Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.110.2.1
      1  1.110.2.1  uebayasi /*	$NetBSD: pmap.c,v 1.110.2.1 2010/10/22 07:21:38 uebayasi Exp $	*/
      2        1.1       gwr 
      3        1.1       gwr /*-
      4       1.10    jeremy  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5        1.1       gwr  * All rights reserved.
      6        1.1       gwr  *
      7        1.1       gwr  * This code is derived from software contributed to The NetBSD Foundation
      8        1.1       gwr  * by Jeremy Cooper.
      9        1.1       gwr  *
     10        1.1       gwr  * Redistribution and use in source and binary forms, with or without
     11        1.1       gwr  * modification, are permitted provided that the following conditions
     12        1.1       gwr  * are met:
     13        1.1       gwr  * 1. Redistributions of source code must retain the above copyright
     14        1.1       gwr  *    notice, this list of conditions and the following disclaimer.
     15        1.1       gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1       gwr  *    notice, this list of conditions and the following disclaimer in the
     17        1.1       gwr  *    documentation and/or other materials provided with the distribution.
     18        1.1       gwr  *
     19        1.1       gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.1       gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.1       gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.1       gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.1       gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.1       gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.1       gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.1       gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.1       gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.1       gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.1       gwr  * POSSIBILITY OF SUCH DAMAGE.
     30        1.1       gwr  */
     31        1.1       gwr 
     32        1.1       gwr /*
     33        1.1       gwr  * XXX These comments aren't quite accurate.  Need to change.
     34        1.1       gwr  * The sun3x uses the MC68851 Memory Management Unit, which is built
     35        1.1       gwr  * into the CPU.  The 68851 maps virtual to physical addresses using
     36        1.1       gwr  * a multi-level table lookup, which is stored in the very memory that
     37        1.1       gwr  * it maps.  The number of levels of lookup is configurable from one
     38        1.1       gwr  * to four.  In this implementation, we use three, named 'A' through 'C'.
     39        1.1       gwr  *
     40        1.1       gwr  * The MMU translates virtual addresses into physical addresses by
     41       1.84       wiz  * traversing these tables in a process called a 'table walk'.  The most
     42        1.1       gwr  * significant 7 bits of the Virtual Address ('VA') being translated are
     43        1.1       gwr  * used as an index into the level A table, whose base in physical memory
     44        1.1       gwr  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     45        1.1       gwr  * address found at that index in the A table is used as the base
     46        1.1       gwr  * address for the next table, the B table.  The next six bits of the VA are
     47        1.1       gwr  * used as an index into the B table, which in turn gives the base address
     48        1.1       gwr  * of the third and final C table.
     49        1.1       gwr  *
     50        1.1       gwr  * The next six bits of the VA are used as an index into the C table to
     51        1.1       gwr  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     52        1.1       gwr  * to which the remaining 13 bits of the VA are added, producing the
     53        1.1       gwr  * mapped physical address.
     54        1.1       gwr  *
     55        1.1       gwr  * To map the entire memory space in this manner would require 2114296 bytes
     56        1.1       gwr  * of page tables per process - quite expensive.  Instead we will
     57        1.1       gwr  * allocate a fixed but considerably smaller space for the page tables at
     58        1.1       gwr  * the time the VM system is initialized.  When the pmap code is asked by
     59        1.1       gwr  * the kernel to map a VA to a PA, it allocates tables as needed from this
     60        1.1       gwr  * pool.  When there are no more tables in the pool, tables are stolen
     61        1.1       gwr  * from the oldest mapped entries in the tree.  This is only possible
     62        1.1       gwr  * because all memory mappings are stored in the kernel memory map
     63        1.1       gwr  * structures, independent of the pmap structures.  A VA which references
     64        1.1       gwr  * one of these invalidated maps will cause a page fault.  The kernel
     65        1.1       gwr  * will determine that the page fault was caused by a task using a valid
     66        1.1       gwr  * VA, but for some reason (which does not concern it), that address was
     67        1.1       gwr  * not mapped.  It will ask the pmap code to re-map the entry and then
     68        1.1       gwr  * it will resume executing the faulting task.
     69        1.1       gwr  *
     70        1.1       gwr  * In this manner the most efficient use of the page table space is
     71        1.1       gwr  * achieved.  Tasks which do not execute often will have their tables
     72        1.1       gwr  * stolen and reused by tasks which execute more frequently.  The best
     73        1.1       gwr  * size for the page table pool will probably be determined by
     74        1.1       gwr  * experimentation.
     75        1.1       gwr  *
     76        1.1       gwr  * You read all of the comments so far.  Good for you.
     77        1.1       gwr  * Now go play!
     78        1.1       gwr  */
     79        1.1       gwr 
     80        1.1       gwr /*** A Note About the 68851 Address Translation Cache
     81        1.1       gwr  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     82        1.1       gwr  * or 'ATC'.  This cache stores the most recently used page descriptors
     83        1.1       gwr  * accessed by the MMU when it does translations.  Using a marker called a
     84        1.1       gwr  * 'task alias' the MMU can store the descriptors from 8 different table
     85        1.1       gwr  * spaces concurrently.  The task alias is associated with the base
     86        1.1       gwr  * address of the level A table of that address space.  When an address
     87        1.1       gwr  * space is currently active (the CRP currently points to its A table)
     88        1.1       gwr  * the only cached descriptors that will be obeyed are ones which have a
     89        1.1       gwr  * matching task alias of the current space associated with them.
     90        1.1       gwr  *
     91        1.1       gwr  * Since the cache is always consulted before any table lookups are done,
     92        1.1       gwr  * it is important that it accurately reflect the state of the MMU tables.
     93        1.1       gwr  * Whenever a change has been made to a table that has been loaded into
     94        1.1       gwr  * the MMU, the code must be sure to flush any cached entries that are
     95        1.1       gwr  * affected by the change.  These instances are documented in the code at
     96        1.1       gwr  * various points.
     97        1.1       gwr  */
     98        1.1       gwr /*** A Note About the Note About the 68851 Address Translation Cache
     99        1.1       gwr  * 4 months into this code I discovered that the sun3x does not have
    100        1.1       gwr  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    101        1.1       gwr  * the 68030 CPU.
    102        1.1       gwr  * All though it behaves very similarly to the 68851, it only has 1 task
    103        1.8       gwr  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    104        1.8       gwr  * of the previous note does not apply to the sun3x pmap.
    105        1.1       gwr  */
    106       1.83     lukem 
    107       1.83     lukem #include <sys/cdefs.h>
    108  1.110.2.1  uebayasi __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.110.2.1 2010/10/22 07:21:38 uebayasi Exp $");
    109       1.45       gwr 
    110       1.45       gwr #include "opt_ddb.h"
    111       1.82    martin #include "opt_pmap_debug.h"
    112        1.1       gwr 
    113        1.1       gwr #include <sys/param.h>
    114        1.1       gwr #include <sys/systm.h>
    115        1.1       gwr #include <sys/proc.h>
    116        1.1       gwr #include <sys/malloc.h>
    117       1.56   tsutsui #include <sys/pool.h>
    118        1.1       gwr #include <sys/queue.h>
    119       1.20   thorpej #include <sys/kcore.h>
    120       1.38       gwr 
    121       1.38       gwr #include <uvm/uvm.h>
    122       1.43       mrg 
    123        1.1       gwr #include <machine/cpu.h>
    124       1.17       gwr #include <machine/kcore.h>
    125       1.33       gwr #include <machine/mon.h>
    126        1.1       gwr #include <machine/pmap.h>
    127        1.1       gwr #include <machine/pte.h>
    128       1.37       gwr #include <machine/vmparam.h>
    129       1.75       chs #include <m68k/cacheops.h>
    130       1.33       gwr 
    131       1.33       gwr #include <sun3/sun3/cache.h>
    132       1.33       gwr #include <sun3/sun3/machdep.h>
    133        1.1       gwr 
    134        1.1       gwr #include "pmap_pvt.h"
    135        1.1       gwr 
    136        1.1       gwr /* XXX - What headers declare these? */
    137        1.1       gwr extern struct pcb *curpcb;
    138        1.7       gwr 
    139        1.1       gwr /* Defined in locore.s */
    140        1.1       gwr extern char kernel_text[];
    141        1.1       gwr 
    142        1.1       gwr /* Defined by the linker */
    143        1.1       gwr extern char etext[], edata[], end[];
    144        1.1       gwr extern char *esym;	/* DDB */
    145        1.1       gwr 
    146        1.7       gwr /*************************** DEBUGGING DEFINITIONS ***********************
    147        1.7       gwr  * Macros, preprocessor defines and variables used in debugging can make *
    148        1.7       gwr  * code hard to read.  Anything used exclusively for debugging purposes  *
    149        1.7       gwr  * is defined here to avoid having such mess scattered around the file.  *
    150        1.7       gwr  *************************************************************************/
    151        1.8       gwr #ifdef	PMAP_DEBUG
    152        1.7       gwr /*
    153        1.7       gwr  * To aid the debugging process, macros should be expanded into smaller steps
    154        1.7       gwr  * that accomplish the same goal, yet provide convenient places for placing
    155        1.8       gwr  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    156        1.7       gwr  * 'INLINE' keyword is defined to an empty string.  This way, any function
    157        1.7       gwr  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    158        1.7       gwr  * a separate function, which is much easier to debug.
    159        1.7       gwr  */
    160        1.7       gwr #define	INLINE	/* nothing */
    161        1.7       gwr 
    162        1.1       gwr /*
    163        1.7       gwr  * It is sometimes convenient to watch the activity of a particular table
    164        1.7       gwr  * in the system.  The following variables are used for that purpose.
    165        1.1       gwr  */
    166        1.7       gwr a_tmgr_t *pmap_watch_atbl = 0;
    167        1.7       gwr b_tmgr_t *pmap_watch_btbl = 0;
    168        1.7       gwr c_tmgr_t *pmap_watch_ctbl = 0;
    169        1.1       gwr 
    170        1.7       gwr int pmap_debug = 0;
    171        1.7       gwr #define DPRINT(args) if (pmap_debug) printf args
    172        1.7       gwr 
    173        1.7       gwr #else	/********** Stuff below is defined if NOT debugging **************/
    174        1.7       gwr 
    175        1.7       gwr #define	INLINE	inline
    176       1.10    jeremy #define DPRINT(args)  /* nada */
    177        1.7       gwr 
    178       1.10    jeremy #endif	/* PMAP_DEBUG */
    179        1.7       gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/
    180        1.1       gwr 
    181        1.1       gwr /*** Management Structure - Memory Layout
    182        1.1       gwr  * For every MMU table in the sun3x pmap system there must be a way to
    183        1.1       gwr  * manage it; we must know which process is using it, what other tables
    184        1.1       gwr  * depend on it, and whether or not it contains any locked pages.  This
    185        1.1       gwr  * is solved by the creation of 'table management'  or 'tmgr'
    186        1.1       gwr  * structures.  One for each MMU table in the system.
    187        1.1       gwr  *
    188        1.1       gwr  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    189        1.1       gwr  *
    190        1.1       gwr  *      towards lower memory
    191        1.1       gwr  * kernAbase -> +-------------------------------------------------------+
    192        1.1       gwr  *              | Kernel     MMU A level table                          |
    193        1.1       gwr  * kernBbase -> +-------------------------------------------------------+
    194        1.1       gwr  *              | Kernel     MMU B level tables                         |
    195        1.1       gwr  * kernCbase -> +-------------------------------------------------------+
    196        1.1       gwr  *              |                                                       |
    197        1.1       gwr  *              | Kernel     MMU C level tables                         |
    198        1.1       gwr  *              |                                                       |
    199        1.7       gwr  * mmuCbase  -> +-------------------------------------------------------+
    200        1.7       gwr  *              | User       MMU C level tables                         |
    201        1.1       gwr  * mmuAbase  -> +-------------------------------------------------------+
    202        1.1       gwr  *              |                                                       |
    203        1.1       gwr  *              | User       MMU A level tables                         |
    204        1.1       gwr  *              |                                                       |
    205        1.1       gwr  * mmuBbase  -> +-------------------------------------------------------+
    206        1.1       gwr  *              | User       MMU B level tables                         |
    207        1.1       gwr  * tmgrAbase -> +-------------------------------------------------------+
    208        1.1       gwr  *              |  TMGR A level table structures                        |
    209        1.1       gwr  * tmgrBbase -> +-------------------------------------------------------+
    210        1.1       gwr  *              |  TMGR B level table structures                        |
    211        1.1       gwr  * tmgrCbase -> +-------------------------------------------------------+
    212        1.1       gwr  *              |  TMGR C level table structures                        |
    213        1.1       gwr  * pvbase    -> +-------------------------------------------------------+
    214        1.1       gwr  *              |  Physical to Virtual mapping table (list heads)       |
    215        1.1       gwr  * pvebase   -> +-------------------------------------------------------+
    216        1.1       gwr  *              |  Physical to Virtual mapping table (list elements)    |
    217        1.1       gwr  *              |                                                       |
    218        1.1       gwr  *              +-------------------------------------------------------+
    219        1.1       gwr  *      towards higher memory
    220        1.1       gwr  *
    221        1.1       gwr  * For every A table in the MMU A area, there will be a corresponding
    222        1.1       gwr  * a_tmgr structure in the TMGR A area.  The same will be true for
    223        1.1       gwr  * the B and C tables.  This arrangement will make it easy to find the
    224        1.1       gwr  * controling tmgr structure for any table in the system by use of
    225        1.1       gwr  * (relatively) simple macros.
    226        1.1       gwr  */
    227        1.7       gwr 
    228        1.7       gwr /*
    229        1.8       gwr  * Global variables for storing the base addresses for the areas
    230        1.1       gwr  * labeled above.
    231        1.1       gwr  */
    232       1.69       chs static vaddr_t  	kernAphys;
    233        1.1       gwr static mmu_long_dte_t	*kernAbase;
    234        1.1       gwr static mmu_short_dte_t	*kernBbase;
    235        1.1       gwr static mmu_short_pte_t	*kernCbase;
    236       1.15       gwr static mmu_short_pte_t	*mmuCbase;
    237       1.15       gwr static mmu_short_dte_t	*mmuBbase;
    238        1.1       gwr static mmu_long_dte_t	*mmuAbase;
    239        1.1       gwr static a_tmgr_t		*Atmgrbase;
    240        1.1       gwr static b_tmgr_t		*Btmgrbase;
    241        1.1       gwr static c_tmgr_t		*Ctmgrbase;
    242       1.15       gwr static pv_t 		*pvbase;
    243        1.1       gwr static pv_elem_t	*pvebase;
    244      1.100     pooka static struct pmap	kernel_pmap;
    245      1.101     pooka struct pmap		*const kernel_pmap_ptr = &kernel_pmap;
    246        1.1       gwr 
    247        1.8       gwr /*
    248        1.8       gwr  * This holds the CRP currently loaded into the MMU.
    249        1.8       gwr  */
    250        1.8       gwr struct mmu_rootptr kernel_crp;
    251        1.8       gwr 
    252        1.8       gwr /*
    253        1.8       gwr  * Just all around global variables.
    254        1.1       gwr  */
    255        1.1       gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    256        1.1       gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    257        1.1       gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    258        1.7       gwr 
    259        1.7       gwr 
    260        1.7       gwr /*
    261        1.7       gwr  * Flags used to mark the safety/availability of certain operations or
    262        1.7       gwr  * resources.
    263        1.7       gwr  */
    264       1.92   tsutsui /* Safe to use pmap_bootstrap_alloc(). */
    265       1.95   thorpej static bool bootstrap_alloc_enabled = false;
    266       1.92   tsutsui /* Temporary virtual pages are in use */
    267       1.92   tsutsui int tmp_vpages_inuse;
    268        1.1       gwr 
    269        1.1       gwr /*
    270        1.1       gwr  * XXX:  For now, retain the traditional variables that were
    271        1.1       gwr  * used in the old pmap/vm interface (without NONCONTIG).
    272        1.1       gwr  */
    273       1.81   thorpej /* Kernel virtual address space available: */
    274       1.81   thorpej vaddr_t	virtual_avail, virtual_end;
    275        1.1       gwr /* Physical address space available: */
    276       1.69       chs paddr_t	avail_start, avail_end;
    277        1.1       gwr 
    278        1.7       gwr /* This keep track of the end of the contiguously mapped range. */
    279       1.69       chs vaddr_t virtual_contig_end;
    280        1.7       gwr 
    281        1.7       gwr /* Physical address used by pmap_next_page() */
    282       1.69       chs paddr_t avail_next;
    283        1.7       gwr 
    284        1.7       gwr /* These are used by pmap_copy_page(), etc. */
    285       1.69       chs vaddr_t tmp_vpages[2];
    286        1.1       gwr 
    287       1.56   tsutsui /* memory pool for pmap structures */
    288       1.56   tsutsui struct pool	pmap_pmap_pool;
    289       1.56   tsutsui 
    290        1.7       gwr /*
    291        1.7       gwr  * The 3/80 is the only member of the sun3x family that has non-contiguous
    292        1.1       gwr  * physical memory.  Memory is divided into 4 banks which are physically
    293        1.1       gwr  * locatable on the system board.  Although the size of these banks varies
    294        1.1       gwr  * with the size of memory they contain, their base addresses are
    295        1.1       gwr  * permenently fixed.  The following structure, which describes these
    296        1.1       gwr  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    297        1.1       gwr  * structure provided by the ROM Monitor.
    298        1.1       gwr  *
    299        1.1       gwr  * For the other machines in the sun3x architecture which do have contiguous
    300        1.1       gwr  * RAM, this list will have only one entry, which will describe the entire
    301        1.1       gwr  * range of available memory.
    302        1.1       gwr  */
    303       1.20   thorpej struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    304        1.1       gwr u_int total_phys_mem;
    305        1.1       gwr 
    306        1.7       gwr /*************************************************************************/
    307        1.7       gwr 
    308        1.7       gwr /*
    309        1.7       gwr  * XXX - Should "tune" these based on statistics.
    310        1.7       gwr  *
    311        1.7       gwr  * My first guess about the relative numbers of these needed is
    312        1.7       gwr  * based on the fact that a "typical" process will have several
    313        1.7       gwr  * pages mapped at low virtual addresses (text, data, bss), then
    314        1.7       gwr  * some mapped shared libraries, and then some stack pages mapped
    315        1.7       gwr  * near the high end of the VA space.  Each process can use only
    316        1.7       gwr  * one A table, and most will use only two B tables (maybe three)
    317        1.7       gwr  * and probably about four C tables.  Therefore, the first guess
    318        1.7       gwr  * at the relative numbers of these needed is 1:2:4 -gwr
    319        1.7       gwr  *
    320        1.7       gwr  * The number of C tables needed is closely related to the amount
    321        1.7       gwr  * of physical memory available plus a certain amount attributable
    322        1.7       gwr  * to the use of double mappings.  With a few simulation statistics
    323        1.7       gwr  * we can find a reasonably good estimation of this unknown value.
    324        1.7       gwr  * Armed with that and the above ratios, we have a good idea of what
    325        1.7       gwr  * is needed at each level. -j
    326        1.7       gwr  *
    327        1.7       gwr  * Note: It is not physical memory memory size, but the total mapped
    328        1.7       gwr  * virtual space required by the combined working sets of all the
    329        1.7       gwr  * currently _runnable_ processes.  (Sleeping ones don't count.)
    330        1.7       gwr  * The amount of physical memory should be irrelevant. -gwr
    331        1.7       gwr  */
    332       1.22    jeremy #ifdef	FIXED_NTABLES
    333        1.7       gwr #define NUM_A_TABLES	16
    334        1.7       gwr #define NUM_B_TABLES	32
    335        1.7       gwr #define NUM_C_TABLES	64
    336       1.22    jeremy #else
    337       1.22    jeremy unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    338       1.22    jeremy #endif	/* FIXED_NTABLES */
    339        1.7       gwr 
    340        1.7       gwr /*
    341        1.7       gwr  * This determines our total virtual mapping capacity.
    342        1.7       gwr  * Yes, it is a FIXED value so we can pre-allocate.
    343        1.7       gwr  */
    344        1.7       gwr #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    345       1.15       gwr 
    346       1.15       gwr /*
    347       1.15       gwr  * The size of the Kernel Virtual Address Space (KVAS)
    348       1.15       gwr  * for purposes of MMU table allocation is -KERNBASE
    349       1.15       gwr  * (length from KERNBASE to 0xFFFFffff)
    350       1.15       gwr  */
    351  1.110.2.1  uebayasi #define	KVAS_SIZE		(-KERNBASE3X)
    352       1.15       gwr 
    353       1.15       gwr /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    354       1.15       gwr #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    355       1.15       gwr #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    356       1.15       gwr #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    357        1.7       gwr 
    358        1.7       gwr /*************************** MISCELANEOUS MACROS *************************/
    359       1.55   tsutsui #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    360       1.55   tsutsui #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    361       1.55   tsutsui #define pmap_add_ref(pmap) ++pmap->pm_refcount
    362       1.55   tsutsui #define pmap_del_ref(pmap) --pmap->pm_refcount
    363       1.55   tsutsui #define pmap_refcount(pmap) pmap->pm_refcount
    364       1.64   thorpej 
    365       1.64   thorpej void *pmap_bootstrap_alloc(int);
    366        1.7       gwr 
    367       1.86       chs static INLINE void *mmu_ptov(paddr_t);
    368       1.86       chs static INLINE paddr_t mmu_vtop(void *);
    369        1.7       gwr 
    370        1.7       gwr #if	0
    371       1.92   tsutsui static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
    372       1.26    jeremy #endif /* 0 */
    373       1.92   tsutsui static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
    374       1.92   tsutsui static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
    375        1.7       gwr 
    376       1.86       chs static INLINE pv_t *pa2pv(paddr_t);
    377       1.86       chs static INLINE int   pteidx(mmu_short_pte_t *);
    378       1.86       chs static INLINE pmap_t current_pmap(void);
    379        1.7       gwr 
    380        1.7       gwr /*
    381        1.7       gwr  * We can always convert between virtual and physical addresses
    382        1.7       gwr  * for anything in the range [KERNBASE ... avail_start] because
    383        1.7       gwr  * that range is GUARANTEED to be mapped linearly.
    384        1.7       gwr  * We rely heavily upon this feature!
    385        1.7       gwr  */
    386        1.7       gwr static INLINE void *
    387       1.86       chs mmu_ptov(paddr_t pa)
    388        1.7       gwr {
    389       1.69       chs 	vaddr_t va;
    390        1.7       gwr 
    391  1.110.2.1  uebayasi 	va = (pa + KERNBASE3X);
    392        1.8       gwr #ifdef	PMAP_DEBUG
    393  1.110.2.1  uebayasi 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
    394        1.7       gwr 		panic("mmu_ptov");
    395        1.7       gwr #endif
    396       1.92   tsutsui 	return (void *)va;
    397        1.7       gwr }
    398       1.69       chs 
    399       1.86       chs static INLINE paddr_t
    400       1.86       chs mmu_vtop(void *vva)
    401        1.7       gwr {
    402       1.69       chs 	vaddr_t va;
    403        1.7       gwr 
    404       1.69       chs 	va = (vaddr_t)vva;
    405        1.8       gwr #ifdef	PMAP_DEBUG
    406  1.110.2.1  uebayasi 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
    407       1.72   tsutsui 		panic("mmu_vtop");
    408        1.7       gwr #endif
    409  1.110.2.1  uebayasi 	return va - KERNBASE3X;
    410        1.7       gwr }
    411        1.7       gwr 
    412        1.7       gwr /*
    413        1.7       gwr  * These macros map MMU tables to their corresponding manager structures.
    414        1.1       gwr  * They are needed quite often because many of the pointers in the pmap
    415        1.1       gwr  * system reference MMU tables and not the structures that control them.
    416        1.1       gwr  * There needs to be a way to find one when given the other and these
    417        1.1       gwr  * macros do so by taking advantage of the memory layout described above.
    418        1.1       gwr  * Here's a quick step through the first macro, mmuA2tmgr():
    419        1.1       gwr  *
    420        1.1       gwr  * 1) find the offset of the given MMU A table from the base of its table
    421        1.1       gwr  *    pool (table - mmuAbase).
    422        1.1       gwr  * 2) convert this offset into a table index by dividing it by the
    423        1.1       gwr  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    424        1.1       gwr  * 3) use this index to select the corresponding 'A' table manager
    425        1.1       gwr  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    426        1.1       gwr  */
    427        1.7       gwr /*  This function is not currently used. */
    428        1.7       gwr #if	0
    429        1.7       gwr static INLINE a_tmgr_t *
    430       1.86       chs mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
    431        1.7       gwr {
    432       1.69       chs 	int idx;
    433        1.7       gwr 
    434        1.7       gwr 	/* Which table is this in? */
    435        1.7       gwr 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    436        1.8       gwr #ifdef	PMAP_DEBUG
    437        1.7       gwr 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    438        1.7       gwr 		panic("mmuA2tmgr");
    439        1.7       gwr #endif
    440       1.92   tsutsui 	return &Atmgrbase[idx];
    441        1.7       gwr }
    442        1.7       gwr #endif	/* 0 */
    443        1.7       gwr 
    444        1.7       gwr static INLINE b_tmgr_t *
    445       1.86       chs mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
    446        1.7       gwr {
    447       1.69       chs 	int idx;
    448        1.7       gwr 
    449        1.7       gwr 	/* Which table is this in? */
    450        1.7       gwr 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    451        1.8       gwr #ifdef	PMAP_DEBUG
    452        1.7       gwr 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    453        1.7       gwr 		panic("mmuB2tmgr");
    454        1.7       gwr #endif
    455       1.92   tsutsui 	return &Btmgrbase[idx];
    456        1.7       gwr }
    457        1.7       gwr 
    458        1.7       gwr /* mmuC2tmgr			INTERNAL
    459        1.7       gwr  **
    460        1.7       gwr  * Given a pte known to belong to a C table, return the address of
    461        1.7       gwr  * that table's management structure.
