1.1       gwr 
   2634   1.55   tsutsui 	pmap_lock(pmap);
   2635   1.55   tsutsui 	rtn = pmap_del_ref(pmap);
   2636   1.55   tsutsui 	pmap_unlock(pmap);
   2637    1.1       gwr 
   2638    1.1       gwr 	return rtn;
   2639    1.1       gwr }
   2640    1.1       gwr 
   2641    1.1       gwr /* pmap_destroy			INTERFACE
   2642    1.1       gwr  **
   2643    1.1       gwr  * Decrement a pmap's reference count and delete
   2644    1.1       gwr  * the pmap if it becomes zero.  Will be called
   2645    1.1       gwr  * only after all mappings have been removed.
   2646    1.1       gwr  */
   2647   1.86       chs void
   2648   1.86       chs pmap_destroy(pmap_t pmap)
   2649    1.1       gwr {
   2650   1.92   tsutsui 
   2651    1.1       gwr 	if (pmap_dereference(pmap) == 0) {
   2652    1.1       gwr 		pmap_release(pmap);
   2653   1.56   tsutsui 		pool_put(&pmap_pmap_pool, pmap);
   2654    1.1       gwr 	}
   2655    1.1       gwr }
   2656    1.1       gwr 
   2657    1.1       gwr /* pmap_is_referenced			INTERFACE
   2658    1.1       gwr  **
   2659    1.1       gwr  * Determine if the given physical page has been
   2660    1.1       gwr  * referenced (read from [or written to.])
   2661    1.1       gwr  */
   2662   1.94   thorpej bool
   2663   1.86       chs pmap_is_referenced(struct vm_page *pg)
   2664    1.1       gwr {
   2665   1.49       chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2666    1.1       gwr 	pv_t      *pv;
   2667   1.69       chs 	int       idx;
   2668    1.1       gwr 
   2669    1.7       gwr 	/*
   2670    1.7       gwr 	 * Check the flags on the pv head.  If they are set,
   2671    1.1       gwr 	 * return immediately.  Otherwise a search must be done.
   2672    1.7       gwr 	 */
   2673   1.69       chs 
   2674   1.69       chs 	pv = pa2pv(pa);
   2675    1.1       gwr 	if (pv->pv_flags & PV_FLAGS_USED)
   2676   1.95   thorpej 		return true;
   2677   1.32       gwr 
   2678   1.32       gwr 	/*
   2679   1.32       gwr 	 * Search through all pv elements pointing
   2680   1.32       gwr 	 * to this page and query their reference bits
   2681   1.32       gwr 	 */
   2682   1.32       gwr 
   2683   1.69       chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2684   1.32       gwr 		if (MMU_PTE_USED(kernCbase[idx])) {
   2685   1.95   thorpej 			return true;
   2686   1.32       gwr 		}
   2687    1.7       gwr 	}
   2688   1.95   thorpej 	return false;
   2689    1.1       gwr }
   2690    1.1       gwr 
   2691    1.1       gwr /* pmap_is_modified			INTERFACE
   2692    1.1       gwr  **
   2693    1.1       gwr  * Determine if the given physical page has been
   2694    1.1       gwr  * modified (written to.)
   2695    1.1       gwr  */
   2696   1.94   thorpej bool
   2697   1.86       chs pmap_is_modified(struct vm_page *pg)
   2698    1.1       gwr {
   2699   1.49       chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2700    1.1       gwr 	pv_t      *pv;
   2701   1.69       chs 	int       idx;
   2702    1.1       gwr 
   2703    1.1       gwr 	/* see comments in pmap_is_referenced() */
   2704    1.1       gwr 	pv = pa2pv(pa);
   2705   1.32       gwr 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2706   1.95   thorpej 		return true;
   2707   1.32       gwr 
   2708   1.32       gwr 	for (idx = pv->pv_idx;
   2709   1.32       gwr 		 idx != PVE_EOL;
   2710   1.32       gwr 		 idx = pvebase[idx].pve_next) {
   2711   1.32       gwr 
   2712   1.32       gwr 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2713   1.95   thorpej 			return true;
   2714   1.32       gwr 		}
   2715    1.7       gwr 	}
   2716    1.7       gwr 
   2717   1.95   thorpej 	return false;
   2718    1.1       gwr }
   2719    1.1       gwr 
   2720    1.1       gwr /* pmap_page_protect			INTERFACE
   2721    1.1       gwr  **
   2722    1.1       gwr  * Applies the given protection to all mappings to the given
   2723    1.1       gwr  * physical page.
   2724    1.1       gwr  */
   2725   1.86       chs void
   2726   1.86       chs pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2727    1.1       gwr {
   2728   1.49       chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2729    1.1       gwr 	pv_t      *pv;
   2730   1.69       chs 	int       idx;
   2731   1.69       chs 	vaddr_t va;
   2732    1.1       gwr 	struct mmu_short_pte_struct *pte;
   2733    1.8       gwr 	c_tmgr_t  *c_tbl;
   2734    1.8       gwr 	pmap_t    pmap, curpmap;
   2735    1.1       gwr 
   2736    1.8       gwr 	curpmap = current_pmap();
   2737    1.1       gwr 	pv = pa2pv(pa);
   2738   1.32       gwr 
   2739   1.69       chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2740    1.7       gwr 		pte = &kernCbase[idx];
   2741    1.1       gwr 		switch (prot) {
   2742    1.1       gwr 			case VM_PROT_ALL:
   2743    1.1       gwr 				/* do nothing */
   2744    1.1       gwr 				break;
   2745    1.7       gwr 			case VM_PROT_EXECUTE:
   2746    1.1       gwr 			case VM_PROT_READ:
   2747    1.1       gwr 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2748    1.8       gwr 				/*
   2749    1.8       gwr 				 * Determine the virtual address mapped by
   2750    1.8       gwr 				 * the PTE and flush ATC entries if necessary.
   2751    1.8       gwr 				 */
   2752    1.8       gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2753   1.69       chs 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2754    1.8       gwr 				if (pmap == curpmap || pmap == pmap_kernel())
   2755    1.8       gwr 					TBIS(va);
   2756    1.1       gwr 				break;
   2757    1.1       gwr 			case VM_PROT_NONE:
   2758    1.7       gwr 				/* Save the mod/ref bits. */
   2759    1.7       gwr 				pv->pv_flags |= pte->attr.raw;
   2760    1.7       gwr 				/* Invalidate the PTE. */
   2761    1.7       gwr 				pte->attr.raw = MMU_DT_INVALID;
   2762    1.8       gwr 
   2763    1.8       gwr 				/*
   2764    1.8       gwr 				 * Update table counts.  And flush ATC entries
   2765    1.8       gwr 				 * if necessary.
   2766    1.8       gwr 				 */
   2767    1.8       gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2768    1.8       gwr 
   2769    1.8       gwr 				/*
   2770    1.8       gwr 				 * If the PTE belongs to the kernel map,
   2771    1.8       gwr 				 * be sure to flush the page it maps.
   2772    1.8       gwr 				 */
   2773    1.8       gwr 				if (pmap == pmap_kernel()) {
   2774    1.8       gwr 					TBIS(va);
   2775    1.8       gwr 				} else {
   2776    1.8       gwr 					/*
   2777    1.8       gwr 					 * The PTE belongs to a user map.
   2778    1.8       gwr 					 * update the entry count in the C
   2779    1.8       gwr 					 * table to which it belongs and flush
   2780    1.8       gwr 					 * the ATC if the mapping belongs to
   2781    1.8       gwr 					 * the current pmap.
   2782    1.8       gwr 					 */
   2783    1.8       gwr 					c_tbl->ct_ecnt--;
   2784    1.8       gwr 					if (pmap == curpmap)
   2785    1.8       gwr 						TBIS(va);
   2786    1.8       gwr 				}
   2787    1.1       gwr 				break;
   2788    1.1       gwr 			default:
   2789    1.1       gwr 				break;
   2790    1.1       gwr 		}
   2791    1.1       gwr 	}
   2792    1.8       gwr 
   2793    1.8       gwr 	/*
   2794    1.8       gwr 	 * If the protection code indicates that all mappings to the page
   2795    1.8       gwr 	 * be removed, truncate the PV list to zero entries.
