Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.14
      1  1.14      gwr /*	$NetBSD: pmap.c,v 1.14 1997/03/06 00:15:56 gwr Exp $	*/
      2   1.1      gwr 
      3   1.1      gwr /*-
      4  1.10   jeremy  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5   1.1      gwr  * All rights reserved.
      6   1.1      gwr  *
      7   1.1      gwr  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1      gwr  * by Jeremy Cooper.
      9   1.1      gwr  *
     10   1.1      gwr  * Redistribution and use in source and binary forms, with or without
     11   1.1      gwr  * modification, are permitted provided that the following conditions
     12   1.1      gwr  * are met:
     13   1.1      gwr  * 1. Redistributions of source code must retain the above copyright
     14   1.1      gwr  *    notice, this list of conditions and the following disclaimer.
     15   1.1      gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1      gwr  *    notice, this list of conditions and the following disclaimer in the
     17   1.1      gwr  *    documentation and/or other materials provided with the distribution.
     18   1.1      gwr  * 3. All advertising materials mentioning features or use of this software
     19   1.1      gwr  *    must display the following acknowledgement:
     20   1.1      gwr  *        This product includes software developed by the NetBSD
     21   1.1      gwr  *        Foundation, Inc. and its contributors.
     22   1.1      gwr  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1      gwr  *    contributors may be used to endorse or promote products derived
     24   1.1      gwr  *    from this software without specific prior written permission.
     25   1.1      gwr  *
     26   1.1      gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1      gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1      gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1      gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1      gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1      gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1      gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1      gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1      gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1      gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1      gwr  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1      gwr  */
     38   1.1      gwr 
     39   1.1      gwr /*
     40   1.1      gwr  * XXX These comments aren't quite accurate.  Need to change.
     41   1.1      gwr  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42   1.1      gwr  * into the CPU.  The 68851 maps virtual to physical addresses using
     43   1.1      gwr  * a multi-level table lookup, which is stored in the very memory that
     44   1.1      gwr  * it maps.  The number of levels of lookup is configurable from one
     45   1.1      gwr  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46   1.1      gwr  *
     47   1.1      gwr  * The MMU translates virtual addresses into physical addresses by
     48   1.1      gwr  * traversing these tables in a proccess called a 'table walk'.  The most
     49   1.1      gwr  * significant 7 bits of the Virtual Address ('VA') being translated are
     50   1.1      gwr  * used as an index into the level A table, whose base in physical memory
     51   1.1      gwr  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52   1.1      gwr  * address found at that index in the A table is used as the base
     53   1.1      gwr  * address for the next table, the B table.  The next six bits of the VA are
     54   1.1      gwr  * used as an index into the B table, which in turn gives the base address
     55   1.1      gwr  * of the third and final C table.
     56   1.1      gwr  *
     57   1.1      gwr  * The next six bits of the VA are used as an index into the C table to
     58   1.1      gwr  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59   1.1      gwr  * to which the remaining 13 bits of the VA are added, producing the
     60   1.1      gwr  * mapped physical address.
     61   1.1      gwr  *
     62   1.1      gwr  * To map the entire memory space in this manner would require 2114296 bytes
     63   1.1      gwr  * of page tables per process - quite expensive.  Instead we will
     64   1.1      gwr  * allocate a fixed but considerably smaller space for the page tables at
     65   1.1      gwr  * the time the VM system is initialized.  When the pmap code is asked by
     66   1.1      gwr  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67   1.1      gwr  * pool.  When there are no more tables in the pool, tables are stolen
     68   1.1      gwr  * from the oldest mapped entries in the tree.  This is only possible
     69   1.1      gwr  * because all memory mappings are stored in the kernel memory map
     70   1.1      gwr  * structures, independent of the pmap structures.  A VA which references
     71   1.1      gwr  * one of these invalidated maps will cause a page fault.  The kernel
     72   1.1      gwr  * will determine that the page fault was caused by a task using a valid
     73   1.1      gwr  * VA, but for some reason (which does not concern it), that address was
     74   1.1      gwr  * not mapped.  It will ask the pmap code to re-map the entry and then
     75   1.1      gwr  * it will resume executing the faulting task.
     76   1.1      gwr  *
     77   1.1      gwr  * In this manner the most efficient use of the page table space is
     78   1.1      gwr  * achieved.  Tasks which do not execute often will have their tables
     79   1.1      gwr  * stolen and reused by tasks which execute more frequently.  The best
     80   1.1      gwr  * size for the page table pool will probably be determined by
     81   1.1      gwr  * experimentation.
     82   1.1      gwr  *
     83   1.1      gwr  * You read all of the comments so far.  Good for you.
     84   1.1      gwr  * Now go play!
     85   1.1      gwr  */
     86   1.1      gwr 
     87   1.1      gwr /*** A Note About the 68851 Address Translation Cache
     88   1.1      gwr  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89   1.1      gwr  * or 'ATC'.  This cache stores the most recently used page descriptors
     90   1.1      gwr  * accessed by the MMU when it does translations.  Using a marker called a
     91   1.1      gwr  * 'task alias' the MMU can store the descriptors from 8 different table
     92   1.1      gwr  * spaces concurrently.  The task alias is associated with the base
     93   1.1      gwr  * address of the level A table of that address space.  When an address
     94   1.1      gwr  * space is currently active (the CRP currently points to its A table)
     95   1.1      gwr  * the only cached descriptors that will be obeyed are ones which have a
     96   1.1      gwr  * matching task alias of the current space associated with them.
     97   1.1      gwr  *
     98   1.1      gwr  * Since the cache is always consulted before any table lookups are done,
     99   1.1      gwr  * it is important that it accurately reflect the state of the MMU tables.
    100   1.1      gwr  * Whenever a change has been made to a table that has been loaded into
    101   1.1      gwr  * the MMU, the code must be sure to flush any cached entries that are
    102   1.1      gwr  * affected by the change.  These instances are documented in the code at
    103   1.1      gwr  * various points.
    104   1.1      gwr  */
    105   1.1      gwr /*** A Note About the Note About the 68851 Address Translation Cache
    106   1.1      gwr  * 4 months into this code I discovered that the sun3x does not have
    107   1.1      gwr  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108   1.1      gwr  * the 68030 CPU.
    109   1.1      gwr  * All though it behaves very similarly to the 68851, it only has 1 task
    110   1.8      gwr  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111   1.8      gwr  * of the previous note does not apply to the sun3x pmap.
    112   1.1      gwr  */
    113   1.1      gwr 
    114   1.1      gwr #include <sys/param.h>
    115   1.1      gwr #include <sys/systm.h>
    116   1.1      gwr #include <sys/proc.h>
    117   1.1      gwr #include <sys/malloc.h>
    118   1.1      gwr #include <sys/user.h>
    119   1.1      gwr #include <sys/queue.h>
    120   1.1      gwr 
    121   1.1      gwr #include <vm/vm.h>
    122   1.1      gwr #include <vm/vm_kern.h>
    123   1.1      gwr #include <vm/vm_page.h>
    124   1.1      gwr 
    125   1.1      gwr #include <machine/cpu.h>
    126   1.1      gwr #include <machine/pmap.h>
    127   1.1      gwr #include <machine/pte.h>
    128   1.5      gwr #include <machine/machdep.h>
    129   1.1      gwr #include <machine/mon.h>
    130   1.1      gwr 
    131   1.1      gwr #include "pmap_pvt.h"
    132   1.1      gwr 
    133   1.1      gwr /* XXX - What headers declare these? */
    134   1.1      gwr extern struct pcb *curpcb;
    135   1.1      gwr extern int physmem;
    136   1.1      gwr 
    137   1.7      gwr extern void copypage __P((const void*, void*));
    138   1.7      gwr extern void zeropage __P((void*));
    139   1.7      gwr 
    140   1.1      gwr /* Defined in locore.s */
    141   1.1      gwr extern char kernel_text[];
    142   1.1      gwr 
    143   1.1      gwr /* Defined by the linker */
    144   1.1      gwr extern char etext[], edata[], end[];
    145   1.1      gwr extern char *esym;	/* DDB */
    146   1.1      gwr 
    147   1.7      gwr /*************************** DEBUGGING DEFINITIONS ***********************
    148   1.7      gwr  * Macros, preprocessor defines and variables used in debugging can make *
    149   1.7      gwr  * code hard to read.  Anything used exclusively for debugging purposes  *
    150   1.7      gwr  * is defined here to avoid having such mess scattered around the file.  *
    151   1.7      gwr  *************************************************************************/
    152   1.8      gwr #ifdef	PMAP_DEBUG
    153   1.7      gwr /*
    154   1.7      gwr  * To aid the debugging process, macros should be expanded into smaller steps
    155   1.7      gwr  * that accomplish the same goal, yet provide convenient places for placing
    156   1.8      gwr  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    157   1.7      gwr  * 'INLINE' keyword is defined to an empty string.  This way, any function
    158   1.7      gwr  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    159   1.7      gwr  * a separate function, which is much easier to debug.
    160   1.7      gwr  */
    161   1.7      gwr #define	INLINE	/* nothing */
    162   1.7      gwr 
    163   1.1      gwr /*
    164   1.7      gwr  * It is sometimes convenient to watch the activity of a particular table
    165   1.7      gwr  * in the system.  The following variables are used for that purpose.
    166   1.1      gwr  */
    167   1.7      gwr a_tmgr_t *pmap_watch_atbl = 0;
    168   1.7      gwr b_tmgr_t *pmap_watch_btbl = 0;
    169   1.7      gwr c_tmgr_t *pmap_watch_ctbl = 0;
    170   1.1      gwr 
    171   1.7      gwr int pmap_debug = 0;
    172   1.7      gwr #define DPRINT(args) if (pmap_debug) printf args
    173   1.7      gwr 
    174   1.7      gwr #else	/********** Stuff below is defined if NOT debugging **************/
    175   1.7      gwr 
    176   1.7      gwr #define	INLINE	inline
    177  1.10   jeremy #define DPRINT(args)  /* nada */
    178   1.7      gwr 
    179  1.10   jeremy #endif	/* PMAP_DEBUG */
    180   1.7      gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/
    181   1.1      gwr 
    182   1.1      gwr /*** Management Structure - Memory Layout
    183   1.1      gwr  * For every MMU table in the sun3x pmap system there must be a way to
    184   1.1      gwr  * manage it; we must know which process is using it, what other tables
    185   1.1      gwr  * depend on it, and whether or not it contains any locked pages.  This
    186   1.1      gwr  * is solved by the creation of 'table management'  or 'tmgr'
    187   1.1      gwr  * structures.  One for each MMU table in the system.
    188   1.1      gwr  *
    189   1.1      gwr  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    190   1.1      gwr  *
    191   1.1      gwr  *      towards lower memory
    192   1.1      gwr  * kernAbase -> +-------------------------------------------------------+
    193   1.1      gwr  *              | Kernel     MMU A level table                          |
    194   1.1      gwr  * kernBbase -> +-------------------------------------------------------+
    195   1.1      gwr  *              | Kernel     MMU B level tables                         |
    196   1.1      gwr  * kernCbase -> +-------------------------------------------------------+
    197   1.1      gwr  *              |                                                       |
    198   1.1      gwr  *              | Kernel     MMU C level tables                         |
    199   1.1      gwr  *              |                                                       |
    200   1.7      gwr  * mmuCbase  -> +-------------------------------------------------------+
    201   1.7      gwr  *              | User       MMU C level tables                         |
    202   1.1      gwr  * mmuAbase  -> +-------------------------------------------------------+
    203   1.1      gwr  *              |                                                       |
    204   1.1      gwr  *              | User       MMU A level tables                         |
    205   1.1      gwr  *              |                                                       |
    206   1.1      gwr  * mmuBbase  -> +-------------------------------------------------------+
    207   1.1      gwr  *              | User       MMU B level tables                         |
    208   1.1      gwr  * tmgrAbase -> +-------------------------------------------------------+
    209   1.1      gwr  *              |  TMGR A level table structures                        |
    210   1.1      gwr  * tmgrBbase -> +-------------------------------------------------------+
    211   1.1      gwr  *              |  TMGR B level table structures                        |
    212   1.1      gwr  * tmgrCbase -> +-------------------------------------------------------+
    213   1.1      gwr  *              |  TMGR C level table structures                        |
    214   1.1      gwr  * pvbase    -> +-------------------------------------------------------+
    215   1.1      gwr  *              |  Physical to Virtual mapping table (list heads)       |
    216   1.1      gwr  * pvebase   -> +-------------------------------------------------------+
    217   1.1      gwr  *              |  Physical to Virtual mapping table (list elements)    |
    218   1.1      gwr  *              |                                                       |
    219   1.1      gwr  *              +-------------------------------------------------------+
    220   1.1      gwr  *      towards higher memory
    221   1.1      gwr  *
    222   1.1      gwr  * For every A table in the MMU A area, there will be a corresponding
    223   1.1      gwr  * a_tmgr structure in the TMGR A area.  The same will be true for
    224   1.1      gwr  * the B and C tables.  This arrangement will make it easy to find the
    225   1.1      gwr  * controling tmgr structure for any table in the system by use of
    226   1.1      gwr  * (relatively) simple macros.
    227   1.1      gwr  */
    228   1.7      gwr 
    229   1.7      gwr /*
    230   1.8      gwr  * Global variables for storing the base addresses for the areas
    231   1.1      gwr  * labeled above.
    232   1.1      gwr  */
    233   1.7      gwr static vm_offset_t  	kernAphys;
    234   1.1      gwr static mmu_long_dte_t	*kernAbase;
    235   1.1      gwr static mmu_short_dte_t	*kernBbase;
    236   1.1      gwr static mmu_short_pte_t	*kernCbase;
    237   1.1      gwr static mmu_long_dte_t	*mmuAbase;
    238   1.1      gwr static mmu_short_dte_t	*mmuBbase;
    239   1.1      gwr static mmu_short_pte_t	*mmuCbase;
    240   1.1      gwr static a_tmgr_t		*Atmgrbase;
    241   1.1      gwr static b_tmgr_t		*Btmgrbase;
    242   1.1      gwr static c_tmgr_t		*Ctmgrbase;
    243   1.1      gwr static pv_t		*pvbase;
    244   1.1      gwr static pv_elem_t	*pvebase;
    245   1.7      gwr struct pmap		kernel_pmap;
    246   1.1      gwr 
    247   1.8      gwr /*
    248   1.8      gwr  * This holds the CRP currently loaded into the MMU.
    249   1.8      gwr  */
    250   1.8      gwr struct mmu_rootptr kernel_crp;
    251   1.8      gwr 
    252   1.8      gwr /*
    253   1.8      gwr  * Just all around global variables.
    254   1.1      gwr  */
    255   1.1      gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    256   1.1      gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    257   1.1      gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    258   1.7      gwr 
    259   1.7      gwr 
    260   1.7      gwr /*
    261   1.7      gwr  * Flags used to mark the safety/availability of certain operations or
    262   1.7      gwr  * resources.
    263   1.7      gwr  */
    264   1.7      gwr static boolean_t
    265   1.7      gwr     pv_initialized = FALSE,          /* PV system has been initialized. */
    266   1.7      gwr     tmp_vpages_inuse = FALSE,        /*
    267   1.7      gwr                                       * Temp. virtual pages are in use.
    268   1.7      gwr                                       * (see pmap_copy_page, et. al.)
    269   1.7      gwr                                       */
    270   1.7      gwr     bootstrap_alloc_enabled = FALSE; /* Safe to use pmap_bootstrap_alloc(). */
    271   1.1      gwr 
    272   1.1      gwr /*
    273   1.1      gwr  * XXX:  For now, retain the traditional variables that were
    274   1.1      gwr  * used in the old pmap/vm interface (without NONCONTIG).
    275   1.1      gwr  */
    276   1.1      gwr /* Kernel virtual address space available: */
    277   1.1      gwr vm_offset_t	virtual_avail, virtual_end;
    278   1.1      gwr /* Physical address space available: */
    279   1.1      gwr vm_offset_t	avail_start, avail_end;
    280   1.1      gwr 
    281   1.7      gwr /* This keep track of the end of the contiguously mapped range. */
    282   1.7      gwr vm_offset_t virtual_contig_end;
    283   1.7      gwr 
    284   1.7      gwr /* Physical address used by pmap_next_page() */
    285   1.7      gwr vm_offset_t avail_next;
    286   1.7      gwr 
    287   1.7      gwr /* These are used by pmap_copy_page(), etc. */
    288   1.1      gwr vm_offset_t tmp_vpages[2];
    289   1.1      gwr 
    290   1.7      gwr /*
    291   1.7      gwr  * The 3/80 is the only member of the sun3x family that has non-contiguous
    292   1.1      gwr  * physical memory.  Memory is divided into 4 banks which are physically
    293   1.1      gwr  * locatable on the system board.  Although the size of these banks varies
    294   1.1      gwr  * with the size of memory they contain, their base addresses are
    295   1.1      gwr  * permenently fixed.  The following structure, which describes these
    296   1.1      gwr  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    297   1.1      gwr  * structure provided by the ROM Monitor.
    298   1.1      gwr  *
    299   1.1      gwr  * For the other machines in the sun3x architecture which do have contiguous
    300   1.1      gwr  * RAM, this list will have only one entry, which will describe the entire
    301   1.1      gwr  * range of available memory.
    302   1.1      gwr  */
    303   1.1      gwr struct pmap_physmem_struct avail_mem[SUN3X_80_MEM_BANKS];
    304   1.1      gwr u_int total_phys_mem;
    305   1.1      gwr 
    306   1.7      gwr /*************************************************************************/
    307   1.7      gwr 
    308   1.7      gwr /*
    309   1.7      gwr  * XXX - Should "tune" these based on statistics.
    310   1.7      gwr  *
    311   1.7      gwr  * My first guess about the relative numbers of these needed is
    312   1.7      gwr  * based on the fact that a "typical" process will have several
    313   1.7      gwr  * pages mapped at low virtual addresses (text, data, bss), then
    314   1.7      gwr  * some mapped shared libraries, and then some stack pages mapped
    315   1.7      gwr  * near the high end of the VA space.  Each process can use only
    316   1.7      gwr  * one A table, and most will use only two B tables (maybe three)
    317   1.7      gwr  * and probably about four C tables.  Therefore, the first guess
    318   1.7      gwr  * at the relative numbers of these needed is 1:2:4 -gwr
    319   1.7      gwr  *
    320   1.7      gwr  * The number of C tables needed is closely related to the amount
    321   1.7      gwr  * of physical memory available plus a certain amount attributable
    322   1.7      gwr  * to the use of double mappings.  With a few simulation statistics
    323   1.7      gwr  * we can find a reasonably good estimation of this unknown value.