    462        1.7       gwr  */
    463        1.7       gwr static INLINE c_tmgr_t *
    464       1.86       chs mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
    465        1.7       gwr {
    466       1.69       chs 	int idx;
    467        1.7       gwr 
    468        1.7       gwr 	/* Which table is this in? */
    469        1.7       gwr 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    470        1.8       gwr #ifdef	PMAP_DEBUG
    471        1.7       gwr 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    472        1.7       gwr 		panic("mmuC2tmgr");
    473        1.7       gwr #endif
    474       1.92   tsutsui 	return &Ctmgrbase[idx];
    475        1.7       gwr }
    476        1.7       gwr 
    477        1.8       gwr /* This is now a function call below.
    478        1.1       gwr  * #define pa2pv(pa) \
    479        1.1       gwr  *	(&pvbase[(unsigned long)\
    480       1.25     veego  *		m68k_btop(pa)\
    481        1.1       gwr  *	])
    482        1.1       gwr  */
    483        1.1       gwr 
    484        1.7       gwr /* pa2pv			INTERNAL
    485        1.7       gwr  **
    486        1.7       gwr  * Return the pv_list_head element which manages the given physical
    487        1.7       gwr  * address.
    488        1.7       gwr  */
    489        1.7       gwr static INLINE pv_t *
    490       1.86       chs pa2pv(paddr_t pa)
    491        1.7       gwr {
    492       1.69       chs 	struct pmap_physmem_struct *bank;
    493       1.69       chs 	int idx;
    494        1.7       gwr 
    495        1.7       gwr 	bank = &avail_mem[0];
    496        1.7       gwr 	while (pa >= bank->pmem_end)
    497        1.7       gwr 		bank = bank->pmem_next;
    498        1.7       gwr 
    499        1.7       gwr 	pa -= bank->pmem_start;
    500       1.25     veego 	idx = bank->pmem_pvbase + m68k_btop(pa);
    501        1.8       gwr #ifdef	PMAP_DEBUG
    502        1.7       gwr 	if ((idx < 0) || (idx >= physmem))
    503        1.7       gwr 		panic("pa2pv");
    504        1.7       gwr #endif
    505        1.7       gwr 	return &pvbase[idx];
    506        1.7       gwr }
    507        1.7       gwr 
    508        1.7       gwr /* pteidx			INTERNAL
    509        1.7       gwr  **
    510        1.7       gwr  * Return the index of the given PTE within the entire fixed table of
    511        1.7       gwr  * PTEs.
    512        1.7       gwr  */
    513        1.7       gwr static INLINE int
    514       1.86       chs pteidx(mmu_short_pte_t *pte)
    515        1.7       gwr {
    516       1.92   tsutsui 
    517       1.92   tsutsui 	return pte - kernCbase;
    518        1.7       gwr }
    519        1.7       gwr 
    520        1.7       gwr /*
    521        1.8       gwr  * This just offers a place to put some debugging checks,
    522       1.76   thorpej  * and reduces the number of places "curlwp" appears...
    523        1.7       gwr  */
    524       1.86       chs static INLINE pmap_t
    525       1.86       chs current_pmap(void)
    526        1.7       gwr {
    527        1.7       gwr 	struct vmspace *vm;
    528       1.67       chs 	struct vm_map *map;
    529        1.7       gwr 	pmap_t	pmap;
    530        1.7       gwr 
    531       1.97   tsutsui 	vm = curproc->p_vmspace;
    532       1.97   tsutsui 	map = &vm->vm_map;
    533       1.97   tsutsui 	pmap = vm_map_pmap(map);
    534        1.7       gwr 
    535       1.92   tsutsui 	return pmap;
    536        1.7       gwr }
    537        1.7       gwr 
    538        1.7       gwr 
    539        1.1       gwr /*************************** FUNCTION DEFINITIONS ************************
    540        1.1       gwr  * These appear here merely for the compiler to enforce type checking on *
    541        1.1       gwr  * all function calls.                                                   *
    542        1.7       gwr  *************************************************************************/
    543        1.1       gwr 
    544       1.92   tsutsui /*
    545       1.92   tsutsui  * Internal functions
    546       1.92   tsutsui  */
    547       1.92   tsutsui a_tmgr_t *get_a_table(void);
    548       1.92   tsutsui b_tmgr_t *get_b_table(void);
    549       1.92   tsutsui c_tmgr_t *get_c_table(void);
    550       1.94   thorpej int free_a_table(a_tmgr_t *, bool);
    551       1.94   thorpej int free_b_table(b_tmgr_t *, bool);
    552       1.94   thorpej int free_c_table(c_tmgr_t *, bool);
    553       1.92   tsutsui 
    554       1.92   tsutsui void pmap_bootstrap_aalign(int);
    555       1.92   tsutsui void pmap_alloc_usermmu(void);
    556       1.92   tsutsui void pmap_alloc_usertmgr(void);
    557       1.92   tsutsui void pmap_alloc_pv(void);
    558       1.92   tsutsui void pmap_init_a_tables(void);
    559       1.92   tsutsui void pmap_init_b_tables(void);
    560       1.92   tsutsui void pmap_init_c_tables(void);
    561       1.92   tsutsui void pmap_init_pv(void);
    562       1.92   tsutsui void pmap_clear_pv(paddr_t, int);
    563       1.94   thorpej static INLINE bool is_managed(paddr_t);
    564       1.92   tsutsui 
    565       1.94   thorpej bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
    566       1.94   thorpej bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
    567       1.94   thorpej bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
    568       1.92   tsutsui void pmap_remove_pte(mmu_short_pte_t *);
    569       1.92   tsutsui 
    570       1.92   tsutsui void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
    571       1.92   tsutsui static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
    572       1.92   tsutsui static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
    573       1.94   thorpej static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
    574       1.92   tsutsui vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
    575       1.92   tsutsui static INLINE int pmap_dereference(pmap_t);
    576       1.92   tsutsui 
    577       1.94   thorpej bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
    578       1.92   tsutsui     mmu_short_pte_t **, int *, int *, int *);
    579       1.92   tsutsui void pmap_bootstrap_copyprom(void);
    580       1.92   tsutsui void pmap_takeover_mmu(void);
    581       1.92   tsutsui void pmap_bootstrap_setprom(void);
    582       1.86       chs static void pmap_page_upload(void);
    583        1.1       gwr 
    584       1.92   tsutsui #ifdef PMAP_DEBUG
    585       1.92   tsutsui /* Debugging function definitions */
    586       1.92   tsutsui void  pv_list(paddr_t, int);
    587       1.92   tsutsui #endif /* PMAP_DEBUG */
    588       1.92   tsutsui 
    589        1.1       gwr /** Interface functions
    590        1.1       gwr  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    591        1.1       gwr  **   defined.
    592       1.92   tsutsui  **   The new UVM doesn't require them so now INTERNAL.
    593        1.1       gwr  **/
    594       1.92   tsutsui static INLINE void pmap_pinit(pmap_t);
    595       1.92   tsutsui static INLINE void pmap_release(pmap_t);
    596        1.1       gwr 
    597        1.1       gwr /********************************** CODE ********************************
    598        1.1       gwr  * Functions that are called from other parts of the kernel are labeled *
    599        1.1       gwr  * as 'INTERFACE' functions.  Functions that are only called from       *
    600        1.1       gwr  * within the pmap module are labeled as 'INTERNAL' functions.          *
    601        1.1       gwr  * Functions that are internal, but are not (currently) used at all are *
    602        1.1       gwr  * labeled 'INTERNAL_X'.                                                *
    603        1.1       gwr  ************************************************************************/
    604        1.1       gwr 
    605        1.1       gwr /* pmap_bootstrap			INTERNAL
    606        1.1       gwr  **
    607       1.33       gwr  * Initializes the pmap system.  Called at boot time from
    608       1.33       gwr  * locore2.c:_vm_init()
    609        1.1       gwr  *
    610        1.1       gwr  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    611        1.1       gwr  *           system implement pmap_steal_memory() is redundant.
    612        1.1       gwr  *           Don't release this code without removing one or the other!
    613        1.1       gwr  */
    614       1.86       chs void
    615       1.86       chs pmap_bootstrap(vaddr_t nextva)
    616        1.1       gwr {
    617        1.1       gwr 	struct physmemory *membank;
    618        1.1       gwr 	struct pmap_physmem_struct *pmap_membank;
    619       1.69       chs 	vaddr_t va, eva;
    620       1.69       chs 	paddr_t pa;
    621        1.1       gwr 	int b, c, i, j;	/* running table counts */
    622       1.40       gwr 	int size, resvmem;
    623        1.1       gwr 
    624        1.1       gwr 	/*
    625        1.1       gwr 	 * This function is called by __bootstrap after it has
    626        1.1       gwr 	 * determined the type of machine and made the appropriate
    627        1.1       gwr 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    628        1.1       gwr 	 * by that.)  It allocates and sets up enough of the pmap system
    629        1.1       gwr 	 * to manage the kernel's address space.
    630        1.1       gwr 	 */
    631        1.1       gwr 
    632        1.1       gwr 	/*
    633        1.7       gwr 	 * Determine the range of kernel virtual and physical
    634        1.7       gwr 	 * space available. Note that we ABSOLUTELY DEPEND on
    635        1.7       gwr 	 * the fact that the first bank of memory (4MB) is
    636        1.7       gwr 	 * mapped linearly to KERNBASE (which we guaranteed in
    637        1.7       gwr 	 * the first instructions of locore.s).
    638        1.7       gwr 	 * That is plenty for our bootstrap work.
    639        1.1       gwr 	 */
    640       1.25     veego 	virtual_avail = m68k_round_page(nextva);
    641  1.110.2.1  uebayasi 	virtual_contig_end = KERNBASE3X + 0x400000; /* +4MB */
    642        1.1       gwr 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    643        1.7       gwr 	/* Don't need avail_start til later. */
    644        1.1       gwr 
    645        1.7       gwr 	/* We may now call pmap_bootstrap_alloc(). */
    646       1.95   thorpej 	bootstrap_alloc_enabled = true;
    647        1.1       gwr 
    648        1.1       gwr 	/*
    649        1.1       gwr 	 * This is a somewhat unwrapped loop to deal with
    650        1.1       gwr 	 * copying the PROM's 'phsymem' banks into the pmap's
    651        1.1       gwr 	 * banks.  The following is always assumed:
    652        1.1       gwr 	 * 1. There is always at least one bank of memory.
    653        1.1       gwr 	 * 2. There is always a last bank of memory, and its
    654        1.1       gwr 	 *    pmem_next member must be set to NULL.
    655        1.1       gwr 	 */
    656        1.1       gwr 	membank = romVectorPtr->v_physmemory;
    657        1.1       gwr 	pmap_membank = avail_mem;
    658        1.1       gwr 	total_phys_mem = 0;
    659        1.1       gwr 
    660       1.40       gwr 	for (;;) { /* break on !membank */
    661        1.1       gwr 		pmap_membank->pmem_start = membank->address;
    662        1.1       gwr 		pmap_membank->pmem_end = membank->address + membank->size;
    663        1.1       gwr 		total_phys_mem += membank->size;
    664       1.40       gwr 		membank = membank->next;
    665       1.40       gwr 		if (!membank)
    666       1.40       gwr 			break;
    667        1.1       gwr 		/* This silly syntax arises because pmap_membank
    668        1.1       gwr 		 * is really a pre-allocated array, but it is put into
    669        1.1       gwr 		 * use as a linked list.
    670        1.1       gwr 		 */
    671        1.1       gwr 		pmap_membank->pmem_next = pmap_membank + 1;
    672        1.1       gwr 		pmap_membank = pmap_membank->pmem_next;
    673        1.1       gwr 	}
    674       1.40       gwr 	/* This is the last element. */
    675       1.40       gwr 	pmap_membank->pmem_next = NULL;
    676        1.1       gwr 
    677        1.1       gwr 	/*
    678       1.40       gwr 	 * Note: total_phys_mem, physmem represent
    679       1.40       gwr 	 * actual physical memory, including that
    680       1.40       gwr 	 * reserved for the PROM monitor.
    681        1.1       gwr 	 */
    682       1.40       gwr 	physmem = btoc(total_phys_mem);
    683        1.1       gwr 
    684        1.1       gwr 	/*
    685       1.60   tsutsui 	 * Avail_end is set to the first byte of physical memory
    686       1.60   tsutsui 	 * after the end of the last bank.  We use this only to
    687       1.60   tsutsui 	 * determine if a physical address is "managed" memory.
    688       1.60   tsutsui 	 * This address range should be reduced to prevent the
    689       1.40       gwr 	 * physical pages needed by the PROM monitor from being used
    690       1.40       gwr 	 * in the VM system.
    691        1.1       gwr 	 */
    692       1.40       gwr 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    693       1.40       gwr 	resvmem = m68k_round_page(resvmem);
    694       1.60   tsutsui 	avail_end = pmap_membank->pmem_end - resvmem;
    695        1.1       gwr 
    696        1.1       gwr 	/*
    697       1.15       gwr 	 * First allocate enough kernel MMU tables to map all
    698       1.15       gwr 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    699        1.1       gwr 	 * Note: All must be aligned on 256 byte boundaries.
    700       1.15       gwr 	 * Start with the level-A table (one of those).
    701        1.1       gwr 	 */
    702       1.69       chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    703        1.7       gwr 	kernAbase = pmap_bootstrap_alloc(size);
    704       1.71   tsutsui 	memset(kernAbase, 0, size);
    705        1.1       gwr 
    706       1.15       gwr 	/* Now the level-B kernel tables... */
    707       1.15       gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    708        1.7       gwr 	kernBbase = pmap_bootstrap_alloc(size);
    709       1.71   tsutsui 	memset(kernBbase, 0, size);
    710        1.1       gwr 
    711       1.15       gwr 	/* Now the level-C kernel tables... */
    712       1.15       gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    713       1.15       gwr 	kernCbase = pmap_bootstrap_alloc(size);
    714       1.71   tsutsui 	memset(kernCbase, 0, size);
    715        1.7       gwr 	/*
    716        1.7       gwr 	 * Note: In order for the PV system to work correctly, the kernel
    717        1.7       gwr 	 * and user-level C tables must be allocated contiguously.
    718        1.7       gwr 	 * Nothing should be allocated between here and the allocation of
    719        1.7       gwr 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    720        1.7       gwr 	 * then compute a pointer for mmuCbase instead of this...
    721       1.15       gwr 	 *
    722       1.15       gwr 	 * Allocate user MMU tables.
    723       1.70       wiz 	 * These must be contiguous with the preceding.
    724        1.7       gwr 	 */
    725       1.22    jeremy 
    726       1.22    jeremy #ifndef	FIXED_NTABLES
    727       1.22    jeremy 	/*
    728       1.22    jeremy 	 * The number of user-level C tables that should be allocated is
    729       1.22    jeremy 	 * related to the size of physical memory.  In general, there should
    730       1.22    jeremy 	 * be enough tables to map four times the amount of available RAM.
    731       1.22    jeremy 	 * The extra amount is needed because some table space is wasted by
    732       1.22    jeremy 	 * fragmentation.
    733       1.22    jeremy 	 */
    734       1.22    jeremy 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    735       1.22    jeremy 	NUM_B_TABLES = NUM_C_TABLES / 2;
    736       1.22    jeremy 	NUM_A_TABLES = NUM_B_TABLES / 2;
    737       1.22    jeremy #endif	/* !FIXED_NTABLES */
    738       1.22    jeremy 
    739       1.15       gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    740       1.15       gwr 	mmuCbase = pmap_bootstrap_alloc(size);
    741       1.15       gwr 
    742       1.15       gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    743       1.15       gwr 	mmuBbase = pmap_bootstrap_alloc(size);
    744        1.1       gwr 
    745       1.69       chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    746       1.15       gwr 	mmuAbase = pmap_bootstrap_alloc(size);
    747        1.7       gwr 
    748        1.7       gwr 	/*
    749        1.7       gwr 	 * Fill in the never-changing part of the kernel tables.
    750        1.7       gwr 	 * For simplicity, the kernel's mappings will be editable as a
    751        1.1       gwr 	 * flat array of page table entries at kernCbase.  The
    752        1.1       gwr 	 * higher level 'A' and 'B' tables must be initialized to point
    753        1.1       gwr 	 * to this lower one.
    754        1.1       gwr 	 */
    755        1.1       gwr 	b = c = 0;
    756        1.1       gwr 
    757        1.7       gwr 	/*
    758        1.7       gwr 	 * Invalidate all mappings below KERNBASE in the A table.
    759        1.1       gwr 	 * This area has already been zeroed out, but it is good
    760        1.1       gwr 	 * practice to explicitly show that we are interpreting
    761        1.1       gwr 	 * it as a list of A table descriptors.
    762        1.1       gwr 	 */
    763  1.110.2.1  uebayasi 	for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
    764        1.1       gwr 		kernAbase[i].addr.raw = 0;
    765        1.1       gwr 	}
    766        1.1       gwr 
    767        1.7       gwr 	/*
    768        1.7       gwr 	 * Set up the kernel A and B tables so that they will reference the
    769        1.1       gwr 	 * correct spots in the contiguous table of PTEs allocated for the
    770        1.1       gwr 	 * kernel's virtual memory space.
    771        1.1       gwr 	 */
    772  1.110.2.1  uebayasi 	for (i = MMU_TIA(KERNBASE3X); i < MMU_A_TBL_SIZE; i++) {
    773        1.1       gwr 		kernAbase[i].attr.raw =
    774       1.92   tsutsui 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    775        1.7       gwr 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    776        1.1       gwr 
    777       1.92   tsutsui 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
    778       1.92   tsutsui 			kernBbase[b + j].attr.raw =
    779       1.92   tsutsui 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
    780        1.1       gwr 			c += MMU_C_TBL_SIZE;
    781        1.1       gwr 		}
    782        1.1       gwr 		b += MMU_B_TBL_SIZE;
    783        1.1       gwr 	}
    784        1.1       gwr 
    785        1.7       gwr 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    786        1.7       gwr 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    787        1.7       gwr 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    788        1.7       gwr 
    789        1.7       gwr 	/*
    790        1.7       gwr 	 * We are now done with pmap_bootstrap_alloc().  Round up
    791        1.7       gwr 	 * `virtual_avail' to the nearest page, and set the flag
    792        1.7       gwr 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    793        1.7       gwr 	 */
    794       1.79   thorpej 	pmap_bootstrap_aalign(PAGE_SIZE);
    795       1.95   thorpej 	bootstrap_alloc_enabled = false;
    796        1.7       gwr 
    797        1.7       gwr 	/*
    798        1.7       gwr 	 * Now that we are done with pmap_bootstrap_alloc(), we
    799        1.7       gwr 	 * must save the virtual and physical addresses of the
    800        1.7       gwr 	 * end of the linearly mapped range, which are stored in
    801        1.7       gwr 	 * virtual_contig_end and avail_start, respectively.
    802        1.7       gwr 	 * These variables will never change after this point.
    803        1.7       gwr 	 */
    804        1.7       gwr 	virtual_contig_end = virtual_avail;
    805  1.110.2.1  uebayasi 	avail_start = virtual_avail - KERNBASE3X;
    806        1.7       gwr 
    807        1.7       gwr 	/*
    808        1.7       gwr 	 * `avail_next' is a running pointer used by pmap_next_page() to
    809        1.7       gwr 	 * keep track of the next available physical page to be handed
    810        1.7       gwr 	 * to the VM system during its initialization, in which it
    811        1.7       gwr 	 * asks for physical pages, one at a time.
    812        1.7       gwr 	 */
    813        1.7       gwr 	avail_next = avail_start;
    814        1.7       gwr 
    815        1.7       gwr 	/*
    816        1.7       gwr 	 * Now allocate some virtual addresses, but not the physical pages
    817        1.7       gwr 	 * behind them.  Note that virtual_avail is already page-aligned.
    818        1.7       gwr 	 *
    819        1.7       gwr 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    820        1.7       gwr 	 * kernel mappings in the pmap module to facilitate various physical
    821        1.7       gwr 	 * address-oritented operations.
    822        1.7       gwr 	 */
    823        1.7       gwr 	tmp_vpages[0] = virtual_avail;
    824       1.79   thorpej 	virtual_avail += PAGE_SIZE;
    825        1.7       gwr 	tmp_vpages[1] = virtual_avail;
    826       1.79   thorpej 	virtual_avail += PAGE_SIZE;
    827        1.7       gwr 
    828        1.7       gwr 	/** Initialize the PV system **/
    829        1.7       gwr 	pmap_init_pv();
    830        1.7       gwr 
    831        1.7       gwr 	/*
    832        1.7       gwr 	 * Fill in the kernel_pmap structure and kernel_crp.
    833        1.7       gwr 	 */
    834        1.7       gwr 	kernAphys = mmu_vtop(kernAbase);
    835        1.7       gwr 	kernel_pmap.pm_a_tmgr = NULL;
    836        1.7       gwr 	kernel_pmap.pm_a_phys = kernAphys;
    837        1.7       gwr 	kernel_pmap.pm_refcount = 1; /* always in use */
    838       1.55   tsutsui 	simple_lock_init(&kernel_pmap.pm_lock);
    839        1.7       gwr 
    840        1.7       gwr 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    841        1.7       gwr 	kernel_crp.rp_addr = kernAphys;
    842        1.7       gwr 
    843        1.1       gwr 	/*
    844        1.1       gwr 	 * Now pmap_enter_kernel() may be used safely and will be
    845        1.7       gwr 	 * the main interface used hereafter to modify the kernel's
    846        1.7       gwr 	 * virtual address space.  Note that since we are still running
    847        1.7       gwr 	 * under the PROM's address table, none of these table modifications
    848        1.7       gwr 	 * actually take effect until pmap_takeover_mmu() is called.
    849        1.1       gwr 	 *
    850        1.7       gwr 	 * Note: Our tables do NOT have the PROM linear mappings!
    851        1.7       gwr 	 * Only the mappings created here exist in our tables, so
    852        1.7       gwr 	 * remember to map anything we expect to use.
    853        1.1       gwr 	 */
    854  1.110.2.1  uebayasi 	va = (vaddr_t)KERNBASE3X;
    855        1.7       gwr 	pa = 0;
    856        1.1       gwr 
    857        1.1       gwr 	/*
    858        1.7       gwr 	 * The first page of the kernel virtual address space is the msgbuf
    859        1.7       gwr 	 * page.  The page attributes (data, non-cached) are set here, while
    860        1.7       gwr 	 * the address is assigned to this global pointer in cpu_startup().
    861       1.29       gwr 	 * It is non-cached, mostly due to paranoia.
    862        1.1       gwr 	 */
    863       1.29       gwr 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    864       1.92   tsutsui 	va += PAGE_SIZE;
    865       1.92   tsutsui 	pa += PAGE_SIZE;
    866        1.1       gwr 
    867        1.7       gwr 	/* Next page is used as the temporary stack. */
    868        1.1       gwr 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    869       1.92   tsutsui 	va += PAGE_SIZE;
    870       1.92   tsutsui 	pa += PAGE_SIZE;
    871        1.1       gwr 
    872        1.1       gwr 	/*
    873        1.1       gwr 	 * Map all of the kernel's text segment as read-only and cacheable.
    874        1.1       gwr 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    875        1.1       gwr 	 * of kernel text and the first bytes of kernel data will often be
    876        1.1       gwr 	 * sharing the same page.  Therefore, the last page of kernel text
    877       1.93  christos 	 * has to be mapped as read/write, to accommodate the data.
    878        1.1       gwr 	 */
    879       1.69       chs 	eva = m68k_trunc_page((vaddr_t)etext);
    880       1.79   thorpej 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    881        1.1       gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    882        1.1       gwr 
    883        1.7       gwr 	/*
    884        1.7       gwr 	 * Map all of the kernel's data as read/write and cacheable.
    885        1.7       gwr 	 * This includes: data, BSS, symbols, and everything in the
    886        1.7       gwr 	 * contiguous memory used by pmap_bootstrap_alloc()
    887        1.1       gwr 	 */
    888       1.79   thorpej 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    889        1.1       gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    890        1.1       gwr 
    891        1.7       gwr 	/*
    892        1.7       gwr 	 * At this point we are almost ready to take over the MMU.  But first
    893        1.7       gwr 	 * we must save the PROM's address space in our map, as we call its
    894        1.7       gwr 	 * routines and make references to its data later in the kernel.
    895        1.1       gwr 	 */
    896        1.7       gwr 	pmap_bootstrap_copyprom();
    897        1.7       gwr 	pmap_takeover_mmu();
    898       1.13       gwr 	pmap_bootstrap_setprom();
    899        1.1       gwr 
    900        1.1       gwr 	/* Notify the VM system of our page size. */
    901       1.79   thorpej 	uvmexp.pagesize = PAGE_SIZE;
    902       1.43       mrg 	uvm_setpagesize();
    903       1.37       gwr 
    904       1.37       gwr 	pmap_page_upload();
    905        1.1       gwr }
    906        1.1       gwr 
    907        1.1       gwr 
    908        1.1       gwr /* pmap_alloc_usermmu			INTERNAL
    909        1.1       gwr  **
    910        1.1       gwr  * Called from pmap_bootstrap() to allocate MMU tables that will
    911        1.1       gwr  * eventually be used for user mappings.