   2796    1.8       gwr 	 */
   2797    1.7       gwr 	if (prot == VM_PROT_NONE)
   2798    1.7       gwr 		pv->pv_idx = PVE_EOL;
   2799    1.1       gwr }
   2800    1.1       gwr 
   2801    1.7       gwr /* pmap_get_pteinfo		INTERNAL
   2802    1.1       gwr  **
   2803    1.7       gwr  * Called internally to find the pmap and virtual address within that
   2804    1.8       gwr  * map to which the pte at the given index maps.  Also includes the PTE's C
   2805    1.8       gwr  * table manager.
   2806    1.1       gwr  *
   2807    1.7       gwr  * Returns the pmap in the argument provided, and the virtual address
   2808    1.7       gwr  * by return value.
   2809    1.1       gwr  */
   2810   1.86       chs vaddr_t
   2811   1.86       chs pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
   2812    1.1       gwr {
   2813   1.69       chs 	vaddr_t     va = 0;
   2814    1.1       gwr 
   2815    1.7       gwr 	/*
   2816    1.7       gwr 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2817    1.1       gwr 	 */
   2818    1.8       gwr 	if (idx >= NUM_KERN_PTES) {
   2819    1.7       gwr 		/*
   2820    1.7       gwr 		 * The PTE belongs to a user mapping.
   2821    1.7       gwr 		 */
   2822    1.8       gwr 		/* XXX: Would like an inline for this to validate idx... */
   2823   1.26    jeremy 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2824   1.26    jeremy 
   2825   1.26    jeremy 		*pmap = (*tbl)->ct_pmap;
   2826   1.26    jeremy 		/*
   2827   1.26    jeremy 		 * To find the va to which the PTE maps, we first take
   2828   1.26    jeremy 		 * the table's base virtual address mapping which is stored
   2829   1.26    jeremy 		 * in ct_va.  We then increment this address by a page for
   2830   1.26    jeremy 		 * every slot skipped until we reach the PTE.
   2831   1.26    jeremy 		 */
   2832   1.92   tsutsui 		va = (*tbl)->ct_va;
   2833   1.26    jeremy 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2834    1.7       gwr 	} else {
   2835    1.7       gwr 		/*
   2836    1.7       gwr 		 * The PTE belongs to the kernel map.
   2837    1.7       gwr 		 */
   2838    1.8       gwr 		*pmap = pmap_kernel();
   2839    1.8       gwr 
   2840   1.25     veego 		va = m68k_ptob(idx);
   2841    1.7       gwr 		va += KERNBASE;
   2842    1.7       gwr 	}
   2843    1.7       gwr 
   2844    1.1       gwr 	return va;
   2845    1.1       gwr }
   2846    1.1       gwr 
   2847    1.1       gwr /* pmap_clear_modify			INTERFACE
   2848    1.1       gwr  **
   2849    1.1       gwr  * Clear the modification bit on the page at the specified
   2850    1.1       gwr  * physical address.
   2851    1.1       gwr  *
   2852    1.1       gwr  */
   2853   1.94   thorpej bool
   2854   1.86       chs pmap_clear_modify(struct vm_page *pg)
   2855    1.1       gwr {
   2856   1.49       chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2857   1.94   thorpej 	bool rv;
   2858   1.49       chs 
   2859   1.49       chs 	rv = pmap_is_modified(pg);
   2860    1.1       gwr 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2861   1.49       chs 	return rv;
   2862    1.1       gwr }
   2863    1.1       gwr 
   2864    1.1       gwr /* pmap_clear_reference			INTERFACE
   2865    1.1       gwr  **
   2866    1.1       gwr  * Clear the referenced bit on the page at the specified
   2867    1.1       gwr  * physical address.
   2868    1.1       gwr  */
   2869   1.94   thorpej bool
   2870   1.86       chs pmap_clear_reference(struct vm_page *pg)
   2871    1.1       gwr {
   2872   1.49       chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2873   1.94   thorpej 	bool rv;
   2874   1.49       chs 
   2875   1.49       chs 	rv = pmap_is_referenced(pg);
   2876    1.1       gwr 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2877   1.49       chs 	return rv;
   2878    1.1       gwr }
   2879    1.1       gwr 
   2880    1.1       gwr /* pmap_clear_pv			INTERNAL
   2881    1.1       gwr  **
   2882    1.1       gwr  * Clears the specified flag from the specified physical address.
   2883    1.1       gwr  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2884    1.1       gwr  *
   2885    1.1       gwr  * Flag is one of:
   2886    1.1       gwr  *   PV_FLAGS_MDFY - Page modified bit.
   2887    1.1       gwr  *   PV_FLAGS_USED - Page used (referenced) bit.
   2888    1.1       gwr  *
   2889    1.1       gwr  * This routine must not only clear the flag on the pv list
   2890    1.1       gwr  * head.  It must also clear the bit on every pte in the pv
   2891    1.1       gwr  * list associated with the address.
   2892    1.1       gwr  */
   2893   1.86       chs void
   2894   1.86       chs pmap_clear_pv(paddr_t pa, int flag)
   2895    1.1       gwr {
   2896    1.1       gwr 	pv_t      *pv;
   2897   1.69       chs 	int       idx;
   2898   1.69       chs 	vaddr_t   va;
   2899    1.7       gwr 	pmap_t          pmap;
   2900    1.1       gwr 	mmu_short_pte_t *pte;
   2901    1.7       gwr 	c_tmgr_t        *c_tbl;
   2902    1.1       gwr 
   2903    1.1       gwr 	pv = pa2pv(pa);
   2904    1.1       gwr 	pv->pv_flags &= ~(flag);
   2905   1.69       chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2906    1.7       gwr 		pte = &kernCbase[idx];
   2907    1.1       gwr 		pte->attr.raw &= ~(flag);
   2908   1.69       chs 
   2909    1.7       gwr 		/*
   2910    1.7       gwr 		 * The MC68030 MMU will not set the modified or
   2911    1.7       gwr 		 * referenced bits on any MMU tables for which it has
   2912    1.7       gwr 		 * a cached descriptor with its modify bit set.  To insure
   2913    1.7       gwr 		 * that it will modify these bits on the PTE during the next
   2914    1.7       gwr 		 * time it is written to or read from, we must flush it from
   2915    1.7       gwr 		 * the ATC.
   2916    1.7       gwr 		 *
   2917    1.7       gwr 		 * Ordinarily it is only necessary to flush the descriptor
   2918    1.7       gwr 		 * if it is used in the current address space.  But since I
   2919    1.7       gwr 		 * am not sure that there will always be a notion of
   2920    1.7       gwr 		 * 'the current address space' when this function is called,
   2921    1.7       gwr 		 * I will skip the test and always flush the address.  It
   2922    1.7       gwr 		 * does no harm.
   2923    1.7       gwr 		 */
   2924   1.69       chs 
   2925    1.8       gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2926    1.7       gwr 		TBIS(va);
   2927    1.1       gwr 	}
   2928    1.1       gwr }
   2929    1.1       gwr 
   2930   1.92   tsutsui /* pmap_extract_kernel		INTERNAL
   2931   1.92   tsutsui  **
   2932   1.92   tsutsui  * Extract a translation from the kernel address space.