    324   1.7      gwr  * Armed with that and the above ratios, we have a good idea of what
    325   1.7      gwr  * is needed at each level. -j
    326   1.7      gwr  *
    327   1.7      gwr  * Note: It is not physical memory memory size, but the total mapped
    328   1.7      gwr  * virtual space required by the combined working sets of all the
    329   1.7      gwr  * currently _runnable_ processes.  (Sleeping ones don't count.)
    330   1.7      gwr  * The amount of physical memory should be irrelevant. -gwr
    331   1.7      gwr  */
    332   1.7      gwr #define NUM_A_TABLES	16
    333   1.7      gwr #define NUM_B_TABLES	32
    334   1.7      gwr #define NUM_C_TABLES	64
    335   1.7      gwr 
    336   1.7      gwr /*
    337   1.7      gwr  * This determines our total virtual mapping capacity.
    338   1.7      gwr  * Yes, it is a FIXED value so we can pre-allocate.
    339   1.7      gwr  */
    340   1.7      gwr #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    341  1.13      gwr #define	NUM_KERN_PTES	(sun3x_btop(KERN_END - KERNBASE))
    342   1.7      gwr 
    343   1.7      gwr /*************************** MISCELANEOUS MACROS *************************/
    344   1.7      gwr #define PMAP_LOCK()	;	/* Nothing, for now */
    345   1.7      gwr #define PMAP_UNLOCK()	;	/* same. */
    346   1.7      gwr #define	NULL 0
    347   1.7      gwr 
    348   1.7      gwr static INLINE void *      mmu_ptov __P((vm_offset_t pa));
    349   1.7      gwr static INLINE vm_offset_t mmu_vtop __P((void * va));
    350   1.7      gwr 
    351   1.7      gwr #if	0
    352   1.7      gwr static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    353   1.7      gwr #endif
    354   1.7      gwr static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    355   1.7      gwr static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    356   1.7      gwr 
    357   1.7      gwr static INLINE pv_t *pa2pv __P((vm_offset_t pa));
    358   1.7      gwr static INLINE int   pteidx __P((mmu_short_pte_t *));
    359   1.7      gwr static INLINE pmap_t current_pmap __P((void));
    360   1.7      gwr 
    361   1.7      gwr /*
    362   1.7      gwr  * We can always convert between virtual and physical addresses
    363   1.7      gwr  * for anything in the range [KERNBASE ... avail_start] because
    364   1.7      gwr  * that range is GUARANTEED to be mapped linearly.
    365   1.7      gwr  * We rely heavily upon this feature!
    366   1.7      gwr  */
    367   1.7      gwr static INLINE void *
    368   1.7      gwr mmu_ptov(pa)
    369   1.7      gwr 	vm_offset_t pa;
    370   1.7      gwr {
    371   1.7      gwr 	register vm_offset_t va;
    372   1.7      gwr 
    373   1.7      gwr 	va = (pa + KERNBASE);
    374   1.8      gwr #ifdef	PMAP_DEBUG
    375   1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    376   1.7      gwr 		panic("mmu_ptov");
    377   1.7      gwr #endif
    378   1.7      gwr 	return ((void*)va);
    379   1.7      gwr }
    380   1.7      gwr static INLINE vm_offset_t
    381   1.7      gwr mmu_vtop(vva)
    382   1.7      gwr 	void *vva;
    383   1.7      gwr {
    384   1.7      gwr 	register vm_offset_t va;
    385   1.7      gwr 
    386   1.7      gwr 	va = (vm_offset_t)vva;
    387   1.8      gwr #ifdef	PMAP_DEBUG
    388   1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    389   1.7      gwr 		panic("mmu_ptov");
    390   1.7      gwr #endif
    391   1.7      gwr 	return (va - KERNBASE);
    392   1.7      gwr }
    393   1.7      gwr 
    394   1.7      gwr /*
    395   1.7      gwr  * These macros map MMU tables to their corresponding manager structures.
    396   1.1      gwr  * They are needed quite often because many of the pointers in the pmap
    397   1.1      gwr  * system reference MMU tables and not the structures that control them.
    398   1.1      gwr  * There needs to be a way to find one when given the other and these
    399   1.1      gwr  * macros do so by taking advantage of the memory layout described above.
    400   1.1      gwr  * Here's a quick step through the first macro, mmuA2tmgr():
    401   1.1      gwr  *
    402   1.1      gwr  * 1) find the offset of the given MMU A table from the base of its table
    403   1.1      gwr  *    pool (table - mmuAbase).
    404   1.1      gwr  * 2) convert this offset into a table index by dividing it by the
    405   1.1      gwr  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    406   1.1      gwr  * 3) use this index to select the corresponding 'A' table manager
    407   1.1      gwr  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    408   1.1      gwr  */
    409   1.7      gwr /*  This function is not currently used. */
    410   1.7      gwr #if	0
    411   1.7      gwr static INLINE a_tmgr_t *
    412   1.7      gwr mmuA2tmgr(mmuAtbl)
    413   1.7      gwr 	mmu_long_dte_t *mmuAtbl;
    414   1.7      gwr {
    415   1.7      gwr 	register int idx;
    416   1.7      gwr 
    417   1.7      gwr 	/* Which table is this in? */
    418   1.7      gwr 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    419   1.8      gwr #ifdef	PMAP_DEBUG
    420   1.7      gwr 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    421   1.7      gwr 		panic("mmuA2tmgr");
    422   1.7      gwr #endif
    423   1.7      gwr 	return (&Atmgrbase[idx]);
    424   1.7      gwr }
    425   1.7      gwr #endif	/* 0 */
    426   1.7      gwr 
    427   1.7      gwr static INLINE b_tmgr_t *
    428   1.7      gwr mmuB2tmgr(mmuBtbl)
    429   1.7      gwr 	mmu_short_dte_t *mmuBtbl;
    430   1.7      gwr {
    431   1.7      gwr 	register int idx;
    432   1.7      gwr 
    433   1.7      gwr 	/* Which table is this in? */
    434   1.7      gwr 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    435   1.8      gwr #ifdef	PMAP_DEBUG
    436   1.7      gwr 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    437   1.7      gwr 		panic("mmuB2tmgr");
    438   1.7      gwr #endif
    439   1.7      gwr 	return (&Btmgrbase[idx]);
    440   1.7      gwr }
    441   1.7      gwr 
    442   1.7      gwr /* mmuC2tmgr			INTERNAL
    443   1.7      gwr  **
    444   1.7      gwr  * Given a pte known to belong to a C table, return the address of
    445   1.7      gwr  * that table's management structure.
    446   1.7      gwr  */
    447   1.7      gwr static INLINE c_tmgr_t *
    448   1.7      gwr mmuC2tmgr(mmuCtbl)
    449   1.7      gwr 	mmu_short_pte_t *mmuCtbl;
    450   1.7      gwr {
    451   1.7      gwr 	register int idx;
    452   1.7      gwr 
    453   1.7      gwr 	/* Which table is this in? */
    454   1.7      gwr 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    455   1.8      gwr #ifdef	PMAP_DEBUG
    456   1.7      gwr 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    457   1.7      gwr 		panic("mmuC2tmgr");
    458   1.7      gwr #endif
    459   1.7      gwr 	return (&Ctmgrbase[idx]);
    460   1.7      gwr }
    461   1.7      gwr 
    462   1.8      gwr /* This is now a function call below.
    463   1.1      gwr  * #define pa2pv(pa) \
    464   1.1      gwr  *	(&pvbase[(unsigned long)\
    465   1.1      gwr  *		sun3x_btop(pa)\
    466   1.1      gwr  *	])
    467   1.1      gwr  */
    468   1.1      gwr 
    469   1.7      gwr /* pa2pv			INTERNAL
    470   1.7      gwr  **
    471   1.7      gwr  * Return the pv_list_head element which manages the given physical
    472   1.7      gwr  * address.
    473   1.7      gwr  */
    474   1.7      gwr static INLINE pv_t *
    475   1.7      gwr pa2pv(pa)
    476   1.7      gwr 	vm_offset_t pa;
    477   1.7      gwr {
    478   1.7      gwr 	register struct pmap_physmem_struct *bank;
    479   1.7      gwr 	register int idx;
    480   1.7      gwr 
    481   1.7      gwr 	bank = &avail_mem[0];
    482   1.7      gwr 	while (pa >= bank->pmem_end)
    483   1.7      gwr 		bank = bank->pmem_next;
    484   1.7      gwr 
    485   1.7      gwr 	pa -= bank->pmem_start;
    486   1.7      gwr 	idx = bank->pmem_pvbase + sun3x_btop(pa);
    487   1.8      gwr #ifdef	PMAP_DEBUG
    488   1.7      gwr 	if ((idx < 0) || (idx >= physmem))
    489   1.7      gwr 		panic("pa2pv");
    490   1.7      gwr #endif
    491   1.7      gwr 	return &pvbase[idx];
    492   1.7      gwr }
    493   1.7      gwr 
    494   1.7      gwr /* pteidx			INTERNAL
    495   1.7      gwr  **
    496   1.7      gwr  * Return the index of the given PTE within the entire fixed table of
    497   1.7      gwr  * PTEs.
    498   1.7      gwr  */
    499   1.7      gwr static INLINE int
    500   1.7      gwr pteidx(pte)
    501   1.7      gwr 	mmu_short_pte_t *pte;
    502   1.7      gwr {
    503   1.7      gwr 	return (pte - kernCbase);
    504   1.7      gwr }
    505   1.7      gwr 
    506   1.7      gwr /*
    507   1.8      gwr  * This just offers a place to put some debugging checks,
    508   1.8      gwr  * and reduces the number of places "curproc" appears...
    509   1.7      gwr  */
    510   1.7      gwr static INLINE pmap_t
    511   1.7      gwr current_pmap()
    512   1.7      gwr {
    513   1.7      gwr 	struct proc *p;
    514   1.7      gwr 	struct vmspace *vm;
    515   1.7      gwr 	vm_map_t	map;
    516   1.7      gwr 	pmap_t	pmap;
    517   1.7      gwr 
    518   1.7      gwr 	p = curproc;	/* XXX */
    519   1.9      gwr 	if (p == NULL)
    520   1.9      gwr 		pmap = &kernel_pmap;
    521   1.9      gwr 	else {
    522   1.9      gwr 		vm = p->p_vmspace;
    523   1.9      gwr 		map = &vm->vm_map;
    524   1.9      gwr 		pmap = vm_map_pmap(map);
    525   1.9      gwr 	}
    526   1.7      gwr 
    527   1.7      gwr 	return (pmap);
    528   1.7      gwr }
    529   1.7      gwr 
    530   1.7      gwr 
    531   1.1      gwr /*************************** FUNCTION DEFINITIONS ************************
    532   1.1      gwr  * These appear here merely for the compiler to enforce type checking on *
    533   1.1      gwr  * all function calls.                                                   *
    534   1.7      gwr  *************************************************************************/
    535   1.1      gwr 
    536   1.1      gwr /** External functions
    537   1.1      gwr  ** - functions used within this module but written elsewhere.
    538   1.1      gwr  **   both of these functions are in locore.s
    539   1.7      gwr  ** XXX - These functions were later replaced with their more cryptic
    540   1.7      gwr  **       hp300 counterparts.  They may be removed now.
    541   1.7      gwr  **/
    542   1.7      gwr #if	0	/* deprecated mmu */
    543   1.1      gwr void   mmu_seturp __P((vm_offset_t));
    544   1.1      gwr void   mmu_flush __P((int, vm_offset_t));
    545   1.1      gwr void   mmu_flusha __P((void));
    546   1.7      gwr #endif	/* 0 */
    547   1.1      gwr 
    548   1.1      gwr /** Internal functions
    549   1.1      gwr  ** - all functions used only within this module are defined in
    550   1.1      gwr  **   pmap_pvt.h
    551   1.1      gwr  **/
    552   1.1      gwr 
    553   1.1      gwr /** Interface functions
    554   1.1      gwr  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    555   1.1      gwr  **   defined.
    556   1.1      gwr  **/
    557   1.1      gwr #ifdef INCLUDED_IN_PMAP_H
    558   1.1      gwr void   pmap_bootstrap __P((void));
    559   1.1      gwr void  *pmap_bootstrap_alloc __P((int));
    560   1.1      gwr void   pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
    561   1.1      gwr pmap_t pmap_create __P((vm_size_t));
    562   1.1      gwr void   pmap_destroy __P((pmap_t));
    563   1.1      gwr void   pmap_reference __P((pmap_t));
    564   1.1      gwr boolean_t   pmap_is_referenced __P((vm_offset_t));
    565   1.1      gwr boolean_t   pmap_is_modified __P((vm_offset_t));
    566   1.1      gwr void   pmap_clear_modify __P((vm_offset_t));
    567   1.1      gwr vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
    568   1.7      gwr void   pmap_activate __P((pmap_t));
    569   1.1      gwr int    pmap_page_index __P((vm_offset_t));
    570   1.1      gwr u_int  pmap_free_pages __P((void));
    571   1.1      gwr #endif /* INCLUDED_IN_PMAP_H */
    572   1.1      gwr 
    573   1.1      gwr /********************************** CODE ********************************
    574   1.1      gwr  * Functions that are called from other parts of the kernel are labeled *
    575   1.1      gwr  * as 'INTERFACE' functions.  Functions that are only called from       *
    576   1.1      gwr  * within the pmap module are labeled as 'INTERNAL' functions.          *
    577   1.1      gwr  * Functions that are internal, but are not (currently) used at all are *
    578   1.1      gwr  * labeled 'INTERNAL_X'.                                                *
    579   1.1      gwr  ************************************************************************/
    580   1.1      gwr 
    581   1.1      gwr /* pmap_bootstrap			INTERNAL
    582   1.1      gwr  **
    583   1.1      gwr  * Initializes the pmap system.  Called at boot time from sun3x_vm_init()
    584   1.1      gwr  * in _startup.c.
    585   1.1      gwr  *
    586   1.1      gwr  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    587   1.1      gwr  *           system implement pmap_steal_memory() is redundant.
    588   1.1      gwr  *           Don't release this code without removing one or the other!
    589   1.1      gwr  */
    590   1.1      gwr void
    591   1.1      gwr pmap_bootstrap(nextva)
    592   1.1      gwr 	vm_offset_t nextva;
    593   1.1      gwr {
    594   1.1      gwr 	struct physmemory *membank;
    595   1.1      gwr 	struct pmap_physmem_struct *pmap_membank;
    596   1.1      gwr 	vm_offset_t va, pa, eva;
    597   1.1      gwr 	int b, c, i, j;	/* running table counts */
    598   1.1      gwr 	int size;
    599   1.1      gwr 
    600   1.1      gwr 	/*
    601   1.1      gwr 	 * This function is called by __bootstrap after it has
    602   1.1      gwr 	 * determined the type of machine and made the appropriate
    603   1.1      gwr 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    604   1.1      gwr 	 * by that.)  It allocates and sets up enough of the pmap system
    605   1.1      gwr 	 * to manage the kernel's address space.
    606   1.1      gwr 	 */
    607   1.1      gwr 
    608   1.1      gwr 	/*
    609   1.7      gwr 	 * Determine the range of kernel virtual and physical
    610   1.7      gwr 	 * space available. Note that we ABSOLUTELY DEPEND on
    611   1.7      gwr 	 * the fact that the first bank of memory (4MB) is
    612   1.7      gwr 	 * mapped linearly to KERNBASE (which we guaranteed in
    613   1.7      gwr 	 * the first instructions of locore.s).
    614   1.7      gwr 	 * That is plenty for our bootstrap work.
    615   1.1      gwr 	 */
    616   1.1      gwr 	virtual_avail = sun3x_round_page(nextva);
    617   1.7      gwr 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    618   1.1      gwr 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    619   1.7      gwr 	/* Don't need avail_start til later. */
    620   1.1      gwr 
    621   1.7      gwr 	/* We may now call pmap_bootstrap_alloc(). */
    622   1.7      gwr 	bootstrap_alloc_enabled = TRUE;
    623   1.1      gwr 
    624   1.1      gwr 	/*
    625   1.1      gwr 	 * This is a somewhat unwrapped loop to deal with
    626   1.1      gwr 	 * copying the PROM's 'phsymem' banks into the pmap's
    627   1.1      gwr 	 * banks.  The following is always assumed:
    628   1.1      gwr 	 * 1. There is always at least one bank of memory.
    629   1.1      gwr 	 * 2. There is always a last bank of memory, and its
    630   1.1      gwr 	 *    pmem_next member must be set to NULL.
    631   1.1      gwr 	 * XXX - Use: do { ... } while (membank->next) instead?
    632   1.1      gwr 	 * XXX - Why copy this stuff at all? -gwr
    633   1.8      gwr 	 *     - It is needed in pa2pv().
    634   1.1      gwr 	 */
    635   1.1      gwr 	membank = romVectorPtr->v_physmemory;
    636   1.1      gwr 	pmap_membank = avail_mem;
    637   1.1      gwr 	total_phys_mem = 0;
    638   1.1      gwr 
    639   1.1      gwr 	while (membank->next) {
    640   1.1      gwr 		pmap_membank->pmem_start = membank->address;
    641   1.1      gwr 		pmap_membank->pmem_end = membank->address + membank->size;
    642   1.1      gwr 		total_phys_mem += membank->size;
    643   1.1      gwr 		/* This silly syntax arises because pmap_membank
    644   1.1      gwr 		 * is really a pre-allocated array, but it is put into
    645   1.1      gwr 		 * use as a linked list.
    646   1.1      gwr 		 */
    647   1.1      gwr 		pmap_membank->pmem_next = pmap_membank + 1;
    648   1.1      gwr 		pmap_membank = pmap_membank->pmem_next;
    649   1.1      gwr 		membank = membank->next;
    650   1.1      gwr 	}
    651   1.1      gwr 
    652   1.1      gwr 	/*
    653   1.1      gwr 	 * XXX The last bank of memory should be reduced to exclude the
    654   1.1      gwr 	 * physical pages needed by the PROM monitor from being used
    655   1.1      gwr 	 * in the VM system.  XXX - See below - Fix!