    912        1.1       gwr  */
    913       1.86       chs void
    914       1.86       chs pmap_alloc_usermmu(void)
    915        1.1       gwr {
    916       1.92   tsutsui 
    917        1.7       gwr 	/* XXX: Moved into caller. */
    918        1.1       gwr }
    919        1.1       gwr 
    920        1.1       gwr /* pmap_alloc_pv			INTERNAL
    921        1.1       gwr  **
    922        1.1       gwr  * Called from pmap_bootstrap() to allocate the physical
    923        1.1       gwr  * to virtual mapping list.  Each physical page of memory
    924        1.1       gwr  * in the system has a corresponding element in this list.
    925        1.1       gwr  */
    926       1.86       chs void
    927       1.86       chs pmap_alloc_pv(void)
    928        1.1       gwr {
    929        1.1       gwr 	int	i;
    930        1.1       gwr 	unsigned int	total_mem;
    931        1.1       gwr 
    932        1.7       gwr 	/*
    933        1.7       gwr 	 * Allocate a pv_head structure for every page of physical
    934        1.1       gwr 	 * memory that will be managed by the system.  Since memory on
    935        1.1       gwr 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    936        1.1       gwr 	 * count by subtraction of the lowest available address from the
    937        1.1       gwr 	 * highest, but rather we have to step through each memory
    938        1.1       gwr 	 * bank and add the number of pages in each to the total.
    939        1.1       gwr 	 *
    940        1.1       gwr 	 * At this time we also initialize the offset of each bank's
    941        1.1       gwr 	 * starting pv_head within the pv_head list so that the physical
    942        1.1       gwr 	 * memory state routines (pmap_is_referenced(),
    943        1.1       gwr 	 * pmap_is_modified(), et al.) can quickly find coresponding
    944        1.1       gwr 	 * pv_heads in spite of the non-contiguity.
    945        1.1       gwr 	 */
    946        1.1       gwr 	total_mem = 0;
    947       1.20   thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    948       1.25     veego 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    949       1.92   tsutsui 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
    950        1.1       gwr 		if (avail_mem[i].pmem_next == NULL)
    951        1.1       gwr 			break;
    952        1.1       gwr 	}
    953       1.92   tsutsui 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
    954       1.92   tsutsui 	    m68k_btop(total_phys_mem));
    955        1.1       gwr }
    956        1.1       gwr 
    957        1.1       gwr /* pmap_alloc_usertmgr			INTERNAL
    958        1.1       gwr  **
    959        1.1       gwr  * Called from pmap_bootstrap() to allocate the structures which
    960        1.1       gwr  * facilitate management of user MMU tables.  Each user MMU table
    961        1.1       gwr  * in the system has one such structure associated with it.
    962        1.1       gwr  */
    963       1.86       chs void
    964       1.86       chs pmap_alloc_usertmgr(void)
    965        1.1       gwr {
    966        1.1       gwr 	/* Allocate user MMU table managers */
    967        1.7       gwr 	/* It would be a lot simpler to just make these BSS, but */
    968        1.7       gwr 	/* we may want to change their size at boot time... -j */
    969       1.92   tsutsui 	Atmgrbase =
    970       1.92   tsutsui 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
    971       1.92   tsutsui 	Btmgrbase =
    972       1.92   tsutsui 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
    973       1.92   tsutsui 	Ctmgrbase =
    974       1.92   tsutsui 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
    975        1.1       gwr 
    976        1.7       gwr 	/*
    977        1.7       gwr 	 * Allocate PV list elements for the physical to virtual
    978        1.1       gwr 	 * mapping system.
    979        1.1       gwr 	 */
    980       1.92   tsutsui 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
    981       1.92   tsutsui 	    (NUM_USER_PTES + NUM_KERN_PTES));
    982        1.1       gwr }
    983        1.1       gwr 
    984        1.1       gwr /* pmap_bootstrap_copyprom()			INTERNAL
    985        1.1       gwr  **
    986        1.1       gwr  * Copy the PROM mappings into our own tables.  Note, we
    987        1.1       gwr  * can use physical addresses until __bootstrap returns.
    988        1.1       gwr  */
    989       1.86       chs void
    990       1.86       chs pmap_bootstrap_copyprom(void)
    991        1.1       gwr {
    992       1.33       gwr 	struct sunromvec *romp;
    993        1.1       gwr 	int *mon_ctbl;
    994        1.1       gwr 	mmu_short_pte_t *kpte;
    995        1.1       gwr 	int i, len;
    996        1.1       gwr 
    997        1.1       gwr 	romp = romVectorPtr;
    998        1.1       gwr 
    999        1.1       gwr 	/*
   1000       1.33       gwr 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
   1001       1.33       gwr 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
   1002        1.1       gwr 	 */
   1003        1.1       gwr 	mon_ctbl = *romp->monptaddr;
   1004  1.110.2.1  uebayasi 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE3X);
   1005        1.1       gwr 	kpte = &kernCbase[i];
   1006       1.33       gwr 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
   1007        1.1       gwr 
   1008        1.1       gwr 	for (i = 0; i < len; i++) {
   1009        1.1       gwr 		kpte[i].attr.raw = mon_ctbl[i];
   1010        1.1       gwr 	}
   1011        1.1       gwr 
   1012        1.1       gwr 	/*
   1013        1.1       gwr 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1014        1.1       gwr 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1015       1.32       gwr 	 * Actually, we only want the last page, which the
   1016       1.32       gwr 	 * PROM has set up for use by the "ie" driver.
   1017       1.32       gwr 	 * (The i82686 needs its SCP there.)
   1018       1.32       gwr 	 * If we copy all the mappings, pmap_enter_kernel
   1019       1.32       gwr 	 * may complain about finding valid PTEs that are
   1020       1.32       gwr 	 * not recorded in our PV lists...
   1021        1.1       gwr 	 */
   1022        1.1       gwr 	mon_ctbl = *romp->shadowpteaddr;
   1023  1.110.2.1  uebayasi 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE3X);
   1024        1.1       gwr 	kpte = &kernCbase[i];
   1025       1.33       gwr 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
   1026       1.92   tsutsui 	for (i = (len - 1); i < len; i++) {
   1027        1.1       gwr 		kpte[i].attr.raw = mon_ctbl[i];
   1028        1.1       gwr 	}
   1029        1.1       gwr }
   1030        1.1       gwr 
   1031        1.1       gwr /* pmap_takeover_mmu			INTERNAL
   1032        1.1       gwr  **
   1033        1.1       gwr  * Called from pmap_bootstrap() after it has copied enough of the
   1034        1.1       gwr  * PROM mappings into the kernel map so that we can use our own
   1035        1.1       gwr  * MMU table.
   1036        1.1       gwr  */
   1037       1.86       chs void
   1038       1.86       chs pmap_takeover_mmu(void)
   1039        1.1       gwr {
   1040        1.1       gwr 
   1041       1.13       gwr 	loadcrp(&kernel_crp);
   1042        1.1       gwr }
   1043        1.1       gwr 
   1044       1.13       gwr /* pmap_bootstrap_setprom()			INTERNAL
   1045       1.13       gwr  **
   1046       1.13       gwr  * Set the PROM mappings so it can see kernel space.
   1047       1.13       gwr  * Note that physical addresses are used here, which
   1048       1.13       gwr  * we can get away with because this runs with the
   1049       1.13       gwr  * low 1GB set for transparent translation.
   1050       1.13       gwr  */
   1051       1.86       chs void
   1052       1.86       chs pmap_bootstrap_setprom(void)
   1053       1.13       gwr {
   1054       1.13       gwr 	mmu_long_dte_t *mon_dte;
   1055       1.13       gwr 	extern struct mmu_rootptr mon_crp;
   1056       1.13       gwr 	int i;
   1057       1.13       gwr 
   1058       1.92   tsutsui 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
   1059  1.110.2.1  uebayasi 	for (i = MMU_TIA(KERNBASE3X); i < MMU_TIA(KERN_END3X); i++) {
   1060       1.13       gwr 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1061       1.13       gwr 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1062       1.13       gwr 	}
   1063       1.13       gwr }
   1064       1.13       gwr 
   1065       1.13       gwr 
   1066        1.1       gwr /* pmap_init			INTERFACE
   1067        1.1       gwr  **
   1068        1.1       gwr  * Called at the end of vm_init() to set up the pmap system to go
   1069        1.7       gwr  * into full time operation.  All initialization of kernel_pmap
   1070        1.7       gwr  * should be already done by now, so this should just do things
   1071        1.7       gwr  * needed for user-level pmaps to work.
   1072        1.1       gwr  */
   1073       1.86       chs void
   1074       1.86       chs pmap_init(void)
   1075        1.1       gwr {
   1076       1.92   tsutsui 
   1077        1.1       gwr 	/** Initialize the manager pools **/
   1078        1.1       gwr 	TAILQ_INIT(&a_pool);
   1079        1.1       gwr 	TAILQ_INIT(&b_pool);
   1080        1.1       gwr 	TAILQ_INIT(&c_pool);
   1081        1.1       gwr 
   1082        1.1       gwr 	/**************************************************************
   1083        1.1       gwr 	 * Initialize all tmgr structures and MMU tables they manage. *
   1084        1.1       gwr 	 **************************************************************/
   1085        1.1       gwr 	/** Initialize A tables **/
   1086        1.1       gwr 	pmap_init_a_tables();
   1087        1.1       gwr 	/** Initialize B tables **/
   1088        1.1       gwr 	pmap_init_b_tables();
   1089        1.1       gwr 	/** Initialize C tables **/
   1090        1.1       gwr 	pmap_init_c_tables();
   1091       1.56   tsutsui 
   1092       1.56   tsutsui 	/** Initialize the pmap pools **/
   1093       1.56   tsutsui 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1094       1.96        ad 	    &pool_allocator_nointr, IPL_NONE);
   1095        1.1       gwr }
   1096        1.1       gwr 
   1097        1.1       gwr /* pmap_init_a_tables()			INTERNAL
   1098        1.1       gwr  **
   1099        1.1       gwr  * Initializes all A managers, their MMU A tables, and inserts
   1100        1.1       gwr  * them into the A manager pool for use by the system.
   1101        1.1       gwr  */
   1102       1.86       chs void
   1103       1.86       chs pmap_init_a_tables(void)
   1104        1.1       gwr {
   1105        1.1       gwr 	int i;
   1106        1.1       gwr 	a_tmgr_t *a_tbl;
   1107        1.1       gwr 
   1108       1.86       chs 	for (i = 0; i < NUM_A_TABLES; i++) {
   1109        1.1       gwr 		/* Select the next available A manager from the pool */
   1110        1.1       gwr 		a_tbl = &Atmgrbase[i];
   1111        1.1       gwr 
   1112        1.7       gwr 		/*
   1113        1.7       gwr 		 * Clear its parent entry.  Set its wired and valid
   1114        1.1       gwr 		 * entry count to zero.
   1115        1.1       gwr 		 */
   1116        1.1       gwr 		a_tbl->at_parent = NULL;
   1117        1.1       gwr 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1118        1.1       gwr 
   1119        1.1       gwr 		/* Assign it the next available MMU A table from the pool */
   1120        1.1       gwr 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1121        1.1       gwr 
   1122        1.7       gwr 		/*
   1123      1.110      matt 		 * Initialize the MMU A table with the table in the `lwp0',
   1124        1.1       gwr 		 * or kernel, mapping.  This ensures that every process has
   1125        1.1       gwr 		 * the kernel mapped in the top part of its address space.
   1126        1.1       gwr 		 */
   1127       1.92   tsutsui 		memcpy(a_tbl->at_dtbl, kernAbase,
   1128       1.92   tsutsui 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
   1129        1.1       gwr 
   1130        1.7       gwr 		/*
   1131        1.7       gwr 		 * Finally, insert the manager into the A pool,
   1132        1.1       gwr 		 * making it ready to be used by the system.
   1133        1.1       gwr 		 */
   1134        1.1       gwr 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1135        1.1       gwr     }
   1136        1.1       gwr }
   1137        1.1       gwr 
   1138        1.1       gwr /* pmap_init_b_tables()			INTERNAL
   1139        1.1       gwr  **
   1140        1.1       gwr  * Initializes all B table managers, their MMU B tables, and
   1141        1.1       gwr  * inserts them into the B manager pool for use by the system.
   1142        1.1       gwr  */
   1143       1.86       chs void
   1144       1.86       chs pmap_init_b_tables(void)
   1145        1.1       gwr {
   1146       1.86       chs 	int i, j;
   1147        1.1       gwr 	b_tmgr_t *b_tbl;
   1148        1.1       gwr 
   1149       1.86       chs 	for (i = 0; i < NUM_B_TABLES; i++) {
   1150        1.1       gwr 		/* Select the next available B manager from the pool */
   1151        1.1       gwr 		b_tbl = &Btmgrbase[i];
   1152        1.1       gwr 
   1153        1.1       gwr 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1154        1.1       gwr 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1155        1.1       gwr 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1156        1.1       gwr 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1157        1.1       gwr 
   1158        1.1       gwr 		/* Assign it the next available MMU B table from the pool */
   1159        1.1       gwr 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1160        1.1       gwr 
   1161        1.1       gwr 		/* Invalidate every descriptor in the table */
   1162       1.92   tsutsui 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
   1163        1.1       gwr 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1164        1.1       gwr 
   1165        1.1       gwr 		/* Insert the manager into the B pool */
   1166        1.1       gwr 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1167        1.1       gwr 	}
   1168        1.1       gwr }
   1169        1.1       gwr 
   1170        1.1       gwr /* pmap_init_c_tables()			INTERNAL
   1171        1.1       gwr  **
   1172        1.1       gwr  * Initializes all C table managers, their MMU C tables, and
   1173        1.1       gwr  * inserts them into the C manager pool for use by the system.
   1174        1.1       gwr  */
   1175       1.86       chs void
   1176       1.86       chs pmap_init_c_tables(void)
   1177        1.1       gwr {
   1178       1.86       chs 	int i, j;
   1179        1.1       gwr 	c_tmgr_t *c_tbl;
   1180        1.1       gwr 
   1181       1.86       chs 	for (i = 0; i < NUM_C_TABLES; i++) {
   1182        1.1       gwr 		/* Select the next available C manager from the pool */
   1183        1.1       gwr 		c_tbl = &Ctmgrbase[i];
   1184        1.1       gwr 
   1185        1.1       gwr 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1186        1.1       gwr 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1187        1.1       gwr 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1188       1.26    jeremy 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1189       1.26    jeremy 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1190       1.26    jeremy 		c_tbl->ct_va = 0;		/* base of managed range */
   1191        1.1       gwr 
   1192        1.1       gwr 		/* Assign it the next available MMU C table from the pool */
   1193        1.1       gwr 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1194        1.1       gwr 
   1195       1.92   tsutsui 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
   1196        1.1       gwr 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1197        1.1       gwr 
   1198        1.1       gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1199        1.1       gwr 	}
   1200        1.1       gwr }
   1201        1.1       gwr 
   1202        1.1       gwr /* pmap_init_pv()			INTERNAL
   1203        1.1       gwr  **
   1204        1.1       gwr  * Initializes the Physical to Virtual mapping system.
   1205        1.1       gwr  */
   1206       1.86       chs void
   1207       1.86       chs pmap_init_pv(void)
   1208        1.1       gwr {
   1209       1.86       chs 	int i;
   1210        1.7       gwr 
   1211        1.7       gwr 	/* Initialize every PV head. */
   1212       1.25     veego 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1213        1.7       gwr 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1214        1.7       gwr 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1215        1.7       gwr 	}
   1216        1.1       gwr }
   1217        1.1       gwr 
   1218       1.92   tsutsui /* is_managed				INTERNAL
   1219       1.92   tsutsui  **
   1220       1.92   tsutsui  * Determine if the given physical address is managed by the PV system.
   1221       1.92   tsutsui  * Note that this logic assumes that no one will ask for the status of
   1222       1.92   tsutsui  * addresses which lie in-between the memory banks on the 3/80.  If they
   1223       1.92   tsutsui  * do so, it will falsely report that it is managed.
   1224       1.92   tsutsui  *
   1225       1.92   tsutsui  * Note: A "managed" address is one that was reported to the VM system as
   1226       1.92   tsutsui  * a "usable page" during system startup.  As such, the VM system expects the
   1227       1.92   tsutsui  * pmap module to keep an accurate track of the useage of those pages.
   1228       1.92   tsutsui  * Any page not given to the VM system at startup does not exist (as far as
   1229       1.92   tsutsui  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   1230       1.92   tsutsui  * those pages which belong to the ROM monitor and the memory allocated before
   1231       1.92   tsutsui  * the VM system was started.
   1232       1.92   tsutsui  */
   1233       1.94   thorpej static INLINE bool
   1234       1.92   tsutsui is_managed(paddr_t pa)
   1235       1.92   tsutsui {
   1236       1.92   tsutsui 	if (pa >= avail_start && pa < avail_end)
   1237       1.95   thorpej 		return true;
   1238       1.92   tsutsui 	else
   1239       1.95   thorpej 		return false;
   1240       1.92   tsutsui }
   1241       1.92   tsutsui 
   1242        1.1       gwr /* get_a_table			INTERNAL
   1243        1.1       gwr  **
   1244        1.1       gwr  * Retrieve and return a level A table for use in a user map.
   1245        1.1       gwr  */
   1246        1.1       gwr a_tmgr_t *
   1247       1.86       chs get_a_table(void)
   1248        1.1       gwr {
   1249        1.1       gwr 	a_tmgr_t *tbl;
   1250        1.7       gwr 	pmap_t pmap;
   1251        1.1       gwr 
   1252        1.1       gwr 	/* Get the top A table in the pool */
   1253       1.86       chs 	tbl = TAILQ_FIRST(&a_pool);
   1254        1.7       gwr 	if (tbl == NULL) {
   1255        1.7       gwr 		/*
   1256       1.85       wiz 		 * XXX - Instead of panicking here and in other get_x_table
   1257        1.7       gwr 		 * functions, we do have the option of sleeping on the head of
   1258        1.7       gwr 		 * the table pool.  Any function which updates the table pool
   1259        1.7       gwr 		 * would then issue a wakeup() on the head, thus waking up any
   1260        1.7       gwr 		 * processes waiting for a table.
   1261        1.7       gwr 		 *
   1262        1.7       gwr 		 * Actually, the place to sleep would be when some process
   1263        1.7       gwr 		 * asks for a "wired" mapping that would run us short of
   1264        1.7       gwr 		 * mapping resources.  This design DEPENDS on always having
   1265        1.7       gwr 		 * some mapping resources in the pool for stealing, so we
   1266        1.7       gwr 		 * must make sure we NEVER let the pool become empty. -gwr
   1267        1.7       gwr 		 */
   1268        1.1       gwr 		panic("get_a_table: out of A tables.");
   1269        1.7       gwr 	}
   1270        1.7       gwr 
   1271        1.1       gwr 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1272        1.7       gwr 	/*
   1273        1.7       gwr 	 * If the table has a non-null parent pointer then it is in use.
   1274        1.1       gwr 	 * Forcibly abduct it from its parent and clear its entries.
   1275        1.1       gwr 	 * No re-entrancy worries here.  This table would not be in the
   1276        1.1       gwr 	 * table pool unless it was available for use.
   1277        1.7       gwr 	 *
   1278       1.95   thorpej 	 * Note that the second argument to free_a_table() is false.  This
   1279        1.7       gwr 	 * indicates that the table should not be relinked into the A table
   1280        1.7       gwr 	 * pool.  That is a job for the function that called us.
   1281        1.1       gwr 	 */
   1282        1.1       gwr 	if (tbl->at_parent) {
   1283       1.91   tsutsui 		KASSERT(tbl->at_wcnt == 0);
   1284        1.7       gwr 		pmap = tbl->at_parent;
   1285       1.95   thorpej 		free_a_table(tbl, false);
   1286        1.7       gwr 		pmap->pm_a_tmgr = NULL;
   1287        1.7       gwr 		pmap->pm_a_phys = kernAphys;
   1288        1.1       gwr 	}
   1289        1.1       gwr 	return tbl;
   1290        1.1       gwr }
   1291        1.1       gwr 
   1292        1.1       gwr /* get_b_table			INTERNAL
   1293        1.1       gwr  **
   1294        1.1       gwr  * Return a level B table for use.
   1295        1.1       gwr  */
   1296        1.1       gwr b_tmgr_t *
   1297       1.86       chs get_b_table(void)
   1298        1.1       gwr {
   1299        1.1       gwr 	b_tmgr_t *tbl;
   1300        1.1       gwr 
   1301        1.1       gwr 	/* See 'get_a_table' for comments. */
   1302       1.86       chs 	tbl = TAILQ_FIRST(&b_pool);
   1303        1.1       gwr 	if (tbl == NULL)
   1304        1.1       gwr 		panic("get_b_table: out of B tables.");
   1305        1.1       gwr 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1306        1.1       gwr 	if (tbl->bt_parent) {
   1307       1.91   tsutsui 		KASSERT(tbl->bt_wcnt == 0);
   1308        1.1       gwr 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1309        1.1       gwr 		tbl->bt_parent->at_ecnt--;
   1310       1.95   thorpej 		free_b_table(tbl, false);
   1311        1.1       gwr 	}
   1312        1.1       gwr 	return tbl;
   1313        1.1       gwr }
   1314        1.1       gwr 
   1315        1.1       gwr /* get_c_table			INTERNAL
   1316        1.1       gwr  **
   1317        1.1       gwr  * Return a level C table for use.
   1318        1.1       gwr  */
   1319        1.1       gwr c_tmgr_t *
   1320       1.86       chs get_c_table(void)
   1321        1.1       gwr {
   1322        1.1       gwr 	c_tmgr_t *tbl;
   1323        1.1       gwr 
   1324        1.1       gwr 	/* See 'get_a_table' for comments */
   1325       1.86       chs 	tbl = TAILQ_FIRST(&c_pool);
   1326        1.1       gwr 	if (tbl == NULL)
   1327        1.1       gwr 		panic("get_c_table: out of C tables.");
   1328        1.1       gwr 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1329        1.1       gwr 	if (tbl->ct_parent) {
   1330       1.91   tsutsui 		KASSERT(tbl->ct_wcnt == 0);
   1331        1.1       gwr 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1332        1.1       gwr 		tbl->ct_parent->bt_ecnt--;
   1333       1.95   thorpej 		free_c_table(tbl, false);
   1334        1.1       gwr 	}
   1335        1.1       gwr 	return tbl;
   1336        1.1       gwr }
   1337        1.1       gwr 
   1338        1.7       gwr /*
   1339        1.7       gwr  * The following 'free_table' and 'steal_table' functions are called to
   1340        1.1       gwr  * detach tables from their current obligations (parents and children) and
   1341        1.1       gwr  * prepare them for reuse in another mapping.
   1342        1.1       gwr  *
   1343        1.1       gwr  * Free_table is used when the calling function will handle the fate
   1344        1.1       gwr  * of the parent table, such as returning it to the free pool when it has
   1345        1.1       gwr  * no valid entries.  Functions that do not want to handle this should
   1346        1.1       gwr  * call steal_table, in which the parent table's descriptors and entry
   1347        1.1       gwr  * count are automatically modified when this table is removed.
   1348        1.1       gwr  */
   1349        1.1       gwr 
   1350        1.1       gwr /* free_a_table			INTERNAL
   1351        1.1       gwr  **
   1352        1.1       gwr  * Unmaps the given A table and all child tables from their current
   1353        1.1       gwr  * mappings.  Returns the number of pages that were invalidated.
   1354        1.7       gwr  * If 'relink' is true, the function will return the table to the head
   1355        1.7       gwr  * of the available table pool.
   1356        1.1       gwr  *
   1357        1.1       gwr  * Cache note: The MC68851 will automatically flush all
   1358        1.1       gwr  * descriptors derived from a given A table from its
   1359        1.1       gwr  * Automatic Translation Cache (ATC) if we issue a
   1360        1.1       gwr  * 'PFLUSHR' instruction with the base address of the
   1361        1.1       gwr  * table.  This function should do, and does so.
   1362        1.1       gwr  * Note note: We are using an MC68030 - there is no
   1363        1.1       gwr  * PFLUSHR.
   1364        1.1       gwr  */
   1365       1.86       chs int
   1366       1.94   thorpej free_a_table(a_tmgr_t *a_tbl, bool relink)
   1367        1.1       gwr {
   1368        1.1       gwr 	int i, removed_cnt;
   1369        1.1       gwr 	mmu_long_dte_t	*dte;
   1370        1.1       gwr 	mmu_short_dte_t *dtbl;
   1371       1.91   tsutsui 	b_tmgr_t	*b_tbl;
   1372       1.91   tsutsui 	uint8_t at_wired, bt_wired;
   1373        1.1       gwr 
   1374        1.7       gwr 	/*
   1375        1.7       gwr 	 * Flush the ATC cache of all cached descriptors derived
   1376        1.1       gwr 	 * from this table.
   1377       1.22    jeremy 	 * Sun3x does not use 68851's cached table feature
   1378        1.1       gwr 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1379        1.1       gwr 	 */
   1380        1.1       gwr 
   1381        1.7       gwr 	/*
   1382        1.7       gwr 	 * Remove any pending cache flushes that were designated
   1383        1.1       gwr 	 * for the pmap this A table belongs to.
   1384        1.1       gwr 	 * a_tbl->parent->atc_flushq[0] = 0;
   1385       1.22    jeremy 	 * Not implemented in sun3x.
   1386        1.1       gwr 	 */
   1387        1.1       gwr 
   1388        1.7       gwr 	/*
   1389        1.7       gwr 	 * All A tables in the system should retain a map for the
   1390        1.1       gwr 	 * kernel. If the table contains any valid descriptors
   1391        1.1       gwr 	 * (other than those for the kernel area), invalidate them all,
   1392        1.1       gwr 	 * stopping short of the kernel's entries.