   2933   1.92   tsutsui  */
   2934   1.94   thorpej static INLINE bool
   2935   1.92   tsutsui pmap_extract_kernel(vaddr_t va, paddr_t *pap)
   2936   1.92   tsutsui {
   2937   1.92   tsutsui 	mmu_short_pte_t *pte;
   2938   1.92   tsutsui 
   2939   1.92   tsutsui 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE)];
   2940   1.92   tsutsui 	if (!MMU_VALID_DT(*pte))
   2941   1.95   thorpej 		return false;
   2942   1.92   tsutsui 	if (pap != NULL)
   2943   1.92   tsutsui 		*pap = MMU_PTE_PA(*pte);
   2944   1.95   thorpej 	return true;
   2945   1.92   tsutsui }
   2946   1.92   tsutsui 
   2947    1.1       gwr /* pmap_extract			INTERFACE
   2948    1.1       gwr  **
   2949    1.1       gwr  * Return the physical address mapped by the virtual address
   2950   1.48   thorpej  * in the specified pmap.
   2951    1.1       gwr  *
   2952    1.1       gwr  * Note: this function should also apply an exclusive lock
   2953    1.1       gwr  * on the pmap system during its duration.
   2954    1.1       gwr  */
   2955   1.94   thorpej bool
   2956   1.86       chs pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   2957    1.1       gwr {
   2958    1.1       gwr 	int a_idx, b_idx, pte_idx;
   2959    1.1       gwr 	a_tmgr_t	*a_tbl;
   2960    1.1       gwr 	b_tmgr_t	*b_tbl;
   2961    1.1       gwr 	c_tmgr_t	*c_tbl;
   2962    1.1       gwr 	mmu_short_pte_t	*c_pte;
   2963    1.1       gwr 
   2964    1.1       gwr 	if (pmap == pmap_kernel())
   2965   1.48   thorpej 		return pmap_extract_kernel(va, pap);
   2966    1.1       gwr 
   2967    1.1       gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2968   1.95   thorpej 		&c_pte, &a_idx, &b_idx, &pte_idx) == false)
   2969   1.95   thorpej 		return false;
   2970    1.1       gwr 
   2971    1.7       gwr 	if (!MMU_VALID_DT(*c_pte))
   2972   1.95   thorpej 		return false;
   2973    1.7       gwr 
   2974   1.48   thorpej 	if (pap != NULL)
   2975   1.48   thorpej 		*pap = MMU_PTE_PA(*c_pte);
   2976   1.95   thorpej 	return true;
   2977    1.1       gwr }
   2978    1.1       gwr 
   2979    1.1       gwr /* pmap_remove_kernel		INTERNAL
   2980    1.1       gwr  **
   2981    1.1       gwr  * Remove the mapping of a range of virtual addresses from the kernel map.
   2982    1.9       gwr  * The arguments are already page-aligned.
   2983    1.1       gwr  */
   2984   1.92   tsutsui static INLINE void
   2985   1.86       chs pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
   2986    1.1       gwr {
   2987    1.9       gwr 	int idx, eidx;
   2988    1.9       gwr 
   2989    1.9       gwr #ifdef	PMAP_DEBUG
   2990    1.9       gwr 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2991    1.9       gwr 		panic("pmap_remove_kernel: alignment");
   2992    1.9       gwr #endif
   2993    1.1       gwr 
   2994   1.25     veego 	idx  = m68k_btop(sva - KERNBASE);
   2995   1.25     veego 	eidx = m68k_btop(eva - KERNBASE);
   2996    1.9       gwr 
   2997   1.24    jeremy 	while (idx < eidx) {
   2998    1.9       gwr 		pmap_remove_pte(&kernCbase[idx++]);
   2999   1.24    jeremy 		TBIS(sva);
   3000   1.79   thorpej 		sva += PAGE_SIZE;
   3001   1.24    jeremy 	}
   3002    1.1       gwr }
   3003    1.1       gwr 
   3004    1.1       gwr /* pmap_remove			INTERFACE
   3005    1.1       gwr  **
   3006    1.1       gwr  * Remove the mapping of a range of virtual addresses from the given pmap.
   3007    1.7       gwr  *
   3008    1.1       gwr  */
   3009   1.86       chs void
   3010   1.88   tsutsui pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
   3011    1.1       gwr {
   3012    1.7       gwr 
   3013    1.1       gwr 	if (pmap == pmap_kernel()) {
   3014   1.88   tsutsui 		pmap_remove_kernel(sva, eva);
   3015    1.1       gwr 		return;
   3016    1.1       gwr 	}
   3017    1.1       gwr 
   3018    1.7       gwr 	/*
   3019    1.7       gwr 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3020    1.7       gwr 	 * that can be removed.
   3021    1.1       gwr 	 */
   3022    1.7       gwr 	if (pmap->pm_a_tmgr == NULL)
   3023    1.7       gwr 		return;
   3024    1.7       gwr 
   3025    1.7       gwr 	/*
   3026    1.7       gwr 	 * Remove the specified range from the pmap.  If the function
   3027    1.7       gwr 	 * returns true, the operation removed all the valid mappings
   3028    1.7       gwr 	 * in the pmap and freed its A table.  If this happened to the
   3029    1.7       gwr 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3030    1.7       gwr 	 * with the default 'kernel' map.
   3031    1.7       gwr 	 */
   3032   1.88   tsutsui 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
   3033    1.9       gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3034    1.9       gwr 			kernel_crp.rp_addr = kernAphys;
   3035    1.9       gwr 			loadcrp(&kernel_crp);
   3036    1.9       gwr 			/* will do TLB flush below */
   3037    1.9       gwr 		}
   3038    1.7       gwr 		pmap->pm_a_tmgr = NULL;
   3039    1.7       gwr 		pmap->pm_a_phys = kernAphys;
   3040    1.1       gwr 	}
   3041    1.9       gwr 
   3042    1.9       gwr 	/*
   3043    1.9       gwr 	 * If we just modified the current address space,
   3044    1.9       gwr 	 * make sure to flush the MMU cache.
   3045    1.9       gwr 	 *
   3046    1.9       gwr 	 * XXX - this could be an unecessarily large flush.
   3047    1.9       gwr 	 * XXX - Could decide, based on the size of the VA range
   3048    1.9       gwr 	 * to be removed, whether to flush "by pages" or "all".
   3049    1.9       gwr 	 */
   3050    1.9       gwr 	if (pmap == current_pmap())
   3051    1.9       gwr 		TBIAU();
   3052    1.1       gwr }
   3053    1.1       gwr 
   3054    1.1       gwr /* pmap_remove_a			INTERNAL
   3055    1.1       gwr  **
   3056    1.1       gwr  * This is function number one in a set of three that removes a range
   3057    1.1       gwr  * of memory in the most efficient manner by removing the highest possible
   3058    1.1       gwr  * tables from the memory space.  This particular function attempts to remove
   3059    1.1       gwr  * as many B tables as it can, delegating the remaining fragmented ranges to
   3060    1.1       gwr  * pmap_remove_b().
   3061    1.1       gwr  *
   3062    1.7       gwr  * If the removal operation results in an empty A table, the function returns
   3063   1.95   thorpej  * true.
   3064    1.7       gwr  *
   3065    1.1       gwr  * It's ugly but will do for now.
   3066    1.1       gwr  */
   3067   1.94   thorpej bool
   3068   1.88   tsutsui pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
   3069    1.1       gwr {
   3070   1.94   thorpej 	bool empty;
   3071    1.1       gwr 	int idx;
   3072   1.69       chs 	vaddr_t nstart, nend;
   3073    1.1       gwr 	b_tmgr_t *b_tbl;
   3074    1.1       gwr 	mmu_long_dte_t  *a_dte;
   3075    1.1       gwr 	mmu_short_dte_t *b_dte;
   3076   1.91   tsutsui 	uint8_t at_wired, bt_wired;
   3077    1.8       gwr 
   3078    1.7       gwr 	/*
   3079    1.7       gwr 	 * The following code works with what I call a 'granularity
   3080    1.7       gwr 	 * reduction algorithim'.  A range of addresses will always have
   3081    1.7       gwr 	 * the following properties, which are classified according to
   3082    1.7       gwr 	 * how the range relates to the size of the current granularity
   3083    1.7       gwr 	 * - an A table entry:
   3084    1.7       gwr 	 *
   3085    1.7       gwr 	 *            1 2       3 4
   3086    1.7       gwr 	 * -+---+---+---+---+---+---+---+-
   3087    1.7       gwr 	 * -+---+---+---+---+---+---+---+-
   3088    1.7       gwr 	 *
   3089    1.7       gwr 	 * A range will always start on a granularity boundary, illustrated
   3090    1.7       gwr 	 * by '+' signs in the table above, or it will start at some point
   3091    1.7       gwr 	 * inbetween a granularity boundary, as illustrated by point 1.