    656   1.1      gwr 	 */
    657   1.1      gwr 	pmap_membank->pmem_start = membank->address;
    658   1.1      gwr 	pmap_membank->pmem_end = membank->address + membank->size;
    659   1.1      gwr 	pmap_membank->pmem_next = NULL;
    660   1.1      gwr 
    661   1.1      gwr #if 0	/* XXX - Need to integrate this! */
    662   1.1      gwr 	/*
    663   1.1      gwr 	 * The last few pages of physical memory are "owned" by
    664   1.1      gwr 	 * the PROM.  The total amount of memory we are allowed
    665   1.1      gwr 	 * to use is given by the romvec pointer. -gwr
    666   1.1      gwr 	 *
    667   1.1      gwr 	 * We should dedicate different variables for 'useable'
    668   1.1      gwr 	 * and 'physically available'.  Most users are used to the
    669   1.1      gwr 	 * kernel reporting the amount of memory 'physically available'
    670   1.1      gwr 	 * as opposed to 'useable by the kernel' at boot time. -j
    671   1.1      gwr 	 */
    672   1.1      gwr 	total_phys_mem = *romVectorPtr->memoryAvail;
    673   1.1      gwr #endif	/* XXX */
    674   1.1      gwr 
    675   1.1      gwr 	total_phys_mem += membank->size;	/* XXX see above */
    676   1.1      gwr 	physmem = btoc(total_phys_mem);
    677   1.7      gwr 
    678   1.7      gwr 	/*
    679   1.7      gwr 	 * Avail_end is set to the first byte of physical memory
    680   1.7      gwr 	 * after the end of the last bank.  We use this only to
    681   1.7      gwr 	 * determine if a physical address is "managed" memory.
    682   1.8      gwr 	 *
    683   1.8      gwr 	 * XXX - The setting of avail_end is a temporary ROM saving hack.
    684   1.7      gwr 	 */
    685   1.8      gwr 	avail_end = pmap_membank->pmem_end -
    686   1.8      gwr 		(total_phys_mem - *romVectorPtr->memoryAvail);
    687   1.1      gwr 	avail_end = sun3x_trunc_page(avail_end);
    688   1.1      gwr 
    689   1.1      gwr 	/*
    690   1.1      gwr 	 * The first step is to allocate MMU tables.
    691   1.1      gwr 	 * Note: All must be aligned on 256 byte boundaries.
    692   1.1      gwr 	 *
    693   1.1      gwr 	 * Start with the top level, or 'A' table.
    694   1.1      gwr 	 */
    695   1.1      gwr 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    696   1.7      gwr 	kernAbase = pmap_bootstrap_alloc(size);
    697   1.1      gwr 	bzero(kernAbase, size);
    698   1.1      gwr 
    699   1.7      gwr 	/*
    700   1.7      gwr 	 * Allocate enough B tables to map from KERNBASE to
    701   1.1      gwr 	 * the end of VM.
    702   1.1      gwr 	 */
    703   1.1      gwr 	size = sizeof(mmu_short_dte_t) *
    704   1.1      gwr 		(MMU_A_TBL_SIZE - MMU_TIA(KERNBASE)) * MMU_B_TBL_SIZE;
    705   1.7      gwr 	kernBbase = pmap_bootstrap_alloc(size);
    706   1.1      gwr 	bzero(kernBbase, size);
    707   1.1      gwr 
    708   1.7      gwr 	/*
    709   1.7      gwr 	 * Allocate enough C tables.
    710   1.7      gwr 	 * Note: In order for the PV system to work correctly, the kernel
    711   1.7      gwr 	 * and user-level C tables must be allocated contiguously.
    712   1.7      gwr 	 * Nothing should be allocated between here and the allocation of
    713   1.7      gwr 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    714   1.7      gwr 	 * then compute a pointer for mmuCbase instead of this...
    715   1.7      gwr 	 */
    716   1.1      gwr 	size = sizeof (mmu_short_pte_t) *
    717   1.1      gwr 		(MMU_A_TBL_SIZE - MMU_TIA(KERNBASE))
    718   1.1      gwr 		* MMU_B_TBL_SIZE * MMU_C_TBL_SIZE;
    719   1.7      gwr 	kernCbase = pmap_bootstrap_alloc(size);
    720   1.1      gwr 	bzero(kernCbase, size);
    721   1.1      gwr 
    722   1.7      gwr 	/*
    723   1.7      gwr 	 * Allocate user MMU tables.
    724   1.7      gwr 	 * These must be aligned on 256 byte boundaries.
    725   1.7      gwr 	 *
    726   1.7      gwr 	 * As noted in the comment preceding the allocation of the kernel
    727   1.7      gwr 	 * C tables in pmap_bootstrap(), user-level C tables must be the
    728   1.7      gwr 	 * flush with (up against) the kernel-level C tables.
    729   1.7      gwr 	 */
    730   1.7      gwr 	mmuCbase = (mmu_short_pte_t *)
    731   1.7      gwr 		pmap_bootstrap_alloc(sizeof(mmu_short_pte_t)
    732   1.7      gwr 		* MMU_C_TBL_SIZE
    733   1.7      gwr 		* NUM_C_TABLES);
    734   1.7      gwr 	mmuAbase = (mmu_long_dte_t *)
    735   1.7      gwr 		pmap_bootstrap_alloc(sizeof(mmu_long_dte_t)
    736   1.7      gwr 		* MMU_A_TBL_SIZE
    737   1.7      gwr 		* NUM_A_TABLES);
    738   1.7      gwr 	mmuBbase = (mmu_short_dte_t *)
    739   1.7      gwr 		pmap_bootstrap_alloc(sizeof(mmu_short_dte_t)
    740   1.7      gwr 		* MMU_B_TBL_SIZE
    741   1.7      gwr 		* NUM_B_TABLES);
    742   1.7      gwr 
    743   1.7      gwr 	/*
    744   1.7      gwr 	 * Fill in the never-changing part of the kernel tables.
    745   1.7      gwr 	 * For simplicity, the kernel's mappings will be editable as a
    746   1.1      gwr 	 * flat array of page table entries at kernCbase.  The
    747   1.1      gwr 	 * higher level 'A' and 'B' tables must be initialized to point
    748   1.1      gwr 	 * to this lower one.
    749   1.1      gwr 	 */
    750   1.1      gwr 	b = c = 0;
    751   1.1      gwr 
    752   1.7      gwr 	/*
    753   1.7      gwr 	 * Invalidate all mappings below KERNBASE in the A table.
    754   1.1      gwr 	 * This area has already been zeroed out, but it is good
    755   1.1      gwr 	 * practice to explicitly show that we are interpreting
    756   1.1      gwr 	 * it as a list of A table descriptors.
    757   1.1      gwr 	 */
    758   1.1      gwr 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    759   1.1      gwr 		kernAbase[i].addr.raw = 0;
    760   1.1      gwr 	}
    761   1.1      gwr 
    762   1.7      gwr 	/*
    763   1.7      gwr 	 * Set up the kernel A and B tables so that they will reference the
    764   1.1      gwr 	 * correct spots in the contiguous table of PTEs allocated for the
    765   1.1      gwr 	 * kernel's virtual memory space.
    766   1.1      gwr 	 */
    767   1.1      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    768   1.1      gwr 		kernAbase[i].attr.raw =
    769   1.1      gwr 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    770   1.7      gwr 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    771   1.1      gwr 
    772   1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    773   1.7      gwr 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    774   1.1      gwr 				| MMU_DT_SHORT;
    775   1.1      gwr 			c += MMU_C_TBL_SIZE;
    776   1.1      gwr 		}
    777   1.1      gwr 		b += MMU_B_TBL_SIZE;
    778   1.1      gwr 	}
    779   1.1      gwr 
    780   1.8      gwr 	/* XXX - Doing kernel_pmap a little further down. */
    781   1.8      gwr 
    782   1.7      gwr 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    783   1.7      gwr 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    784   1.7      gwr 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    785   1.7      gwr 
    786   1.7      gwr 	/*
    787   1.7      gwr 	 * We are now done with pmap_bootstrap_alloc().  Round up
    788   1.7      gwr 	 * `virtual_avail' to the nearest page, and set the flag
    789   1.7      gwr 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    790   1.7      gwr 	 */
    791   1.7      gwr 	pmap_bootstrap_aalign(NBPG);
    792   1.7      gwr 	bootstrap_alloc_enabled = FALSE;
    793   1.7      gwr 
    794   1.7      gwr 	/*
    795   1.7      gwr 	 * Now that we are done with pmap_bootstrap_alloc(), we
    796   1.7      gwr 	 * must save the virtual and physical addresses of the
    797   1.7      gwr 	 * end of the linearly mapped range, which are stored in
    798   1.7      gwr 	 * virtual_contig_end and avail_start, respectively.
    799   1.7      gwr 	 * These variables will never change after this point.
    800   1.7      gwr 	 */
    801   1.7      gwr 	virtual_contig_end = virtual_avail;
    802   1.7      gwr 	avail_start = virtual_avail - KERNBASE;
    803   1.7      gwr 
    804   1.7      gwr 	/*
    805   1.7      gwr 	 * `avail_next' is a running pointer used by pmap_next_page() to
    806   1.7      gwr 	 * keep track of the next available physical page to be handed
    807   1.7      gwr 	 * to the VM system during its initialization, in which it
    808   1.7      gwr 	 * asks for physical pages, one at a time.
    809   1.7      gwr 	 */
    810   1.7      gwr 	avail_next = avail_start;
    811   1.7      gwr 
    812   1.7      gwr 	/*
    813   1.7      gwr 	 * Now allocate some virtual addresses, but not the physical pages
    814   1.7      gwr 	 * behind them.  Note that virtual_avail is already page-aligned.
    815   1.7      gwr 	 *
    816   1.7      gwr 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    817   1.7      gwr 	 * kernel mappings in the pmap module to facilitate various physical
    818   1.7      gwr 	 * address-oritented operations.
    819   1.7      gwr 	 */
    820   1.7      gwr 	tmp_vpages[0] = virtual_avail;
    821   1.7      gwr 	virtual_avail += NBPG;
    822   1.7      gwr 	tmp_vpages[1] = virtual_avail;
    823   1.7      gwr 	virtual_avail += NBPG;
    824   1.7      gwr 
    825   1.7      gwr 	/** Initialize the PV system **/
    826   1.7      gwr 	pmap_init_pv();
    827   1.7      gwr 
    828   1.7      gwr 	/*
    829   1.7      gwr 	 * Fill in the kernel_pmap structure and kernel_crp.
    830   1.7      gwr 	 */
    831   1.7      gwr 	kernAphys = mmu_vtop(kernAbase);
    832   1.7      gwr 	kernel_pmap.pm_a_tmgr = NULL;
    833   1.7      gwr 	kernel_pmap.pm_a_phys = kernAphys;
    834   1.7      gwr 	kernel_pmap.pm_refcount = 1; /* always in use */
    835   1.7      gwr 
    836   1.7      gwr 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    837   1.7      gwr 	kernel_crp.rp_addr = kernAphys;
    838   1.7      gwr 
    839   1.1      gwr 	/*
    840   1.1      gwr 	 * Now pmap_enter_kernel() may be used safely and will be
    841   1.7      gwr 	 * the main interface used hereafter to modify the kernel's
    842   1.7      gwr 	 * virtual address space.  Note that since we are still running
    843   1.7      gwr 	 * under the PROM's address table, none of these table modifications
    844   1.7      gwr 	 * actually take effect until pmap_takeover_mmu() is called.
    845   1.1      gwr 	 *
    846   1.7      gwr 	 * Note: Our tables do NOT have the PROM linear mappings!
    847   1.7      gwr 	 * Only the mappings created here exist in our tables, so
    848   1.7      gwr 	 * remember to map anything we expect to use.
    849   1.1      gwr 	 */
    850   1.1      gwr 	va = (vm_offset_t) KERNBASE;
    851   1.7      gwr 	pa = 0;
    852   1.1      gwr 
    853   1.1      gwr 	/*
    854   1.7      gwr 	 * The first page of the kernel virtual address space is the msgbuf
    855   1.7      gwr 	 * page.  The page attributes (data, non-cached) are set here, while
    856   1.7      gwr 	 * the address is assigned to this global pointer in cpu_startup().
    857   1.1      gwr 	 * XXX - Make it non-cached?
    858   1.1      gwr 	 */
    859   1.1      gwr 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    860   1.1      gwr 	va += NBPG; pa += NBPG;
    861   1.1      gwr 
    862   1.7      gwr 	/* Next page is used as the temporary stack. */
    863   1.1      gwr 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    864   1.1      gwr 	va += NBPG; pa += NBPG;
    865   1.1      gwr 
    866   1.1      gwr 	/*
    867   1.1      gwr 	 * Map all of the kernel's text segment as read-only and cacheable.
    868   1.1      gwr 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    869   1.1      gwr 	 * of kernel text and the first bytes of kernel data will often be
    870   1.1      gwr 	 * sharing the same page.  Therefore, the last page of kernel text
    871   1.1      gwr 	 * has to be mapped as read/write, to accomodate the data.
    872   1.1      gwr 	 */
    873   1.1      gwr 	eva = sun3x_trunc_page((vm_offset_t)etext);
    874   1.7      gwr 	for (; va < eva; va += NBPG, pa += NBPG)
    875   1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    876   1.1      gwr 
    877   1.7      gwr 	/*
    878   1.7      gwr 	 * Map all of the kernel's data as read/write and cacheable.
    879   1.7      gwr 	 * This includes: data, BSS, symbols, and everything in the
    880   1.7      gwr 	 * contiguous memory used by pmap_bootstrap_alloc()
    881   1.1      gwr 	 */
    882   1.7      gwr 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    883   1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    884   1.1      gwr 
    885   1.7      gwr 	/*
    886   1.7      gwr 	 * At this point we are almost ready to take over the MMU.  But first
    887   1.7      gwr 	 * we must save the PROM's address space in our map, as we call its
    888   1.7      gwr 	 * routines and make references to its data later in the kernel.
    889   1.1      gwr 	 */
    890   1.7      gwr 	pmap_bootstrap_copyprom();
    891   1.7      gwr 	pmap_takeover_mmu();
    892  1.13      gwr 	pmap_bootstrap_setprom();
    893   1.1      gwr 
    894   1.1      gwr 	/* Notify the VM system of our page size. */
    895   1.1      gwr 	PAGE_SIZE = NBPG;
    896   1.1      gwr 	vm_set_page_size();
    897   1.1      gwr }
    898   1.1      gwr 
    899   1.1      gwr 
    900   1.1      gwr /* pmap_alloc_usermmu			INTERNAL
    901   1.1      gwr  **
    902   1.1      gwr  * Called from pmap_bootstrap() to allocate MMU tables that will
    903   1.1      gwr  * eventually be used for user mappings.
    904   1.1      gwr  */
    905   1.1      gwr void
    906   1.1      gwr pmap_alloc_usermmu()
    907   1.1      gwr {
    908   1.7      gwr 	/* XXX: Moved into caller. */
    909   1.1      gwr }
    910   1.1      gwr 
    911   1.1      gwr /* pmap_alloc_pv			INTERNAL
    912   1.1      gwr  **
    913   1.1      gwr  * Called from pmap_bootstrap() to allocate the physical
    914   1.1      gwr  * to virtual mapping list.  Each physical page of memory
    915   1.1      gwr  * in the system has a corresponding element in this list.
    916   1.1      gwr  */
    917   1.1      gwr void
    918   1.1      gwr pmap_alloc_pv()
    919   1.1      gwr {
    920   1.1      gwr 	int	i;
    921   1.1      gwr 	unsigned int	total_mem;
    922   1.1      gwr 
    923   1.7      gwr 	/*
    924   1.7      gwr 	 * Allocate a pv_head structure for every page of physical
    925   1.1      gwr 	 * memory that will be managed by the system.  Since memory on
    926   1.1      gwr 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    927   1.1      gwr 	 * count by subtraction of the lowest available address from the
    928   1.1      gwr 	 * highest, but rather we have to step through each memory
    929   1.1      gwr 	 * bank and add the number of pages in each to the total.
    930   1.1      gwr 	 *
    931   1.1      gwr 	 * At this time we also initialize the offset of each bank's
    932   1.1      gwr 	 * starting pv_head within the pv_head list so that the physical
    933   1.1      gwr 	 * memory state routines (pmap_is_referenced(),
    934   1.1      gwr 	 * pmap_is_modified(), et al.) can quickly find coresponding
    935   1.1      gwr 	 * pv_heads in spite of the non-contiguity.
    936   1.1      gwr 	 */
    937   1.1      gwr 	total_mem = 0;
    938   1.1      gwr 	for (i = 0; i < SUN3X_80_MEM_BANKS; i++) {
    939   1.1      gwr 		avail_mem[i].pmem_pvbase = sun3x_btop(total_mem);
    940   1.1      gwr 		total_mem += avail_mem[i].pmem_end -
    941   1.1      gwr 			avail_mem[i].pmem_start;
    942   1.1      gwr 		if (avail_mem[i].pmem_next == NULL)
    943   1.1      gwr 			break;
    944   1.1      gwr 	}
    945   1.1      gwr #ifdef	PMAP_DEBUG
    946   1.1      gwr 	if (total_mem != total_phys_mem)
    947   1.1      gwr 		panic("pmap_alloc_pv did not arrive at correct page count");
    948   1.1      gwr #endif
    949   1.1      gwr 
    950   1.1      gwr 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    951   1.1      gwr 		sun3x_btop(total_phys_mem));
    952   1.1      gwr }
    953   1.1      gwr 
    954   1.1      gwr /* pmap_alloc_usertmgr			INTERNAL
    955   1.1      gwr  **
    956   1.1      gwr  * Called from pmap_bootstrap() to allocate the structures which
    957   1.1      gwr  * facilitate management of user MMU tables.  Each user MMU table
    958   1.1      gwr  * in the system has one such structure associated with it.
    959   1.1      gwr  */
    960   1.1      gwr void
    961   1.1      gwr pmap_alloc_usertmgr()
    962   1.1      gwr {
    963   1.1      gwr 	/* Allocate user MMU table managers */
    964   1.7      gwr 	/* It would be a lot simpler to just make these BSS, but */
    965   1.7      gwr 	/* we may want to change their size at boot time... -j */
    966   1.1      gwr 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    967   1.1      gwr 		* NUM_A_TABLES);
    968   1.1      gwr 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    969   1.1      gwr 		* NUM_B_TABLES);
    970   1.1      gwr 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    971   1.1      gwr 		* NUM_C_TABLES);
    972   1.1      gwr 
    973   1.7      gwr 	/*
    974   1.7      gwr 	 * Allocate PV list elements for the physical to virtual
    975   1.1      gwr 	 * mapping system.