   1393        1.1       gwr 	 */
   1394        1.1       gwr 	removed_cnt = 0;
   1395       1.91   tsutsui 	at_wired = a_tbl->at_wcnt;
   1396        1.1       gwr 	if (a_tbl->at_ecnt) {
   1397        1.1       gwr 		dte = a_tbl->at_dtbl;
   1398  1.110.2.1  uebayasi 		for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
   1399        1.7       gwr 			/*
   1400        1.7       gwr 			 * If a table entry points to a valid B table, free
   1401        1.1       gwr 			 * it and its children.
   1402        1.1       gwr 			 */
   1403        1.1       gwr 			if (MMU_VALID_DT(dte[i])) {
   1404        1.7       gwr 				/*
   1405        1.7       gwr 				 * The following block does several things,
   1406        1.1       gwr 				 * from innermost expression to the
   1407        1.1       gwr 				 * outermost:
   1408        1.1       gwr 				 * 1) It extracts the base (cc 1996)
   1409        1.1       gwr 				 *    address of the B table pointed
   1410        1.1       gwr 				 *    to in the A table entry dte[i].
   1411        1.1       gwr 				 * 2) It converts this base address into
   1412        1.1       gwr 				 *    the virtual address it can be
   1413        1.1       gwr 				 *    accessed with. (all MMU tables point
   1414        1.1       gwr 				 *    to physical addresses.)
   1415        1.1       gwr 				 * 3) It finds the corresponding manager
   1416        1.1       gwr 				 *    structure which manages this MMU table.
   1417        1.1       gwr 				 * 4) It frees the manager structure.
   1418        1.1       gwr 				 *    (This frees the MMU table and all
   1419        1.1       gwr 				 *    child tables. See 'free_b_table' for
   1420        1.1       gwr 				 *    details.)
   1421        1.1       gwr 				 */
   1422        1.7       gwr 				dtbl = mmu_ptov(dte[i].addr.raw);
   1423       1.91   tsutsui 				b_tbl = mmuB2tmgr(dtbl);
   1424       1.91   tsutsui 				bt_wired = b_tbl->bt_wcnt;
   1425       1.95   thorpej 				removed_cnt += free_b_table(b_tbl, true);
   1426       1.91   tsutsui 				if (bt_wired)
   1427       1.91   tsutsui 					a_tbl->at_wcnt--;
   1428        1.8       gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1429        1.1       gwr 			}
   1430        1.8       gwr 		}
   1431        1.8       gwr 		a_tbl->at_ecnt = 0;
   1432        1.1       gwr 	}
   1433       1.91   tsutsui 	KASSERT(a_tbl->at_wcnt == 0);
   1434       1.91   tsutsui 
   1435        1.7       gwr 	if (relink) {
   1436        1.7       gwr 		a_tbl->at_parent = NULL;
   1437       1.91   tsutsui 		if (!at_wired)
   1438       1.91   tsutsui 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1439        1.7       gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1440        1.7       gwr 	}
   1441        1.1       gwr 	return removed_cnt;
   1442        1.1       gwr }
   1443        1.1       gwr 
   1444        1.1       gwr /* free_b_table			INTERNAL
   1445        1.1       gwr  **
   1446        1.1       gwr  * Unmaps the given B table and all its children from their current
   1447        1.1       gwr  * mappings.  Returns the number of pages that were invalidated.
   1448        1.1       gwr  * (For comments, see 'free_a_table()').
   1449        1.1       gwr  */
   1450       1.86       chs int
   1451       1.94   thorpej free_b_table(b_tmgr_t *b_tbl, bool relink)
   1452        1.1       gwr {
   1453        1.1       gwr 	int i, removed_cnt;
   1454        1.1       gwr 	mmu_short_dte_t *dte;
   1455        1.1       gwr 	mmu_short_pte_t	*dtbl;
   1456       1.91   tsutsui 	c_tmgr_t	*c_tbl;
   1457       1.91   tsutsui 	uint8_t bt_wired, ct_wired;
   1458        1.1       gwr 
   1459        1.1       gwr 	removed_cnt = 0;
   1460       1.91   tsutsui 	bt_wired = b_tbl->bt_wcnt;
   1461        1.1       gwr 	if (b_tbl->bt_ecnt) {
   1462        1.1       gwr 		dte = b_tbl->bt_dtbl;
   1463       1.92   tsutsui 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
   1464        1.1       gwr 			if (MMU_VALID_DT(dte[i])) {
   1465        1.7       gwr 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1466       1.91   tsutsui 				c_tbl = mmuC2tmgr(dtbl);
   1467       1.91   tsutsui 				ct_wired = c_tbl->ct_wcnt;
   1468       1.95   thorpej 				removed_cnt += free_c_table(c_tbl, true);
   1469       1.91   tsutsui 				if (ct_wired)
   1470       1.91   tsutsui 					b_tbl->bt_wcnt--;
   1471        1.8       gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1472        1.1       gwr 			}
   1473        1.8       gwr 		}
   1474        1.8       gwr 		b_tbl->bt_ecnt = 0;
   1475        1.1       gwr 	}
   1476       1.91   tsutsui 	KASSERT(b_tbl->bt_wcnt == 0);
   1477        1.1       gwr 
   1478        1.7       gwr 	if (relink) {
   1479        1.7       gwr 		b_tbl->bt_parent = NULL;
   1480       1.91   tsutsui 		if (!bt_wired)
   1481       1.91   tsutsui 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1482        1.7       gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1483        1.7       gwr 	}
   1484        1.1       gwr 	return removed_cnt;
   1485        1.1       gwr }
   1486        1.1       gwr 
   1487        1.1       gwr /* free_c_table			INTERNAL
   1488        1.1       gwr  **
   1489        1.1       gwr  * Unmaps the given C table from use and returns it to the pool for
   1490        1.1       gwr  * re-use.  Returns the number of pages that were invalidated.
   1491        1.1       gwr  *
   1492        1.1       gwr  * This function preserves any physical page modification information
   1493        1.1       gwr  * contained in the page descriptors within the C table by calling
   1494        1.1       gwr  * 'pmap_remove_pte().'
   1495        1.1       gwr  */
   1496       1.86       chs int
   1497       1.94   thorpej free_c_table(c_tmgr_t *c_tbl, bool relink)
   1498        1.1       gwr {
   1499       1.91   tsutsui 	mmu_short_pte_t *c_pte;
   1500        1.1       gwr 	int i, removed_cnt;
   1501       1.91   tsutsui 	uint8_t ct_wired;
   1502        1.1       gwr 
   1503        1.1       gwr 	removed_cnt = 0;
   1504       1.91   tsutsui 	ct_wired = c_tbl->ct_wcnt;
   1505        1.8       gwr 	if (c_tbl->ct_ecnt) {
   1506       1.92   tsutsui 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
   1507       1.91   tsutsui 			c_pte = &c_tbl->ct_dtbl[i];
   1508       1.91   tsutsui 			if (MMU_VALID_DT(*c_pte)) {
   1509       1.91   tsutsui 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   1510       1.91   tsutsui 					c_tbl->ct_wcnt--;
   1511       1.91   tsutsui 				pmap_remove_pte(c_pte);
   1512        1.1       gwr 				removed_cnt++;
   1513        1.1       gwr 			}
   1514        1.8       gwr 		}
   1515        1.8       gwr 		c_tbl->ct_ecnt = 0;
   1516        1.8       gwr 	}
   1517       1.91   tsutsui 	KASSERT(c_tbl->ct_wcnt == 0);
   1518        1.8       gwr 
   1519        1.7       gwr 	if (relink) {
   1520        1.7       gwr 		c_tbl->ct_parent = NULL;
   1521       1.91   tsutsui 		if (!ct_wired)
   1522       1.91   tsutsui 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1523        1.7       gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1524        1.7       gwr 	}
   1525        1.1       gwr 	return removed_cnt;
   1526        1.1       gwr }
   1527        1.1       gwr 
   1528        1.1       gwr 
   1529        1.1       gwr /* pmap_remove_pte			INTERNAL
   1530        1.1       gwr  **
   1531        1.1       gwr  * Unmap the given pte and preserve any page modification
   1532        1.1       gwr  * information by transfering it to the pv head of the
   1533        1.1       gwr  * physical page it maps to.  This function does not update
   1534        1.1       gwr  * any reference counts because it is assumed that the calling
   1535        1.8       gwr  * function will do so.
   1536        1.1       gwr  */
   1537        1.1       gwr void
   1538       1.86       chs pmap_remove_pte(mmu_short_pte_t *pte)
   1539        1.1       gwr {
   1540        1.7       gwr 	u_short     pv_idx, targ_idx;
   1541       1.69       chs 	paddr_t     pa;
   1542        1.1       gwr 	pv_t       *pv;
   1543        1.1       gwr 
   1544        1.1       gwr 	pa = MMU_PTE_PA(*pte);
   1545        1.1       gwr 	if (is_managed(pa)) {
   1546        1.1       gwr 		pv = pa2pv(pa);
   1547        1.7       gwr 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1548        1.7       gwr 
   1549        1.7       gwr 		/*
   1550        1.7       gwr 		 * If the PTE being removed is the first (or only) PTE in
   1551        1.7       gwr 		 * the list of PTEs currently mapped to this page, remove the
   1552        1.7       gwr 		 * PTE by changing the index found on the PV head.  Otherwise
   1553        1.7       gwr 		 * a linear search through the list will have to be executed
   1554        1.7       gwr 		 * in order to find the PVE which points to the PTE being
   1555        1.7       gwr 		 * removed, so that it may be modified to point to its new
   1556        1.7       gwr 		 * neighbor.
   1557        1.7       gwr 		 */
   1558       1.69       chs 
   1559        1.7       gwr 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1560        1.7       gwr 		if (pv_idx == targ_idx) {
   1561        1.7       gwr 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1562        1.7       gwr 		} else {
   1563       1.69       chs 
   1564        1.7       gwr 			/*
   1565       1.32       gwr 			 * Find the PV element pointing to the target
   1566       1.32       gwr 			 * element.  Note: may have pv_idx==PVE_EOL
   1567        1.7       gwr 			 */
   1568       1.69       chs 
   1569       1.32       gwr 			for (;;) {
   1570       1.32       gwr 				if (pv_idx == PVE_EOL) {
   1571       1.32       gwr 					goto pv_not_found;
   1572       1.32       gwr 				}
   1573       1.32       gwr 				if (pvebase[pv_idx].pve_next == targ_idx)
   1574       1.32       gwr 					break;
   1575        1.7       gwr 				pv_idx = pvebase[pv_idx].pve_next;
   1576        1.7       gwr 			}
   1577       1.69       chs 
   1578        1.7       gwr 			/*
   1579        1.7       gwr 			 * At this point, pv_idx is the index of the PV
   1580        1.7       gwr 			 * element just before the target element in the list.
   1581        1.7       gwr 			 * Unlink the target.
   1582        1.7       gwr 			 */
   1583       1.69       chs 
   1584        1.7       gwr 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1585        1.7       gwr 		}
   1586       1.69       chs 
   1587        1.7       gwr 		/*
   1588        1.7       gwr 		 * Save the mod/ref bits of the pte by simply
   1589        1.1       gwr 		 * ORing the entire pte onto the pv_flags member
   1590        1.1       gwr 		 * of the pv structure.
   1591        1.1       gwr 		 * There is no need to use a separate bit pattern
   1592        1.1       gwr 		 * for usage information on the pv head than that
   1593        1.1       gwr 		 * which is used on the MMU ptes.
   1594        1.1       gwr 		 */
   1595       1.69       chs 
   1596       1.92   tsutsui  pv_not_found:
   1597        1.7       gwr 		pv->pv_flags |= (u_short) pte->attr.raw;
   1598        1.1       gwr 	}
   1599        1.1       gwr 	pte->attr.raw = MMU_DT_INVALID;
   1600        1.1       gwr }
   1601        1.1       gwr 
   1602        1.1       gwr /* pmap_stroll			INTERNAL
   1603        1.1       gwr  **
   1604        1.1       gwr  * Retrieve the addresses of all table managers involved in the mapping of
   1605       1.77       wiz  * the given virtual address.  If the table walk completed successfully,
   1606       1.95   thorpej  * return true.  If it was only partially successful, return false.
   1607        1.1       gwr  * The table walk performed by this function is important to many other
   1608        1.1       gwr  * functions in this module.
   1609        1.7       gwr  *
   1610        1.7       gwr  * Note: This function ought to be easier to read.
   1611        1.1       gwr  */
   1612       1.94   thorpej bool
   1613       1.86       chs pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   1614       1.86       chs     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   1615       1.86       chs     int *pte_idx)
   1616        1.1       gwr {
   1617        1.1       gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1618        1.1       gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1619        1.1       gwr 
   1620        1.1       gwr 	if (pmap == pmap_kernel())
   1621       1.95   thorpej 		return false;
   1622        1.1       gwr 
   1623        1.7       gwr 	/* Does the given pmap have its own A table? */
   1624        1.7       gwr 	*a_tbl = pmap->pm_a_tmgr;
   1625        1.1       gwr 	if (*a_tbl == NULL)
   1626       1.95   thorpej 		return false; /* No.  Return unknown. */
   1627        1.1       gwr 	/* Does the A table have a valid B table
   1628        1.1       gwr 	 * under the corresponding table entry?
   1629        1.1       gwr 	 */
   1630        1.1       gwr 	*a_idx = MMU_TIA(va);
   1631        1.1       gwr 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1632        1.1       gwr 	if (!MMU_VALID_DT(*a_dte))
   1633       1.95   thorpej 		return false; /* No. Return unknown. */
   1634        1.1       gwr 	/* Yes. Extract B table from the A table. */
   1635        1.7       gwr 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1636       1.92   tsutsui 	/*
   1637       1.92   tsutsui 	 * Does the B table have a valid C table
   1638        1.1       gwr 	 * under the corresponding table entry?
   1639        1.1       gwr 	 */
   1640        1.1       gwr 	*b_idx = MMU_TIB(va);
   1641        1.1       gwr 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1642        1.1       gwr 	if (!MMU_VALID_DT(*b_dte))
   1643       1.95   thorpej 		return false; /* No. Return unknown. */
   1644        1.1       gwr 	/* Yes. Extract C table from the B table. */
   1645        1.7       gwr 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1646        1.1       gwr 	*pte_idx = MMU_TIC(va);
   1647        1.1       gwr 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1648        1.1       gwr 
   1649       1.95   thorpej 	return true;
   1650        1.1       gwr }
   1651        1.1       gwr 
   1652        1.1       gwr /* pmap_enter			INTERFACE
   1653        1.1       gwr  **
   1654        1.1       gwr  * Called by the kernel to map a virtual address
   1655        1.1       gwr  * to a physical address in the given process map.
   1656        1.1       gwr  *
   1657        1.1       gwr  * Note: this function should apply an exclusive lock
   1658        1.1       gwr  * on the pmap system for its duration.  (it certainly
   1659        1.1       gwr  * would save my hair!!)
   1660        1.7       gwr  * This function ought to be easier to read.
   1661        1.1       gwr  */
   1662       1.86       chs int
   1663      1.104    cegger pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1664        1.1       gwr {
   1665       1.94   thorpej 	bool insert, managed; /* Marks the need for PV insertion.*/
   1666        1.7       gwr 	u_short nidx;            /* PV list index                     */
   1667       1.52    jeremy 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1668        1.8       gwr 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1669        1.1       gwr 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1670        1.1       gwr 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1671        1.1       gwr 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1672        1.1       gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1673        1.1       gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1674        1.1       gwr 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1675        1.1       gwr 	pv_t      *pv;           /* pv list head                      */
   1676       1.94   thorpej 	bool wired;         /* is the mapping to be wired?       */
   1677        1.1       gwr 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1678        1.1       gwr 
   1679        1.1       gwr 	if (pmap == pmap_kernel()) {
   1680        1.1       gwr 		pmap_enter_kernel(va, pa, prot);
   1681       1.61       chs 		return 0;
   1682        1.1       gwr 	}
   1683        1.7       gwr 
   1684       1.52    jeremy 	/*
   1685       1.52    jeremy 	 * Determine if the mapping should be wired.
   1686       1.52    jeremy 	 */
   1687       1.52    jeremy 	wired = ((flags & PMAP_WIRED) != 0);
   1688       1.52    jeremy 
   1689       1.52    jeremy 	/*
   1690       1.52    jeremy 	 * NOTE1:
   1691       1.52    jeremy 	 *
   1692       1.52    jeremy 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1693       1.52    jeremy 	 * that it now accepts a 'flags' argument.  This new argument
   1694       1.52    jeremy 	 * contains bit-flags for the architecture-independent (UVM) system to
   1695       1.52    jeremy 	 * use in signalling certain mapping requirements to the architecture-
   1696       1.52    jeremy 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1697       1.52    jeremy 	 * one of the flags within it.
   1698       1.52    jeremy 	 *
   1699       1.52    jeremy 	 * In addition to flags signaled by the architecture-independent
   1700       1.52    jeremy 	 * system, parts of the architecture-dependent section of the sun3x
   1701       1.52    jeremy 	 * kernel pass their own flags in the lower, unused bits of the
   1702       1.52    jeremy 	 * physical address supplied to this function.  These flags are
   1703       1.52    jeremy 	 * extracted and stored in the temporary variable 'mapflags'.
   1704       1.52    jeremy 	 *
   1705       1.52    jeremy 	 * Extract sun3x specific flags from the physical address.
   1706       1.52    jeremy 	 */
   1707       1.92   tsutsui 	mapflags = (pa & ~MMU_PAGE_MASK);
   1708       1.92   tsutsui 	pa &= MMU_PAGE_MASK;
   1709        1.7       gwr 
   1710        1.7       gwr 	/*
   1711       1.22    jeremy 	 * Determine if the physical address being mapped is on-board RAM.
   1712       1.22    jeremy 	 * Any other area of the address space is likely to belong to a
   1713       1.22    jeremy 	 * device and hence it would be disasterous to cache its contents.
   1714        1.7       gwr 	 */
   1715       1.95   thorpej 	if ((managed = is_managed(pa)) == false)
   1716       1.52    jeremy 		mapflags |= PMAP_NC;
   1717        1.7       gwr 
   1718        1.7       gwr 	/*
   1719        1.7       gwr 	 * For user mappings we walk along the MMU tables of the given
   1720        1.1       gwr 	 * pmap, reaching a PTE which describes the virtual page being
   1721        1.1       gwr 	 * mapped or changed.  If any level of the walk ends in an invalid
   1722        1.1       gwr 	 * entry, a table must be allocated and the entry must be updated
   1723        1.1       gwr 	 * to point to it.
   1724        1.1       gwr 	 * There is a bit of confusion as to whether this code must be
   1725        1.1       gwr 	 * re-entrant.  For now we will assume it is.  To support
   1726        1.1       gwr 	 * re-entrancy we must unlink tables from the table pool before
   1727        1.1       gwr 	 * we assume we may use them.  Tables are re-linked into the pool
   1728        1.1       gwr 	 * when we are finished with them at the end of the function.
   1729        1.1       gwr 	 * But I don't feel like doing that until we have proof that this
   1730        1.1       gwr 	 * needs to be re-entrant.
   1731        1.1       gwr 	 * 'llevel' records which tables need to be relinked.
   1732        1.1       gwr 	 */
   1733        1.1       gwr 	llevel = NONE;
   1734        1.1       gwr 
   1735        1.7       gwr 	/*
   1736        1.7       gwr 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1737        1.7       gwr 	 * A table, allocate a new one from the available pool.
   1738        1.1       gwr 	 */
   1739        1.1       gwr 
   1740        1.7       gwr 	a_tbl = pmap->pm_a_tmgr;
   1741        1.7       gwr 	if (a_tbl == NULL) {
   1742        1.7       gwr 		/*
   1743        1.7       gwr 		 * This pmap does not currently have an A table.  Allocate
   1744        1.7       gwr 		 * a new one.
   1745        1.7       gwr 		 */
   1746        1.7       gwr 		a_tbl = get_a_table();
   1747        1.7       gwr 		a_tbl->at_parent = pmap;
   1748        1.7       gwr 
   1749        1.7       gwr 		/*
   1750        1.7       gwr 		 * Assign this new A table to the pmap, and calculate its
   1751        1.7       gwr 		 * physical address so that loadcrp() can be used to make
   1752        1.7       gwr 		 * the table active.
   1753        1.7       gwr 		 */
   1754        1.7       gwr 		pmap->pm_a_tmgr = a_tbl;
   1755        1.7       gwr 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1756        1.7       gwr 
   1757        1.7       gwr 		/*
   1758        1.7       gwr 		 * If the process receiving a new A table is the current
   1759        1.7       gwr 		 * process, we are responsible for setting the MMU so that
   1760        1.9       gwr 		 * it becomes the current address space.  This only adds
   1761        1.9       gwr 		 * new mappings, so no need to flush anything.
   1762        1.7       gwr 		 */
   1763        1.9       gwr 		if (pmap == current_pmap()) {
   1764        1.9       gwr 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1765        1.9       gwr 			loadcrp(&kernel_crp);
   1766        1.9       gwr 		}
   1767        1.7       gwr 
   1768        1.1       gwr 		if (!wired)
   1769        1.1       gwr 			llevel = NEWA;
   1770        1.1       gwr 	} else {
   1771        1.7       gwr 		/*
   1772        1.7       gwr 		 * Use the A table already allocated for this pmap.
   1773        1.1       gwr 		 * Unlink it from the A table pool if necessary.
   1774        1.1       gwr 		 */
   1775        1.1       gwr 		if (wired && !a_tbl->at_wcnt)
   1776        1.1       gwr 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1777        1.1       gwr 	}
   1778        1.1       gwr 
   1779        1.7       gwr 	/*
   1780        1.7       gwr 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1781        1.1       gwr 	 * allocate one.
   1782        1.1       gwr 	 */
   1783        1.1       gwr 
   1784        1.1       gwr 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1785        1.1       gwr 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1786        1.1       gwr 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1787        1.7       gwr 		/* The descriptor is valid.  Use the B table it points to. */
   1788        1.1       gwr 		/*************************************
   1789        1.1       gwr 		 *               a_idx               *
   1790        1.1       gwr 		 *                 v                 *
   1791        1.1       gwr 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1792        1.1       gwr 		 *          | | | | | | | | | | | |  *
   1793        1.1       gwr 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1794        1.1       gwr 		 *                 |                 *
   1795        1.1       gwr 		 *                 \- b_tbl -> +-+-  *
   1796        1.1       gwr 		 *                             | |   *
   1797        1.1       gwr 		 *                             +-+-  *
   1798        1.1       gwr 		 *************************************/
   1799        1.7       gwr 		b_dte = mmu_ptov(a_dte->addr.raw);
   1800        1.1       gwr 		b_tbl = mmuB2tmgr(b_dte);
   1801        1.7       gwr 
   1802        1.7       gwr 		/*
   1803        1.7       gwr 		 * If the requested mapping must be wired, but this table
   1804        1.7       gwr 		 * being used to map it is not, the table must be removed
   1805        1.7       gwr 		 * from the available pool and its wired entry count
   1806        1.7       gwr 		 * incremented.
   1807        1.7       gwr 		 */
   1808        1.1       gwr 		if (wired && !b_tbl->bt_wcnt) {
   1809        1.1       gwr 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1810        1.7       gwr 			a_tbl->at_wcnt++;
   1811        1.1       gwr 		}
   1812        1.1       gwr 	} else {
   1813        1.7       gwr 		/* The descriptor is invalid.  Allocate a new B table. */
   1814        1.7       gwr 		b_tbl = get_b_table();
   1815        1.7       gwr 
   1816        1.1       gwr 		/* Point the parent A table descriptor to this new B table. */
   1817        1.7       gwr 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1818        1.7       gwr 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1819        1.7       gwr 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1820        1.7       gwr 
   1821        1.1       gwr 		/* Create the necessary back references to the parent table */
   1822        1.1       gwr 		b_tbl->bt_parent = a_tbl;
   1823        1.1       gwr 		b_tbl->bt_pidx = a_idx;
   1824        1.7       gwr 
   1825        1.7       gwr 		/*
   1826        1.7       gwr 		 * If this table is to be wired, make sure the parent A table
   1827        1.1       gwr 		 * wired count is updated to reflect that it has another wired
   1828        1.1       gwr 		 * entry.
   1829        1.1       gwr 		 */
   1830        1.1       gwr 		if (wired)
   1831        1.1       gwr 			a_tbl->at_wcnt++;
   1832        1.1       gwr 		else if (llevel == NONE)
   1833        1.1       gwr 			llevel = NEWB;
   1834        1.1       gwr 	}
   1835        1.1       gwr 
   1836        1.7       gwr 	/*
   1837        1.7       gwr 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1838        1.1       gwr 	 * allocate one.
   1839        1.1       gwr 	 */
   1840        1.1       gwr 
   1841        1.1       gwr 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1842        1.1       gwr 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1843        1.1       gwr 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1844        1.7       gwr 		/* The descriptor is valid.  Use the C table it points to. */
   1845        1.1       gwr 		/**************************************
   1846        1.1       gwr 		 *               c_idx                *
   1847        1.1       gwr 		 * |                v                 *
   1848        1.1       gwr 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1849        1.1       gwr 		 *             | | | | | | | | | | |  *
   1850        1.1       gwr 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1851        1.1       gwr 		 *                  |                 *
   1852        1.1       gwr 		 *                  \- c_tbl -> +-+-- *
   1853        1.1       gwr 		 *                              | | | *
   1854        1.1       gwr 		 *                              +-+-- *
   1855        1.1       gwr 		 **************************************/
   1856        1.7       gwr 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1857        1.1       gwr 		c_tbl = mmuC2tmgr(c_pte);
   1858        1.7       gwr 
   1859        1.7       gwr 		/* If mapping is wired and table is not */
   1860        1.1       gwr 		if (wired && !c_tbl->ct_wcnt) {
   1861        1.1       gwr 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1862        1.1       gwr 			b_tbl->bt_wcnt++;
   1863        1.1       gwr 		}
   1864        1.1       gwr 	} else {
   1865        1.7       gwr 		/* The descriptor is invalid.  Allocate a new C table. */
   1866        1.7       gwr 		c_tbl = get_c_table();
   1867        1.7       gwr 
   1868        1.1       gwr 		/* Point the parent B table descriptor to this new C table. */
   1869        1.7       gwr 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1870        1.7       gwr 		b_dte->attr.raw |= MMU_DT_SHORT;
   1871        1.7       gwr 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1872        1.7       gwr 
   1873        1.1       gwr 		/* Create the necessary back references to the parent table */
   1874        1.1       gwr 		c_tbl->ct_parent = b_tbl;
   1875        1.1       gwr 		c_tbl->ct_pidx = b_idx;
   1876       1.26    jeremy 		/*
   1877       1.26    jeremy 		 * Store the pmap and base virtual managed address for faster
   1878       1.26    jeremy 		 * retrieval in the PV functions.