   3092    1.7       gwr 	 * The first step in removing a range of addresses is to remove the
   3093    1.7       gwr 	 * range between 1 and 2, the nearest granularity boundary.  This
   3094    1.7       gwr 	 * job is handled by the section of code governed by the
   3095    1.7       gwr 	 * 'if (start < nstart)' statement.
   3096    1.7       gwr 	 *
   3097    1.7       gwr 	 * A range will always encompass zero or more intergral granules,
   3098    1.7       gwr 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3099    1.7       gwr 	 * remove.  The removal of these granules is the second step, and
   3100    1.7       gwr 	 * is handled by the code block 'if (nstart < nend)'.
   3101    1.7       gwr 	 *
   3102    1.7       gwr 	 * Lastly, a range will always end on a granularity boundary,
   3103    1.7       gwr 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3104    1.7       gwr 	 * 4.  The last step involves removing this range and is handled by
   3105    1.7       gwr 	 * the code block 'if (nend < end)'.
   3106    1.7       gwr 	 */
   3107   1.88   tsutsui 	nstart = MMU_ROUND_UP_A(sva);
   3108   1.88   tsutsui 	nend = MMU_ROUND_A(eva);
   3109    1.1       gwr 
   3110   1.91   tsutsui 	at_wired = a_tbl->at_wcnt;
   3111   1.91   tsutsui 
   3112   1.88   tsutsui 	if (sva < nstart) {
   3113    1.7       gwr 		/*
   3114    1.7       gwr 		 * This block is executed if the range starts between
   3115    1.7       gwr 		 * a granularity boundary.
   3116    1.7       gwr 		 *
   3117    1.7       gwr 		 * First find the DTE which is responsible for mapping
   3118    1.7       gwr 		 * the start of the range.
   3119    1.7       gwr 		 */
   3120   1.88   tsutsui 		idx = MMU_TIA(sva);
   3121    1.1       gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3122    1.7       gwr 
   3123    1.7       gwr 		/*
   3124    1.7       gwr 		 * If the DTE is valid then delegate the removal of the sub
   3125    1.7       gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3126    1.7       gwr 		 * a finer granularity.
   3127    1.7       gwr 		 */
   3128    1.1       gwr 		if (MMU_VALID_DT(*a_dte)) {
   3129    1.7       gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3130    1.1       gwr 			b_tbl = mmuB2tmgr(b_dte);
   3131   1.91   tsutsui 			bt_wired = b_tbl->bt_wcnt;
   3132    1.7       gwr 
   3133    1.7       gwr 			/*
   3134    1.7       gwr 			 * The sub range to be removed starts at the start
   3135    1.7       gwr 			 * of the full range we were asked to remove, and ends
   3136    1.7       gwr 			 * at the greater of:
   3137    1.7       gwr 			 * 1. The end of the full range, -or-
   3138    1.7       gwr 			 * 2. The end of the full range, rounded down to the
   3139    1.7       gwr 			 *    nearest granularity boundary.
   3140    1.7       gwr 			 */
   3141   1.88   tsutsui 			if (eva < nstart)
   3142   1.88   tsutsui 				empty = pmap_remove_b(b_tbl, sva, eva);
   3143    1.7       gwr 			else
   3144   1.88   tsutsui 				empty = pmap_remove_b(b_tbl, sva, nstart);
   3145    1.7       gwr 
   3146    1.7       gwr 			/*
   3147   1.91   tsutsui 			 * If the child table no longer has wired entries,
   3148   1.91   tsutsui 			 * decrement wired entry count.
   3149   1.91   tsutsui 			 */
   3150   1.91   tsutsui 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3151   1.91   tsutsui 				a_tbl->at_wcnt--;
   3152   1.91   tsutsui 
   3153   1.91   tsutsui 			/*
   3154    1.7       gwr 			 * If the removal resulted in an empty B table,
   3155    1.7       gwr 			 * invalidate the DTE that points to it and decrement
   3156    1.7       gwr 			 * the valid entry count of the A table.
   3157    1.7       gwr 			 */
   3158    1.7       gwr 			if (empty) {
   3159    1.7       gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3160    1.7       gwr 				a_tbl->at_ecnt--;
   3161    1.1       gwr 			}
   3162    1.1       gwr 		}
   3163    1.7       gwr 		/*
   3164    1.7       gwr 		 * If the DTE is invalid, the address range is already non-
   3165   1.68       wiz 		 * existent and can simply be skipped.
   3166    1.7       gwr 		 */
   3167    1.1       gwr 	}
   3168    1.1       gwr 	if (nstart < nend) {
   3169    1.7       gwr 		/*
   3170    1.8       gwr 		 * This block is executed if the range spans a whole number
   3171    1.7       gwr 		 * multiple of granules (A table entries.)
   3172    1.7       gwr 		 *
   3173    1.7       gwr 		 * First find the DTE which is responsible for mapping
   3174    1.7       gwr 		 * the start of the first granule involved.
   3175    1.7       gwr 		 */
   3176    1.1       gwr 		idx = MMU_TIA(nstart);
   3177    1.1       gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3178    1.7       gwr 
   3179    1.7       gwr 		/*
   3180    1.7       gwr 		 * Remove entire sub-granules (B tables) one at a time,
   3181    1.7       gwr 		 * until reaching the end of the range.
   3182    1.7       gwr 		 */
   3183    1.7       gwr 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3184    1.1       gwr 			if (MMU_VALID_DT(*a_dte)) {
   3185    1.7       gwr 				/*
   3186    1.7       gwr 				 * Find the B table manager for the
   3187    1.7       gwr 				 * entry and free it.
   3188    1.7       gwr 				 */
   3189    1.7       gwr 				b_dte = mmu_ptov(a_dte->addr.raw);
   3190    1.1       gwr 				b_tbl = mmuB2tmgr(b_dte);
   3191   1.91   tsutsui 				bt_wired = b_tbl->bt_wcnt;
   3192   1.91   tsutsui 
   3193   1.95   thorpej 				free_b_table(b_tbl, true);
   3194    1.7       gwr 
   3195    1.7       gwr 				/*
   3196   1.91   tsutsui 				 * All child entries has been removed.
   3197   1.91   tsutsui 				 * If there were any wired entries in it,
   3198   1.91   tsutsui 				 * decrement wired entry count.
   3199   1.91   tsutsui 				 */
   3200   1.91   tsutsui 				if (bt_wired)
   3201   1.91   tsutsui 					a_tbl->at_wcnt--;
   3202   1.91   tsutsui 
   3203   1.91   tsutsui 				/*
   3204    1.7       gwr 				 * Invalidate the DTE that points to the
   3205    1.7       gwr 				 * B table and decrement the valid entry
   3206    1.7       gwr 				 * count of the A table.
   3207    1.7       gwr 				 */
   3208    1.1       gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3209    1.1       gwr 				a_tbl->at_ecnt--;
   3210    1.1       gwr 			}
   3211    1.1       gwr 	}
   3212   1.88   tsutsui 	if (nend < eva) {
   3213    1.7       gwr 		/*
   3214    1.7       gwr 		 * This block is executed if the range ends beyond a
   3215    1.7       gwr 		 * granularity boundary.
   3216    1.7       gwr 		 *
   3217    1.7       gwr 		 * First find the DTE which is responsible for mapping
   3218    1.7       gwr 		 * the start of the nearest (rounded down) granularity
   3219    1.7       gwr 		 * boundary.