    976   1.1      gwr 	 */
    977   1.1      gwr 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    978   1.7      gwr 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    979   1.1      gwr }
    980   1.1      gwr 
    981   1.1      gwr /* pmap_bootstrap_copyprom()			INTERNAL
    982   1.1      gwr  **
    983   1.1      gwr  * Copy the PROM mappings into our own tables.  Note, we
    984   1.1      gwr  * can use physical addresses until __bootstrap returns.
    985   1.1      gwr  */
    986   1.1      gwr void
    987   1.1      gwr pmap_bootstrap_copyprom()
    988   1.1      gwr {
    989   1.1      gwr 	MachMonRomVector *romp;
    990   1.1      gwr 	int *mon_ctbl;
    991   1.1      gwr 	mmu_short_pte_t *kpte;
    992   1.1      gwr 	int i, len;
    993   1.1      gwr 
    994   1.1      gwr 	romp = romVectorPtr;
    995   1.1      gwr 
    996   1.1      gwr 	/*
    997   1.1      gwr 	 * Copy the mappings in MON_KDB_START...MONEND
    998   1.1      gwr 	 * Note: mon_ctbl[0] maps MON_KDB_START
    999   1.1      gwr 	 */
   1000   1.1      gwr 	mon_ctbl = *romp->monptaddr;
   1001   1.1      gwr 	i = sun3x_btop(MON_KDB_START - KERNBASE);
   1002   1.1      gwr 	kpte = &kernCbase[i];
   1003   1.1      gwr 	len = sun3x_btop(MONEND - MON_KDB_START);
   1004   1.1      gwr 
   1005   1.1      gwr 	for (i = 0; i < len; i++) {
   1006   1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
   1007   1.1      gwr 	}
   1008   1.1      gwr 
   1009   1.1      gwr 	/*
   1010   1.1      gwr 	 * Copy the mappings at MON_DVMA_BASE (to the end).
   1011   1.1      gwr 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
   1012   1.1      gwr 	 * XXX - This does not appear to be necessary, but
   1013   1.1      gwr 	 * I'm not sure yet if it is or not. -gwr
   1014   1.1      gwr 	 */
   1015   1.1      gwr 	mon_ctbl = *romp->shadowpteaddr;
   1016   1.1      gwr 	i = sun3x_btop(MON_DVMA_BASE - KERNBASE);
   1017   1.1      gwr 	kpte = &kernCbase[i];
   1018   1.1      gwr 	len = sun3x_btop(MON_DVMA_SIZE);
   1019   1.1      gwr 
   1020   1.1      gwr 	for (i = 0; i < len; i++) {
   1021   1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
   1022   1.1      gwr 	}
   1023   1.1      gwr }
   1024   1.1      gwr 
   1025   1.1      gwr /* pmap_takeover_mmu			INTERNAL
   1026   1.1      gwr  **
   1027   1.1      gwr  * Called from pmap_bootstrap() after it has copied enough of the
   1028   1.1      gwr  * PROM mappings into the kernel map so that we can use our own
   1029   1.1      gwr  * MMU table.
   1030   1.1      gwr  */
   1031   1.1      gwr void
   1032   1.1      gwr pmap_takeover_mmu()
   1033   1.1      gwr {
   1034   1.1      gwr 
   1035  1.13      gwr 	loadcrp(&kernel_crp);
   1036   1.1      gwr }
   1037   1.1      gwr 
   1038  1.13      gwr /* pmap_bootstrap_setprom()			INTERNAL
   1039  1.13      gwr  **
   1040  1.13      gwr  * Set the PROM mappings so it can see kernel space.
   1041  1.13      gwr  * Note that physical addresses are used here, which
   1042  1.13      gwr  * we can get away with because this runs with the
   1043  1.13      gwr  * low 1GB set for transparent translation.
   1044  1.13      gwr  */
   1045  1.13      gwr void
   1046  1.13      gwr pmap_bootstrap_setprom()
   1047  1.13      gwr {
   1048  1.13      gwr 	mmu_long_dte_t *mon_dte;
   1049  1.13      gwr 	extern struct mmu_rootptr mon_crp;
   1050  1.13      gwr 	int i;
   1051  1.13      gwr 
   1052  1.13      gwr 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1053  1.13      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1054  1.13      gwr 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1055  1.13      gwr 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1056  1.13      gwr 	}
   1057  1.13      gwr }
   1058  1.13      gwr 
   1059  1.13      gwr 
   1060   1.1      gwr /* pmap_init			INTERFACE
   1061   1.1      gwr  **
   1062   1.1      gwr  * Called at the end of vm_init() to set up the pmap system to go
   1063   1.7      gwr  * into full time operation.  All initialization of kernel_pmap
   1064   1.7      gwr  * should be already done by now, so this should just do things
   1065   1.7      gwr  * needed for user-level pmaps to work.
   1066   1.1      gwr  */
   1067   1.1      gwr void
   1068   1.1      gwr pmap_init()
   1069   1.1      gwr {
   1070   1.1      gwr 	/** Initialize the manager pools **/
   1071   1.1      gwr 	TAILQ_INIT(&a_pool);
   1072   1.1      gwr 	TAILQ_INIT(&b_pool);
   1073   1.1      gwr 	TAILQ_INIT(&c_pool);
   1074   1.1      gwr 
   1075   1.1      gwr 	/**************************************************************
   1076   1.1      gwr 	 * Initialize all tmgr structures and MMU tables they manage. *
   1077   1.1      gwr 	 **************************************************************/
   1078   1.1      gwr 	/** Initialize A tables **/
   1079   1.1      gwr 	pmap_init_a_tables();
   1080   1.1      gwr 	/** Initialize B tables **/
   1081   1.1      gwr 	pmap_init_b_tables();
   1082   1.1      gwr 	/** Initialize C tables **/
   1083   1.1      gwr 	pmap_init_c_tables();
   1084   1.1      gwr }
   1085   1.1      gwr 
   1086   1.1      gwr /* pmap_init_a_tables()			INTERNAL
   1087   1.1      gwr  **
   1088   1.1      gwr  * Initializes all A managers, their MMU A tables, and inserts
   1089   1.1      gwr  * them into the A manager pool for use by the system.
   1090   1.1      gwr  */
   1091   1.1      gwr void
   1092   1.1      gwr pmap_init_a_tables()
   1093   1.1      gwr {
   1094   1.1      gwr 	int i;
   1095   1.1      gwr 	a_tmgr_t *a_tbl;
   1096   1.1      gwr 
   1097   1.1      gwr 	for (i=0; i < NUM_A_TABLES; i++) {
   1098   1.1      gwr 		/* Select the next available A manager from the pool */
   1099   1.1      gwr 		a_tbl = &Atmgrbase[i];
   1100   1.1      gwr 
   1101   1.7      gwr 		/*
   1102   1.7      gwr 		 * Clear its parent entry.  Set its wired and valid
   1103   1.1      gwr 		 * entry count to zero.
   1104   1.1      gwr 		 */
   1105   1.1      gwr 		a_tbl->at_parent = NULL;
   1106   1.1      gwr 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1107   1.1      gwr 
   1108   1.1      gwr 		/* Assign it the next available MMU A table from the pool */
   1109   1.1      gwr 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1110   1.1      gwr 
   1111   1.7      gwr 		/*
   1112   1.7      gwr 		 * Initialize the MMU A table with the table in the `proc0',
   1113   1.1      gwr 		 * or kernel, mapping.  This ensures that every process has
   1114   1.1      gwr 		 * the kernel mapped in the top part of its address space.
   1115   1.1      gwr 		 */
   1116   1.1      gwr 		bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
   1117   1.1      gwr 			sizeof(mmu_long_dte_t));
   1118   1.1      gwr 
   1119   1.7      gwr 		/*
   1120   1.7      gwr 		 * Finally, insert the manager into the A pool,
   1121   1.1      gwr 		 * making it ready to be used by the system.
   1122   1.1      gwr 		 */
   1123   1.1      gwr 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1124   1.1      gwr     }
   1125   1.1      gwr }
   1126   1.1      gwr 
   1127   1.1      gwr /* pmap_init_b_tables()			INTERNAL
   1128   1.1      gwr  **
   1129   1.1      gwr  * Initializes all B table managers, their MMU B tables, and
   1130   1.1      gwr  * inserts them into the B manager pool for use by the system.
   1131   1.1      gwr  */
   1132   1.1      gwr void
   1133   1.1      gwr pmap_init_b_tables()
   1134   1.1      gwr {
   1135   1.1      gwr 	int i,j;
   1136   1.1      gwr 	b_tmgr_t *b_tbl;
   1137   1.1      gwr 
   1138   1.1      gwr 	for (i=0; i < NUM_B_TABLES; i++) {
   1139   1.1      gwr 		/* Select the next available B manager from the pool */
   1140   1.1      gwr 		b_tbl = &Btmgrbase[i];
   1141   1.1      gwr 
   1142   1.1      gwr 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1143   1.1      gwr 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1144   1.1      gwr 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1145   1.1      gwr 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1146   1.1      gwr 
   1147   1.1      gwr 		/* Assign it the next available MMU B table from the pool */
   1148   1.1      gwr 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1149   1.1      gwr 
   1150   1.1      gwr 		/* Invalidate every descriptor in the table */
   1151   1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1152   1.1      gwr 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1153   1.1      gwr 
   1154   1.1      gwr 		/* Insert the manager into the B pool */
   1155   1.1      gwr 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1156   1.1      gwr 	}
   1157   1.1      gwr }
   1158   1.1      gwr 
   1159   1.1      gwr /* pmap_init_c_tables()			INTERNAL
   1160   1.1      gwr  **
   1161   1.1      gwr  * Initializes all C table managers, their MMU C tables, and
   1162   1.1      gwr  * inserts them into the C manager pool for use by the system.
   1163   1.1      gwr  */
   1164   1.1      gwr void
   1165   1.1      gwr pmap_init_c_tables()
   1166   1.1      gwr {
   1167   1.1      gwr 	int i,j;
   1168   1.1      gwr 	c_tmgr_t *c_tbl;
   1169   1.1      gwr 
   1170   1.1      gwr 	for (i=0; i < NUM_C_TABLES; i++) {
   1171   1.1      gwr 		/* Select the next available C manager from the pool */
   1172   1.1      gwr 		c_tbl = &Ctmgrbase[i];
   1173   1.1      gwr 
   1174   1.1      gwr 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1175   1.1      gwr 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1176   1.1      gwr 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1177   1.1      gwr 		c_tbl->ct_ecnt = 0;		/* valid entry count. */
   1178   1.1      gwr 
   1179   1.1      gwr 		/* Assign it the next available MMU C table from the pool */
   1180   1.1      gwr 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1181   1.1      gwr 
   1182   1.1      gwr 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1183   1.1      gwr 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1184   1.1      gwr 
   1185   1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1186   1.1      gwr 	}
   1187   1.1      gwr }
   1188   1.1      gwr 
   1189   1.1      gwr /* pmap_init_pv()			INTERNAL
   1190   1.1      gwr  **
   1191   1.1      gwr  * Initializes the Physical to Virtual mapping system.
   1192   1.1      gwr  */
   1193   1.1      gwr void
   1194   1.1      gwr pmap_init_pv()
   1195   1.1      gwr {
   1196   1.7      gwr 	int	i;
   1197   1.7      gwr 
   1198   1.7      gwr 	/* Initialize every PV head. */
   1199   1.7      gwr 	for (i = 0; i < sun3x_btop(total_phys_mem); i++) {
   1200   1.7      gwr 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1201   1.7      gwr 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1202   1.7      gwr 	}
   1203   1.7      gwr 
   1204   1.1      gwr 	pv_initialized = TRUE;
   1205   1.1      gwr }
   1206   1.1      gwr 
   1207   1.1      gwr /* get_a_table			INTERNAL
   1208   1.1      gwr  **
   1209   1.1      gwr  * Retrieve and return a level A table for use in a user map.
   1210   1.1      gwr  */
   1211   1.1      gwr a_tmgr_t *
   1212   1.1      gwr get_a_table()
   1213   1.1      gwr {
   1214   1.1      gwr 	a_tmgr_t *tbl;
   1215   1.7      gwr 	pmap_t pmap;
   1216   1.1      gwr 
   1217   1.1      gwr 	/* Get the top A table in the pool */
   1218   1.1      gwr 	tbl = a_pool.tqh_first;
   1219   1.7      gwr 	if (tbl == NULL) {
   1220   1.7      gwr 		/*
   1221   1.7      gwr 		 * XXX - Instead of panicing here and in other get_x_table
   1222   1.7      gwr 		 * functions, we do have the option of sleeping on the head of
   1223   1.7      gwr 		 * the table pool.  Any function which updates the table pool
   1224   1.7      gwr 		 * would then issue a wakeup() on the head, thus waking up any
   1225   1.7      gwr 		 * processes waiting for a table.
   1226   1.7      gwr 		 *
   1227   1.7      gwr 		 * Actually, the place to sleep would be when some process
   1228   1.7      gwr 		 * asks for a "wired" mapping that would run us short of
   1229   1.7      gwr 		 * mapping resources.  This design DEPENDS on always having
   1230   1.7      gwr 		 * some mapping resources in the pool for stealing, so we
   1231   1.7      gwr 		 * must make sure we NEVER let the pool become empty. -gwr
   1232   1.7      gwr 		 */
   1233   1.1      gwr 		panic("get_a_table: out of A tables.");
   1234   1.7      gwr 	}
   1235   1.7      gwr 
   1236   1.1      gwr 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1237   1.7      gwr 	/*
   1238   1.7      gwr 	 * If the table has a non-null parent pointer then it is in use.
   1239   1.1      gwr 	 * Forcibly abduct it from its parent and clear its entries.
   1240   1.1      gwr 	 * No re-entrancy worries here.  This table would not be in the
   1241   1.1      gwr 	 * table pool unless it was available for use.
   1242   1.7      gwr 	 *
   1243   1.7      gwr 	 * Note that the second argument to free_a_table() is FALSE.  This
   1244   1.7      gwr 	 * indicates that the table should not be relinked into the A table
   1245   1.7      gwr 	 * pool.  That is a job for the function that called us.
   1246   1.1      gwr 	 */
   1247   1.1      gwr 	if (tbl->at_parent) {
   1248   1.7      gwr 		pmap = tbl->at_parent;
   1249   1.8      gwr 		free_a_table(tbl, FALSE);
   1250   1.7      gwr 		pmap->pm_a_tmgr = NULL;
   1251   1.7      gwr 		pmap->pm_a_phys = kernAphys;
   1252   1.1      gwr 	}
   1253   1.1      gwr #ifdef  NON_REENTRANT
   1254   1.7      gwr 	/*
   1255   1.7      gwr 	 * If the table isn't to be wired down, re-insert it at the
   1256   1.1      gwr 	 * end of the pool.
   1257   1.1      gwr 	 */
   1258   1.1      gwr 	if (!wired)
   1259   1.7      gwr 		/*
   1260   1.7      gwr 		 * Quandary - XXX
   1261   1.1      gwr 		 * Would it be better to let the calling function insert this
   1262   1.1      gwr 		 * table into the queue?  By inserting it here, we are allowing
   1263   1.1      gwr 		 * it to be stolen immediately.  The calling function is
   1264   1.1      gwr 		 * probably not expecting to use a table that it is not
   1265   1.1      gwr 		 * assured full control of.
   1266   1.1      gwr 		 * Answer - In the intrest of re-entrancy, it is best to let
   1267   1.1      gwr 		 * the calling function determine when a table is available
   1268   1.1      gwr 		 * for use.  Therefore this code block is not used.
   1269   1.1      gwr 		 */
   1270   1.1      gwr 		TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
   1271   1.1      gwr #endif	/* NON_REENTRANT */
   1272   1.1      gwr 	return tbl;
   1273   1.1      gwr }
   1274   1.1      gwr 
   1275   1.1      gwr /* get_b_table			INTERNAL
   1276   1.1      gwr  **
   1277   1.1      gwr  * Return a level B table for use.
   1278   1.1      gwr  */
   1279   1.1      gwr b_tmgr_t *
   1280   1.1      gwr get_b_table()
   1281   1.1      gwr {
   1282   1.1      gwr 	b_tmgr_t *tbl;
   1283   1.1      gwr 
   1284   1.1      gwr 	/* See 'get_a_table' for comments. */
   1285   1.1      gwr 	tbl = b_pool.tqh_first;
   1286   1.1      gwr 	if (tbl == NULL)
   1287   1.1      gwr 		panic("get_b_table: out of B tables.");
   1288   1.1      gwr 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1289   1.1      gwr 	if (tbl->bt_parent) {
   1290   1.1      gwr 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1291   1.1      gwr 		tbl->bt_parent->at_ecnt--;
   1292   1.8      gwr 		free_b_table(tbl, FALSE);
   1293   1.1      gwr 	}
   1294   1.1      gwr #ifdef	NON_REENTRANT
   1295   1.1      gwr 	if (!wired)
   1296   1.1      gwr 		/* XXX see quandary in get_b_table */
   1297   1.1      gwr 		/* XXX start lock */
   1298   1.1      gwr 		TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
   1299   1.1      gwr 		/* XXX end lock */
   1300   1.1      gwr #endif	/* NON_REENTRANT */
   1301   1.1      gwr 	return tbl;
   1302   1.1      gwr }
   1303   1.1      gwr 
   1304   1.1      gwr /* get_c_table			INTERNAL
   1305   1.1      gwr  **
   1306   1.1      gwr  * Return a level C table for use.
   1307   1.1      gwr  */
   1308   1.1      gwr c_tmgr_t *
   1309   1.1      gwr get_c_table()
   1310   1.1      gwr {
   1311   1.1      gwr 	c_tmgr_t *tbl;
   1312   1.1      gwr 
   1313   1.1      gwr 	/* See 'get_a_table' for comments */
   1314   1.1      gwr 	tbl = c_pool.tqh_first;
   1315   1.1      gwr 	if (tbl == NULL)
   1316   1.1      gwr 		panic("get_c_table: out of C tables.");
   1317   1.1      gwr 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1318   1.1      gwr 	if (tbl->ct_parent) {
   1319   1.1      gwr 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1320   1.1      gwr 		tbl->ct_parent->bt_ecnt--;
   1321   1.8      gwr 		free_c_table(tbl, FALSE);
   1322   1.1      gwr 	}
   1323   1.1      gwr #ifdef	NON_REENTRANT
   1324   1.1      gwr 	if (!wired)
   1325   1.1      gwr 		/* XXX See quandary in get_a_table */
   1326   1.1      gwr 		/* XXX start lock */
   1327   1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
   1328   1.1      gwr 		/* XXX end lock */
   1329   1.1      gwr #endif	/* NON_REENTRANT */
   1330   1.1      gwr 
   1331   1.1      gwr 	return tbl;
   1332   1.1      gwr }
   1333   1.1      gwr 
   1334   1.7      gwr /*
   1335   1.7      gwr  * The following 'free_table' and 'steal_table' functions are called to
   1336   1.1      gwr  * detach tables from their current obligations (parents and children) and
   1337   1.1      gwr  * prepare them for reuse in another mapping.