   1879       1.26    jeremy 		 */
   1880       1.26    jeremy 		c_tbl->ct_pmap = pmap;
   1881       1.26    jeremy 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1882        1.7       gwr 
   1883        1.7       gwr 		/*
   1884        1.7       gwr 		 * If this table is to be wired, make sure the parent B table
   1885        1.1       gwr 		 * wired count is updated to reflect that it has another wired
   1886        1.1       gwr 		 * entry.
   1887        1.1       gwr 		 */
   1888        1.1       gwr 		if (wired)
   1889        1.1       gwr 			b_tbl->bt_wcnt++;
   1890        1.1       gwr 		else if (llevel == NONE)
   1891        1.1       gwr 			llevel = NEWC;
   1892        1.1       gwr 	}
   1893        1.1       gwr 
   1894        1.7       gwr 	/*
   1895        1.7       gwr 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1896        1.1       gwr 	 * slot of the C table, describing the PA to which the VA is mapped.
   1897        1.1       gwr 	 */
   1898        1.1       gwr 
   1899        1.1       gwr 	pte_idx = MMU_TIC(va);
   1900        1.1       gwr 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1901        1.1       gwr 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1902        1.7       gwr 		/*
   1903        1.7       gwr 		 * The PTE is currently valid.  This particular call
   1904        1.1       gwr 		 * is just a synonym for one (or more) of the following
   1905        1.1       gwr 		 * operations:
   1906        1.7       gwr 		 *     change protection of a page
   1907        1.1       gwr 		 *     change wiring status of a page
   1908        1.1       gwr 		 *     remove the mapping of a page
   1909        1.1       gwr 		 */
   1910        1.7       gwr 
   1911        1.7       gwr 		/* First check if this is a wiring operation. */
   1912       1.91   tsutsui 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
   1913        1.7       gwr 			/*
   1914       1.91   tsutsui 			 * The existing mapping is wired, so adjust wired
   1915       1.91   tsutsui 			 * entry count here. If new mapping is still wired,
   1916       1.91   tsutsui 			 * wired entry count will be incremented again later.
   1917        1.7       gwr 			 */
   1918       1.91   tsutsui 			c_tbl->ct_wcnt--;
   1919       1.91   tsutsui 			if (!wired) {
   1920       1.91   tsutsui 				/*
   1921       1.91   tsutsui 				 * The mapping of this PTE is being changed
   1922       1.91   tsutsui 				 * from wired to unwired.
   1923       1.91   tsutsui 				 * Adjust wired entry counts in each table and
   1924       1.91   tsutsui 				 * set llevel flag to put unwired tables back
   1925       1.91   tsutsui 				 * into the active pool.
   1926       1.91   tsutsui 				 */
   1927       1.91   tsutsui 				if (c_tbl->ct_wcnt == 0) {
   1928       1.91   tsutsui 					llevel = NEWC;
   1929       1.91   tsutsui 					if (--b_tbl->bt_wcnt == 0) {
   1930       1.91   tsutsui 						llevel = NEWB;
   1931       1.91   tsutsui 						if (--a_tbl->at_wcnt == 0) {
   1932       1.91   tsutsui 							llevel = NEWA;
   1933       1.91   tsutsui 						}
   1934       1.91   tsutsui 					}
   1935       1.91   tsutsui 				}
   1936       1.91   tsutsui 			}
   1937        1.7       gwr 		}
   1938        1.7       gwr 
   1939        1.1       gwr 		/* Is the new address the same as the old? */
   1940        1.1       gwr 		if (MMU_PTE_PA(*c_pte) == pa) {
   1941        1.7       gwr 			/*
   1942        1.7       gwr 			 * Yes, mark that it does not need to be reinserted
   1943        1.7       gwr 			 * into the PV list.
   1944        1.7       gwr 			 */
   1945       1.95   thorpej 			insert = false;
   1946        1.7       gwr 
   1947        1.7       gwr 			/*
   1948        1.7       gwr 			 * Clear all but the modified, referenced and wired
   1949        1.7       gwr 			 * bits on the PTE.
   1950        1.7       gwr 			 */
   1951        1.7       gwr 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1952       1.92   tsutsui 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1953        1.1       gwr 		} else {
   1954        1.1       gwr 			/* No, remove the old entry */
   1955        1.1       gwr 			pmap_remove_pte(c_pte);
   1956       1.95   thorpej 			insert = true;
   1957        1.1       gwr 		}
   1958        1.8       gwr 
   1959        1.8       gwr 		/*
   1960        1.8       gwr 		 * TLB flush is only necessary if modifying current map.
   1961        1.8       gwr 		 * However, in pmap_enter(), the pmap almost always IS
   1962        1.8       gwr 		 * the current pmap, so don't even bother to check.
   1963        1.8       gwr 		 */
   1964        1.8       gwr 		TBIS(va);
   1965        1.1       gwr 	} else {
   1966        1.7       gwr 		/*
   1967        1.7       gwr 		 * The PTE is invalid.  Increment the valid entry count in
   1968        1.8       gwr 		 * the C table manager to reflect the addition of a new entry.
   1969        1.7       gwr 		 */
   1970        1.1       gwr 		c_tbl->ct_ecnt++;
   1971        1.8       gwr 
   1972        1.8       gwr 		/* XXX - temporarily make sure the PTE is cleared. */
   1973        1.8       gwr 		c_pte->attr.raw = 0;
   1974        1.1       gwr 
   1975        1.7       gwr 		/* It will also need to be inserted into the PV list. */
   1976       1.95   thorpej 		insert = true;
   1977        1.7       gwr 	}
   1978        1.7       gwr 
   1979        1.7       gwr 	/*
   1980        1.7       gwr 	 * If page is changing from unwired to wired status, set an unused bit
   1981        1.7       gwr 	 * within the PTE to indicate that it is wired.  Also increment the
   1982        1.7       gwr 	 * wired entry count in the C table manager.
   1983        1.7       gwr 	 */
   1984        1.7       gwr 	if (wired) {
   1985        1.1       gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1986        1.7       gwr 		c_tbl->ct_wcnt++;
   1987        1.1       gwr 	}
   1988        1.1       gwr 
   1989        1.7       gwr 	/*
   1990        1.7       gwr 	 * Map the page, being careful to preserve modify/reference/wired
   1991        1.7       gwr 	 * bits.  At this point it is assumed that the PTE either has no bits
   1992        1.7       gwr 	 * set, or if there are set bits, they are only modified, reference or
   1993        1.7       gwr 	 * wired bits.  If not, the following statement will cause erratic
   1994        1.7       gwr 	 * behavior.
   1995        1.7       gwr 	 */
   1996        1.8       gwr #ifdef	PMAP_DEBUG
   1997        1.7       gwr 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1998        1.7       gwr 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1999        1.7       gwr 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2000        1.7       gwr 		Debugger();
   2001        1.7       gwr 	}
   2002        1.7       gwr #endif
   2003        1.7       gwr 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2004        1.7       gwr 
   2005        1.7       gwr 	/*
   2006        1.7       gwr 	 * If the mapping should be read-only, set the write protect
   2007        1.7       gwr 	 * bit in the PTE.
   2008        1.7       gwr 	 */
   2009        1.7       gwr 	if (!(prot & VM_PROT_WRITE))
   2010        1.7       gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2011        1.7       gwr 
   2012        1.7       gwr 	/*
   2013       1.87       chs 	 * Mark the PTE as used and/or modified as specified by the flags arg.
   2014       1.87       chs 	 */
   2015       1.87       chs 	if (flags & VM_PROT_ALL) {
   2016       1.87       chs 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
   2017       1.87       chs 		if (flags & VM_PROT_WRITE) {
   2018       1.87       chs 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
   2019       1.87       chs 		}
   2020       1.87       chs 	}
   2021       1.87       chs 
   2022       1.87       chs 	/*
   2023        1.7       gwr 	 * If the mapping should be cache inhibited (indicated by the flag
   2024        1.7       gwr 	 * bits found on the lower order of the physical address.)
   2025        1.7       gwr 	 * mark the PTE as a cache inhibited page.
   2026        1.7       gwr 	 */
   2027       1.52    jeremy 	if (mapflags & PMAP_NC)
   2028        1.7       gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2029        1.7       gwr 
   2030        1.7       gwr 	/*
   2031        1.7       gwr 	 * If the physical address being mapped is managed by the PV
   2032        1.7       gwr 	 * system then link the pte into the list of pages mapped to that
   2033        1.7       gwr 	 * address.
   2034        1.7       gwr 	 */
   2035        1.7       gwr 	if (insert && managed) {
   2036        1.7       gwr 		pv = pa2pv(pa);
   2037        1.7       gwr 		nidx = pteidx(c_pte);
   2038        1.7       gwr 
   2039        1.7       gwr 		pvebase[nidx].pve_next = pv->pv_idx;
   2040        1.7       gwr 		pv->pv_idx = nidx;
   2041        1.7       gwr 	}
   2042        1.1       gwr 
   2043       1.91   tsutsui 	/* Move any allocated or unwired tables back into the active pool. */
   2044        1.1       gwr 
   2045        1.1       gwr 	switch (llevel) {
   2046        1.1       gwr 		case NEWA:
   2047        1.1       gwr 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2048        1.1       gwr 			/* FALLTHROUGH */
   2049        1.1       gwr 		case NEWB:
   2050        1.1       gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2051        1.1       gwr 			/* FALLTHROUGH */
   2052        1.1       gwr 		case NEWC:
   2053        1.1       gwr 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2054        1.1       gwr 			/* FALLTHROUGH */
   2055        1.1       gwr 		default:
   2056        1.1       gwr 			break;
   2057        1.1       gwr 	}
   2058       1.51   thorpej 
   2059       1.61       chs 	return 0;
   2060        1.1       gwr }
   2061        1.1       gwr 
   2062        1.1       gwr /* pmap_enter_kernel			INTERNAL
   2063        1.1       gwr  **
   2064        1.1       gwr  * Map the given virtual address to the given physical address within the
   2065        1.1       gwr  * kernel address space.  This function exists because the kernel map does
   2066        1.1       gwr  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2067        1.1       gwr  * and can be edited directly without the need to walk through any tables.
   2068        1.1       gwr  *
   2069        1.1       gwr  * XXX: "Danger, Will Robinson!"
   2070        1.1       gwr  * Note that the kernel should never take a fault on any page
   2071        1.1       gwr  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2072        1.1       gwr  * trap.c for kernel-mode MMU faults.  This means that mappings
   2073        1.1       gwr  * created in that range must be implicily wired. -gwr
   2074        1.1       gwr  */
   2075       1.86       chs void
   2076       1.86       chs pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2077        1.1       gwr {
   2078       1.94   thorpej 	bool       was_valid, insert;
   2079       1.32       gwr 	u_short         pte_idx;
   2080       1.69       chs 	int             flags;
   2081        1.1       gwr 	mmu_short_pte_t *pte;
   2082        1.7       gwr 	pv_t            *pv;
   2083       1.69       chs 	paddr_t     old_pa;
   2084        1.7       gwr 
   2085       1.32       gwr 	flags = (pa & ~MMU_PAGE_MASK);
   2086       1.32       gwr 	pa &= MMU_PAGE_MASK;
   2087       1.32       gwr 
   2088       1.32       gwr 	if (is_managed(pa))
   2089       1.95   thorpej 		insert = true;
   2090       1.32       gwr 	else
   2091       1.95   thorpej 		insert = false;
   2092        1.7       gwr 
   2093        1.7       gwr 	/*
   2094        1.7       gwr 	 * Calculate the index of the PTE being modified.
   2095        1.7       gwr 	 */
   2096  1.110.2.1  uebayasi 	pte_idx = (u_long)m68k_btop(va - KERNBASE3X);
   2097        1.1       gwr 
   2098       1.22    jeremy 	/* This array is traditionally named "Sysmap" */
   2099        1.7       gwr 	pte = &kernCbase[pte_idx];
   2100        1.7       gwr 
   2101        1.7       gwr 	if (MMU_VALID_DT(*pte)) {
   2102       1.95   thorpej 		was_valid = true;
   2103        1.7       gwr 		/*
   2104       1.32       gwr 		 * If the PTE already maps a different
   2105       1.32       gwr 		 * physical address, umap and pv_unlink.
   2106       1.24    jeremy 		 */
   2107       1.24    jeremy 		old_pa = MMU_PTE_PA(*pte);
   2108       1.32       gwr 		if (pa != old_pa)
   2109       1.32       gwr 			pmap_remove_pte(pte);
   2110       1.32       gwr 		else {
   2111       1.24    jeremy 		    /*
   2112       1.32       gwr 		     * Old PA and new PA are the same.  No need to
   2113       1.32       gwr 		     * relink the mapping within the PV list.
   2114       1.24    jeremy 		     */
   2115       1.95   thorpej 		     insert = false;
   2116        1.8       gwr 
   2117        1.7       gwr 		    /*
   2118       1.24    jeremy 		     * Save any mod/ref bits on the PTE.
   2119        1.7       gwr 		     */
   2120       1.24    jeremy 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2121        1.7       gwr 		}
   2122        1.7       gwr 	} else {
   2123        1.8       gwr 		pte->attr.raw = MMU_DT_INVALID;
   2124       1.95   thorpej 		was_valid = false;
   2125        1.7       gwr 	}
   2126        1.7       gwr 
   2127        1.7       gwr 	/*
   2128        1.8       gwr 	 * Map the page.  Being careful to preserve modified/referenced bits
   2129        1.8       gwr 	 * on the PTE.
   2130        1.7       gwr 	 */
   2131        1.7       gwr 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2132        1.1       gwr 
   2133        1.1       gwr 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2134        1.1       gwr 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2135        1.7       gwr 	if (flags & PMAP_NC)
   2136        1.1       gwr 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2137        1.8       gwr 	if (was_valid)
   2138        1.7       gwr 		TBIS(va);
   2139        1.1       gwr 
   2140        1.7       gwr 	/*
   2141        1.7       gwr 	 * Insert the PTE into the PV system, if need be.
   2142        1.7       gwr 	 */
   2143        1.7       gwr 	if (insert) {
   2144        1.7       gwr 		pv = pa2pv(pa);
   2145        1.7       gwr 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2146        1.7       gwr 		pv->pv_idx = pte_idx;
   2147        1.7       gwr 	}
   2148       1.34       gwr }
   2149       1.34       gwr 
   2150       1.86       chs void
   2151      1.108    cegger pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2152       1.49       chs {
   2153       1.69       chs 	mmu_short_pte_t	*pte;
   2154       1.69       chs 
   2155       1.69       chs 	/* This array is traditionally named "Sysmap" */
   2156  1.110.2.1  uebayasi 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE3X)];
   2157       1.69       chs 
   2158       1.69       chs 	KASSERT(!MMU_VALID_DT(*pte));
   2159       1.69       chs 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2160       1.69       chs 	if (!(prot & VM_PROT_WRITE))
   2161       1.69       chs 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2162       1.49       chs }
   2163       1.49       chs 
   2164       1.86       chs void
   2165       1.86       chs pmap_kremove(vaddr_t va, vsize_t len)
   2166       1.49       chs {
   2167       1.69       chs 	int idx, eidx;
   2168       1.69       chs 
   2169       1.69       chs #ifdef	PMAP_DEBUG
   2170       1.91   tsutsui 	if ((va & PGOFSET) || (len & PGOFSET))
   2171       1.72   tsutsui 		panic("pmap_kremove: alignment");
   2172       1.69       chs #endif
   2173       1.69       chs 
   2174  1.110.2.1  uebayasi 	idx  = m68k_btop(va - KERNBASE3X);
   2175  1.110.2.1  uebayasi 	eidx = m68k_btop(va + len - KERNBASE3X);
   2176       1.69       chs 
   2177       1.69       chs 	while (idx < eidx) {
   2178       1.69       chs 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2179       1.69       chs 		TBIS(va);
   2180       1.79   thorpej 		va += PAGE_SIZE;
   2181       1.49       chs 	}
   2182       1.49       chs }
   2183       1.49       chs 
   2184       1.35    jeremy /* pmap_map			INTERNAL
   2185       1.35    jeremy  **
   2186       1.35    jeremy  * Map a contiguous range of physical memory into a contiguous range of
   2187       1.35    jeremy  * the kernel virtual address space.
   2188       1.35    jeremy  *
   2189       1.35    jeremy  * Used for device mappings and early mapping of the kernel text/data/bss.
   2190       1.35    jeremy  * Returns the first virtual address beyond the end of the range.
   2191       1.34       gwr  */
   2192       1.86       chs vaddr_t
   2193       1.86       chs pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
   2194       1.34       gwr {
   2195       1.34       gwr 	int sz;
   2196       1.34       gwr 
   2197       1.34       gwr 	sz = endpa - pa;
   2198       1.34       gwr 	do {
   2199       1.34       gwr 		pmap_enter_kernel(va, pa, prot);
   2200       1.79   thorpej 		va += PAGE_SIZE;
   2201       1.79   thorpej 		pa += PAGE_SIZE;
   2202       1.79   thorpej 		sz -= PAGE_SIZE;
   2203       1.34       gwr 	} while (sz > 0);
   2204       1.73     chris 	pmap_update(pmap_kernel());
   2205       1.92   tsutsui 	return va;
   2206       1.92   tsutsui }
   2207       1.92   tsutsui 
   2208       1.92   tsutsui /* pmap_protect_kernel			INTERNAL
   2209       1.92   tsutsui  **
   2210       1.92   tsutsui  * Apply the given protection code to a kernel address range.
   2211       1.92   tsutsui  */
   2212       1.92   tsutsui static INLINE void
   2213       1.92   tsutsui pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2214       1.92   tsutsui {
   2215       1.92   tsutsui 	vaddr_t va;
   2216       1.92   tsutsui 	mmu_short_pte_t *pte;
   2217       1.92   tsutsui 
   2218  1.110.2.1  uebayasi 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE3X)];
   2219       1.92   tsutsui 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2220       1.92   tsutsui 		if (MMU_VALID_DT(*pte)) {
   2221       1.92   tsutsui 		    switch (prot) {
   2222       1.92   tsutsui 		        case VM_PROT_ALL:
   2223       1.92   tsutsui 		            break;
   2224       1.92   tsutsui 		        case VM_PROT_EXECUTE:
   2225       1.92   tsutsui 		        case VM_PROT_READ:
   2226       1.92   tsutsui 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2227       1.92   tsutsui 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2228       1.92   tsutsui 		            break;
   2229       1.92   tsutsui 		        case VM_PROT_NONE:
   2230       1.92   tsutsui 		            /* this is an alias for 'pmap_remove_kernel' */
   2231       1.92   tsutsui 		            pmap_remove_pte(pte);
   2232       1.92   tsutsui 		            break;
   2233       1.92   tsutsui 		        default:
   2234       1.92   tsutsui 		            break;
   2235       1.92   tsutsui 		    }
   2236       1.92   tsutsui 		    /*
   2237       1.92   tsutsui 		     * since this is the kernel, immediately flush any cached
   2238       1.92   tsutsui 		     * descriptors for this address.
   2239       1.92   tsutsui 		     */
   2240       1.92   tsutsui 		    TBIS(va);
   2241       1.92   tsutsui 		}
   2242       1.92   tsutsui 	}
   2243        1.1       gwr }
   2244        1.1       gwr 
   2245        1.1       gwr /* pmap_protect			INTERFACE
   2246        1.1       gwr  **
   2247        1.7       gwr  * Apply the given protection to the given virtual address range within
   2248        1.1       gwr  * the given map.
   2249        1.1       gwr  *
   2250        1.1       gwr  * It is ok for the protection applied to be stronger than what is
   2251        1.1       gwr  * specified.  We use this to our advantage when the given map has no
   2252        1.7       gwr  * mapping for the virtual address.  By skipping a page when this
   2253        1.1       gwr  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2254        1.1       gwr  * and therefore do not need to map the page just to apply a protection
   2255        1.1       gwr  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2256        1.7       gwr  *
   2257        1.7       gwr  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2258        1.7       gwr  *       setup, and then manual scrolling in the for() loop.
   2259        1.1       gwr  */
   2260       1.86       chs void
   2261       1.86       chs pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2262        1.1       gwr {
   2263       1.94   thorpej 	bool iscurpmap;
   2264        1.1       gwr 	int a_idx, b_idx, c_idx;
   2265        1.1       gwr 	a_tmgr_t *a_tbl;
   2266        1.1       gwr 	b_tmgr_t *b_tbl;
   2267        1.1       gwr 	c_tmgr_t *c_tbl;
   2268        1.1       gwr 	mmu_short_pte_t *pte;
   2269        1.1       gwr 
   2270        1.1       gwr 	if (pmap == pmap_kernel()) {
   2271        1.7       gwr 		pmap_protect_kernel(startva, endva, prot);
   2272        1.1       gwr 		return;
   2273        1.1       gwr 	}
   2274        1.1       gwr 
   2275       1.11    jeremy 	/*
   2276       1.12    jeremy 	 * In this particular pmap implementation, there are only three
   2277       1.12    jeremy 	 * types of memory protection: 'all' (read/write/execute),
   2278       1.12    jeremy 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2279       1.12    jeremy 	 * It is not possible for us to treat 'executable' as a separate
   2280       1.12    jeremy 	 * protection type.  Therefore, protection requests that seek to
   2281       1.12    jeremy 	 * remove execute permission while retaining read or write, and those
   2282       1.12    jeremy 	 * that make little sense (write-only for example) are ignored.
   2283       1.11    jeremy 	 */
   2284       1.12    jeremy 	switch (prot) {
   2285       1.12    jeremy 		case VM_PROT_NONE:
   2286       1.12    jeremy 			/*
   2287       1.12    jeremy 			 * A request to apply the protection code of
   2288       1.12    jeremy 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2289       1.12    jeremy 			 */
   2290       1.12    jeremy 			pmap_remove(pmap, startva, endva);
   2291       1.12    jeremy 			return;
   2292       1.12    jeremy 		case	VM_PROT_EXECUTE:
   2293       1.12    jeremy 		case	VM_PROT_READ:
   2294       1.12    jeremy 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2295       1.12    jeremy 			/* continue */
   2296       1.12    jeremy 			break;
   2297       1.12    jeremy 		case	VM_PROT_WRITE:
   2298       1.12    jeremy 		case	VM_PROT_WRITE|VM_PROT_READ:
   2299       1.12    jeremy 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2300       1.12    jeremy 		case	VM_PROT_ALL:
   2301       1.12    jeremy 			/* None of these should happen in a sane system. */
   2302       1.12    jeremy 			return;
   2303       1.11    jeremy 	}
   2304       1.11    jeremy 
   2305       1.11    jeremy 	/*
   2306       1.11    jeremy 	 * If the pmap has no A table, it has no mappings and therefore
   2307       1.11    jeremy 	 * there is nothing to protect.
   2308       1.11    jeremy 	 */
   2309       1.11    jeremy 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2310       1.11    jeremy 		return;
   2311       1.11    jeremy 
   2312       1.11    jeremy 	a_idx = MMU_TIA(startva);
   2313       1.11    jeremy 	b_idx = MMU_TIB(startva);
   2314       1.11    jeremy 	c_idx = MMU_TIC(startva);
   2315       1.90     skrll 	b_tbl = NULL;
   2316       1.90     skrll 	c_tbl = NULL;
   2317       1.11    jeremy 
   2318        1.7       gwr 	iscurpmap = (pmap == current_pmap());
   2319       1.11    jeremy 	while (startva < endva) {
   2320       1.11    jeremy 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2321       1.11    jeremy 		  if (b_tbl == NULL) {
   2322       1.11    jeremy 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2323       1.69       chs 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2324       1.69       chs 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2325       1.11    jeremy 		  }
   2326       1.11    jeremy 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2327       1.11    jeremy 		    if (c_tbl == NULL) {
   2328       1.11    jeremy 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2329       1.69       chs 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2330       1.69       chs 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2331       1.11    jeremy 		    }
   2332       1.11    jeremy 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2333       1.11    jeremy 		      pte = &c_tbl->ct_dtbl[c_idx];
   2334       1.12    jeremy 		      /* make the mapping read-only */
   2335       1.12    jeremy 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2336       1.11    jeremy 		      /*
   2337       1.11    jeremy 		       * If we just modified the current address space,
   2338       1.11    jeremy 		       * flush any translations for the modified page from
   2339       1.11    jeremy 		       * the translation cache and any data from it in the
   2340       1.11    jeremy 		       * data cache.