   3220    1.7       gwr 		 */
   3221    1.1       gwr 		idx = MMU_TIA(nend);
   3222    1.1       gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3223    1.7       gwr 
   3224    1.7       gwr 		/*
   3225    1.7       gwr 		 * If the DTE is valid then delegate the removal of the sub
   3226    1.7       gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3227    1.7       gwr 		 * a finer granularity.
   3228    1.7       gwr 		 */
   3229    1.1       gwr 		if (MMU_VALID_DT(*a_dte)) {
   3230    1.7       gwr 			/*
   3231    1.7       gwr 			 * Find the B table manager for the entry
   3232    1.7       gwr 			 * and hand it to pmap_remove_b() along with
   3233    1.7       gwr 			 * the sub range.
   3234    1.7       gwr 			 */
   3235    1.7       gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3236    1.1       gwr 			b_tbl = mmuB2tmgr(b_dte);
   3237   1.91   tsutsui 			bt_wired = b_tbl->bt_wcnt;
   3238    1.7       gwr 
   3239   1.88   tsutsui 			empty = pmap_remove_b(b_tbl, nend, eva);
   3240    1.7       gwr 
   3241    1.7       gwr 			/*
   3242   1.91   tsutsui 			 * If the child table no longer has wired entries,
   3243   1.91   tsutsui 			 * decrement wired entry count.
   3244   1.91   tsutsui 			 */
   3245   1.91   tsutsui 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3246   1.91   tsutsui 				a_tbl->at_wcnt--;
   3247   1.91   tsutsui 			/*
   3248    1.7       gwr 			 * If the removal resulted in an empty B table,
   3249    1.7       gwr 			 * invalidate the DTE that points to it and decrement
   3250    1.7       gwr 			 * the valid entry count of the A table.
   3251    1.7       gwr 			 */
   3252    1.7       gwr 			if (empty) {
   3253    1.7       gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3254    1.7       gwr 				a_tbl->at_ecnt--;
   3255    1.7       gwr 			}
   3256    1.1       gwr 		}
   3257    1.1       gwr 	}
   3258    1.7       gwr 
   3259    1.7       gwr 	/*
   3260    1.7       gwr 	 * If there are no more entries in the A table, release it
   3261   1.95   thorpej 	 * back to the available pool and return true.
   3262    1.7       gwr 	 */
   3263    1.7       gwr 	if (a_tbl->at_ecnt == 0) {
   3264   1.91   tsutsui 		KASSERT(a_tbl->at_wcnt == 0);
   3265    1.7       gwr 		a_tbl->at_parent = NULL;
   3266   1.91   tsutsui 		if (!at_wired)
   3267   1.91   tsutsui 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3268    1.7       gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3269   1.95   thorpej 		empty = true;
   3270    1.7       gwr 	} else {
   3271   1.91   tsutsui 		/*
   3272   1.91   tsutsui 		 * If the table doesn't have wired entries any longer
   3273   1.91   tsutsui 		 * but still has unwired entries, put it back into
   3274   1.91   tsutsui 		 * the available queue.
   3275   1.91   tsutsui 		 */
   3276   1.91   tsutsui 		if (at_wired && a_tbl->at_wcnt == 0)
   3277   1.91   tsutsui 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   3278   1.95   thorpej 		empty = false;
   3279    1.7       gwr 	}
   3280    1.7       gwr 
   3281    1.7       gwr 	return empty;
   3282    1.1       gwr }
   3283    1.1       gwr 
   3284    1.1       gwr /* pmap_remove_b			INTERNAL
   3285    1.1       gwr  **
   3286    1.1       gwr  * Remove a range of addresses from an address space, trying to remove entire
   3287    1.1       gwr  * C tables if possible.
   3288    1.7       gwr  *
   3289   1.95   thorpej  * If the operation results in an empty B table, the function returns true.
   3290    1.1       gwr  */
   3291   1.94   thorpej bool
   3292   1.88   tsutsui pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
   3293    1.1       gwr {
   3294   1.94   thorpej 	bool empty;
   3295    1.1       gwr 	int idx;
   3296   1.69       chs 	vaddr_t nstart, nend, rstart;
   3297    1.1       gwr 	c_tmgr_t *c_tbl;
   3298    1.1       gwr 	mmu_short_dte_t  *b_dte;
   3299    1.1       gwr 	mmu_short_pte_t  *c_dte;
   3300   1.91   tsutsui 	uint8_t bt_wired, ct_wired;
   3301    1.1       gwr 
   3302   1.88   tsutsui 	nstart = MMU_ROUND_UP_B(sva);
   3303   1.88   tsutsui 	nend = MMU_ROUND_B(eva);
   3304    1.1       gwr 
   3305   1.91   tsutsui 	bt_wired = b_tbl->bt_wcnt;
   3306   1.91   tsutsui 
   3307   1.88   tsutsui 	if (sva < nstart) {
   3308   1.88   tsutsui 		idx = MMU_TIB(sva);
   3309    1.1       gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3310    1.1       gwr 		if (MMU_VALID_DT(*b_dte)) {
   3311    1.7       gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3312    1.1       gwr 			c_tbl = mmuC2tmgr(c_dte);
   3313   1.91   tsutsui 			ct_wired = c_tbl->ct_wcnt;
   3314   1.91   tsutsui 
   3315   1.88   tsutsui 			if (eva < nstart)
   3316   1.88   tsutsui 				empty = pmap_remove_c(c_tbl, sva, eva);
   3317    1.7       gwr 			else
   3318   1.88   tsutsui 				empty = pmap_remove_c(c_tbl, sva, nstart);
   3319   1.91   tsutsui 
   3320   1.91   tsutsui 			/*
   3321   1.91   tsutsui 			 * If the child table no longer has wired entries,
   3322   1.91   tsutsui 			 * decrement wired entry count.
   3323   1.91   tsutsui 			 */
   3324   1.91   tsutsui 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3325   1.91   tsutsui 				b_tbl->bt_wcnt--;
   3326   1.91   tsutsui 
   3327    1.7       gwr 			if (empty) {
   3328    1.7       gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3329    1.7       gwr 				b_tbl->bt_ecnt--;
   3330    1.1       gwr 			}
   3331    1.1       gwr 		}
   3332    1.1       gwr 	}
   3333    1.1       gwr 	if (nstart < nend) {
   3334    1.1       gwr 		idx = MMU_TIB(nstart);
   3335    1.1       gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3336    1.1       gwr 		rstart = nstart;
   3337    1.1       gwr 		while (rstart < nend) {
   3338    1.1       gwr 			if (MMU_VALID_DT(*b_dte)) {
   3339    1.7       gwr 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3340    1.1       gwr 				c_tbl = mmuC2tmgr(c_dte);
   3341   1.91   tsutsui 				ct_wired = c_tbl->ct_wcnt;
   3342   1.91   tsutsui 
   3343   1.95   thorpej 				free_c_table(c_tbl, true);
   3344   1.91   tsutsui 
   3345   1.91   tsutsui 				/*
   3346   1.91   tsutsui 				 * All child entries has been removed.
   3347   1.91   tsutsui 				 * If there were any wired entries in it,
   3348   1.91   tsutsui 				 * decrement wired entry count.
   3349   1.91   tsutsui 				 */
   3350   1.91   tsutsui 				if (ct_wired)
   3351   1.91   tsutsui 					b_tbl->bt_wcnt--;
   3352   1.91   tsutsui 
   3353    1.1       gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3354    1.1       gwr 				b_tbl->bt_ecnt--;
   3355    1.1       gwr 			}
   3356    1.1       gwr 			b_dte++;
   3357    1.1       gwr 			rstart += MMU_TIB_RANGE;
   3358    1.1       gwr 		}
   3359    1.1       gwr 	}
   3360   1.88   tsutsui 	if (nend < eva) {
   3361    1.1       gwr 		idx = MMU_TIB(nend);
   3362    1.1       gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3363    1.1       gwr 		if (MMU_VALID_DT(*b_dte)) {
   3364    1.7       gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3365    1.1       gwr 			c_tbl = mmuC2tmgr(c_dte);
   3366   1.91   tsutsui 			ct_wired = c_tbl->ct_wcnt;
   3367   1.88   tsutsui 			empty = pmap_remove_c(c_tbl, nend, eva);
   3368   1.91   tsutsui 
   3369   1.91   tsutsui 			/*
   3370   1.91   tsutsui 			 * If the child table no longer has wired entries,
   3371   1.91   tsutsui 			 * decrement wired entry count.