   1338   1.1      gwr  *
   1339   1.1      gwr  * Free_table is used when the calling function will handle the fate
   1340   1.1      gwr  * of the parent table, such as returning it to the free pool when it has
   1341   1.1      gwr  * no valid entries.  Functions that do not want to handle this should
   1342   1.1      gwr  * call steal_table, in which the parent table's descriptors and entry
   1343   1.1      gwr  * count are automatically modified when this table is removed.
   1344   1.1      gwr  */
   1345   1.1      gwr 
   1346   1.1      gwr /* free_a_table			INTERNAL
   1347   1.1      gwr  **
   1348   1.1      gwr  * Unmaps the given A table and all child tables from their current
   1349   1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1350   1.7      gwr  * If 'relink' is true, the function will return the table to the head
   1351   1.7      gwr  * of the available table pool.
   1352   1.1      gwr  *
   1353   1.1      gwr  * Cache note: The MC68851 will automatically flush all
   1354   1.1      gwr  * descriptors derived from a given A table from its
   1355   1.1      gwr  * Automatic Translation Cache (ATC) if we issue a
   1356   1.1      gwr  * 'PFLUSHR' instruction with the base address of the
   1357   1.1      gwr  * table.  This function should do, and does so.
   1358   1.1      gwr  * Note note: We are using an MC68030 - there is no
   1359   1.1      gwr  * PFLUSHR.
   1360   1.1      gwr  */
   1361   1.1      gwr int
   1362   1.7      gwr free_a_table(a_tbl, relink)
   1363   1.1      gwr 	a_tmgr_t *a_tbl;
   1364   1.7      gwr 	boolean_t relink;
   1365   1.1      gwr {
   1366   1.1      gwr 	int i, removed_cnt;
   1367   1.1      gwr 	mmu_long_dte_t	*dte;
   1368   1.1      gwr 	mmu_short_dte_t *dtbl;
   1369   1.1      gwr 	b_tmgr_t	*tmgr;
   1370   1.1      gwr 
   1371   1.7      gwr 	/*
   1372   1.7      gwr 	 * Flush the ATC cache of all cached descriptors derived
   1373   1.1      gwr 	 * from this table.
   1374   1.1      gwr 	 * XXX - Sun3x does not use 68851's cached table feature
   1375   1.1      gwr 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1376   1.1      gwr 	 */
   1377   1.1      gwr 
   1378   1.7      gwr 	/*
   1379   1.7      gwr 	 * Remove any pending cache flushes that were designated
   1380   1.1      gwr 	 * for the pmap this A table belongs to.
   1381   1.1      gwr 	 * a_tbl->parent->atc_flushq[0] = 0;
   1382   1.1      gwr 	 * XXX - Not implemented in sun3x.
   1383   1.1      gwr 	 */
   1384   1.1      gwr 
   1385   1.7      gwr 	/*
   1386   1.7      gwr 	 * All A tables in the system should retain a map for the
   1387   1.1      gwr 	 * kernel. If the table contains any valid descriptors
   1388   1.1      gwr 	 * (other than those for the kernel area), invalidate them all,
   1389   1.1      gwr 	 * stopping short of the kernel's entries.
   1390   1.1      gwr 	 */
   1391   1.1      gwr 	removed_cnt = 0;
   1392   1.1      gwr 	if (a_tbl->at_ecnt) {
   1393   1.1      gwr 		dte = a_tbl->at_dtbl;
   1394   1.8      gwr 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1395   1.7      gwr 			/*
   1396   1.7      gwr 			 * If a table entry points to a valid B table, free
   1397   1.1      gwr 			 * it and its children.
   1398   1.1      gwr 			 */
   1399   1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1400   1.7      gwr 				/*
   1401   1.7      gwr 				 * The following block does several things,
   1402   1.1      gwr 				 * from innermost expression to the
   1403   1.1      gwr 				 * outermost:
   1404   1.1      gwr 				 * 1) It extracts the base (cc 1996)
   1405   1.1      gwr 				 *    address of the B table pointed
   1406   1.1      gwr 				 *    to in the A table entry dte[i].
   1407   1.1      gwr 				 * 2) It converts this base address into
   1408   1.1      gwr 				 *    the virtual address it can be
   1409   1.1      gwr 				 *    accessed with. (all MMU tables point
   1410   1.1      gwr 				 *    to physical addresses.)
   1411   1.1      gwr 				 * 3) It finds the corresponding manager
   1412   1.1      gwr 				 *    structure which manages this MMU table.
   1413   1.1      gwr 				 * 4) It frees the manager structure.
   1414   1.1      gwr 				 *    (This frees the MMU table and all
   1415   1.1      gwr 				 *    child tables. See 'free_b_table' for
   1416   1.1      gwr 				 *    details.)
   1417   1.1      gwr 				 */
   1418   1.7      gwr 				dtbl = mmu_ptov(dte[i].addr.raw);
   1419   1.1      gwr 				tmgr = mmuB2tmgr(dtbl);
   1420   1.7      gwr 				removed_cnt += free_b_table(tmgr, TRUE);
   1421   1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1422   1.1      gwr 			}
   1423   1.8      gwr 		}
   1424   1.8      gwr 		a_tbl->at_ecnt = 0;
   1425   1.1      gwr 	}
   1426   1.7      gwr 	if (relink) {
   1427   1.7      gwr 		a_tbl->at_parent = NULL;
   1428   1.7      gwr 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1429   1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1430   1.7      gwr 	}
   1431   1.1      gwr 	return removed_cnt;
   1432   1.1      gwr }
   1433   1.1      gwr 
   1434   1.1      gwr /* free_b_table			INTERNAL
   1435   1.1      gwr  **
   1436   1.1      gwr  * Unmaps the given B table and all its children from their current
   1437   1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1438   1.1      gwr  * (For comments, see 'free_a_table()').
   1439   1.1      gwr  */
   1440   1.1      gwr int
   1441   1.7      gwr free_b_table(b_tbl, relink)
   1442   1.1      gwr 	b_tmgr_t *b_tbl;
   1443   1.7      gwr 	boolean_t relink;
   1444   1.1      gwr {
   1445   1.1      gwr 	int i, removed_cnt;
   1446   1.1      gwr 	mmu_short_dte_t *dte;
   1447   1.1      gwr 	mmu_short_pte_t	*dtbl;
   1448   1.1      gwr 	c_tmgr_t	*tmgr;
   1449   1.1      gwr 
   1450   1.1      gwr 	removed_cnt = 0;
   1451   1.1      gwr 	if (b_tbl->bt_ecnt) {
   1452   1.1      gwr 		dte = b_tbl->bt_dtbl;
   1453   1.8      gwr 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1454   1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1455   1.7      gwr 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1456   1.1      gwr 				tmgr = mmuC2tmgr(dtbl);
   1457   1.7      gwr 				removed_cnt += free_c_table(tmgr, TRUE);
   1458   1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1459   1.1      gwr 			}
   1460   1.8      gwr 		}
   1461   1.8      gwr 		b_tbl->bt_ecnt = 0;
   1462   1.1      gwr 	}
   1463   1.1      gwr 
   1464   1.7      gwr 	if (relink) {
   1465   1.7      gwr 		b_tbl->bt_parent = NULL;
   1466   1.7      gwr 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1467   1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1468   1.7      gwr 	}
   1469   1.1      gwr 	return removed_cnt;
   1470   1.1      gwr }
   1471   1.1      gwr 
   1472   1.1      gwr /* free_c_table			INTERNAL
   1473   1.1      gwr  **
   1474   1.1      gwr  * Unmaps the given C table from use and returns it to the pool for
   1475   1.1      gwr  * re-use.  Returns the number of pages that were invalidated.
   1476   1.1      gwr  *
   1477   1.1      gwr  * This function preserves any physical page modification information
   1478   1.1      gwr  * contained in the page descriptors within the C table by calling
   1479   1.1      gwr  * 'pmap_remove_pte().'
   1480   1.1      gwr  */
   1481   1.1      gwr int
   1482   1.7      gwr free_c_table(c_tbl, relink)
   1483   1.1      gwr 	c_tmgr_t *c_tbl;
   1484   1.7      gwr 	boolean_t relink;
   1485   1.1      gwr {
   1486   1.1      gwr 	int i, removed_cnt;
   1487   1.1      gwr 
   1488   1.1      gwr 	removed_cnt = 0;
   1489   1.8      gwr 	if (c_tbl->ct_ecnt) {
   1490   1.8      gwr 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1491   1.1      gwr 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1492   1.1      gwr 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1493   1.1      gwr 				removed_cnt++;
   1494   1.1      gwr 			}
   1495   1.8      gwr 		}
   1496   1.8      gwr 		c_tbl->ct_ecnt = 0;
   1497   1.8      gwr 	}
   1498   1.8      gwr 
   1499   1.7      gwr 	if (relink) {
   1500   1.7      gwr 		c_tbl->ct_parent = NULL;
   1501   1.7      gwr 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1502   1.7      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1503   1.7      gwr 	}
   1504   1.1      gwr 	return removed_cnt;
   1505   1.1      gwr }
   1506   1.1      gwr 
   1507   1.8      gwr #if 0
   1508   1.1      gwr /* free_c_table_novalid			INTERNAL
   1509   1.1      gwr  **
   1510   1.1      gwr  * Frees the given C table manager without checking to see whether
   1511   1.1      gwr  * or not it contains any valid page descriptors as it is assumed
   1512   1.1      gwr  * that it does not.
   1513   1.1      gwr  */
   1514   1.1      gwr void
   1515   1.1      gwr free_c_table_novalid(c_tbl)
   1516   1.1      gwr 	c_tmgr_t *c_tbl;
   1517   1.1      gwr {
   1518   1.1      gwr 	TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1519   1.1      gwr 	TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1520   1.1      gwr 	c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1521   1.7      gwr 	c_tbl->ct_parent->bt_ecnt--;
   1522   1.7      gwr 	/*
   1523   1.7      gwr 	 * XXX - Should call equiv. of 'free_b_table_novalid' here if
   1524   1.7      gwr 	 * we just removed the last entry of the parent B table.
   1525   1.7      gwr 	 * But I want to insure that this will not endanger pmap_enter()
   1526   1.7      gwr 	 * with sudden removal of tables it is working with.
   1527   1.7      gwr 	 *
   1528   1.7      gwr 	 * We should probably add another field to each table, indicating
   1529   1.7      gwr 	 * whether or not it is 'locked', ie. in the process of being
   1530   1.7      gwr 	 * modified.
   1531   1.7      gwr 	 */
   1532   1.7      gwr 	c_tbl->ct_parent = NULL;
   1533   1.1      gwr }
   1534   1.8      gwr #endif
   1535   1.1      gwr 
   1536   1.1      gwr /* pmap_remove_pte			INTERNAL
   1537   1.1      gwr  **
   1538   1.1      gwr  * Unmap the given pte and preserve any page modification
   1539   1.1      gwr  * information by transfering it to the pv head of the
   1540   1.1      gwr  * physical page it maps to.  This function does not update
   1541   1.1      gwr  * any reference counts because it is assumed that the calling
   1542   1.8      gwr  * function will do so.
   1543   1.1      gwr  */
   1544   1.1      gwr void
   1545   1.1      gwr pmap_remove_pte(pte)
   1546   1.1      gwr 	mmu_short_pte_t *pte;
   1547   1.1      gwr {
   1548   1.7      gwr 	u_short     pv_idx, targ_idx;
   1549   1.7      gwr 	int         s;
   1550   1.1      gwr 	vm_offset_t pa;
   1551   1.1      gwr 	pv_t       *pv;
   1552   1.1      gwr 
   1553   1.1      gwr 	pa = MMU_PTE_PA(*pte);
   1554   1.1      gwr 	if (is_managed(pa)) {
   1555   1.1      gwr 		pv = pa2pv(pa);
   1556   1.7      gwr 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1557   1.7      gwr 
   1558   1.7      gwr 		/*
   1559   1.7      gwr 		 * If the PTE being removed is the first (or only) PTE in
   1560   1.7      gwr 		 * the list of PTEs currently mapped to this page, remove the
   1561   1.7      gwr 		 * PTE by changing the index found on the PV head.  Otherwise
   1562   1.7      gwr 		 * a linear search through the list will have to be executed
   1563   1.7      gwr 		 * in order to find the PVE which points to the PTE being
   1564   1.7      gwr 		 * removed, so that it may be modified to point to its new
   1565   1.7      gwr 		 * neighbor.
   1566   1.7      gwr 		 */
   1567   1.7      gwr 		s = splimp();
   1568   1.7      gwr 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1569   1.7      gwr 		if (pv_idx == targ_idx) {
   1570   1.7      gwr 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1571   1.7      gwr 		} else {
   1572   1.7      gwr 			/*
   1573   1.7      gwr 			 * Find the PV element which points to the target
   1574   1.7      gwr 			 * element.
   1575   1.7      gwr 			 */
   1576   1.7      gwr 			while (pvebase[pv_idx].pve_next != targ_idx) {
   1577   1.7      gwr 				pv_idx = pvebase[pv_idx].pve_next;
   1578   1.7      gwr #ifdef	DIAGNOSTIC
   1579   1.7      gwr 				if (pv_idx == PVE_EOL)
   1580   1.7      gwr 					panic("pmap_remove_pte: pv list end!");
   1581   1.7      gwr #endif
   1582   1.7      gwr 			}
   1583   1.7      gwr 
   1584   1.7      gwr 			/*
   1585   1.7      gwr 			 * At this point, pv_idx is the index of the PV
   1586   1.7      gwr 			 * element just before the target element in the list.
   1587   1.7      gwr 			 * Unlink the target.
   1588   1.7      gwr 			 */
   1589   1.7      gwr 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1590   1.7      gwr 		}
   1591   1.7      gwr 		/*
   1592   1.7      gwr 		 * Save the mod/ref bits of the pte by simply
   1593   1.1      gwr 		 * ORing the entire pte onto the pv_flags member
   1594   1.1      gwr 		 * of the pv structure.
   1595   1.1      gwr 		 * There is no need to use a separate bit pattern
   1596   1.1      gwr 		 * for usage information on the pv head than that
   1597   1.1      gwr 		 * which is used on the MMU ptes.
   1598   1.1      gwr 		 */
   1599   1.7      gwr 		pv->pv_flags |= (u_short) pte->attr.raw;
   1600   1.7      gwr 		splx(s);
   1601   1.1      gwr 	}
   1602   1.1      gwr 
   1603   1.1      gwr 	pte->attr.raw = MMU_DT_INVALID;
   1604   1.1      gwr }
   1605   1.1      gwr 
   1606   1.8      gwr #if	0	/* XXX - I am eliminating this function. -j */
   1607   1.1      gwr /* pmap_dereference_pte			INTERNAL
   1608   1.1      gwr  **
   1609   1.1      gwr  * Update the necessary reference counts in any tables and pmaps to
   1610   1.1      gwr  * reflect the removal of the given pte.  Only called when no knowledge of
   1611   1.1      gwr  * the pte's associated pmap is unknown.  This only occurs in the PV call
   1612   1.1      gwr  * 'pmap_page_protect()' with a protection of VM_PROT_NONE, which means
   1613   1.1      gwr  * that all references to a given physical page must be removed.
   1614   1.1      gwr  */
   1615   1.1      gwr void
   1616   1.1      gwr pmap_dereference_pte(pte)
   1617   1.1      gwr 	mmu_short_pte_t *pte;
   1618   1.1      gwr {
   1619   1.7      gwr 	vm_offset_t va;
   1620   1.1      gwr 	c_tmgr_t *c_tbl;
   1621   1.7      gwr 	pmap_t pmap;
   1622   1.1      gwr 
   1623   1.7      gwr 	va = pmap_get_pteinfo(pte, &pmap, &c_tbl);
   1624   1.7      gwr 	/*
   1625   1.7      gwr 	 * Flush the translation cache of the page mapped by the PTE, should
   1626   1.7      gwr 	 * it prove to be in the current pmap.  Kernel mappings appear in
   1627   1.7      gwr 	 * all address spaces, so they always should be flushed
   1628   1.7      gwr 	 */
   1629   1.7      gwr 	if (pmap == pmap_kernel() || pmap == current_pmap())
   1630   1.7      gwr 		TBIS(va);
   1631   1.7      gwr 
   1632   1.7      gwr 	/*
   1633   1.7      gwr 	 * If the mapping belongs to a user map, update the necessary
   1634   1.7      gwr 	 * reference counts in the table manager.  XXX - It would be
   1635   1.7      gwr 	 * much easier to keep the resident count in the c_tmgr_t -gwr
   1636   1.7      gwr 	 */
   1637   1.7      gwr 	if (pmap != pmap_kernel()) {
   1638   1.7      gwr 		/*
   1639   1.7      gwr 		 * Most of the situations in which pmap_dereference_pte() is
   1640   1.7      gwr 		 * called are usually temporary removals of a mapping.  Often
   1641   1.7      gwr 		 * the mapping is reinserted shortly afterwards. If the parent
   1642   1.7      gwr 		 * C table's valid entry count reaches zero as a result of
   1643   1.7      gwr 		 * removing this mapping, we could return it to the free pool,
   1644   1.7      gwr 		 * but we leave it alone because it is likely to be used as
   1645   1.7      gwr 		 * stated above.
   1646   1.7      gwr 		 */
   1647   1.7      gwr 		c_tbl->ct_ecnt--;
   1648   1.7      gwr 		pmap->pm_stats.resident_count--;
   1649   1.7      gwr 	}
   1650   1.1      gwr }
   1651   1.8      gwr #endif	0	/* function elimination */
   1652   1.1      gwr 
   1653   1.1      gwr /* pmap_stroll			INTERNAL
   1654   1.1      gwr  **
   1655   1.1      gwr  * Retrieve the addresses of all table managers involved in the mapping of
   1656   1.1      gwr  * the given virtual address.  If the table walk completed sucessfully,
   1657   1.7      gwr  * return TRUE.  If it was only partially sucessful, return FALSE.