   2341       1.11    jeremy 		       */
   2342       1.11    jeremy 		      if (iscurpmap)
   2343       1.11    jeremy 		          TBIS(startva);
   2344       1.11    jeremy 		    }
   2345       1.79   thorpej 		    startva += PAGE_SIZE;
   2346        1.1       gwr 
   2347       1.11    jeremy 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2348       1.11    jeremy 		      c_tbl = NULL;
   2349       1.11    jeremy 		      c_idx = 0;
   2350       1.11    jeremy 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2351       1.11    jeremy 		        b_tbl = NULL;
   2352       1.11    jeremy 		        b_idx = 0;
   2353       1.11    jeremy 		      }
   2354       1.11    jeremy 		    }
   2355       1.11    jeremy 		  } else { /* C table wasn't valid */
   2356       1.11    jeremy 		    c_tbl = NULL;
   2357       1.11    jeremy 		    c_idx = 0;
   2358       1.11    jeremy 		    startva += MMU_TIB_RANGE;
   2359       1.11    jeremy 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2360       1.11    jeremy 		      b_tbl = NULL;
   2361       1.11    jeremy 		      b_idx = 0;
   2362       1.11    jeremy 		    }
   2363       1.11    jeremy 		  } /* C table */
   2364       1.11    jeremy 		} else { /* B table wasn't valid */
   2365       1.11    jeremy 		  b_tbl = NULL;
   2366       1.11    jeremy 		  b_idx = 0;
   2367       1.11    jeremy 		  startva += MMU_TIA_RANGE;
   2368       1.11    jeremy 		  a_idx++;
   2369       1.11    jeremy 		} /* B table */
   2370        1.1       gwr 	}
   2371        1.1       gwr }
   2372        1.1       gwr 
   2373       1.47   thorpej /* pmap_unwire				INTERFACE
   2374        1.1       gwr  **
   2375       1.47   thorpej  * Clear the wired attribute of the specified page.
   2376        1.1       gwr  *
   2377        1.1       gwr  * This function is called from vm_fault.c to unwire
   2378       1.47   thorpej  * a mapping.
   2379        1.1       gwr  */
   2380       1.86       chs void
   2381       1.86       chs pmap_unwire(pmap_t pmap, vaddr_t va)
   2382        1.1       gwr {
   2383        1.1       gwr 	int a_idx, b_idx, c_idx;
   2384        1.1       gwr 	a_tmgr_t *a_tbl;
   2385        1.1       gwr 	b_tmgr_t *b_tbl;
   2386        1.1       gwr 	c_tmgr_t *c_tbl;
   2387        1.1       gwr 	mmu_short_pte_t *pte;
   2388        1.1       gwr 
   2389        1.1       gwr 	/* Kernel mappings always remain wired. */
   2390        1.1       gwr 	if (pmap == pmap_kernel())
   2391        1.1       gwr 		return;
   2392        1.1       gwr 
   2393        1.7       gwr 	/*
   2394        1.7       gwr 	 * Walk through the tables.  If the walk terminates without
   2395        1.1       gwr 	 * a valid PTE then the address wasn't wired in the first place.
   2396        1.1       gwr 	 * Return immediately.
   2397        1.1       gwr 	 */
   2398        1.1       gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2399       1.95   thorpej 		&b_idx, &c_idx) == false)
   2400        1.1       gwr 		return;
   2401        1.1       gwr 
   2402        1.1       gwr 
   2403        1.1       gwr 	/* Is the PTE wired?  If not, return. */
   2404        1.1       gwr 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2405        1.1       gwr 		return;
   2406        1.1       gwr 
   2407        1.1       gwr 	/* Remove the wiring bit. */
   2408        1.1       gwr 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2409        1.1       gwr 
   2410        1.7       gwr 	/*
   2411        1.7       gwr 	 * Decrement the wired entry count in the C table.
   2412        1.1       gwr 	 * If it reaches zero the following things happen:
   2413        1.1       gwr 	 * 1. The table no longer has any wired entries and is considered
   2414        1.1       gwr 	 *    unwired.
   2415        1.1       gwr 	 * 2. It is placed on the available queue.
   2416        1.1       gwr 	 * 3. The parent table's wired entry count is decremented.
   2417        1.1       gwr 	 * 4. If it reaches zero, this process repeats at step 1 and
   2418        1.1       gwr 	 *    stops at after reaching the A table.
   2419        1.1       gwr 	 */
   2420        1.7       gwr 	if (--c_tbl->ct_wcnt == 0) {
   2421        1.1       gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2422        1.7       gwr 		if (--b_tbl->bt_wcnt == 0) {
   2423        1.1       gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2424        1.7       gwr 			if (--a_tbl->at_wcnt == 0) {
   2425        1.1       gwr 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2426        1.1       gwr 			}
   2427        1.1       gwr 		}
   2428        1.1       gwr 	}
   2429        1.1       gwr }
   2430        1.1       gwr 
   2431        1.1       gwr /* pmap_copy				INTERFACE
   2432        1.1       gwr  **
   2433        1.1       gwr  * Copy the mappings of a range of addresses in one pmap, into
   2434        1.1       gwr  * the destination address of another.
   2435        1.1       gwr  *
   2436        1.1       gwr  * This routine is advisory.  Should we one day decide that MMU tables
   2437        1.1       gwr  * may be shared by more than one pmap, this function should be used to
   2438        1.1       gwr  * link them together.  Until that day however, we do nothing.
   2439        1.1       gwr  */
   2440        1.1       gwr void
   2441       1.86       chs pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
   2442        1.1       gwr {
   2443       1.92   tsutsui 
   2444        1.1       gwr 	/* not implemented. */
   2445        1.1       gwr }
   2446        1.1       gwr 
   2447        1.1       gwr /* pmap_copy_page			INTERFACE
   2448        1.1       gwr  **
   2449        1.1       gwr  * Copy the contents of one physical page into another.
   2450        1.1       gwr  *
   2451        1.7       gwr  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2452       1.24    jeremy  * to map the two specified physical pages into the kernel address space.
   2453        1.7       gwr  *
   2454        1.7       gwr  * Note: We could use the transparent translation registers to make the
   2455        1.7       gwr  * mappings.  If we do so, be sure to disable interrupts before using them.
   2456        1.1       gwr  */
   2457       1.86       chs void
   2458       1.86       chs pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
   2459        1.1       gwr {
   2460       1.69       chs 	vaddr_t srcva, dstva;
   2461       1.23    jeremy 	int s;
   2462       1.24    jeremy 
   2463       1.24    jeremy 	srcva = tmp_vpages[0];
   2464       1.24    jeremy 	dstva = tmp_vpages[1];
   2465        1.1       gwr 
   2466       1.58   thorpej 	s = splvm();
   2467       1.69       chs #ifdef DIAGNOSTIC
   2468       1.24    jeremy 	if (tmp_vpages_inuse++)
   2469       1.24    jeremy 		panic("pmap_copy_page: temporary vpages are in use.");
   2470       1.69       chs #endif
   2471       1.23    jeremy 
   2472       1.23    jeremy 	/* Map pages as non-cacheable to avoid cache polution? */
   2473      1.108    cegger 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ, 0);
   2474      1.108    cegger 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
   2475        1.7       gwr 
   2476      1.105   tsutsui 	/* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */
   2477       1.92   tsutsui 	copypage((char *)srcva, (char *)dstva);
   2478       1.24    jeremy 
   2479       1.79   thorpej 	pmap_kremove(srcva, PAGE_SIZE);
   2480       1.79   thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2481       1.24    jeremy 
   2482       1.69       chs #ifdef DIAGNOSTIC
   2483       1.24    jeremy 	--tmp_vpages_inuse;
   2484       1.69       chs #endif
   2485       1.23    jeremy 	splx(s);
   2486        1.1       gwr }
   2487        1.1       gwr 
   2488        1.1       gwr /* pmap_zero_page			INTERFACE
   2489        1.1       gwr  **
   2490        1.1       gwr  * Zero the contents of the specified physical page.
   2491        1.1       gwr  *
   2492        1.7       gwr  * Uses one of the virtual pages allocated in pmap_boostrap()
   2493       1.24    jeremy  * to map the specified page into the kernel address space.
   2494        1.1       gwr  */
   2495       1.86       chs void
   2496       1.86       chs pmap_zero_page(paddr_t dstpa)
   2497        1.1       gwr {
   2498       1.69       chs 	vaddr_t dstva;
   2499       1.23    jeremy 	int s;
   2500       1.23    jeremy 
   2501       1.24    jeremy 	dstva = tmp_vpages[1];
   2502       1.58   thorpej 	s = splvm();
   2503       1.69       chs #ifdef DIAGNOSTIC
   2504       1.26    jeremy 	if (tmp_vpages_inuse++)
   2505       1.24    jeremy 		panic("pmap_zero_page: temporary vpages are in use.");
   2506       1.69       chs #endif
   2507       1.24    jeremy 
   2508       1.24    jeremy 	/* The comments in pmap_copy_page() above apply here also. */
   2509      1.108    cegger 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
   2510       1.24    jeremy 
   2511      1.102    cegger 	/* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */
   2512       1.92   tsutsui 	zeropage((char *)dstva);
   2513        1.1       gwr 
   2514       1.79   thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2515       1.69       chs #ifdef DIAGNOSTIC
   2516       1.24    jeremy 	--tmp_vpages_inuse;
   2517       1.69       chs #endif
   2518       1.23    jeremy 	splx(s);
   2519        1.1       gwr }
   2520        1.1       gwr 
   2521       1.92   tsutsui /* pmap_pinit			INTERNAL
   2522       1.92   tsutsui  **
   2523       1.92   tsutsui  * Initialize a pmap structure.
   2524       1.92   tsutsui  */
   2525       1.92   tsutsui static INLINE void
   2526       1.92   tsutsui pmap_pinit(pmap_t pmap)
   2527       1.92   tsutsui {
   2528       1.92   tsutsui 
   2529       1.92   tsutsui 	memset(pmap, 0, sizeof(struct pmap));
   2530       1.92   tsutsui 	pmap->pm_a_tmgr = NULL;
   2531       1.92   tsutsui 	pmap->pm_a_phys = kernAphys;
   2532       1.92   tsutsui 	pmap->pm_refcount = 1;
   2533       1.92   tsutsui 	simple_lock_init(&pmap->pm_lock);
   2534       1.92   tsutsui }
   2535       1.92   tsutsui 
   2536        1.1       gwr /* pmap_create			INTERFACE
   2537        1.1       gwr  **
   2538        1.1       gwr  * Create and return a pmap structure.
   2539        1.1       gwr  */
   2540       1.86       chs pmap_t
   2541       1.86       chs pmap_create(void)
   2542        1.1       gwr {
   2543        1.1       gwr 	pmap_t	pmap;
   2544        1.1       gwr 
   2545       1.56   tsutsui 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2546        1.1       gwr 	pmap_pinit(pmap);
   2547        1.1       gwr 	return pmap;
   2548        1.1       gwr }
   2549        1.1       gwr 
   2550       1.92   tsutsui /* pmap_release				INTERNAL
   2551        1.1       gwr  **
   2552        1.1       gwr  * Release any resources held by the given pmap.
   2553        1.1       gwr  *
   2554        1.1       gwr  * This is the reverse analog to pmap_pinit.  It does not
   2555        1.1       gwr  * necessarily mean for the pmap structure to be deallocated,
   2556        1.1       gwr  * as in pmap_destroy.
   2557        1.1       gwr  */
   2558       1.92   tsutsui static INLINE void
   2559       1.86       chs pmap_release(pmap_t pmap)
   2560        1.1       gwr {
   2561       1.92   tsutsui 
   2562        1.7       gwr 	/*
   2563        1.7       gwr 	 * As long as the pmap contains no mappings,
   2564        1.1       gwr 	 * which always should be the case whenever
   2565        1.1       gwr 	 * this function is called, there really should
   2566        1.1       gwr 	 * be nothing to do.
   2567        1.1       gwr 	 */
   2568        1.1       gwr #ifdef	PMAP_DEBUG
   2569        1.1       gwr 	if (pmap == pmap_kernel())
   2570        1.9       gwr 		panic("pmap_release: kernel pmap");
   2571        1.1       gwr #endif
   2572        1.9       gwr 	/*
   2573        1.9       gwr 	 * XXX - If this pmap has an A table, give it back.
   2574        1.9       gwr 	 * The pmap SHOULD be empty by now, and pmap_remove
   2575        1.9       gwr 	 * should have already given back the A table...
   2576        1.9       gwr 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2577        1.9       gwr 	 * at this point, which means some mapping was not
   2578        1.9       gwr 	 * removed when it should have been. -gwr
   2579        1.9       gwr 	 */
   2580        1.7       gwr 	if (pmap->pm_a_tmgr != NULL) {
   2581        1.9       gwr 		/* First make sure we are not using it! */
   2582        1.9       gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2583        1.9       gwr 			kernel_crp.rp_addr = kernAphys;
   2584        1.9       gwr 			loadcrp(&kernel_crp);
   2585        1.9       gwr 		}
   2586       1.13       gwr #ifdef	PMAP_DEBUG /* XXX - todo! */
   2587       1.13       gwr 		/* XXX - Now complain... */
   2588       1.13       gwr 		printf("pmap_release: still have table\n");
   2589       1.13       gwr 		Debugger();
   2590       1.13       gwr #endif
   2591       1.95   thorpej 		free_a_table(pmap->pm_a_tmgr, true);
   2592        1.7       gwr 		pmap->pm_a_tmgr = NULL;
   2593        1.7       gwr 		pmap->pm_a_phys = kernAphys;
   2594        1.7       gwr 	}
   2595        1.1       gwr }
   2596        1.1       gwr 
   2597        1.1       gwr /* pmap_reference			INTERFACE
   2598        1.1       gwr  **
   2599        1.1       gwr  * Increment the reference count of a pmap.
   2600        1.1       gwr  */
   2601       1.86       chs void
   2602       1.86       chs pmap_reference(pmap_t pmap)
   2603        1.1       gwr {
   2604       1.55   tsutsui 	pmap_lock(pmap);
   2605       1.55   tsutsui 	pmap_add_ref(pmap);
   2606       1.55   tsutsui 	pmap_unlock(pmap);
   2607        1.1       gwr }
   2608        1.1       gwr 
   2609        1.1       gwr /* pmap_dereference			INTERNAL
   2610        1.1       gwr  **
   2611        1.1       gwr  * Decrease the reference count on the given pmap
   2612        1.1       gwr  * by one and return the current count.
   2613        1.1       gwr  */
   2614       1.92   tsutsui static INLINE int
   2615       1.86       chs pmap_dereference(pmap_t pmap)
   2616        1.1       gwr {
   2617        1.1       gwr 	int rtn;
   2618        1.1       gwr 
   2619       1.55   tsutsui 	pmap_lock(pmap);
   2620       1.55   tsutsui 	rtn = pmap_del_ref(pmap);
   2621       1.55   tsutsui 	pmap_unlock(pmap);
   2622        1.1       gwr 
   2623        1.1       gwr 	return rtn;
   2624        1.1       gwr }
   2625        1.1       gwr 
   2626        1.1       gwr /* pmap_destroy			INTERFACE
   2627        1.1       gwr  **
   2628        1.1       gwr  * Decrement a pmap's reference count and delete
   2629        1.1       gwr  * the pmap if it becomes zero.  Will be called
   2630        1.1       gwr  * only after all mappings have been removed.
   2631        1.1       gwr  */
   2632       1.86       chs void
   2633       1.86       chs pmap_destroy(pmap_t pmap)
   2634        1.1       gwr {
   2635       1.92   tsutsui 
   2636        1.1       gwr 	if (pmap_dereference(pmap) == 0) {
   2637        1.1       gwr 		pmap_release(pmap);
   2638       1.56   tsutsui 		pool_put(&pmap_pmap_pool, pmap);
   2639        1.1       gwr 	}
   2640        1.1       gwr }
   2641        1.1       gwr 
   2642        1.1       gwr /* pmap_is_referenced			INTERFACE
   2643        1.1       gwr  **
   2644        1.1       gwr  * Determine if the given physical page has been
   2645        1.1       gwr  * referenced (read from [or written to.])
   2646        1.1       gwr  */
   2647       1.94   thorpej bool
   2648       1.86       chs pmap_is_referenced(struct vm_page *pg)
   2649        1.1       gwr {
   2650       1.49       chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2651        1.1       gwr 	pv_t      *pv;
   2652       1.69       chs 	int       idx;
   2653        1.1       gwr 
   2654        1.7       gwr 	/*
   2655        1.7       gwr 	 * Check the flags on the pv head.  If they are set,
   2656        1.1       gwr 	 * return immediately.  Otherwise a search must be done.
   2657        1.7       gwr 	 */
   2658       1.69       chs 
   2659       1.69       chs 	pv = pa2pv(pa);
   2660        1.1       gwr 	if (pv->pv_flags & PV_FLAGS_USED)
   2661       1.95   thorpej 		return true;
   2662       1.32       gwr 
   2663       1.32       gwr 	/*
   2664       1.32       gwr 	 * Search through all pv elements pointing
   2665       1.32       gwr 	 * to this page and query their reference bits
   2666       1.32       gwr 	 */
   2667       1.32       gwr 
   2668       1.69       chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2669       1.32       gwr 		if (MMU_PTE_USED(kernCbase[idx])) {
   2670       1.95   thorpej 			return true;
   2671       1.32       gwr 		}
   2672        1.7       gwr 	}
   2673       1.95   thorpej 	return false;
   2674        1.1       gwr }
   2675        1.1       gwr 
   2676        1.1       gwr /* pmap_is_modified			INTERFACE
   2677        1.1       gwr  **
   2678        1.1       gwr  * Determine if the given physical page has been
   2679        1.1       gwr  * modified (written to.)
   2680        1.1       gwr  */
   2681       1.94   thorpej bool
   2682       1.86       chs pmap_is_modified(struct vm_page *pg)
   2683        1.1       gwr {
   2684       1.49       chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2685        1.1       gwr 	pv_t      *pv;
   2686       1.69       chs 	int       idx;
   2687        1.1       gwr 
   2688        1.1       gwr 	/* see comments in pmap_is_referenced() */
   2689        1.1       gwr 	pv = pa2pv(pa);
   2690       1.32       gwr 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2691       1.95   thorpej 		return true;
   2692       1.32       gwr 
   2693       1.32       gwr 	for (idx = pv->pv_idx;
   2694       1.32       gwr 		 idx != PVE_EOL;
   2695       1.32       gwr 		 idx = pvebase[idx].pve_next) {
   2696       1.32       gwr 
   2697       1.32       gwr 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2698       1.95   thorpej 			return true;
   2699       1.32       gwr 		}
   2700        1.7       gwr 	}
   2701        1.7       gwr 
   2702       1.95   thorpej 	return false;
   2703        1.1       gwr }
   2704        1.1       gwr 
   2705        1.1       gwr /* pmap_page_protect			INTERFACE
   2706        1.1       gwr  **
   2707        1.1       gwr  * Applies the given protection to all mappings to the given
   2708        1.1       gwr  * physical page.
   2709        1.1       gwr  */
   2710       1.86       chs void
   2711       1.86       chs pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2712        1.1       gwr {
   2713       1.49       chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2714        1.1       gwr 	pv_t      *pv;
   2715       1.69       chs 	int       idx;
   2716       1.69       chs 	vaddr_t va;
   2717        1.1       gwr 	struct mmu_short_pte_struct *pte;
   2718        1.8       gwr 	c_tmgr_t  *c_tbl;
   2719        1.8       gwr 	pmap_t    pmap, curpmap;
   2720        1.1       gwr 
   2721        1.8       gwr 	curpmap = current_pmap();
   2722        1.1       gwr 	pv = pa2pv(pa);
   2723       1.32       gwr 
   2724       1.69       chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2725        1.7       gwr 		pte = &kernCbase[idx];
   2726        1.1       gwr 		switch (prot) {
   2727        1.1       gwr 			case VM_PROT_ALL:
   2728        1.1       gwr 				/* do nothing */
   2729        1.1       gwr 				break;
   2730        1.7       gwr 			case VM_PROT_EXECUTE:
   2731        1.1       gwr 			case VM_PROT_READ:
   2732        1.1       gwr 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2733        1.8       gwr 				/*
   2734        1.8       gwr 				 * Determine the virtual address mapped by
   2735        1.8       gwr 				 * the PTE and flush ATC entries if necessary.
   2736        1.8       gwr 				 */
   2737        1.8       gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2738       1.69       chs 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2739        1.8       gwr 				if (pmap == curpmap || pmap == pmap_kernel())
   2740        1.8       gwr 					TBIS(va);
   2741        1.1       gwr 				break;
   2742        1.1       gwr 			case VM_PROT_NONE:
   2743        1.7       gwr 				/* Save the mod/ref bits. */
   2744        1.7       gwr 				pv->pv_flags |= pte->attr.raw;
   2745        1.7       gwr 				/* Invalidate the PTE. */
   2746        1.7       gwr 				pte->attr.raw = MMU_DT_INVALID;
   2747        1.8       gwr 
   2748        1.8       gwr 				/*
   2749        1.8       gwr 				 * Update table counts.  And flush ATC entries
   2750        1.8       gwr 				 * if necessary.
   2751        1.8       gwr 				 */
   2752        1.8       gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2753        1.8       gwr 
   2754        1.8       gwr 				/*
   2755        1.8       gwr 				 * If the PTE belongs to the kernel map,
   2756        1.8       gwr 				 * be sure to flush the page it maps.
   2757        1.8       gwr 				 */
   2758        1.8       gwr 				if (pmap == pmap_kernel()) {
   2759        1.8       gwr 					TBIS(va);
   2760        1.8       gwr 				} else {
   2761        1.8       gwr 					/*
   2762        1.8       gwr 					 * The PTE belongs to a user map.
   2763        1.8       gwr 					 * update the entry count in the C
   2764        1.8       gwr 					 * table to which it belongs and flush
   2765        1.8       gwr 					 * the ATC if the mapping belongs to
   2766        1.8       gwr 					 * the current pmap.
   2767        1.8       gwr 					 */
   2768        1.8       gwr 					c_tbl->ct_ecnt--;
   2769        1.8       gwr 					if (pmap == curpmap)
   2770        1.8       gwr 						TBIS(va);
   2771        1.8       gwr 				}
   2772        1.1       gwr 				break;
   2773        1.1       gwr 			default:
   2774        1.1       gwr 				break;
   2775        1.1       gwr 		}
   2776        1.1       gwr 	}
   2777        1.8       gwr 
   2778        1.8       gwr 	/*
   2779        1.8       gwr 	 * If the protection code indicates that all mappings to the page
   2780        1.8       gwr 	 * be removed, truncate the PV list to zero entries.
   2781        1.8       gwr 	 */
   2782        1.7       gwr 	if (prot == VM_PROT_NONE)
   2783        1.7       gwr 		pv->pv_idx = PVE_EOL;
   2784        1.1       gwr }
   2785        1.1       gwr 
   2786        1.7       gwr /* pmap_get_pteinfo		INTERNAL
   2787        1.1       gwr  **
   2788        1.7       gwr  * Called internally to find the pmap and virtual address within that
   2789        1.8       gwr  * map to which the pte at the given index maps.  Also includes the PTE's C
   2790        1.8       gwr  * table manager.
   2791        1.1       gwr  *
   2792        1.7       gwr  * Returns the pmap in the argument provided, and the virtual address
   2793        1.7       gwr  * by return value.
   2794        1.1       gwr  */
   2795       1.86       chs vaddr_t
   2796       1.86       chs pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
   2797        1.1       gwr {
   2798       1.69       chs 	vaddr_t     va = 0;
   2799        1.1       gwr 
   2800        1.7       gwr 	/*
   2801        1.7       gwr 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2802        1.1       gwr 	 */
   2803        1.8       gwr 	if (idx >= NUM_KERN_PTES) {
   2804        1.7       gwr 		/*
   2805        1.7       gwr 		 * The PTE belongs to a user mapping.
   2806        1.7       gwr 		 */
   2807        1.8       gwr 		/* XXX: Would like an inline for this to validate idx... */
   2808       1.26    jeremy 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2809       1.26    jeremy 
   2810       1.26    jeremy 		*pmap = (*tbl)->ct_pmap;
   2811       1.26    jeremy 		/*
   2812       1.26    jeremy 		 * To find the va to which the PTE maps, we first take
   2813       1.26    jeremy 		 * the table's base virtual address mapping which is stored
   2814       1.26    jeremy 		 * in ct_va.  We then increment this address by a page for
   2815       1.26    jeremy 		 * every slot skipped until we reach the PTE.
   2816       1.26    jeremy 		 */
   2817       1.92   tsutsui 		va = (*tbl)->ct_va;
   2818       1.26    jeremy 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2819        1.7       gwr 	} else {
   2820        1.7       gwr 		/*
   2821        1.7       gwr 		 * The PTE belongs to the kernel map.
   2822        1.7       gwr 		 */
   2823        1.8       gwr 		*pmap = pmap_kernel();
   2824        1.8       gwr 
   2825       1.25     veego 		va = m68k_ptob(idx);
   2826  1.110.2.1  uebayasi 		va += KERNBASE3X;
   2827        1.7       gwr 	}
   2828        1.7       gwr 
   2829        1.1       gwr 	return va;
   2830        1.1       gwr }
   2831        1.1       gwr 
   2832        1.1       gwr /* pmap_clear_modify			INTERFACE
   2833        1.1       gwr  **
   2834        1.1       gwr  * Clear the modification bit on the page at the specified
   2835        1.1       gwr  * physical address.
   2836        1.1       gwr  *
   2837        1.1       gwr  */
   2838       1.94   thorpej bool
   2839       1.86       chs pmap_clear_modify(struct vm_page *pg)
   2840        1.1       gwr {
   2841       1.49       chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2842       1.94   thorpej 	bool rv;
   2843       1.49       chs 
   2844       1.49       chs 	rv = pmap_is_modified(pg);
   2845        1.1       gwr 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2846       1.49       chs 	return rv;
   2847        1.1       gwr }
   2848        1.1       gwr 
   2849        1.1       gwr /* pmap_clear_reference			INTERFACE
   2850        1.1       gwr  **
   2851        1.1       gwr  * Clear the referenced bit on the page at the specified
   2852        1.1       gwr  * physical address.