   3372   1.91   tsutsui 			 */
   3373   1.91   tsutsui 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3374   1.91   tsutsui 				b_tbl->bt_wcnt--;
   3375   1.91   tsutsui 
   3376    1.7       gwr 			if (empty) {
   3377    1.7       gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3378    1.7       gwr 				b_tbl->bt_ecnt--;
   3379    1.7       gwr 			}
   3380    1.1       gwr 		}
   3381    1.1       gwr 	}
   3382    1.7       gwr 
   3383    1.7       gwr 	if (b_tbl->bt_ecnt == 0) {
   3384   1.91   tsutsui 		KASSERT(b_tbl->bt_wcnt == 0);
   3385    1.7       gwr 		b_tbl->bt_parent = NULL;
   3386   1.91   tsutsui 		if (!bt_wired)
   3387   1.91   tsutsui 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3388    1.7       gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3389   1.95   thorpej 		empty = true;
   3390    1.7       gwr 	} else {
   3391   1.91   tsutsui 		/*
   3392   1.91   tsutsui 		 * If the table doesn't have wired entries any longer
   3393   1.91   tsutsui 		 * but still has unwired entries, put it back into
   3394   1.91   tsutsui 		 * the available queue.
   3395   1.91   tsutsui 		 */
   3396   1.91   tsutsui 		if (bt_wired && b_tbl->bt_wcnt == 0)
   3397   1.91   tsutsui 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   3398   1.91   tsutsui 
   3399   1.95   thorpej 		empty = false;
   3400    1.7       gwr 	}
   3401    1.7       gwr 
   3402    1.7       gwr 	return empty;
   3403    1.1       gwr }
   3404    1.1       gwr 
   3405    1.1       gwr /* pmap_remove_c			INTERNAL
   3406    1.1       gwr  **
   3407    1.1       gwr  * Remove a range of addresses from the given C table.
   3408    1.1       gwr  */
   3409   1.94   thorpej bool
   3410   1.88   tsutsui pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
   3411    1.1       gwr {
   3412   1.94   thorpej 	bool empty;
   3413    1.1       gwr 	int idx;
   3414    1.1       gwr 	mmu_short_pte_t *c_pte;
   3415   1.91   tsutsui 	uint8_t ct_wired;
   3416    1.1       gwr 
   3417   1.91   tsutsui 	ct_wired = c_tbl->ct_wcnt;
   3418   1.91   tsutsui 
   3419   1.88   tsutsui 	idx = MMU_TIC(sva);
   3420    1.1       gwr 	c_pte = &c_tbl->ct_dtbl[idx];
   3421   1.92   tsutsui 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
   3422    1.7       gwr 		if (MMU_VALID_DT(*c_pte)) {
   3423   1.91   tsutsui 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   3424   1.91   tsutsui 				c_tbl->ct_wcnt--;
   3425    1.1       gwr 			pmap_remove_pte(c_pte);
   3426    1.7       gwr 			c_tbl->ct_ecnt--;
   3427    1.7       gwr 		}
   3428    1.1       gwr 	}
   3429    1.7       gwr 
   3430    1.7       gwr 	if (c_tbl->ct_ecnt == 0) {
   3431   1.91   tsutsui 		KASSERT(c_tbl->ct_wcnt == 0);
   3432    1.7       gwr 		c_tbl->ct_parent = NULL;
   3433   1.91   tsutsui 		if (!ct_wired)
   3434   1.91   tsutsui 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3435    1.9       gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3436   1.95   thorpej 		empty = true;
   3437    1.9       gwr 	} else {
   3438   1.91   tsutsui 		/*
   3439   1.91   tsutsui 		 * If the table doesn't have wired entries any longer
   3440   1.91   tsutsui 		 * but still has unwired entries, put it back into
   3441   1.91   tsutsui 		 * the available queue.
   3442   1.91   tsutsui 		 */
   3443   1.91   tsutsui 		if (ct_wired && c_tbl->ct_wcnt == 0)
   3444   1.91   tsutsui 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   3445   1.95   thorpej 		empty = false;
   3446    1.9       gwr 	}
   3447    1.7       gwr 
   3448    1.9       gwr 	return empty;
   3449    1.1       gwr }
   3450    1.1       gwr 
   3451    1.1       gwr /* pmap_bootstrap_alloc			INTERNAL
   3452    1.1       gwr  **
   3453    1.1       gwr  * Used internally for memory allocation at startup when malloc is not
   3454    1.1       gwr  * available.  This code will fail once it crosses the first memory
   3455    1.1       gwr  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3456    1.1       gwr  * will be in charge of allocation.
   3457    1.1       gwr  */
   3458    1.1       gwr void *
   3459   1.86       chs pmap_bootstrap_alloc(int size)
   3460    1.1       gwr {
   3461    1.1       gwr 	void *rtn;
   3462    1.1       gwr 
   3463    1.8       gwr #ifdef	PMAP_DEBUG
   3464   1.95   thorpej 	if (bootstrap_alloc_enabled == false) {
   3465    1.7       gwr 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3466    1.7       gwr 		sunmon_abort();
   3467    1.7       gwr 	}
   3468    1.7       gwr #endif
   3469    1.7       gwr 
   3470    1.1       gwr 	rtn = (void *) virtual_avail;
   3471    1.1       gwr 	virtual_avail += size;
   3472    1.1       gwr 
   3473    1.8       gwr #ifdef	PMAP_DEBUG
   3474    1.7       gwr 	if (virtual_avail > virtual_contig_end) {
   3475    1.7       gwr 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3476    1.7       gwr 		sunmon_abort();
   3477    1.1       gwr 	}
   3478    1.7       gwr #endif
   3479    1.1       gwr 
   3480    1.1       gwr 	return rtn;
   3481    1.1       gwr }
   3482    1.1       gwr 
   3483    1.1       gwr /* pmap_bootstap_aalign			INTERNAL
   3484    1.1       gwr  **
   3485    1.7       gwr  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3486    1.7       gwr  * return a chunk of memory aligned to the specified size.
   3487    1.8       gwr  *
   3488    1.8       gwr  * Note: This function will only support alignment sizes that are powers
   3489    1.8       gwr  * of two.
   3490    1.1       gwr  */
   3491   1.86       chs void
   3492   1.86       chs pmap_bootstrap_aalign(int size)
   3493    1.1       gwr {
   3494    1.7       gwr 	int off;
   3495    1.7       gwr 
   3496    1.7       gwr 	off = virtual_avail & (size - 1);
   3497    1.7       gwr 	if (off) {
   3498   1.92   tsutsui 		(void)pmap_bootstrap_alloc(size - off);
   3499    1.1       gwr 	}
   3500    1.1       gwr }
   3501    1.7       gwr 
   3502    1.8       gwr /* pmap_pa_exists
   3503    1.8       gwr  **
   3504    1.8       gwr  * Used by the /dev/mem driver to see if a given PA is memory
   3505    1.8       gwr  * that can be mapped.  (The PA is not in a hole.)
   3506    1.8       gwr  */
   3507   1.86       chs int
   3508   1.86       chs pmap_pa_exists(paddr_t pa)
   3509    1.8       gwr {
   3510   1.69       chs 	int i;
   3511   1.21       gwr 
   3512   1.21       gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3513   1.21       gwr 		if ((pa >= avail_mem[i].pmem_start) &&
   3514   1.21       gwr 			(pa <  avail_mem[i].pmem_end))
   3515   1.92   tsutsui 			return 1;
   3516   1.21       gwr 		if (avail_mem[i].pmem_next == NULL)
   3517   1.21       gwr 			break;
   3518   1.21       gwr 	}
   3519   1.92   tsutsui 	return 0;
   3520    1.8       gwr }
   3521    1.8       gwr 
   3522   1.31       gwr /* Called only from locore.s and pmap.c */
   3523   1.86       chs void	_pmap_switch(pmap_t pmap);
   3524   1.31       gwr 
   3525   1.31       gwr /*
   3526   1.31       gwr  * _pmap_switch			INTERNAL
   3527   1.31       gwr  *
   3528   1.31       gwr  * This is called by locore.s:cpu_switch() when it is
   3529   1.31       gwr  * switching to a new process.  Load new translations.