   1658   1.1      gwr  * The table walk performed by this function is important to many other
   1659   1.1      gwr  * functions in this module.
   1660   1.7      gwr  *
   1661   1.7      gwr  * Note: This function ought to be easier to read.
   1662   1.1      gwr  */
   1663   1.1      gwr boolean_t
   1664   1.1      gwr pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1665   1.1      gwr 	pmap_t pmap;
   1666   1.1      gwr 	vm_offset_t va;
   1667   1.1      gwr 	a_tmgr_t **a_tbl;
   1668   1.1      gwr 	b_tmgr_t **b_tbl;
   1669   1.1      gwr 	c_tmgr_t **c_tbl;
   1670   1.1      gwr 	mmu_short_pte_t **pte;
   1671   1.1      gwr 	int *a_idx, *b_idx, *pte_idx;
   1672   1.1      gwr {
   1673   1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1674   1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1675   1.1      gwr 
   1676   1.1      gwr 	if (pmap == pmap_kernel())
   1677   1.1      gwr 		return FALSE;
   1678   1.1      gwr 
   1679   1.7      gwr 	/* Does the given pmap have its own A table? */
   1680   1.7      gwr 	*a_tbl = pmap->pm_a_tmgr;
   1681   1.1      gwr 	if (*a_tbl == NULL)
   1682   1.1      gwr 		return FALSE; /* No.  Return unknown. */
   1683   1.1      gwr 	/* Does the A table have a valid B table
   1684   1.1      gwr 	 * under the corresponding table entry?
   1685   1.1      gwr 	 */
   1686   1.1      gwr 	*a_idx = MMU_TIA(va);
   1687   1.1      gwr 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1688   1.1      gwr 	if (!MMU_VALID_DT(*a_dte))
   1689   1.1      gwr 		return FALSE; /* No. Return unknown. */
   1690   1.1      gwr 	/* Yes. Extract B table from the A table. */
   1691   1.7      gwr 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1692   1.1      gwr 	/* Does the B table have a valid C table
   1693   1.1      gwr 	 * under the corresponding table entry?
   1694   1.1      gwr 	 */
   1695   1.1      gwr 	*b_idx = MMU_TIB(va);
   1696   1.1      gwr 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1697   1.1      gwr 	if (!MMU_VALID_DT(*b_dte))
   1698   1.1      gwr 		return FALSE; /* No. Return unknown. */
   1699   1.1      gwr 	/* Yes. Extract C table from the B table. */
   1700   1.7      gwr 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1701   1.1      gwr 	*pte_idx = MMU_TIC(va);
   1702   1.1      gwr 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1703   1.1      gwr 
   1704   1.1      gwr 	return	TRUE;
   1705   1.1      gwr }
   1706   1.1      gwr 
   1707   1.1      gwr /* pmap_enter			INTERFACE
   1708   1.1      gwr  **
   1709   1.1      gwr  * Called by the kernel to map a virtual address
   1710   1.1      gwr  * to a physical address in the given process map.
   1711   1.1      gwr  *
   1712   1.1      gwr  * Note: this function should apply an exclusive lock
   1713   1.1      gwr  * on the pmap system for its duration.  (it certainly
   1714   1.1      gwr  * would save my hair!!)
   1715   1.7      gwr  * This function ought to be easier to read.
   1716   1.1      gwr  */
   1717   1.1      gwr void
   1718   1.1      gwr pmap_enter(pmap, va, pa, prot, wired)
   1719   1.1      gwr 	pmap_t	pmap;
   1720   1.1      gwr 	vm_offset_t va;
   1721   1.1      gwr 	vm_offset_t pa;
   1722   1.1      gwr 	vm_prot_t prot;
   1723   1.1      gwr 	boolean_t wired;
   1724   1.1      gwr {
   1725   1.7      gwr 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1726   1.7      gwr 	u_short nidx;            /* PV list index                     */
   1727   1.7      gwr 	int s;                   /* Used for splimp()/splx()          */
   1728   1.7      gwr 	int flags;               /* Mapping flags. eg. Cache inhibit  */
   1729   1.8      gwr 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1730   1.1      gwr 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1731   1.1      gwr 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1732   1.1      gwr 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1733   1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1734   1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1735   1.1      gwr 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1736   1.1      gwr 	pv_t      *pv;           /* pv list head                      */
   1737   1.1      gwr 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1738   1.1      gwr 
   1739   1.1      gwr 	if (pmap == NULL)
   1740   1.1      gwr 		return;
   1741   1.1      gwr 	if (pmap == pmap_kernel()) {
   1742   1.1      gwr 		pmap_enter_kernel(va, pa, prot);
   1743   1.1      gwr 		return;
   1744   1.1      gwr 	}
   1745   1.7      gwr 
   1746   1.7      gwr 	flags  = (pa & ~MMU_PAGE_MASK);
   1747   1.7      gwr 	pa    &= MMU_PAGE_MASK;
   1748   1.7      gwr 
   1749   1.7      gwr 	/*
   1750   1.7      gwr 	 * Determine if the physical address being mapped is managed.
   1751   1.7      gwr 	 * If it isn't, the mapping should be cache inhibited.  (This is
   1752   1.7      gwr 	 * applied later in the function.)   XXX - Why non-cached? -gwr
   1753   1.7      gwr 	 */
   1754   1.7      gwr 	if ((managed = is_managed(pa)) == FALSE)
   1755   1.7      gwr 		flags |= PMAP_NC;
   1756   1.7      gwr 
   1757   1.7      gwr 	/*
   1758   1.7      gwr 	 * For user mappings we walk along the MMU tables of the given
   1759   1.1      gwr 	 * pmap, reaching a PTE which describes the virtual page being
   1760   1.1      gwr 	 * mapped or changed.  If any level of the walk ends in an invalid
   1761   1.1      gwr 	 * entry, a table must be allocated and the entry must be updated
   1762   1.1      gwr 	 * to point to it.
   1763   1.1      gwr 	 * There is a bit of confusion as to whether this code must be
   1764   1.1      gwr 	 * re-entrant.  For now we will assume it is.  To support
   1765   1.1      gwr 	 * re-entrancy we must unlink tables from the table pool before
   1766   1.1      gwr 	 * we assume we may use them.  Tables are re-linked into the pool
   1767   1.1      gwr 	 * when we are finished with them at the end of the function.
   1768   1.1      gwr 	 * But I don't feel like doing that until we have proof that this
   1769   1.1      gwr 	 * needs to be re-entrant.
   1770   1.1      gwr 	 * 'llevel' records which tables need to be relinked.
   1771   1.1      gwr 	 */
   1772   1.1      gwr 	llevel = NONE;
   1773   1.1      gwr 
   1774   1.7      gwr 	/*
   1775   1.7      gwr 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1776   1.7      gwr 	 * A table, allocate a new one from the available pool.
   1777   1.1      gwr 	 */
   1778   1.1      gwr 
   1779   1.7      gwr 	a_tbl = pmap->pm_a_tmgr;
   1780   1.7      gwr 	if (a_tbl == NULL) {
   1781   1.7      gwr 		/*
   1782   1.7      gwr 		 * This pmap does not currently have an A table.  Allocate
   1783   1.7      gwr 		 * a new one.
   1784   1.7      gwr 		 */
   1785   1.7      gwr 		a_tbl = get_a_table();
   1786   1.7      gwr 		a_tbl->at_parent = pmap;
   1787   1.7      gwr 
   1788   1.7      gwr 		/*
   1789   1.7      gwr 		 * Assign this new A table to the pmap, and calculate its
   1790   1.7      gwr 		 * physical address so that loadcrp() can be used to make
   1791   1.7      gwr 		 * the table active.
   1792   1.7      gwr 		 */
   1793   1.7      gwr 		pmap->pm_a_tmgr = a_tbl;
   1794   1.7      gwr 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1795   1.7      gwr 
   1796   1.7      gwr 		/*
   1797   1.7      gwr 		 * If the process receiving a new A table is the current
   1798   1.7      gwr 		 * process, we are responsible for setting the MMU so that
   1799   1.9      gwr 		 * it becomes the current address space.  This only adds
   1800   1.9      gwr 		 * new mappings, so no need to flush anything.
   1801   1.7      gwr 		 */
   1802   1.9      gwr 		if (pmap == current_pmap()) {
   1803   1.9      gwr 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1804   1.9      gwr 			loadcrp(&kernel_crp);
   1805   1.9      gwr 		}
   1806   1.7      gwr 
   1807   1.1      gwr 		if (!wired)
   1808   1.1      gwr 			llevel = NEWA;
   1809   1.1      gwr 	} else {
   1810   1.7      gwr 		/*
   1811   1.7      gwr 		 * Use the A table already allocated for this pmap.
   1812   1.1      gwr 		 * Unlink it from the A table pool if necessary.
   1813   1.1      gwr 		 */
   1814   1.1      gwr 		if (wired && !a_tbl->at_wcnt)
   1815   1.1      gwr 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1816   1.1      gwr 	}
   1817   1.1      gwr 
   1818   1.7      gwr 	/*
   1819   1.7      gwr 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1820   1.1      gwr 	 * allocate one.
   1821   1.1      gwr 	 */
   1822   1.1      gwr 
   1823   1.1      gwr 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1824   1.1      gwr 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1825   1.1      gwr 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1826   1.7      gwr 		/* The descriptor is valid.  Use the B table it points to. */
   1827   1.1      gwr 		/*************************************
   1828   1.1      gwr 		 *               a_idx               *
   1829   1.1      gwr 		 *                 v                 *
   1830   1.1      gwr 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1831   1.1      gwr 		 *          | | | | | | | | | | | |  *
   1832   1.1      gwr 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1833   1.1      gwr 		 *                 |                 *
   1834   1.1      gwr 		 *                 \- b_tbl -> +-+-  *
   1835   1.1      gwr 		 *                             | |   *
   1836   1.1      gwr 		 *                             +-+-  *
   1837   1.1      gwr 		 *************************************/
   1838   1.7      gwr 		b_dte = mmu_ptov(a_dte->addr.raw);
   1839   1.1      gwr 		b_tbl = mmuB2tmgr(b_dte);
   1840   1.7      gwr 
   1841   1.7      gwr 		/*
   1842   1.7      gwr 		 * If the requested mapping must be wired, but this table
   1843   1.7      gwr 		 * being used to map it is not, the table must be removed
   1844   1.7      gwr 		 * from the available pool and its wired entry count
   1845   1.7      gwr 		 * incremented.
   1846   1.7      gwr 		 */
   1847   1.1      gwr 		if (wired && !b_tbl->bt_wcnt) {
   1848   1.1      gwr 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1849   1.7      gwr 			a_tbl->at_wcnt++;
   1850   1.1      gwr 		}
   1851   1.1      gwr 	} else {
   1852   1.7      gwr 		/* The descriptor is invalid.  Allocate a new B table. */
   1853   1.7      gwr 		b_tbl = get_b_table();
   1854   1.7      gwr 
   1855   1.1      gwr 		/* Point the parent A table descriptor to this new B table. */
   1856   1.7      gwr 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1857   1.7      gwr 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1858   1.7      gwr 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1859   1.7      gwr 
   1860   1.1      gwr 		/* Create the necessary back references to the parent table */
   1861   1.1      gwr 		b_tbl->bt_parent = a_tbl;
   1862   1.1      gwr 		b_tbl->bt_pidx = a_idx;
   1863   1.7      gwr 
   1864   1.7      gwr 		/*
   1865   1.7      gwr 		 * If this table is to be wired, make sure the parent A table
   1866   1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1867   1.1      gwr 		 * entry.
   1868   1.1      gwr 		 */
   1869   1.1      gwr 		if (wired)
   1870   1.1      gwr 			a_tbl->at_wcnt++;
   1871   1.1      gwr 		else if (llevel == NONE)
   1872   1.1      gwr 			llevel = NEWB;
   1873   1.1      gwr 	}
   1874   1.1      gwr 
   1875   1.7      gwr 	/*
   1876   1.7      gwr 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1877   1.1      gwr 	 * allocate one.
   1878   1.1      gwr 	 */
   1879   1.1      gwr 
   1880   1.1      gwr 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1881   1.1      gwr 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1882   1.1      gwr 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1883   1.7      gwr 		/* The descriptor is valid.  Use the C table it points to. */
   1884   1.1      gwr 		/**************************************
   1885   1.1      gwr 		 *               c_idx                *
   1886   1.1      gwr 		 * |                v                 *
   1887   1.1      gwr 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1888   1.1      gwr 		 *             | | | | | | | | | | |  *
   1889   1.1      gwr 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1890   1.1      gwr 		 *                  |                 *
   1891   1.1      gwr 		 *                  \- c_tbl -> +-+-- *
   1892   1.1      gwr 		 *                              | | | *
   1893   1.1      gwr 		 *                              +-+-- *
   1894   1.1      gwr 		 **************************************/
   1895   1.7      gwr 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1896   1.1      gwr 		c_tbl = mmuC2tmgr(c_pte);
   1897   1.7      gwr 
   1898   1.7      gwr 		/* If mapping is wired and table is not */
   1899   1.1      gwr 		if (wired && !c_tbl->ct_wcnt) {
   1900   1.1      gwr 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1901   1.1      gwr 			b_tbl->bt_wcnt++;
   1902   1.1      gwr 		}
   1903   1.1      gwr 	} else {
   1904   1.7      gwr 		/* The descriptor is invalid.  Allocate a new C table. */
   1905   1.7      gwr 		c_tbl = get_c_table();
   1906   1.7      gwr 
   1907   1.1      gwr 		/* Point the parent B table descriptor to this new C table. */
   1908   1.7      gwr 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1909   1.7      gwr 		b_dte->attr.raw |= MMU_DT_SHORT;
   1910   1.7      gwr 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1911   1.7      gwr 
   1912   1.1      gwr 		/* Create the necessary back references to the parent table */
   1913   1.1      gwr 		c_tbl->ct_parent = b_tbl;
   1914   1.1      gwr 		c_tbl->ct_pidx = b_idx;
   1915   1.7      gwr 
   1916   1.7      gwr 		/*
   1917   1.7      gwr 		 * If this table is to be wired, make sure the parent B table
   1918   1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1919   1.1      gwr 		 * entry.
   1920   1.1      gwr 		 */
   1921   1.1      gwr 		if (wired)
   1922   1.1      gwr 			b_tbl->bt_wcnt++;
   1923   1.1      gwr 		else if (llevel == NONE)
   1924   1.1      gwr 			llevel = NEWC;
   1925   1.1      gwr 	}
   1926   1.1      gwr 
   1927   1.7      gwr 	/*
   1928   1.7      gwr 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1929   1.1      gwr 	 * slot of the C table, describing the PA to which the VA is mapped.
   1930   1.1      gwr 	 */
   1931   1.1      gwr 
   1932   1.1      gwr 	pte_idx = MMU_TIC(va);
   1933   1.1      gwr 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1934   1.1      gwr 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1935   1.7      gwr 		/*
   1936   1.7      gwr 		 * The PTE is currently valid.  This particular call
   1937   1.1      gwr 		 * is just a synonym for one (or more) of the following
   1938   1.1      gwr 		 * operations:
   1939   1.7      gwr 		 *     change protection of a page
   1940   1.1      gwr 		 *     change wiring status of a page
   1941   1.1      gwr 		 *     remove the mapping of a page
   1942   1.7      gwr 		 *
   1943   1.7      gwr 		 * XXX - Semi critical: This code should unwire the PTE
   1944   1.7      gwr 		 * and, possibly, associated parent tables if this is a
   1945   1.7      gwr 		 * change wiring operation.  Currently it does not.
   1946   1.7      gwr 		 *
   1947   1.7      gwr 		 * This may be ok if pmap_change_wiring() is the only
   1948   1.7      gwr 		 * interface used to UNWIRE a page.
   1949   1.1      gwr 		 */
   1950   1.7      gwr 
   1951   1.7      gwr 		/* First check if this is a wiring operation. */
   1952   1.7      gwr 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1953   1.7      gwr 			/*
   1954   1.7      gwr 			 * The PTE is already wired.  To prevent it from being
   1955   1.7      gwr 			 * counted as a new wiring operation, reset the 'wired'
   1956   1.7      gwr 			 * variable.
   1957   1.7      gwr 			 */
   1958   1.7      gwr 			wired = FALSE;
   1959   1.7      gwr 		}
   1960   1.7      gwr 
   1961   1.1      gwr 		/* Is the new address the same as the old? */
   1962   1.1      gwr 		if (MMU_PTE_PA(*c_pte) == pa) {
   1963   1.7      gwr 			/*
   1964   1.7      gwr 			 * Yes, mark that it does not need to be reinserted
   1965   1.7      gwr 			 * into the PV list.
   1966   1.7      gwr 			 */
   1967   1.7      gwr 			insert = FALSE;
   1968   1.7      gwr 
   1969   1.7      gwr 			/*
   1970   1.7      gwr 			 * Clear all but the modified, referenced and wired
   1971   1.7      gwr 			 * bits on the PTE.
   1972   1.7      gwr 			 */
   1973   1.7      gwr 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1974   1.7      gwr 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1975   1.1      gwr 		} else {
   1976   1.1      gwr 			/* No, remove the old entry */
   1977   1.1      gwr 			pmap_remove_pte(c_pte);
   1978   1.7      gwr 			insert = TRUE;
   1979   1.1      gwr 		}
   1980   1.8      gwr 
   1981   1.8      gwr 		/*
   1982   1.8      gwr 		 * TLB flush is only necessary if modifying current map.
   1983   1.8      gwr 		 * However, in pmap_enter(), the pmap almost always IS
   1984   1.8      gwr 		 * the current pmap, so don't even bother to check.
   1985   1.8      gwr 		 */
   1986   1.8      gwr 		TBIS(va);
   1987   1.1      gwr 	} else {
   1988   1.7      gwr 		/*
   1989   1.7      gwr 		 * The PTE is invalid.  Increment the valid entry count in
   1990   1.8      gwr 		 * the C table manager to reflect the addition of a new entry.
   1991   1.7      gwr 		 */
   1992   1.1      gwr 		c_tbl->ct_ecnt++;
   1993   1.8      gwr 
   1994   1.8      gwr 		/* XXX - temporarily make sure the PTE is cleared. */
   1995   1.8      gwr 		c_pte->attr.raw = 0;
   1996   1.1      gwr 
   1997   1.7      gwr 		/* It will also need to be inserted into the PV list. */
   1998   1.7      gwr 		insert = TRUE;
   1999   1.7      gwr 	}
   2000   1.7      gwr 
   2001   1.7      gwr 	/*
   2002   1.7      gwr 	 * If page is changing from unwired to wired status, set an unused bit
   2003   1.7      gwr 	 * within the PTE to indicate that it is wired.  Also increment the
   2004   1.7      gwr 	 * wired entry count in the C table manager.