   2853        1.1       gwr  */
   2854       1.94   thorpej bool
   2855       1.86       chs pmap_clear_reference(struct vm_page *pg)
   2856        1.1       gwr {
   2857       1.49       chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2858       1.94   thorpej 	bool rv;
   2859       1.49       chs 
   2860       1.49       chs 	rv = pmap_is_referenced(pg);
   2861        1.1       gwr 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2862       1.49       chs 	return rv;
   2863        1.1       gwr }
   2864        1.1       gwr 
   2865        1.1       gwr /* pmap_clear_pv			INTERNAL
   2866        1.1       gwr  **
   2867        1.1       gwr  * Clears the specified flag from the specified physical address.
   2868        1.1       gwr  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2869        1.1       gwr  *
   2870        1.1       gwr  * Flag is one of:
   2871        1.1       gwr  *   PV_FLAGS_MDFY - Page modified bit.
   2872        1.1       gwr  *   PV_FLAGS_USED - Page used (referenced) bit.
   2873        1.1       gwr  *
   2874        1.1       gwr  * This routine must not only clear the flag on the pv list
   2875        1.1       gwr  * head.  It must also clear the bit on every pte in the pv
   2876        1.1       gwr  * list associated with the address.
   2877        1.1       gwr  */
   2878       1.86       chs void
   2879       1.86       chs pmap_clear_pv(paddr_t pa, int flag)
   2880        1.1       gwr {
   2881        1.1       gwr 	pv_t      *pv;
   2882       1.69       chs 	int       idx;
   2883       1.69       chs 	vaddr_t   va;
   2884        1.7       gwr 	pmap_t          pmap;
   2885        1.1       gwr 	mmu_short_pte_t *pte;
   2886        1.7       gwr 	c_tmgr_t        *c_tbl;
   2887        1.1       gwr 
   2888        1.1       gwr 	pv = pa2pv(pa);
   2889        1.1       gwr 	pv->pv_flags &= ~(flag);
   2890       1.69       chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2891        1.7       gwr 		pte = &kernCbase[idx];
   2892        1.1       gwr 		pte->attr.raw &= ~(flag);
   2893       1.69       chs 
   2894        1.7       gwr 		/*
   2895        1.7       gwr 		 * The MC68030 MMU will not set the modified or
   2896        1.7       gwr 		 * referenced bits on any MMU tables for which it has
   2897        1.7       gwr 		 * a cached descriptor with its modify bit set.  To insure
   2898        1.7       gwr 		 * that it will modify these bits on the PTE during the next
   2899        1.7       gwr 		 * time it is written to or read from, we must flush it from
   2900        1.7       gwr 		 * the ATC.
   2901        1.7       gwr 		 *
   2902        1.7       gwr 		 * Ordinarily it is only necessary to flush the descriptor
   2903        1.7       gwr 		 * if it is used in the current address space.  But since I
   2904        1.7       gwr 		 * am not sure that there will always be a notion of
   2905        1.7       gwr 		 * 'the current address space' when this function is called,
   2906        1.7       gwr 		 * I will skip the test and always flush the address.  It
   2907        1.7       gwr 		 * does no harm.
   2908        1.7       gwr 		 */
   2909       1.69       chs 
   2910        1.8       gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2911        1.7       gwr 		TBIS(va);
   2912        1.1       gwr 	}
   2913        1.1       gwr }
   2914        1.1       gwr 
   2915       1.92   tsutsui /* pmap_extract_kernel		INTERNAL
   2916       1.92   tsutsui  **
   2917       1.92   tsutsui  * Extract a translation from the kernel address space.
   2918       1.92   tsutsui  */
   2919       1.94   thorpej static INLINE bool
   2920       1.92   tsutsui pmap_extract_kernel(vaddr_t va, paddr_t *pap)
   2921       1.92   tsutsui {
   2922       1.92   tsutsui 	mmu_short_pte_t *pte;
   2923       1.92   tsutsui 
   2924  1.110.2.1  uebayasi 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE3X)];
   2925       1.92   tsutsui 	if (!MMU_VALID_DT(*pte))
   2926       1.95   thorpej 		return false;
   2927       1.92   tsutsui 	if (pap != NULL)
   2928       1.92   tsutsui 		*pap = MMU_PTE_PA(*pte);
   2929       1.95   thorpej 	return true;
   2930       1.92   tsutsui }
   2931       1.92   tsutsui 
   2932        1.1       gwr /* pmap_extract			INTERFACE
   2933        1.1       gwr  **
   2934        1.1       gwr  * Return the physical address mapped by the virtual address
   2935       1.48   thorpej  * in the specified pmap.
   2936        1.1       gwr  *
   2937        1.1       gwr  * Note: this function should also apply an exclusive lock
   2938        1.1       gwr  * on the pmap system during its duration.
   2939        1.1       gwr  */
   2940       1.94   thorpej bool
   2941       1.86       chs pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   2942        1.1       gwr {
   2943        1.1       gwr 	int a_idx, b_idx, pte_idx;
   2944        1.1       gwr 	a_tmgr_t	*a_tbl;
   2945        1.1       gwr 	b_tmgr_t	*b_tbl;
   2946        1.1       gwr 	c_tmgr_t	*c_tbl;
   2947        1.1       gwr 	mmu_short_pte_t	*c_pte;
   2948        1.1       gwr 
   2949        1.1       gwr 	if (pmap == pmap_kernel())
   2950       1.48   thorpej 		return pmap_extract_kernel(va, pap);
   2951        1.1       gwr 
   2952        1.1       gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2953       1.95   thorpej 		&c_pte, &a_idx, &b_idx, &pte_idx) == false)
   2954       1.95   thorpej 		return false;
   2955        1.1       gwr 
   2956        1.7       gwr 	if (!MMU_VALID_DT(*c_pte))
   2957       1.95   thorpej 		return false;
   2958        1.7       gwr 
   2959       1.48   thorpej 	if (pap != NULL)
   2960       1.48   thorpej 		*pap = MMU_PTE_PA(*c_pte);
   2961       1.95   thorpej 	return true;
   2962        1.1       gwr }
   2963        1.1       gwr 
   2964        1.1       gwr /* pmap_remove_kernel		INTERNAL
   2965        1.1       gwr  **
   2966        1.1       gwr  * Remove the mapping of a range of virtual addresses from the kernel map.
   2967        1.9       gwr  * The arguments are already page-aligned.
   2968        1.1       gwr  */
   2969       1.92   tsutsui static INLINE void
   2970       1.86       chs pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
   2971        1.1       gwr {
   2972        1.9       gwr 	int idx, eidx;
   2973        1.9       gwr 
   2974        1.9       gwr #ifdef	PMAP_DEBUG
   2975        1.9       gwr 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2976        1.9       gwr 		panic("pmap_remove_kernel: alignment");
   2977        1.9       gwr #endif
   2978        1.1       gwr 
   2979  1.110.2.1  uebayasi 	idx  = m68k_btop(sva - KERNBASE3X);
   2980  1.110.2.1  uebayasi 	eidx = m68k_btop(eva - KERNBASE3X);
   2981        1.9       gwr 
   2982       1.24    jeremy 	while (idx < eidx) {
   2983        1.9       gwr 		pmap_remove_pte(&kernCbase[idx++]);
   2984       1.24    jeremy 		TBIS(sva);
   2985       1.79   thorpej 		sva += PAGE_SIZE;
   2986       1.24    jeremy 	}
   2987        1.1       gwr }
   2988        1.1       gwr 
   2989        1.1       gwr /* pmap_remove			INTERFACE
   2990        1.1       gwr  **
   2991        1.1       gwr  * Remove the mapping of a range of virtual addresses from the given pmap.
   2992        1.7       gwr  *
   2993        1.1       gwr  */
   2994       1.86       chs void
   2995       1.88   tsutsui pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
   2996        1.1       gwr {
   2997        1.7       gwr 
   2998        1.1       gwr 	if (pmap == pmap_kernel()) {
   2999       1.88   tsutsui 		pmap_remove_kernel(sva, eva);
   3000        1.1       gwr 		return;
   3001        1.1       gwr 	}
   3002        1.1       gwr 
   3003        1.7       gwr 	/*
   3004        1.7       gwr 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3005        1.7       gwr 	 * that can be removed.
   3006        1.1       gwr 	 */
   3007        1.7       gwr 	if (pmap->pm_a_tmgr == NULL)
   3008        1.7       gwr 		return;
   3009        1.7       gwr 
   3010        1.7       gwr 	/*
   3011        1.7       gwr 	 * Remove the specified range from the pmap.  If the function
   3012        1.7       gwr 	 * returns true, the operation removed all the valid mappings
   3013        1.7       gwr 	 * in the pmap and freed its A table.  If this happened to the
   3014        1.7       gwr 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3015        1.7       gwr 	 * with the default 'kernel' map.
   3016        1.7       gwr 	 */
   3017       1.88   tsutsui 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
   3018        1.9       gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3019        1.9       gwr 			kernel_crp.rp_addr = kernAphys;
   3020        1.9       gwr 			loadcrp(&kernel_crp);
   3021        1.9       gwr 			/* will do TLB flush below */
   3022        1.9       gwr 		}
   3023        1.7       gwr 		pmap->pm_a_tmgr = NULL;
   3024        1.7       gwr 		pmap->pm_a_phys = kernAphys;
   3025        1.1       gwr 	}
   3026        1.9       gwr 
   3027        1.9       gwr 	/*
   3028        1.9       gwr 	 * If we just modified the current address space,
   3029        1.9       gwr 	 * make sure to flush the MMU cache.
   3030        1.9       gwr 	 *
   3031        1.9       gwr 	 * XXX - this could be an unecessarily large flush.
   3032        1.9       gwr 	 * XXX - Could decide, based on the size of the VA range
   3033        1.9       gwr 	 * to be removed, whether to flush "by pages" or "all".
   3034        1.9       gwr 	 */
   3035        1.9       gwr 	if (pmap == current_pmap())
   3036        1.9       gwr 		TBIAU();
   3037        1.1       gwr }
   3038        1.1       gwr 
   3039        1.1       gwr /* pmap_remove_a			INTERNAL
   3040        1.1       gwr  **
   3041        1.1       gwr  * This is function number one in a set of three that removes a range
   3042        1.1       gwr  * of memory in the most efficient manner by removing the highest possible
   3043        1.1       gwr  * tables from the memory space.  This particular function attempts to remove
   3044        1.1       gwr  * as many B tables as it can, delegating the remaining fragmented ranges to
   3045        1.1       gwr  * pmap_remove_b().
   3046        1.1       gwr  *
   3047        1.7       gwr  * If the removal operation results in an empty A table, the function returns
   3048       1.95   thorpej  * true.
   3049        1.7       gwr  *
   3050        1.1       gwr  * It's ugly but will do for now.
   3051        1.1       gwr  */
   3052       1.94   thorpej bool
   3053       1.88   tsutsui pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
   3054        1.1       gwr {
   3055       1.94   thorpej 	bool empty;
   3056        1.1       gwr 	int idx;
   3057       1.69       chs 	vaddr_t nstart, nend;
   3058        1.1       gwr 	b_tmgr_t *b_tbl;
   3059        1.1       gwr 	mmu_long_dte_t  *a_dte;
   3060        1.1       gwr 	mmu_short_dte_t *b_dte;
   3061       1.91   tsutsui 	uint8_t at_wired, bt_wired;
   3062        1.8       gwr 
   3063        1.7       gwr 	/*
   3064        1.7       gwr 	 * The following code works with what I call a 'granularity
   3065        1.7       gwr 	 * reduction algorithim'.  A range of addresses will always have
   3066        1.7       gwr 	 * the following properties, which are classified according to
   3067        1.7       gwr 	 * how the range relates to the size of the current granularity
   3068        1.7       gwr 	 * - an A table entry:
   3069        1.7       gwr 	 *
   3070        1.7       gwr 	 *            1 2       3 4
   3071        1.7       gwr 	 * -+---+---+---+---+---+---+---+-
   3072        1.7       gwr 	 * -+---+---+---+---+---+---+---+-
   3073        1.7       gwr 	 *
   3074        1.7       gwr 	 * A range will always start on a granularity boundary, illustrated
   3075        1.7       gwr 	 * by '+' signs in the table above, or it will start at some point
   3076        1.7       gwr 	 * inbetween a granularity boundary, as illustrated by point 1.
   3077        1.7       gwr 	 * The first step in removing a range of addresses is to remove the
   3078        1.7       gwr 	 * range between 1 and 2, the nearest granularity boundary.  This
   3079        1.7       gwr 	 * job is handled by the section of code governed by the
   3080        1.7       gwr 	 * 'if (start < nstart)' statement.
   3081        1.7       gwr 	 *
   3082        1.7       gwr 	 * A range will always encompass zero or more intergral granules,
   3083        1.7       gwr 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3084        1.7       gwr 	 * remove.  The removal of these granules is the second step, and
   3085        1.7       gwr 	 * is handled by the code block 'if (nstart < nend)'.
   3086        1.7       gwr 	 *
   3087        1.7       gwr 	 * Lastly, a range will always end on a granularity boundary,
   3088        1.7       gwr 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3089        1.7       gwr 	 * 4.  The last step involves removing this range and is handled by
   3090        1.7       gwr 	 * the code block 'if (nend < end)'.
   3091        1.7       gwr 	 */
   3092       1.88   tsutsui 	nstart = MMU_ROUND_UP_A(sva);
   3093       1.88   tsutsui 	nend = MMU_ROUND_A(eva);
   3094        1.1       gwr 
   3095       1.91   tsutsui 	at_wired = a_tbl->at_wcnt;
   3096       1.91   tsutsui 
   3097       1.88   tsutsui 	if (sva < nstart) {
   3098        1.7       gwr 		/*
   3099        1.7       gwr 		 * This block is executed if the range starts between
   3100        1.7       gwr 		 * a granularity boundary.
   3101        1.7       gwr 		 *
   3102        1.7       gwr 		 * First find the DTE which is responsible for mapping
   3103        1.7       gwr 		 * the start of the range.
   3104        1.7       gwr 		 */
   3105       1.88   tsutsui 		idx = MMU_TIA(sva);
   3106        1.1       gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3107        1.7       gwr 
   3108        1.7       gwr 		/*
   3109        1.7       gwr 		 * If the DTE is valid then delegate the removal of the sub
   3110        1.7       gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3111        1.7       gwr 		 * a finer granularity.
   3112        1.7       gwr 		 */
   3113        1.1       gwr 		if (MMU_VALID_DT(*a_dte)) {
   3114        1.7       gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3115        1.1       gwr 			b_tbl = mmuB2tmgr(b_dte);
   3116       1.91   tsutsui 			bt_wired = b_tbl->bt_wcnt;
   3117        1.7       gwr 
   3118        1.7       gwr 			/*
   3119        1.7       gwr 			 * The sub range to be removed starts at the start
   3120        1.7       gwr 			 * of the full range we were asked to remove, and ends
   3121        1.7       gwr 			 * at the greater of:
   3122        1.7       gwr 			 * 1. The end of the full range, -or-
   3123        1.7       gwr 			 * 2. The end of the full range, rounded down to the
   3124        1.7       gwr 			 *    nearest granularity boundary.
   3125        1.7       gwr 			 */
   3126       1.88   tsutsui 			if (eva < nstart)
   3127       1.88   tsutsui 				empty = pmap_remove_b(b_tbl, sva, eva);
   3128        1.7       gwr 			else
   3129       1.88   tsutsui 				empty = pmap_remove_b(b_tbl, sva, nstart);
   3130        1.7       gwr 
   3131        1.7       gwr 			/*
   3132       1.91   tsutsui 			 * If the child table no longer has wired entries,
   3133       1.91   tsutsui 			 * decrement wired entry count.
   3134       1.91   tsutsui 			 */
   3135       1.91   tsutsui 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3136       1.91   tsutsui 				a_tbl->at_wcnt--;
   3137       1.91   tsutsui 
   3138       1.91   tsutsui 			/*
   3139        1.7       gwr 			 * If the removal resulted in an empty B table,
   3140        1.7       gwr 			 * invalidate the DTE that points to it and decrement
   3141        1.7       gwr 			 * the valid entry count of the A table.
   3142        1.7       gwr 			 */
   3143        1.7       gwr 			if (empty) {
   3144        1.7       gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3145        1.7       gwr 				a_tbl->at_ecnt--;
   3146        1.1       gwr 			}
   3147        1.1       gwr 		}
   3148        1.7       gwr 		/*
   3149        1.7       gwr 		 * If the DTE is invalid, the address range is already non-
   3150       1.68       wiz 		 * existent and can simply be skipped.
   3151        1.7       gwr 		 */
   3152        1.1       gwr 	}
   3153        1.1       gwr 	if (nstart < nend) {
   3154        1.7       gwr 		/*
   3155        1.8       gwr 		 * This block is executed if the range spans a whole number
   3156        1.7       gwr 		 * multiple of granules (A table entries.)
   3157        1.7       gwr 		 *
   3158        1.7       gwr 		 * First find the DTE which is responsible for mapping
   3159        1.7       gwr 		 * the start of the first granule involved.
   3160        1.7       gwr 		 */
   3161        1.1       gwr 		idx = MMU_TIA(nstart);
   3162        1.1       gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3163        1.7       gwr 
   3164        1.7       gwr 		/*
   3165        1.7       gwr 		 * Remove entire sub-granules (B tables) one at a time,
   3166        1.7       gwr 		 * until reaching the end of the range.
   3167        1.7       gwr 		 */
   3168        1.7       gwr 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3169        1.1       gwr 			if (MMU_VALID_DT(*a_dte)) {
   3170        1.7       gwr 				/*
   3171        1.7       gwr 				 * Find the B table manager for the
   3172        1.7       gwr 				 * entry and free it.
   3173        1.7       gwr 				 */
   3174        1.7       gwr 				b_dte = mmu_ptov(a_dte->addr.raw);
   3175        1.1       gwr 				b_tbl = mmuB2tmgr(b_dte);
   3176       1.91   tsutsui 				bt_wired = b_tbl->bt_wcnt;
   3177       1.91   tsutsui 
   3178       1.95   thorpej 				free_b_table(b_tbl, true);
   3179        1.7       gwr 
   3180        1.7       gwr 				/*
   3181       1.91   tsutsui 				 * All child entries has been removed.
   3182       1.91   tsutsui 				 * If there were any wired entries in it,
   3183       1.91   tsutsui 				 * decrement wired entry count.
   3184       1.91   tsutsui 				 */
   3185       1.91   tsutsui 				if (bt_wired)
   3186       1.91   tsutsui 					a_tbl->at_wcnt--;
   3187       1.91   tsutsui 
   3188       1.91   tsutsui 				/*
   3189        1.7       gwr 				 * Invalidate the DTE that points to the
   3190        1.7       gwr 				 * B table and decrement the valid entry
   3191        1.7       gwr 				 * count of the A table.
   3192        1.7       gwr 				 */
   3193        1.1       gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3194        1.1       gwr 				a_tbl->at_ecnt--;
   3195        1.1       gwr 			}
   3196        1.1       gwr 	}
   3197       1.88   tsutsui 	if (nend < eva) {
   3198        1.7       gwr 		/*
   3199        1.7       gwr 		 * This block is executed if the range ends beyond a
   3200        1.7       gwr 		 * granularity boundary.
   3201        1.7       gwr 		 *
   3202        1.7       gwr 		 * First find the DTE which is responsible for mapping
   3203        1.7       gwr 		 * the start of the nearest (rounded down) granularity
   3204        1.7       gwr 		 * boundary.
   3205        1.7       gwr 		 */
   3206        1.1       gwr 		idx = MMU_TIA(nend);
   3207        1.1       gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3208        1.7       gwr 
   3209        1.7       gwr 		/*
   3210        1.7       gwr 		 * If the DTE is valid then delegate the removal of the sub
   3211        1.7       gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3212        1.7       gwr 		 * a finer granularity.
   3213        1.7       gwr 		 */
   3214        1.1       gwr 		if (MMU_VALID_DT(*a_dte)) {
   3215        1.7       gwr 			/*
   3216        1.7       gwr 			 * Find the B table manager for the entry
   3217        1.7       gwr 			 * and hand it to pmap_remove_b() along with
   3218        1.7       gwr 			 * the sub range.
   3219        1.7       gwr 			 */
   3220        1.7       gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3221        1.1       gwr 			b_tbl = mmuB2tmgr(b_dte);
   3222       1.91   tsutsui 			bt_wired = b_tbl->bt_wcnt;
   3223        1.7       gwr 
   3224       1.88   tsutsui 			empty = pmap_remove_b(b_tbl, nend, eva);
   3225        1.7       gwr 
   3226        1.7       gwr 			/*
   3227       1.91   tsutsui 			 * If the child table no longer has wired entries,
   3228       1.91   tsutsui 			 * decrement wired entry count.
   3229       1.91   tsutsui 			 */
   3230       1.91   tsutsui 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3231       1.91   tsutsui 				a_tbl->at_wcnt--;
   3232       1.91   tsutsui 			/*
   3233        1.7       gwr 			 * If the removal resulted in an empty B table,
   3234        1.7       gwr 			 * invalidate the DTE that points to it and decrement
   3235        1.7       gwr 			 * the valid entry count of the A table.
   3236        1.7       gwr 			 */
   3237        1.7       gwr 			if (empty) {
   3238        1.7       gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3239        1.7       gwr 				a_tbl->at_ecnt--;
   3240        1.7       gwr 			}
   3241        1.1       gwr 		}
   3242        1.1       gwr 	}
   3243        1.7       gwr 
   3244        1.7       gwr 	/*
   3245        1.7       gwr 	 * If there are no more entries in the A table, release it
   3246       1.95   thorpej 	 * back to the available pool and return true.
   3247        1.7       gwr 	 */
   3248        1.7       gwr 	if (a_tbl->at_ecnt == 0) {
   3249       1.91   tsutsui 		KASSERT(a_tbl->at_wcnt == 0);
   3250        1.7       gwr 		a_tbl->at_parent = NULL;
   3251       1.91   tsutsui 		if (!at_wired)
   3252       1.91   tsutsui 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3253        1.7       gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3254       1.95   thorpej 		empty = true;
   3255        1.7       gwr 	} else {
   3256       1.91   tsutsui 		/*
   3257       1.91   tsutsui 		 * If the table doesn't have wired entries any longer
   3258       1.91   tsutsui 		 * but still has unwired entries, put it back into
   3259       1.91   tsutsui 		 * the available queue.
   3260       1.91   tsutsui 		 */
   3261       1.91   tsutsui 		if (at_wired && a_tbl->at_wcnt == 0)
   3262       1.91   tsutsui 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   3263       1.95   thorpej 		empty = false;
   3264        1.7       gwr 	}
   3265        1.7       gwr 
   3266        1.7       gwr 	return empty;
   3267        1.1       gwr }
   3268        1.1       gwr 
   3269        1.1       gwr /* pmap_remove_b			INTERNAL
   3270        1.1       gwr  **
   3271        1.1       gwr  * Remove a range of addresses from an address space, trying to remove entire
   3272        1.1       gwr  * C tables if possible.
   3273        1.7       gwr  *
   3274       1.95   thorpej  * If the operation results in an empty B table, the function returns true.
   3275        1.1       gwr  */
   3276       1.94   thorpej bool
   3277       1.88   tsutsui pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
   3278        1.1       gwr {
   3279       1.94   thorpej 	bool empty;
   3280        1.1       gwr 	int idx;
   3281       1.69       chs 	vaddr_t nstart, nend, rstart;
   3282        1.1       gwr 	c_tmgr_t *c_tbl;
   3283        1.1       gwr 	mmu_short_dte_t  *b_dte;
   3284        1.1       gwr 	mmu_short_pte_t  *c_dte;
   3285       1.91   tsutsui 	uint8_t bt_wired, ct_wired;
   3286        1.1       gwr 
   3287       1.88   tsutsui 	nstart = MMU_ROUND_UP_B(sva);
   3288       1.88   tsutsui 	nend = MMU_ROUND_B(eva);
   3289        1.1       gwr 
   3290       1.91   tsutsui 	bt_wired = b_tbl->bt_wcnt;
   3291       1.91   tsutsui 
   3292       1.88   tsutsui 	if (sva < nstart) {
   3293       1.88   tsutsui 		idx = MMU_TIB(sva);
   3294        1.1       gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3295        1.1       gwr 		if (MMU_VALID_DT(*b_dte)) {
   3296        1.7       gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3297        1.1       gwr 			c_tbl = mmuC2tmgr(c_dte);
   3298       1.91   tsutsui 			ct_wired = c_tbl->ct_wcnt;
   3299       1.91   tsutsui 
   3300       1.88   tsutsui 			if (eva < nstart)
   3301       1.88   tsutsui 				empty = pmap_remove_c(c_tbl, sva, eva);
   3302        1.7       gwr 			else
   3303       1.88   tsutsui 				empty = pmap_remove_c(c_tbl, sva, nstart);
   3304       1.91   tsutsui 
   3305       1.91   tsutsui 			/*
   3306       1.91   tsutsui 			 * If the child table no longer has wired entries,
   3307       1.91   tsutsui 			 * decrement wired entry count.