   3530   1.31       gwr  * Note: done in-line by locore.s unless PMAP_DEBUG
   3531   1.24    jeremy  *
   3532   1.31       gwr  * Note that we do NOT allocate a context here, but
   3533   1.31       gwr  * share the "kernel only" context until we really
   3534   1.31       gwr  * need our own context for user-space mappings in
   3535   1.31       gwr  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3536    1.1       gwr  */
   3537   1.86       chs void
   3538   1.86       chs _pmap_switch(pmap_t pmap)
   3539    1.1       gwr {
   3540    1.7       gwr 	u_long rootpa;
   3541    1.7       gwr 
   3542   1.31       gwr 	/*
   3543   1.31       gwr 	 * Only do reload/flush if we have to.
   3544   1.31       gwr 	 * Note that if the old and new process
   3545   1.31       gwr 	 * were BOTH using the "null" context,
   3546   1.31       gwr 	 * then this will NOT flush the TLB.
   3547   1.31       gwr 	 */
   3548    1.7       gwr 	rootpa = pmap->pm_a_phys;
   3549   1.31       gwr 	if (kernel_crp.rp_addr != rootpa) {
   3550   1.31       gwr 		DPRINT(("pmap_activate(%p)\n", pmap));
   3551    1.7       gwr 		kernel_crp.rp_addr = rootpa;
   3552    1.7       gwr 		loadcrp(&kernel_crp);
   3553    1.8       gwr 		TBIAU();
   3554   1.31       gwr 	}
   3555   1.31       gwr }
   3556   1.31       gwr 
   3557   1.31       gwr /*
   3558   1.31       gwr  * Exported version of pmap_activate().  This is called from the
   3559   1.31       gwr  * machine-independent VM code when a process is given a new pmap.
   3560   1.76   thorpej  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3561   1.31       gwr  * take this as notification that the process has a new pmap.
   3562   1.31       gwr  */
   3563   1.86       chs void
   3564   1.86       chs pmap_activate(struct lwp *l)
   3565   1.31       gwr {
   3566   1.92   tsutsui 
   3567   1.76   thorpej 	if (l->l_proc == curproc) {
   3568   1.76   thorpej 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3569    1.7       gwr 	}
   3570    1.1       gwr }
   3571    1.1       gwr 
   3572   1.30   thorpej /*
   3573   1.30   thorpej  * pmap_deactivate			INTERFACE
   3574   1.30   thorpej  **
   3575   1.30   thorpej  * This is called to deactivate the specified process's address space.
   3576   1.30   thorpej  */
   3577   1.86       chs void
   3578   1.86       chs pmap_deactivate(struct lwp *l)
   3579    1.1       gwr {
   3580   1.92   tsutsui 
   3581   1.69       chs 	/* Nothing to do. */
   3582    1.1       gwr }
   3583    1.1       gwr 
   3584   1.17       gwr /*
   3585   1.28       gwr  * Fill in the sun3x-specific part of the kernel core header
   3586   1.28       gwr  * for dumpsys().  (See machdep.c for the rest.)
   3587   1.17       gwr  */
   3588   1.86       chs void
   3589   1.86       chs pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
   3590   1.17       gwr {
   3591   1.17       gwr 	u_long spa, len;
   3592   1.17       gwr 	int i;
   3593   1.20   thorpej 
   3594   1.28       gwr 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3595   1.28       gwr 	sh->pg_valid = MMU_DT_PAGE;
   3596   1.20   thorpej 	sh->contig_end = virtual_contig_end;
   3597   1.69       chs 	sh->kernCbase = (u_long)kernCbase;
   3598   1.20   thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3599   1.17       gwr 		spa = avail_mem[i].pmem_start;
   3600   1.25     veego 		spa = m68k_trunc_page(spa);
   3601   1.17       gwr 		len = avail_mem[i].pmem_end - spa;
   3602   1.25     veego 		len = m68k_round_page(len);
   3603   1.20   thorpej 		sh->ram_segs[i].start = spa;
   3604   1.20   thorpej 		sh->ram_segs[i].size  = len;
   3605   1.17       gwr 	}
   3606   1.17       gwr }
   3607   1.17       gwr 
   3608   1.81   thorpej 
   3609   1.81   thorpej /* pmap_virtual_space			INTERFACE
   3610   1.81   thorpej  **
   3611   1.81   thorpej  * Return the current available range of virtual addresses in the
   3612   1.81   thorpej  * arguuments provided.  Only really called once.
   3613   1.81   thorpej  */
   3614   1.86       chs void
   3615   1.86       chs pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
   3616   1.81   thorpej {
   3617   1.92   tsutsui 
   3618   1.81   thorpej 	*vstart = virtual_avail;
   3619   1.81   thorpej 	*vend = virtual_end;
   3620   1.81   thorpej }
   3621    1.1       gwr 
   3622   1.37       gwr /*
   3623   1.37       gwr  * Provide memory to the VM system.
   3624   1.37       gwr  *
   3625   1.37       gwr  * Assume avail_start is always in the
   3626   1.37       gwr  * first segment as pmap_bootstrap does.
   3627   1.37       gwr  */
   3628   1.86       chs static void
   3629   1.86       chs pmap_page_upload(void)
   3630   1.37       gwr {
   3631   1.69       chs 	paddr_t	a, b;	/* memory range */
   3632   1.37       gwr 	int i;
   3633   1.37       gwr 
   3634   1.37       gwr 	/* Supply the memory in segments. */
   3635   1.37       gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3636   1.37       gwr 		a = atop(avail_mem[i].pmem_start);
   3637   1.37       gwr 		b = atop(avail_mem[i].pmem_end);
   3638   1.37       gwr 		if (i == 0)
   3639   1.37       gwr 			a = atop(avail_start);
   3640   1.60   tsutsui 		if (avail_mem[i].pmem_end > avail_end)
   3641   1.60   tsutsui 			b = atop(avail_end);
   3642   1.37       gwr 
   3643   1.39   thorpej 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3644   1.37       gwr 
   3645   1.37       gwr 		if (avail_mem[i].pmem_next == NULL)
   3646   1.37       gwr 			break;
   3647   1.37       gwr 	}
   3648    1.1       gwr }
   3649    1.8       gwr 
   3650    1.8       gwr /* pmap_count			INTERFACE
   3651    1.8       gwr  **
   3652    1.8       gwr  * Return the number of resident (valid) pages in the given pmap.
   3653    1.8       gwr  *
   3654    1.8       gwr  * Note:  If this function is handed the kernel map, it will report
   3655    1.8       gwr  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3656    1.8       gwr  * map statistics.
   3657    1.8       gwr  */
   3658   1.86       chs segsz_t
   3659   1.86       chs pmap_count(pmap_t pmap, int type)
   3660    1.8       gwr {
   3661    1.8       gwr 	u_int     count;
   3662    1.8       gwr 	int       a_idx, b_idx;
   3663    1.8       gwr 	a_tmgr_t *a_tbl;
   3664    1.8       gwr 	b_tmgr_t *b_tbl;
   3665    1.8       gwr 	c_tmgr_t *c_tbl;
   3666    1.8       gwr 
   3667    1.8       gwr 	/*
   3668    1.8       gwr 	 * If the pmap does not have its own A table manager, it has no
   3669    1.8       gwr 	 * valid entires.