   2005   1.7      gwr 	 */
   2006   1.7      gwr 	if (wired) {
   2007   1.1      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   2008   1.7      gwr 		c_tbl->ct_wcnt++;
   2009   1.1      gwr 	}
   2010   1.1      gwr 
   2011   1.7      gwr 	/*
   2012   1.7      gwr 	 * Map the page, being careful to preserve modify/reference/wired
   2013   1.7      gwr 	 * bits.  At this point it is assumed that the PTE either has no bits
   2014   1.7      gwr 	 * set, or if there are set bits, they are only modified, reference or
   2015   1.7      gwr 	 * wired bits.  If not, the following statement will cause erratic
   2016   1.7      gwr 	 * behavior.
   2017   1.7      gwr 	 */
   2018   1.8      gwr #ifdef	PMAP_DEBUG
   2019   1.7      gwr 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   2020   1.7      gwr 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   2021   1.7      gwr 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   2022   1.7      gwr 		Debugger();
   2023   1.7      gwr 	}
   2024   1.7      gwr #endif
   2025   1.7      gwr 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   2026   1.7      gwr 
   2027   1.7      gwr 	/*
   2028   1.7      gwr 	 * If the mapping should be read-only, set the write protect
   2029   1.7      gwr 	 * bit in the PTE.
   2030   1.7      gwr 	 */
   2031   1.7      gwr 	if (!(prot & VM_PROT_WRITE))
   2032   1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   2033   1.7      gwr 
   2034   1.7      gwr 	/*
   2035   1.7      gwr 	 * If the mapping should be cache inhibited (indicated by the flag
   2036   1.7      gwr 	 * bits found on the lower order of the physical address.)
   2037   1.7      gwr 	 * mark the PTE as a cache inhibited page.
   2038   1.7      gwr 	 */
   2039   1.7      gwr 	if (flags & PMAP_NC)
   2040   1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   2041   1.7      gwr 
   2042   1.7      gwr 	/*
   2043   1.7      gwr 	 * If the physical address being mapped is managed by the PV
   2044   1.7      gwr 	 * system then link the pte into the list of pages mapped to that
   2045   1.7      gwr 	 * address.
   2046   1.7      gwr 	 */
   2047   1.7      gwr 	if (insert && managed) {
   2048   1.7      gwr 		pv = pa2pv(pa);
   2049   1.7      gwr 		nidx = pteidx(c_pte);
   2050   1.7      gwr 
   2051   1.7      gwr 		s = splimp();
   2052   1.7      gwr 		pvebase[nidx].pve_next = pv->pv_idx;
   2053   1.7      gwr 		pv->pv_idx = nidx;
   2054   1.7      gwr 		splx(s);
   2055   1.7      gwr 	}
   2056   1.1      gwr 
   2057   1.1      gwr 	/* Move any allocated tables back into the active pool. */
   2058   1.1      gwr 
   2059   1.1      gwr 	switch (llevel) {
   2060   1.1      gwr 		case NEWA:
   2061   1.1      gwr 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2062   1.1      gwr 			/* FALLTHROUGH */
   2063   1.1      gwr 		case NEWB:
   2064   1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2065   1.1      gwr 			/* FALLTHROUGH */
   2066   1.1      gwr 		case NEWC:
   2067   1.1      gwr 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2068   1.1      gwr 			/* FALLTHROUGH */
   2069   1.1      gwr 		default:
   2070   1.1      gwr 			break;
   2071   1.1      gwr 	}
   2072   1.1      gwr }
   2073   1.1      gwr 
   2074   1.1      gwr /* pmap_enter_kernel			INTERNAL
   2075   1.1      gwr  **
   2076   1.1      gwr  * Map the given virtual address to the given physical address within the
   2077   1.1      gwr  * kernel address space.  This function exists because the kernel map does
   2078   1.1      gwr  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2079   1.1      gwr  * and can be edited directly without the need to walk through any tables.
   2080   1.1      gwr  *
   2081   1.1      gwr  * XXX: "Danger, Will Robinson!"
   2082   1.1      gwr  * Note that the kernel should never take a fault on any page
   2083   1.1      gwr  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2084   1.1      gwr  * trap.c for kernel-mode MMU faults.  This means that mappings
   2085   1.1      gwr  * created in that range must be implicily wired. -gwr
   2086   1.1      gwr  */
   2087   1.1      gwr void
   2088   1.1      gwr pmap_enter_kernel(va, pa, prot)
   2089   1.1      gwr 	vm_offset_t va;
   2090   1.1      gwr 	vm_offset_t pa;
   2091   1.1      gwr 	vm_prot_t   prot;
   2092   1.1      gwr {
   2093   1.7      gwr 	boolean_t       was_valid, insert;
   2094   1.7      gwr 	u_short         pte_idx, pv_idx;
   2095   1.7      gwr 	int             s, flags;
   2096   1.1      gwr 	mmu_short_pte_t *pte;
   2097   1.7      gwr 	pv_t            *pv;
   2098   1.7      gwr 	vm_offset_t     old_pa;
   2099   1.7      gwr 
   2100   1.7      gwr 	flags  = (pa & ~MMU_PAGE_MASK);
   2101   1.7      gwr 	pa    &= MMU_PAGE_MASK;
   2102   1.7      gwr 
   2103   1.7      gwr 	/*
   2104   1.7      gwr 	 * Calculate the index of the PTE being modified.
   2105   1.7      gwr 	 */
   2106   1.7      gwr 	pte_idx = (u_long) sun3x_btop(va - KERNBASE);
   2107   1.1      gwr 
   2108   1.1      gwr 	/* XXX - This array is traditionally named "Sysmap" */
   2109   1.7      gwr 	pte = &kernCbase[pte_idx];
   2110   1.7      gwr 
   2111   1.7      gwr 	s = splimp();
   2112   1.7      gwr 	if (MMU_VALID_DT(*pte)) {
   2113   1.1      gwr 		was_valid = TRUE;
   2114   1.7      gwr 		/*
   2115   1.7      gwr 		 * If the PTE is already mapped to an address and it differs
   2116   1.7      gwr 		 * from the address requested, unlink it from the PV list.
   2117   1.7      gwr 		 *
   2118   1.8      gwr 		 * This only applies to mappings within virtual_avail
   2119   1.7      gwr 		 * and VM_MAX_KERNEL_ADDRESS.  All others are not requests
   2120   1.7      gwr 		 * from the VM system and should not be part of the PV system.
   2121   1.7      gwr 		 */
   2122   1.8      gwr 		if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
   2123   1.7      gwr 		    old_pa = MMU_PTE_PA(*pte);
   2124   1.7      gwr 		    if (pa != old_pa) {
   2125   1.7      gwr 		        if (is_managed(old_pa)) {
   2126   1.7      gwr 		            /* XXX - Make this into a function call? */
   2127   1.7      gwr 		            pv = pa2pv(old_pa);
   2128   1.7      gwr 		            pv_idx = pv->pv_idx;
   2129   1.7      gwr 		            if (pv_idx == pte_idx) {
   2130   1.7      gwr 		                pv->pv_idx = pvebase[pte_idx].pve_next;
   2131   1.7      gwr 		            } else {
   2132   1.7      gwr 		                while (pvebase[pv_idx].pve_next != pte_idx)
   2133   1.7      gwr 		                    pv_idx = pvebase[pv_idx].pve_next;
   2134   1.7      gwr 		                pvebase[pv_idx].pve_next =
   2135   1.7      gwr 		                    pvebase[pte_idx].pve_next;
   2136   1.7      gwr 		            }
   2137   1.7      gwr 		            /* Save modified/reference bits */
   2138   1.7      gwr 		            pv->pv_flags |= (u_short) pte->attr.raw;
   2139   1.7      gwr 		        }
   2140   1.7      gwr 		        if (is_managed(pa))
   2141   1.7      gwr 		            insert = TRUE;
   2142   1.7      gwr 		        else
   2143   1.7      gwr 		            insert = FALSE;
   2144   1.8      gwr 		        /*
   2145   1.8      gwr 		         * Clear out any old bits in the PTE.
   2146   1.8      gwr 		         */
   2147   1.8      gwr 		        pte->attr.raw = MMU_DT_INVALID;
   2148   1.7      gwr 		    } else {
   2149   1.7      gwr 		        /*
   2150   1.7      gwr 		         * Old PA and new PA are the same.  No need to relink
   2151   1.7      gwr 		         * the mapping within the PV list.
   2152   1.7      gwr 		         */
   2153   1.7      gwr 		        insert = FALSE;
   2154   1.8      gwr 
   2155   1.8      gwr 		        /*
   2156   1.8      gwr 		         * Save any mod/ref bits on the PTE.
   2157   1.8      gwr 		         */
   2158   1.8      gwr 		        pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2159   1.7      gwr 		    }
   2160   1.7      gwr 		} else {
   2161   1.7      gwr 		    /*
   2162   1.8      gwr 		     * If the VA lies below virtual_avail or beyond
   2163   1.8      gwr 		     * VM_MAX_KERNEL_ADDRESS, it is not a request by the VM
   2164   1.8      gwr 		     * system and hence does not need to be linked into the PV
   2165   1.8      gwr 		     * system.
   2166   1.7      gwr 		     */
   2167   1.7      gwr 		    insert = FALSE;
   2168   1.8      gwr 		    pte->attr.raw = MMU_DT_INVALID;
   2169   1.7      gwr 		}
   2170   1.7      gwr 	} else {
   2171   1.8      gwr 		pte->attr.raw = MMU_DT_INVALID;
   2172   1.7      gwr 		was_valid = FALSE;
   2173   1.8      gwr 		if ((va >= virtual_avail) && (va < VM_MAX_KERNEL_ADDRESS)) {
   2174   1.7      gwr 			if (is_managed(pa))
   2175   1.7      gwr 				insert = TRUE;
   2176   1.7      gwr 			else
   2177   1.7      gwr 				insert = FALSE;
   2178   1.8      gwr 		} else
   2179   1.7      gwr 			insert = FALSE;
   2180   1.7      gwr 	}
   2181   1.7      gwr 
   2182   1.7      gwr 	/*
   2183   1.8      gwr 	 * Map the page.  Being careful to preserve modified/referenced bits
   2184   1.8      gwr 	 * on the PTE.
   2185   1.7      gwr 	 */
   2186   1.7      gwr 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2187   1.1      gwr 
   2188   1.1      gwr 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2189   1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2190   1.7      gwr 	if (flags & PMAP_NC)
   2191   1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2192   1.8      gwr 	if (was_valid)
   2193   1.7      gwr 		TBIS(va);
   2194   1.1      gwr 
   2195   1.7      gwr 	/*
   2196   1.7      gwr 	 * Insert the PTE into the PV system, if need be.
   2197   1.7      gwr 	 */
   2198   1.7      gwr 	if (insert) {
   2199   1.7      gwr 		pv = pa2pv(pa);
   2200   1.7      gwr 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2201   1.7      gwr 		pv->pv_idx = pte_idx;
   2202   1.7      gwr 	}
   2203   1.7      gwr 	splx(s);
   2204   1.7      gwr 
   2205   1.1      gwr }
   2206   1.1      gwr 
   2207   1.1      gwr /* pmap_protect			INTERFACE
   2208   1.1      gwr  **
   2209   1.7      gwr  * Apply the given protection to the given virtual address range within
   2210   1.1      gwr  * the given map.
   2211   1.1      gwr  *
   2212   1.1      gwr  * It is ok for the protection applied to be stronger than what is
   2213   1.1      gwr  * specified.  We use this to our advantage when the given map has no
   2214   1.7      gwr  * mapping for the virtual address.  By skipping a page when this
   2215   1.1      gwr  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2216   1.1      gwr  * and therefore do not need to map the page just to apply a protection
   2217   1.1      gwr  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2218   1.7      gwr  *
   2219   1.7      gwr  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2220   1.7      gwr  *       setup, and then manual scrolling in the for() loop.
   2221   1.1      gwr  */
   2222   1.1      gwr void
   2223   1.7      gwr pmap_protect(pmap, startva, endva, prot)
   2224   1.1      gwr 	pmap_t pmap;
   2225   1.7      gwr 	vm_offset_t startva, endva;
   2226   1.1      gwr 	vm_prot_t prot;
   2227   1.1      gwr {
   2228   1.7      gwr 	boolean_t iscurpmap;
   2229   1.1      gwr 	int a_idx, b_idx, c_idx;
   2230   1.1      gwr 	a_tmgr_t *a_tbl;
   2231   1.1      gwr 	b_tmgr_t *b_tbl;
   2232   1.1      gwr 	c_tmgr_t *c_tbl;
   2233   1.1      gwr 	mmu_short_pte_t *pte;
   2234   1.1      gwr 
   2235   1.1      gwr 	if (pmap == NULL)
   2236   1.1      gwr 		return;
   2237   1.1      gwr 	if (pmap == pmap_kernel()) {
   2238   1.7      gwr 		pmap_protect_kernel(startva, endva, prot);
   2239   1.1      gwr 		return;
   2240   1.1      gwr 	}
   2241   1.1      gwr 
   2242  1.11   jeremy 	/*
   2243  1.12   jeremy 	 * In this particular pmap implementation, there are only three
   2244  1.12   jeremy 	 * types of memory protection: 'all' (read/write/execute),
   2245  1.12   jeremy 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2246  1.12   jeremy 	 * It is not possible for us to treat 'executable' as a separate
   2247  1.12   jeremy 	 * protection type.  Therefore, protection requests that seek to
   2248  1.12   jeremy 	 * remove execute permission while retaining read or write, and those
   2249  1.12   jeremy 	 * that make little sense (write-only for example) are ignored.
   2250  1.11   jeremy 	 */
   2251  1.12   jeremy 	switch (prot) {
   2252  1.12   jeremy 		case VM_PROT_NONE:
   2253  1.12   jeremy 			/*
   2254  1.12   jeremy 			 * A request to apply the protection code of
   2255  1.12   jeremy 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2256  1.12   jeremy 			 */
   2257  1.12   jeremy 			pmap_remove(pmap, startva, endva);
   2258  1.12   jeremy 			return;
   2259  1.12   jeremy 		case	VM_PROT_EXECUTE:
   2260  1.12   jeremy 		case	VM_PROT_READ:
   2261  1.12   jeremy 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2262  1.12   jeremy 			/* continue */
   2263  1.12   jeremy 			break;
   2264  1.12   jeremy 		case	VM_PROT_WRITE:
   2265  1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_READ:
   2266  1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2267  1.12   jeremy 		case	VM_PROT_ALL:
   2268  1.12   jeremy 			/* None of these should happen in a sane system. */
   2269  1.12   jeremy 			return;
   2270  1.11   jeremy 	}
   2271  1.11   jeremy 
   2272  1.11   jeremy 	/*
   2273  1.11   jeremy 	 * If the pmap has no A table, it has no mappings and therefore
   2274  1.11   jeremy 	 * there is nothing to protect.
   2275  1.11   jeremy 	 */
   2276  1.11   jeremy 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2277  1.11   jeremy 		return;
   2278  1.11   jeremy 
   2279  1.11   jeremy 	a_idx = MMU_TIA(startva);
   2280  1.11   jeremy 	b_idx = MMU_TIB(startva);
   2281  1.11   jeremy 	c_idx = MMU_TIC(startva);
   2282  1.11   jeremy 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2283  1.11   jeremy 
   2284   1.7      gwr 	iscurpmap = (pmap == current_pmap());
   2285  1.11   jeremy 	while (startva < endva) {
   2286  1.11   jeremy 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2287  1.11   jeremy 		  if (b_tbl == NULL) {
   2288  1.11   jeremy 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2289  1.11   jeremy 		    b_tbl = mmu_ptov((vm_offset_t) b_tbl);
   2290  1.11   jeremy 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *) b_tbl);
   2291  1.11   jeremy 		  }
   2292  1.11   jeremy 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2293  1.11   jeremy 		    if (c_tbl == NULL) {
   2294  1.11   jeremy 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2295  1.11   jeremy 		      c_tbl = mmu_ptov((vm_offset_t) c_tbl);
   2296  1.11   jeremy 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *) c_tbl);
   2297  1.11   jeremy 		    }
   2298  1.11   jeremy 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2299  1.11   jeremy 		      pte = &c_tbl->ct_dtbl[c_idx];
   2300  1.12   jeremy 		      /* make the mapping read-only */
   2301  1.12   jeremy 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2302  1.11   jeremy 		      /*
   2303  1.11   jeremy 		       * If we just modified the current address space,
   2304  1.11   jeremy 		       * flush any translations for the modified page from
   2305  1.11   jeremy 		       * the translation cache and any data from it in the
   2306  1.11   jeremy 		       * data cache.
   2307  1.11   jeremy 		       */
   2308  1.11   jeremy 		      if (iscurpmap)
   2309  1.11   jeremy 		          TBIS(startva);
   2310  1.11   jeremy 		    }
   2311  1.11   jeremy 		    startva += NBPG;
   2312   1.1      gwr 
   2313  1.11   jeremy 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2314  1.11   jeremy 		      c_tbl = NULL;
   2315  1.11   jeremy 		      c_idx = 0;
   2316  1.11   jeremy 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2317  1.11   jeremy 		        b_tbl = NULL;
   2318  1.11   jeremy 		        b_idx = 0;
   2319  1.11   jeremy 		      }
   2320  1.11   jeremy 		    }
   2321  1.11   jeremy 		  } else { /* C table wasn't valid */
   2322  1.11   jeremy 		    c_tbl = NULL;
   2323  1.11   jeremy 		    c_idx = 0;
   2324  1.11   jeremy 		    startva += MMU_TIB_RANGE;
   2325  1.11   jeremy 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2326  1.11   jeremy 		      b_tbl = NULL;
   2327  1.11   jeremy 		      b_idx = 0;
   2328  1.11   jeremy 		    }
   2329  1.11   jeremy 		  } /* C table */
   2330  1.11   jeremy 		} else { /* B table wasn't valid */
   2331  1.11   jeremy 		  b_tbl = NULL;
   2332  1.11   jeremy 		  b_idx = 0;
   2333  1.11   jeremy 		  startva += MMU_TIA_RANGE;
   2334  1.11   jeremy 		  a_idx++;
   2335  1.11   jeremy 		} /* B table */
   2336   1.1      gwr 	}
   2337   1.1      gwr }
   2338   1.1      gwr 
   2339   1.1      gwr /* pmap_protect_kernel			INTERNAL
   2340   1.1      gwr  **
   2341   1.7      gwr  * Apply the given protection code to a kernel address range.