   3308       1.91   tsutsui 			 */
   3309       1.91   tsutsui 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3310       1.91   tsutsui 				b_tbl->bt_wcnt--;
   3311       1.91   tsutsui 
   3312        1.7       gwr 			if (empty) {
   3313        1.7       gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3314        1.7       gwr 				b_tbl->bt_ecnt--;
   3315        1.1       gwr 			}
   3316        1.1       gwr 		}
   3317        1.1       gwr 	}
   3318        1.1       gwr 	if (nstart < nend) {
   3319        1.1       gwr 		idx = MMU_TIB(nstart);
   3320        1.1       gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3321        1.1       gwr 		rstart = nstart;
   3322        1.1       gwr 		while (rstart < nend) {
   3323        1.1       gwr 			if (MMU_VALID_DT(*b_dte)) {
   3324        1.7       gwr 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3325        1.1       gwr 				c_tbl = mmuC2tmgr(c_dte);
   3326       1.91   tsutsui 				ct_wired = c_tbl->ct_wcnt;
   3327       1.91   tsutsui 
   3328       1.95   thorpej 				free_c_table(c_tbl, true);
   3329       1.91   tsutsui 
   3330       1.91   tsutsui 				/*
   3331       1.91   tsutsui 				 * All child entries has been removed.
   3332       1.91   tsutsui 				 * If there were any wired entries in it,
   3333       1.91   tsutsui 				 * decrement wired entry count.
   3334       1.91   tsutsui 				 */
   3335       1.91   tsutsui 				if (ct_wired)
   3336       1.91   tsutsui 					b_tbl->bt_wcnt--;
   3337       1.91   tsutsui 
   3338        1.1       gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3339        1.1       gwr 				b_tbl->bt_ecnt--;
   3340        1.1       gwr 			}
   3341        1.1       gwr 			b_dte++;
   3342        1.1       gwr 			rstart += MMU_TIB_RANGE;
   3343        1.1       gwr 		}
   3344        1.1       gwr 	}
   3345       1.88   tsutsui 	if (nend < eva) {
   3346        1.1       gwr 		idx = MMU_TIB(nend);
   3347        1.1       gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3348        1.1       gwr 		if (MMU_VALID_DT(*b_dte)) {
   3349        1.7       gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3350        1.1       gwr 			c_tbl = mmuC2tmgr(c_dte);
   3351       1.91   tsutsui 			ct_wired = c_tbl->ct_wcnt;
   3352       1.88   tsutsui 			empty = pmap_remove_c(c_tbl, nend, eva);
   3353       1.91   tsutsui 
   3354       1.91   tsutsui 			/*
   3355       1.91   tsutsui 			 * If the child table no longer has wired entries,
   3356       1.91   tsutsui 			 * decrement wired entry count.
   3357       1.91   tsutsui 			 */
   3358       1.91   tsutsui 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3359       1.91   tsutsui 				b_tbl->bt_wcnt--;
   3360       1.91   tsutsui 
   3361        1.7       gwr 			if (empty) {
   3362        1.7       gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3363        1.7       gwr 				b_tbl->bt_ecnt--;
   3364        1.7       gwr 			}
   3365        1.1       gwr 		}
   3366        1.1       gwr 	}
   3367        1.7       gwr 
   3368        1.7       gwr 	if (b_tbl->bt_ecnt == 0) {
   3369       1.91   tsutsui 		KASSERT(b_tbl->bt_wcnt == 0);
   3370        1.7       gwr 		b_tbl->bt_parent = NULL;
   3371       1.91   tsutsui 		if (!bt_wired)
   3372       1.91   tsutsui 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3373        1.7       gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3374       1.95   thorpej 		empty = true;
   3375        1.7       gwr 	} else {
   3376       1.91   tsutsui 		/*
   3377       1.91   tsutsui 		 * If the table doesn't have wired entries any longer
   3378       1.91   tsutsui 		 * but still has unwired entries, put it back into
   3379       1.91   tsutsui 		 * the available queue.
   3380       1.91   tsutsui 		 */
   3381       1.91   tsutsui 		if (bt_wired && b_tbl->bt_wcnt == 0)
   3382       1.91   tsutsui 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   3383       1.91   tsutsui 
   3384       1.95   thorpej 		empty = false;
   3385        1.7       gwr 	}
   3386        1.7       gwr 
   3387        1.7       gwr 	return empty;
   3388        1.1       gwr }
   3389        1.1       gwr 
   3390        1.1       gwr /* pmap_remove_c			INTERNAL
   3391        1.1       gwr  **
   3392        1.1       gwr  * Remove a range of addresses from the given C table.
   3393        1.1       gwr  */
   3394       1.94   thorpej bool
   3395       1.88   tsutsui pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
   3396        1.1       gwr {
   3397       1.94   thorpej 	bool empty;
   3398        1.1       gwr 	int idx;
   3399        1.1       gwr 	mmu_short_pte_t *c_pte;
   3400       1.91   tsutsui 	uint8_t ct_wired;
   3401        1.1       gwr 
   3402       1.91   tsutsui 	ct_wired = c_tbl->ct_wcnt;
   3403       1.91   tsutsui 
   3404       1.88   tsutsui 	idx = MMU_TIC(sva);
   3405        1.1       gwr 	c_pte = &c_tbl->ct_dtbl[idx];
   3406       1.92   tsutsui 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
   3407        1.7       gwr 		if (MMU_VALID_DT(*c_pte)) {
   3408       1.91   tsutsui 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   3409       1.91   tsutsui 				c_tbl->ct_wcnt--;
   3410        1.1       gwr 			pmap_remove_pte(c_pte);
   3411        1.7       gwr 			c_tbl->ct_ecnt--;
   3412        1.7       gwr 		}
   3413        1.1       gwr 	}
   3414        1.7       gwr 
   3415        1.7       gwr 	if (c_tbl->ct_ecnt == 0) {
   3416       1.91   tsutsui 		KASSERT(c_tbl->ct_wcnt == 0);
   3417        1.7       gwr 		c_tbl->ct_parent = NULL;
   3418       1.91   tsutsui 		if (!ct_wired)
   3419       1.91   tsutsui 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3420        1.9       gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3421       1.95   thorpej 		empty = true;
   3422        1.9       gwr 	} else {
   3423       1.91   tsutsui 		/*
   3424       1.91   tsutsui 		 * If the table doesn't have wired entries any longer
   3425       1.91   tsutsui 		 * but still has unwired entries, put it back into
   3426       1.91   tsutsui 		 * the available queue.
   3427       1.91   tsutsui 		 */
   3428       1.91   tsutsui 		if (ct_wired && c_tbl->ct_wcnt == 0)
   3429       1.91   tsutsui 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   3430       1.95   thorpej 		empty = false;
   3431        1.9       gwr 	}
   3432        1.7       gwr 
   3433        1.9       gwr 	return empty;
   3434        1.1       gwr }
   3435        1.1       gwr 
   3436        1.1       gwr /* pmap_bootstrap_alloc			INTERNAL
   3437        1.1       gwr  **
   3438        1.1       gwr  * Used internally for memory allocation at startup when malloc is not
   3439        1.1       gwr  * available.  This code will fail once it crosses the first memory
   3440        1.1       gwr  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3441        1.1       gwr  * will be in charge of allocation.
   3442        1.1       gwr  */
   3443        1.1       gwr void *
   3444       1.86       chs pmap_bootstrap_alloc(int size)
   3445        1.1       gwr {
   3446        1.1       gwr 	void *rtn;
   3447        1.1       gwr 
   3448        1.8       gwr #ifdef	PMAP_DEBUG
   3449       1.95   thorpej 	if (bootstrap_alloc_enabled == false) {
   3450        1.7       gwr 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3451        1.7       gwr 		sunmon_abort();
   3452        1.7       gwr 	}
   3453        1.7       gwr #endif
   3454        1.7       gwr 
   3455        1.1       gwr 	rtn = (void *) virtual_avail;
   3456        1.1       gwr 	virtual_avail += size;
   3457        1.1       gwr 
   3458        1.8       gwr #ifdef	PMAP_DEBUG
   3459        1.7       gwr 	if (virtual_avail > virtual_contig_end) {
   3460        1.7       gwr 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3461        1.7       gwr 		sunmon_abort();
   3462        1.1       gwr 	}
   3463        1.7       gwr #endif
   3464        1.1       gwr 
   3465        1.1       gwr 	return rtn;
   3466        1.1       gwr }
   3467        1.1       gwr 
   3468        1.1       gwr /* pmap_bootstap_aalign			INTERNAL
   3469        1.1       gwr  **
   3470        1.7       gwr  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3471        1.7       gwr  * return a chunk of memory aligned to the specified size.
   3472        1.8       gwr  *
   3473        1.8       gwr  * Note: This function will only support alignment sizes that are powers
   3474        1.8       gwr  * of two.
   3475        1.1       gwr  */
   3476       1.86       chs void
   3477       1.86       chs pmap_bootstrap_aalign(int size)
   3478        1.1       gwr {
   3479        1.7       gwr 	int off;
   3480        1.7       gwr 
   3481        1.7       gwr 	off = virtual_avail & (size - 1);
   3482        1.7       gwr 	if (off) {
   3483       1.92   tsutsui 		(void)pmap_bootstrap_alloc(size - off);
   3484        1.1       gwr 	}
   3485        1.1       gwr }
   3486        1.7       gwr 
   3487        1.8       gwr /* pmap_pa_exists
   3488        1.8       gwr  **
   3489        1.8       gwr  * Used by the /dev/mem driver to see if a given PA is memory
   3490        1.8       gwr  * that can be mapped.  (The PA is not in a hole.)
   3491        1.8       gwr  */
   3492       1.86       chs int
   3493       1.86       chs pmap_pa_exists(paddr_t pa)
   3494        1.8       gwr {
   3495       1.69       chs 	int i;
   3496       1.21       gwr 
   3497       1.21       gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3498       1.21       gwr 		if ((pa >= avail_mem[i].pmem_start) &&
   3499       1.21       gwr 			(pa <  avail_mem[i].pmem_end))
   3500       1.92   tsutsui 			return 1;
   3501       1.21       gwr 		if (avail_mem[i].pmem_next == NULL)
   3502       1.21       gwr 			break;
   3503       1.21       gwr 	}
   3504       1.92   tsutsui 	return 0;
   3505        1.8       gwr }
   3506        1.8       gwr 
   3507       1.31       gwr /* Called only from locore.s and pmap.c */
   3508       1.86       chs void	_pmap_switch(pmap_t pmap);
   3509       1.31       gwr 
   3510       1.31       gwr /*
   3511       1.31       gwr  * _pmap_switch			INTERNAL
   3512       1.31       gwr  *
   3513       1.31       gwr  * This is called by locore.s:cpu_switch() when it is
   3514       1.31       gwr  * switching to a new process.  Load new translations.
   3515       1.31       gwr  * Note: done in-line by locore.s unless PMAP_DEBUG
   3516       1.24    jeremy  *
   3517       1.31       gwr  * Note that we do NOT allocate a context here, but
   3518       1.31       gwr  * share the "kernel only" context until we really
   3519       1.31       gwr  * need our own context for user-space mappings in
   3520       1.31       gwr  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3521        1.1       gwr  */
   3522       1.86       chs void
   3523       1.86       chs _pmap_switch(pmap_t pmap)
   3524        1.1       gwr {
   3525        1.7       gwr 	u_long rootpa;
   3526        1.7       gwr 
   3527       1.31       gwr 	/*
   3528       1.31       gwr 	 * Only do reload/flush if we have to.
   3529       1.31       gwr 	 * Note that if the old and new process
   3530       1.31       gwr 	 * were BOTH using the "null" context,
   3531       1.31       gwr 	 * then this will NOT flush the TLB.
   3532       1.31       gwr 	 */
   3533        1.7       gwr 	rootpa = pmap->pm_a_phys;
   3534       1.31       gwr 	if (kernel_crp.rp_addr != rootpa) {
   3535       1.31       gwr 		DPRINT(("pmap_activate(%p)\n", pmap));
   3536        1.7       gwr 		kernel_crp.rp_addr = rootpa;
   3537        1.7       gwr 		loadcrp(&kernel_crp);
   3538        1.8       gwr 		TBIAU();
   3539       1.31       gwr 	}
   3540       1.31       gwr }
   3541       1.31       gwr 
   3542       1.31       gwr /*
   3543       1.31       gwr  * Exported version of pmap_activate().  This is called from the
   3544       1.31       gwr  * machine-independent VM code when a process is given a new pmap.
   3545       1.76   thorpej  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3546       1.31       gwr  * take this as notification that the process has a new pmap.
   3547       1.31       gwr  */
   3548       1.86       chs void
   3549       1.86       chs pmap_activate(struct lwp *l)
   3550       1.31       gwr {
   3551       1.92   tsutsui 
   3552       1.76   thorpej 	if (l->l_proc == curproc) {
   3553       1.76   thorpej 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3554        1.7       gwr 	}
   3555        1.1       gwr }
   3556        1.1       gwr 
   3557       1.30   thorpej /*
   3558       1.30   thorpej  * pmap_deactivate			INTERFACE
   3559       1.30   thorpej  **
   3560       1.30   thorpej  * This is called to deactivate the specified process's address space.
   3561       1.30   thorpej  */
   3562       1.86       chs void
   3563       1.86       chs pmap_deactivate(struct lwp *l)
   3564        1.1       gwr {
   3565       1.92   tsutsui 
   3566       1.69       chs 	/* Nothing to do. */
   3567        1.1       gwr }
   3568        1.1       gwr 
   3569       1.17       gwr /*
   3570       1.28       gwr  * Fill in the sun3x-specific part of the kernel core header
   3571       1.28       gwr  * for dumpsys().  (See machdep.c for the rest.)
   3572       1.17       gwr  */
   3573       1.86       chs void
   3574       1.86       chs pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
   3575       1.17       gwr {
   3576       1.17       gwr 	u_long spa, len;
   3577       1.17       gwr 	int i;
   3578       1.20   thorpej 
   3579       1.28       gwr 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3580       1.28       gwr 	sh->pg_valid = MMU_DT_PAGE;
   3581       1.20   thorpej 	sh->contig_end = virtual_contig_end;
   3582       1.69       chs 	sh->kernCbase = (u_long)kernCbase;
   3583       1.20   thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3584       1.17       gwr 		spa = avail_mem[i].pmem_start;
   3585       1.25     veego 		spa = m68k_trunc_page(spa);
   3586       1.17       gwr 		len = avail_mem[i].pmem_end - spa;
   3587       1.25     veego 		len = m68k_round_page(len);
   3588       1.20   thorpej 		sh->ram_segs[i].start = spa;
   3589       1.20   thorpej 		sh->ram_segs[i].size  = len;
   3590       1.17       gwr 	}
   3591       1.17       gwr }
   3592       1.17       gwr 
   3593       1.81   thorpej 
   3594       1.81   thorpej /* pmap_virtual_space			INTERFACE
   3595       1.81   thorpej  **
   3596       1.81   thorpej  * Return the current available range of virtual addresses in the
   3597       1.81   thorpej  * arguuments provided.  Only really called once.
   3598       1.81   thorpej  */
   3599       1.86       chs void
   3600       1.86       chs pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
   3601       1.81   thorpej {
   3602       1.92   tsutsui 
   3603       1.81   thorpej 	*vstart = virtual_avail;
   3604       1.81   thorpej 	*vend = virtual_end;
   3605       1.81   thorpej }
   3606        1.1       gwr 
   3607       1.37       gwr /*
   3608       1.37       gwr  * Provide memory to the VM system.
   3609       1.37       gwr  *
   3610       1.37       gwr  * Assume avail_start is always in the
   3611       1.37       gwr  * first segment as pmap_bootstrap does.
   3612       1.37       gwr  */
   3613       1.86       chs static void
   3614       1.86       chs pmap_page_upload(void)
   3615       1.37       gwr {
   3616       1.69       chs 	paddr_t	a, b;	/* memory range */
   3617       1.37       gwr 	int i;
   3618       1.37       gwr 
   3619       1.37       gwr 	/* Supply the memory in segments. */
   3620       1.37       gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3621       1.37       gwr 		a = atop(avail_mem[i].pmem_start);
   3622       1.37       gwr 		b = atop(avail_mem[i].pmem_end);
   3623       1.37       gwr 		if (i == 0)
   3624       1.37       gwr 			a = atop(avail_start);
   3625       1.60   tsutsui 		if (avail_mem[i].pmem_end > avail_end)
   3626       1.60   tsutsui 			b = atop(avail_end);
   3627       1.37       gwr 
   3628       1.39   thorpej 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3629       1.37       gwr 
   3630       1.37       gwr 		if (avail_mem[i].pmem_next == NULL)
   3631       1.37       gwr 			break;
   3632       1.37       gwr 	}
   3633        1.1       gwr }
   3634        1.8       gwr 
   3635        1.8       gwr /* pmap_count			INTERFACE
   3636        1.8       gwr  **
   3637        1.8       gwr  * Return the number of resident (valid) pages in the given pmap.
   3638        1.8       gwr  *
   3639        1.8       gwr  * Note:  If this function is handed the kernel map, it will report
   3640        1.8       gwr  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3641        1.8       gwr  * map statistics.
   3642        1.8       gwr  */
   3643       1.86       chs segsz_t
   3644       1.86       chs pmap_count(pmap_t pmap, int type)
   3645        1.8       gwr {
   3646        1.8       gwr 	u_int     count;
   3647        1.8       gwr 	int       a_idx, b_idx;
   3648        1.8       gwr 	a_tmgr_t *a_tbl;
   3649        1.8       gwr 	b_tmgr_t *b_tbl;
   3650        1.8       gwr 	c_tmgr_t *c_tbl;
   3651        1.8       gwr 
   3652        1.8       gwr 	/*
   3653        1.8       gwr 	 * If the pmap does not have its own A table manager, it has no
   3654        1.8       gwr 	 * valid entires.
   3655        1.8       gwr 	 */
   3656        1.8       gwr 	if (pmap->pm_a_tmgr == NULL)
   3657        1.8       gwr 		return 0;
   3658        1.8       gwr 
   3659        1.8       gwr 	a_tbl = pmap->pm_a_tmgr;
   3660        1.8       gwr 
   3661        1.8       gwr 	count = 0;
   3662  1.110.2.1  uebayasi 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE3X); a_idx++) {
   3663        1.8       gwr 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3664        1.8       gwr 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3665        1.8       gwr 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3666        1.8       gwr 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3667        1.8       gwr 	                c_tbl = mmuC2tmgr(
   3668        1.8       gwr 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3669        1.8       gwr 	                if (type == 0)
   3670        1.8       gwr 	                    /*
   3671        1.8       gwr 	                     * A resident entry count has been requested.
   3672        1.8       gwr 	                     */
   3673        1.8       gwr 	                    count += c_tbl->ct_ecnt;
   3674        1.8       gwr 	                else
   3675        1.8       gwr 	                    /*
   3676        1.8       gwr 	                     * A wired entry count has been requested.
   3677        1.8       gwr 	                     */
   3678        1.8       gwr 	                    count += c_tbl->ct_wcnt;
   3679        1.8       gwr 	            }
   3680        1.8       gwr 	        }
   3681        1.8       gwr 	    }
   3682        1.8       gwr 	}
   3683        1.8       gwr 
   3684        1.8       gwr 	return count;
   3685        1.8       gwr }
   3686        1.8       gwr 
   3687        1.1       gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3688        1.1       gwr  * The following routines are only used by DDB for tricky kernel text    *
   3689        1.1       gwr  * text operations in db_memrw.c.  They are provided for sun3            *
   3690        1.1       gwr  * compatibility.                                                        *
   3691        1.1       gwr  *************************************************************************/
   3692        1.1       gwr /* get_pte			INTERNAL
   3693        1.1       gwr  **
   3694        1.1       gwr  * Return the page descriptor the describes the kernel mapping
   3695        1.1       gwr  * of the given virtual address.
   3696        1.1       gwr  */
   3697       1.86       chs extern u_long ptest_addr(u_long);	/* XXX: locore.s */
   3698       1.86       chs u_int
   3699       1.86       chs get_pte(vaddr_t va)
   3700       1.13       gwr {
   3701       1.13       gwr 	u_long pte_pa;
   3702       1.13       gwr 	mmu_short_pte_t *pte;
   3703       1.13       gwr 
   3704       1.13       gwr 	/* Get the physical address of the PTE */
   3705       1.13       gwr 	pte_pa = ptest_addr(va & ~PGOFSET);
   3706       1.13       gwr 
   3707       1.13       gwr 	/* Convert to a virtual address... */
   3708  1.110.2.1  uebayasi 	pte = (mmu_short_pte_t *) (KERNBASE3X + pte_pa);
   3709       1.13       gwr 
   3710       1.13       gwr 	/* Make sure it is in our level-C tables... */
   3711       1.13       gwr 	if ((pte < kernCbase) ||
   3712       1.13       gwr 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3713       1.13       gwr 		return 0;
   3714       1.13       gwr 
   3715       1.13       gwr 	/* ... and just return its contents. */
   3716       1.13       gwr 	return (pte->attr.raw);
   3717       1.13       gwr }
   3718       1.13       gwr 
   3719        1.1       gwr 
   3720        1.1       gwr /* set_pte			INTERNAL
   3721        1.1       gwr  **
   3722        1.1       gwr  * Set the page descriptor that describes the kernel mapping
   3723        1.1       gwr  * of the given virtual address.
   3724        1.1       gwr  */
   3725       1.86       chs void
   3726       1.86       chs set_pte(vaddr_t va, u_int pte)
   3727        1.1       gwr {
   3728        1.1       gwr 	u_long idx;
   3729        1.1       gwr 
   3730  1.110.2.1  uebayasi 	if (va < KERNBASE3X)
   3731        1.7       gwr 		return;
   3732        1.7       gwr 
   3733  1.110.2.1  uebayasi 	idx = (unsigned long) m68k_btop(va - KERNBASE3X);
   3734        1.1       gwr 	kernCbase[idx].attr.raw = pte;
   3735       1.33       gwr 	TBIS(va);
   3736        1.1       gwr }
   3737       1.42        is 
   3738       1.42        is /*
   3739       1.42        is  *	Routine:        pmap_procwr
   3740       1.42        is  *
   3741       1.42        is  *	Function:
   3742       1.42        is  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3743       1.42        is  */
   3744       1.86       chs void
   3745       1.86       chs pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   3746       1.42        is {
   3747       1.92   tsutsui 
   3748       1.42        is 	(void)cachectl1(0x80000004, va, len, p);
   3749       1.42        is }
   3750       1.42        is 
   3751        1.7       gwr 
   3752        1.8       gwr #ifdef	PMAP_DEBUG
   3753        1.7       gwr /************************** DEBUGGING ROUTINES **************************
   3754        1.7       gwr  * The following routines are meant to be an aid to debugging the pmap  *
   3755        1.7       gwr  * system.  They are callable from the DDB command line and should be   *
   3756        1.7       gwr  * prepared to be handed unstable or incomplete states of the system.   *
   3757        1.7       gwr  ************************************************************************/
   3758        1.7       gwr 
   3759        1.7       gwr /* pv_list
   3760        1.7       gwr  **
   3761        1.7       gwr  * List all pages found on the pv list for the given physical page.
   3762        1.8       gwr  * To avoid endless loops, the listing will stop at the end of the list
   3763        1.7       gwr  * or after 'n' entries - whichever comes first.
   3764        1.7       gwr  */
   3765       1.86       chs void
   3766       1.86       chs pv_list(paddr_t pa, int n)
   3767        1.7       gwr {
   3768        1.7       gwr 	int  idx;
   3769       1.69       chs 	vaddr_t va;
   3770        1.7       gwr 	pv_t *pv;
   3771        1.7       gwr 	c_tmgr_t *c_tbl;
   3772        1.7       gwr 	pmap_t pmap;
   3773        1.7       gwr 
   3774        1.7       gwr 	pv = pa2pv(pa);
   3775        1.7       gwr 	idx = pv->pv_idx;
   3776       1.69       chs 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3777        1.8       gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3778        1.7       gwr 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3779        1.7       gwr 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3780        1.7       gwr 	}
   3781        1.7       gwr }
   3782        1.8       gwr #endif	/* PMAP_DEBUG */
   3783        1.1       gwr 
   3784        1.1       gwr #ifdef NOT_YET
   3785        1.1       gwr /* and maybe not ever */
   3786        1.1       gwr /************************** LOW-LEVEL ROUTINES **************************
   3787       1.78       wiz  * These routines will eventually be re-written into assembly and placed*
   3788        1.1       gwr  * in locore.s.  They are here now as stubs so that the pmap module can *
   3789        1.1       gwr  * be linked as a standalone user program for testing.                  *
   3790        1.1       gwr  ************************************************************************/
   3791        1.1       gwr /* flush_atc_crp			INTERNAL
   3792        1.1       gwr  **
   3793        1.1       gwr  * Flush all page descriptors derived from the given CPU Root Pointer
   3794        1.1       gwr  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3795        1.1       gwr  * cache.
   3796        1.1       gwr  */
   3797       1.86       chs void
   3798       1.86       chs flush_atc_crp(int a_tbl)
   3799        1.1       gwr {
   3800        1.1       gwr 	mmu_long_rp_t rp;
   3801        1.1       gwr 
   3802        1.1       gwr 	/* Create a temporary root table pointer that points to the
   3803        1.1       gwr 	 * given A table.
   3804        1.1       gwr 	 */
   3805        1.1       gwr 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3806        1.1       gwr 	rp.addr.raw = (unsigned int) a_tbl;
   3807        1.1       gwr 
   3808        1.1       gwr 	mmu_pflushr(&rp);
   3809        1.1       gwr 	/* mmu_pflushr:
   3810        1.1       gwr 	 * 	movel   sp(4)@,a0
   3811        1.1       gwr 	 * 	pflushr a0@
   3812        1.1       gwr 	 *	rts
   3813        1.1       gwr 	 */
   3814        1.1       gwr }
   3815        1.1       gwr #endif /* NOT_YET */
   3816