   3670    1.8       gwr 	 */
   3671    1.8       gwr 	if (pmap->pm_a_tmgr == NULL)
   3672    1.8       gwr 		return 0;
   3673    1.8       gwr 
   3674    1.8       gwr 	a_tbl = pmap->pm_a_tmgr;
   3675    1.8       gwr 
   3676    1.8       gwr 	count = 0;
   3677    1.8       gwr 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3678    1.8       gwr 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3679    1.8       gwr 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3680    1.8       gwr 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3681    1.8       gwr 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3682    1.8       gwr 	                c_tbl = mmuC2tmgr(
   3683    1.8       gwr 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3684    1.8       gwr 	                if (type == 0)
   3685    1.8       gwr 	                    /*
   3686    1.8       gwr 	                     * A resident entry count has been requested.
   3687    1.8       gwr 	                     */
   3688    1.8       gwr 	                    count += c_tbl->ct_ecnt;
   3689    1.8       gwr 	                else
   3690    1.8       gwr 	                    /*
   3691    1.8       gwr 	                     * A wired entry count has been requested.
   3692    1.8       gwr 	                     */
   3693    1.8       gwr 	                    count += c_tbl->ct_wcnt;
   3694    1.8       gwr 	            }
   3695    1.8       gwr 	        }
   3696    1.8       gwr 	    }
   3697    1.8       gwr 	}
   3698    1.8       gwr 
   3699    1.8       gwr 	return count;
   3700    1.8       gwr }
   3701    1.8       gwr 
   3702    1.1       gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3703    1.1       gwr  * The following routines are only used by DDB for tricky kernel text    *
   3704    1.1       gwr  * text operations in db_memrw.c.  They are provided for sun3            *
   3705    1.1       gwr  * compatibility.                                                        *
   3706    1.1       gwr  *************************************************************************/
   3707    1.1       gwr /* get_pte			INTERNAL
   3708    1.1       gwr  **
   3709    1.1       gwr  * Return the page descriptor the describes the kernel mapping
   3710    1.1       gwr  * of the given virtual address.
   3711    1.1       gwr  */
   3712   1.86       chs extern u_long ptest_addr(u_long);	/* XXX: locore.s */
   3713   1.86       chs u_int
   3714   1.86       chs get_pte(vaddr_t va)
   3715   1.13       gwr {
   3716   1.13       gwr 	u_long pte_pa;
   3717   1.13       gwr 	mmu_short_pte_t *pte;
   3718   1.13       gwr 
   3719   1.13       gwr 	/* Get the physical address of the PTE */
   3720   1.13       gwr 	pte_pa = ptest_addr(va & ~PGOFSET);
   3721   1.13       gwr 
   3722   1.13       gwr 	/* Convert to a virtual address... */
   3723   1.13       gwr 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3724   1.13       gwr 
   3725   1.13       gwr 	/* Make sure it is in our level-C tables... */
   3726   1.13       gwr 	if ((pte < kernCbase) ||
   3727   1.13       gwr 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3728   1.13       gwr 		return 0;
   3729   1.13       gwr 
   3730   1.13       gwr 	/* ... and just return its contents. */
   3731   1.13       gwr 	return (pte->attr.raw);
   3732   1.13       gwr }
   3733   1.13       gwr 
   3734    1.1       gwr 
   3735    1.1       gwr /* set_pte			INTERNAL
   3736    1.1       gwr  **
   3737    1.1       gwr  * Set the page descriptor that describes the kernel mapping
   3738    1.1       gwr  * of the given virtual address.
   3739    1.1       gwr  */
   3740   1.86       chs void
   3741   1.86       chs set_pte(vaddr_t va, u_int pte)
   3742    1.1       gwr {
   3743    1.1       gwr 	u_long idx;
   3744    1.1       gwr 
   3745    1.7       gwr 	if (va < KERNBASE)
   3746    1.7       gwr 		return;
   3747    1.7       gwr 
   3748   1.25     veego 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3749    1.1       gwr 	kernCbase[idx].attr.raw = pte;
   3750   1.33       gwr 	TBIS(va);
   3751    1.1       gwr }
   3752   1.42        is 
   3753   1.42        is /*
   3754   1.42        is  *	Routine:        pmap_procwr
   3755   1.42        is  *
   3756   1.42        is  *	Function:
   3757   1.42        is  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3758   1.42        is  */
   3759   1.86       chs void
   3760   1.86       chs pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   3761   1.42        is {
   3762   1.92   tsutsui 
   3763   1.42        is 	(void)cachectl1(0x80000004, va, len, p);
   3764   1.42        is }
   3765   1.42        is 
   3766    1.7       gwr 
   3767    1.8       gwr #ifdef	PMAP_DEBUG
   3768    1.7       gwr /************************** DEBUGGING ROUTINES **************************
   3769    1.7       gwr  * The following routines are meant to be an aid to debugging the pmap  *
   3770    1.7       gwr  * system.  They are callable from the DDB command line and should be   *
   3771    1.7       gwr  * prepared to be handed unstable or incomplete states of the system.   *
   3772    1.7       gwr  ************************************************************************/
   3773    1.7       gwr 
   3774    1.7       gwr /* pv_list
   3775    1.7       gwr  **
   3776    1.7       gwr  * List all pages found on the pv list for the given physical page.
   3777    1.8       gwr  * To avoid endless loops, the listing will stop at the end of the list
   3778    1.7       gwr  * or after 'n' entries - whichever comes first.
   3779    1.7       gwr  */
   3780   1.86       chs void
   3781   1.86       chs pv_list(paddr_t pa, int n)
   3782    1.7       gwr {
   3783    1.7       gwr 	int  idx;
   3784   1.69       chs 	vaddr_t va;
   3785    1.7       gwr 	pv_t *pv;
   3786    1.7       gwr 	c_tmgr_t *c_tbl;
   3787    1.7       gwr 	pmap_t pmap;
   3788    1.7       gwr 
   3789    1.7       gwr 	pv = pa2pv(pa);
   3790    1.7       gwr 	idx = pv->pv_idx;
   3791   1.69       chs 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3792    1.8       gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3793    1.7       gwr 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3794    1.7       gwr 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3795    1.7       gwr 	}
   3796    1.7       gwr }
   3797    1.8       gwr #endif	/* PMAP_DEBUG */
   3798    1.1       gwr 
   3799    1.1       gwr #ifdef NOT_YET
   3800    1.1       gwr /* and maybe not ever */
   3801    1.1       gwr /************************** LOW-LEVEL ROUTINES **************************
   3802   1.78       wiz  * These routines will eventually be re-written into assembly and placed*
   3803    1.1       gwr  * in locore.s.  They are here now as stubs so that the pmap module can *
   3804    1.1       gwr  * be linked as a standalone user program for testing.                  *
   3805    1.1       gwr  ************************************************************************/
   3806    1.1       gwr /* flush_atc_crp			INTERNAL
   3807    1.1       gwr  **
   3808    1.1       gwr  * Flush all page descriptors derived from the given CPU Root Pointer
   3809    1.1       gwr  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3810    1.1       gwr  * cache.
   3811    1.1       gwr  */
   3812   1.86       chs void
   3813   1.86       chs flush_atc_crp(int a_tbl)
   3814    1.1       gwr {
   3815    1.1       gwr 	mmu_long_rp_t rp;
   3816    1.1       gwr 
   3817    1.1       gwr 	/* Create a temporary root table pointer that points to the
   3818    1.1       gwr 	 * given A table.
   3819    1.1       gwr 	 */
   3820    1.1       gwr 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3821    1.1       gwr 	rp.addr.raw = (unsigned int) a_tbl;
   3822    1.1       gwr 
   3823    1.1       gwr 	mmu_pflushr(&rp);
   3824    1.1       gwr 	/* mmu_pflushr:
   3825    1.1       gwr 	 * 	movel   sp(4)@,a0
   3826    1.1       gwr 	 * 	pflushr a0@
   3827    1.1       gwr 	 *	rts
   3828    1.1       gwr 	 */
   3829    1.1       gwr }
   3830    1.1       gwr #endif /* NOT_YET */
   3831