   2342   1.1      gwr  */
   2343   1.1      gwr void
   2344   1.7      gwr pmap_protect_kernel(startva, endva, prot)
   2345   1.7      gwr 	vm_offset_t startva, endva;
   2346   1.1      gwr 	vm_prot_t prot;
   2347   1.1      gwr {
   2348   1.7      gwr 	vm_offset_t va;
   2349   1.1      gwr 	mmu_short_pte_t *pte;
   2350   1.1      gwr 
   2351   1.7      gwr 	pte = &kernCbase[(unsigned long) sun3x_btop(startva - KERNBASE)];
   2352   1.7      gwr 	for (va = startva; va < endva; va += NBPG, pte++) {
   2353   1.7      gwr 		if (MMU_VALID_DT(*pte)) {
   2354   1.7      gwr 		    switch (prot) {
   2355   1.7      gwr 		        case VM_PROT_ALL:
   2356   1.7      gwr 		            break;
   2357   1.7      gwr 		        case VM_PROT_EXECUTE:
   2358   1.7      gwr 		        case VM_PROT_READ:
   2359   1.7      gwr 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2360   1.7      gwr 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2361   1.7      gwr 		            break;
   2362   1.7      gwr 		        case VM_PROT_NONE:
   2363   1.7      gwr 		            /* this is an alias for 'pmap_remove_kernel' */
   2364   1.7      gwr 		            pmap_remove_pte(pte);
   2365   1.7      gwr 		            break;
   2366   1.7      gwr 		        default:
   2367   1.7      gwr 		            break;
   2368   1.7      gwr 		    }
   2369   1.7      gwr 		    /*
   2370   1.7      gwr 		     * since this is the kernel, immediately flush any cached
   2371   1.7      gwr 		     * descriptors for this address.
   2372   1.7      gwr 		     */
   2373   1.7      gwr 		    TBIS(va);
   2374   1.1      gwr 		}
   2375   1.1      gwr 	}
   2376   1.1      gwr }
   2377   1.1      gwr 
   2378   1.1      gwr /* pmap_change_wiring			INTERFACE
   2379   1.1      gwr  **
   2380   1.1      gwr  * Changes the wiring of the specified page.
   2381   1.1      gwr  *
   2382   1.1      gwr  * This function is called from vm_fault.c to unwire
   2383   1.1      gwr  * a mapping.  It really should be called 'pmap_unwire'
   2384   1.1      gwr  * because it is never asked to do anything but remove
   2385   1.1      gwr  * wirings.
   2386   1.1      gwr  */
   2387   1.1      gwr void
   2388   1.1      gwr pmap_change_wiring(pmap, va, wire)
   2389   1.1      gwr 	pmap_t pmap;
   2390   1.1      gwr 	vm_offset_t va;
   2391   1.1      gwr 	boolean_t wire;
   2392   1.1      gwr {
   2393   1.1      gwr 	int a_idx, b_idx, c_idx;
   2394   1.1      gwr 	a_tmgr_t *a_tbl;
   2395   1.1      gwr 	b_tmgr_t *b_tbl;
   2396   1.1      gwr 	c_tmgr_t *c_tbl;
   2397   1.1      gwr 	mmu_short_pte_t *pte;
   2398   1.1      gwr 
   2399   1.1      gwr 	/* Kernel mappings always remain wired. */
   2400   1.1      gwr 	if (pmap == pmap_kernel())
   2401   1.1      gwr 		return;
   2402   1.1      gwr 
   2403   1.1      gwr #ifdef	PMAP_DEBUG
   2404   1.1      gwr 	if (wire == TRUE)
   2405   1.1      gwr 		panic("pmap_change_wiring: wire requested.");
   2406   1.1      gwr #endif
   2407   1.1      gwr 
   2408   1.7      gwr 	/*
   2409   1.7      gwr 	 * Walk through the tables.  If the walk terminates without
   2410   1.1      gwr 	 * a valid PTE then the address wasn't wired in the first place.
   2411   1.1      gwr 	 * Return immediately.
   2412   1.1      gwr 	 */
   2413   1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2414   1.1      gwr 		&b_idx, &c_idx) == FALSE)
   2415   1.1      gwr 		return;
   2416   1.1      gwr 
   2417   1.1      gwr 
   2418   1.1      gwr 	/* Is the PTE wired?  If not, return. */
   2419   1.1      gwr 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2420   1.1      gwr 		return;
   2421   1.1      gwr 
   2422   1.1      gwr 	/* Remove the wiring bit. */
   2423   1.1      gwr 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2424   1.1      gwr 
   2425   1.7      gwr 	/*
   2426   1.7      gwr 	 * Decrement the wired entry count in the C table.
   2427   1.1      gwr 	 * If it reaches zero the following things happen:
   2428   1.1      gwr 	 * 1. The table no longer has any wired entries and is considered
   2429   1.1      gwr 	 *    unwired.
   2430   1.1      gwr 	 * 2. It is placed on the available queue.
   2431   1.1      gwr 	 * 3. The parent table's wired entry count is decremented.
   2432   1.1      gwr 	 * 4. If it reaches zero, this process repeats at step 1 and
   2433   1.1      gwr 	 *    stops at after reaching the A table.
   2434   1.1      gwr 	 */
   2435   1.7      gwr 	if (--c_tbl->ct_wcnt == 0) {
   2436   1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2437   1.7      gwr 		if (--b_tbl->bt_wcnt == 0) {
   2438   1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2439   1.7      gwr 			if (--a_tbl->at_wcnt == 0) {
   2440   1.1      gwr 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2441   1.1      gwr 			}
   2442   1.1      gwr 		}
   2443   1.1      gwr 	}
   2444   1.1      gwr }
   2445   1.1      gwr 
   2446   1.1      gwr /* pmap_pageable			INTERFACE
   2447   1.1      gwr  **
   2448   1.1      gwr  * Make the specified range of addresses within the given pmap,
   2449   1.1      gwr  * 'pageable' or 'not-pageable'.  A pageable page must not cause
   2450   1.1      gwr  * any faults when referenced.  A non-pageable page may.
   2451   1.1      gwr  *
   2452   1.1      gwr  * This routine is only advisory.  The VM system will call pmap_enter()
   2453   1.1      gwr  * to wire or unwire pages that are going to be made pageable before calling
   2454   1.1      gwr  * this function.  By the time this routine is called, everything that needs
   2455   1.1      gwr  * to be done has already been done.
   2456   1.1      gwr  */
   2457   1.1      gwr void
   2458   1.1      gwr pmap_pageable(pmap, start, end, pageable)
   2459   1.1      gwr 	pmap_t pmap;
   2460   1.1      gwr 	vm_offset_t start, end;
   2461   1.1      gwr 	boolean_t pageable;
   2462   1.1      gwr {
   2463   1.1      gwr 	/* not implemented. */
   2464   1.1      gwr }
   2465   1.1      gwr 
   2466   1.1      gwr /* pmap_copy				INTERFACE
   2467   1.1      gwr  **
   2468   1.1      gwr  * Copy the mappings of a range of addresses in one pmap, into
   2469   1.1      gwr  * the destination address of another.
   2470   1.1      gwr  *
   2471   1.1      gwr  * This routine is advisory.  Should we one day decide that MMU tables
   2472   1.1      gwr  * may be shared by more than one pmap, this function should be used to
   2473   1.1      gwr  * link them together.  Until that day however, we do nothing.
   2474   1.1      gwr  */
   2475   1.1      gwr void
   2476   1.1      gwr pmap_copy(pmap_a, pmap_b, dst, len, src)
   2477   1.1      gwr 	pmap_t pmap_a, pmap_b;
   2478   1.1      gwr 	vm_offset_t dst;
   2479   1.1      gwr 	vm_size_t   len;
   2480   1.1      gwr 	vm_offset_t src;
   2481   1.1      gwr {
   2482   1.1      gwr 	/* not implemented. */
   2483   1.1      gwr }
   2484   1.1      gwr 
   2485   1.1      gwr /* pmap_copy_page			INTERFACE
   2486   1.1      gwr  **
   2487   1.1      gwr  * Copy the contents of one physical page into another.
   2488   1.1      gwr  *
   2489   1.7      gwr  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2490   1.7      gwr  * to map the two specified physical pages into the kernel address space.  It
   2491   1.7      gwr  * then uses bcopy() to copy one into the other.
   2492   1.7      gwr  *
   2493   1.7      gwr  * Note: We could use the transparent translation registers to make the
   2494   1.7      gwr  * mappings.  If we do so, be sure to disable interrupts before using them.
   2495   1.1      gwr  */
   2496   1.1      gwr void
   2497   1.1      gwr pmap_copy_page(src, dst)
   2498   1.1      gwr 	vm_offset_t src, dst;
   2499   1.1      gwr {
   2500   1.1      gwr 	PMAP_LOCK();
   2501   1.1      gwr 	if (tmp_vpages_inuse)
   2502   1.1      gwr 		panic("pmap_copy_page: temporary vpages are in use.");
   2503   1.1      gwr 	tmp_vpages_inuse++;
   2504   1.1      gwr 
   2505   1.7      gwr 	/* XXX - Use non-cached mappings to avoid cache polution? */
   2506   1.1      gwr 	pmap_enter_kernel(tmp_vpages[0], src, VM_PROT_READ);
   2507   1.1      gwr 	pmap_enter_kernel(tmp_vpages[1], dst, VM_PROT_READ|VM_PROT_WRITE);
   2508   1.7      gwr 	copypage((char *) tmp_vpages[0], (char *) tmp_vpages[1]);
   2509   1.7      gwr 
   2510   1.1      gwr 	tmp_vpages_inuse--;
   2511   1.1      gwr 	PMAP_UNLOCK();
   2512   1.1      gwr }
   2513   1.1      gwr 
   2514   1.1      gwr /* pmap_zero_page			INTERFACE
   2515   1.1      gwr  **
   2516   1.1      gwr  * Zero the contents of the specified physical page.
   2517   1.1      gwr  *
   2518   1.7      gwr  * Uses one of the virtual pages allocated in pmap_boostrap()
   2519   1.1      gwr  * to map the specified page into the kernel address space.  Then uses
   2520   1.1      gwr  * bzero() to zero out the page.
   2521   1.1      gwr  */
   2522   1.1      gwr void
   2523   1.1      gwr pmap_zero_page(pa)
   2524   1.1      gwr 	vm_offset_t pa;
   2525   1.1      gwr {
   2526   1.1      gwr 	PMAP_LOCK();
   2527   1.1      gwr 	if (tmp_vpages_inuse)
   2528   1.1      gwr 		panic("pmap_zero_page: temporary vpages are in use.");
   2529   1.1      gwr 	tmp_vpages_inuse++;
   2530   1.1      gwr 
   2531   1.1      gwr 	pmap_enter_kernel(tmp_vpages[0], pa, VM_PROT_READ|VM_PROT_WRITE);
   2532   1.6  thorpej 	zeropage((char *) tmp_vpages[0]);
   2533   1.1      gwr 
   2534   1.1      gwr 	tmp_vpages_inuse--;
   2535   1.1      gwr 	PMAP_UNLOCK();
   2536   1.1      gwr }
   2537   1.1      gwr 
   2538   1.1      gwr /* pmap_collect			INTERFACE
   2539   1.1      gwr  **
   2540   1.7      gwr  * Called from the VM system when we are about to swap out
   2541   1.7      gwr  * the process using this pmap.  This should give up any
   2542   1.7      gwr  * resources held here, including all its MMU tables.
   2543   1.1      gwr  */
   2544   1.1      gwr void
   2545   1.1      gwr pmap_collect(pmap)
   2546   1.1      gwr 	pmap_t pmap;
   2547   1.1      gwr {
   2548   1.7      gwr 	/* XXX - todo... */
   2549   1.1      gwr }
   2550   1.1      gwr 
   2551   1.1      gwr /* pmap_create			INTERFACE
   2552   1.1      gwr  **
   2553   1.1      gwr  * Create and return a pmap structure.
   2554   1.1      gwr  */
   2555   1.1      gwr pmap_t
   2556   1.1      gwr pmap_create(size)
   2557   1.1      gwr 	vm_size_t size;
   2558   1.1      gwr {
   2559   1.1      gwr 	pmap_t	pmap;
   2560   1.1      gwr 
   2561   1.1      gwr 	if (size)
   2562   1.1      gwr 		return NULL;
   2563   1.1      gwr 
   2564   1.1      gwr 	pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
   2565   1.1      gwr 	pmap_pinit(pmap);
   2566   1.1      gwr 
   2567   1.1      gwr 	return pmap;
   2568   1.1      gwr }
   2569   1.1      gwr 
   2570   1.1      gwr /* pmap_pinit			INTERNAL
   2571   1.1      gwr  **
   2572   1.1      gwr  * Initialize a pmap structure.
   2573   1.1      gwr  */
   2574   1.1      gwr void
   2575   1.1      gwr pmap_pinit(pmap)
   2576   1.1      gwr 	pmap_t pmap;
   2577   1.1      gwr {
   2578   1.1      gwr 	bzero(pmap, sizeof(struct pmap));
   2579   1.7      gwr 	pmap->pm_a_tmgr = NULL;
   2580   1.7      gwr 	pmap->pm_a_phys = kernAphys;
   2581   1.1      gwr }
   2582   1.1      gwr 
   2583   1.1      gwr /* pmap_release				INTERFACE
   2584   1.1      gwr  **
   2585   1.1      gwr  * Release any resources held by the given pmap.
   2586   1.1      gwr  *
   2587   1.1      gwr  * This is the reverse analog to pmap_pinit.  It does not
   2588   1.1      gwr  * necessarily mean for the pmap structure to be deallocated,
   2589   1.1      gwr  * as in pmap_destroy.
   2590   1.1      gwr  */
   2591   1.1      gwr void
   2592   1.1      gwr pmap_release(pmap)
   2593   1.1      gwr 	pmap_t pmap;
   2594   1.1      gwr {
   2595   1.7      gwr 	/*
   2596   1.7      gwr 	 * As long as the pmap contains no mappings,
   2597   1.1      gwr 	 * which always should be the case whenever
   2598   1.1      gwr 	 * this function is called, there really should
   2599   1.1      gwr 	 * be nothing to do.
   2600   1.7      gwr 	 *
   2601   1.7      gwr 	 * XXX - This function is being called while there are
   2602   1.7      gwr 	 * still valid mappings, so I guess the above must not
   2603   1.7      gwr 	 * be true.
   2604   1.7      gwr 	 * XXX - Unless the mappings persist due to a bug here...
   2605   1.7      gwr 	 *     + That's what was happening.  The map had no mappings,
   2606   1.7      gwr 	 *       but it still had an A table.  pmap_remove() was not
   2607   1.7      gwr 	 *       releasing tables when they were empty.
   2608   1.1      gwr 	 */
   2609   1.1      gwr #ifdef	PMAP_DEBUG
   2610   1.1      gwr 	if (pmap == NULL)
   2611   1.1      gwr 		return;
   2612   1.1      gwr 	if (pmap == pmap_kernel())
   2613   1.9      gwr 		panic("pmap_release: kernel pmap");
   2614   1.1      gwr #endif
   2615   1.9      gwr 	/*
   2616   1.9      gwr 	 * XXX - If this pmap has an A table, give it back.
   2617   1.9      gwr 	 * The pmap SHOULD be empty by now, and pmap_remove
   2618   1.9      gwr 	 * should have already given back the A table...
   2619   1.9      gwr 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2620   1.9      gwr 	 * at this point, which means some mapping was not
   2621   1.9      gwr 	 * removed when it should have been. -gwr
   2622   1.9      gwr 	 */
   2623   1.7      gwr 	if (pmap->pm_a_tmgr != NULL) {
   2624   1.9      gwr 		/* First make sure we are not using it! */
   2625   1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2626   1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   2627   1.9      gwr 			loadcrp(&kernel_crp);
   2628   1.9      gwr 		}
   2629  1.13      gwr #ifdef	PMAP_DEBUG /* XXX - todo! */
   2630  1.13      gwr 		/* XXX - Now complain... */
   2631  1.13      gwr 		printf("pmap_release: still have table\n");
   2632  1.13      gwr 		Debugger();
   2633  1.13      gwr #endif
   2634   1.7      gwr 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2635   1.7      gwr 		pmap->pm_a_tmgr = NULL;
   2636   1.7      gwr 		pmap->pm_a_phys = kernAphys;
   2637   1.7      gwr 	}
   2638   1.1      gwr }
   2639   1.1      gwr 
   2640   1.1      gwr /* pmap_reference			INTERFACE
   2641   1.1      gwr  **
   2642   1.1      gwr  * Increment the reference count of a pmap.
   2643   1.1      gwr  */
   2644   1.1      gwr void
   2645   1.1      gwr pmap_reference(pmap)
   2646   1.1      gwr 	pmap_t pmap;
   2647   1.1      gwr {
   2648   1.1      gwr 	if (pmap == NULL)
   2649   1.1      gwr 		return;
   2650   1.1      gwr 
   2651   1.1      gwr 	/* pmap_lock(pmap); */
   2652   1.1      gwr 	pmap->pm_refcount++;
   2653   1.1      gwr 	/* pmap_unlock(pmap); */
   2654   1.1      gwr }
   2655   1.1      gwr 
   2656   1.1      gwr /* pmap_dereference			INTERNAL
   2657   1.1      gwr  **
   2658   1.1      gwr  * Decrease the reference count on the given pmap
   2659   1.1      gwr  * by one and return the current count.
   2660   1.1      gwr  */
   2661   1.1      gwr int
   2662   1.1      gwr pmap_dereference(pmap)
   2663   1.1      gwr 	pmap_t pmap;
   2664   1.1      gwr {
   2665   1.1      gwr 	int rtn;
   2666   1.1      gwr 
   2667   1.1      gwr 	if (pmap == NULL)
   2668   1.1      gwr 		return 0;
   2669   1.1      gwr 
   2670   1.1      gwr 	/* pmap_lock(pmap); */
   2671   1.1      gwr 	rtn = --pmap->pm_refcount;
   2672   1.1      gwr 	/* pmap_unlock(pmap); */
   2673   1.1      gwr 
   2674   1.1      gwr 	return rtn;
   2675   1.1      gwr }
   2676   1.1      gwr 
   2677   1.1      gwr /* pmap_destroy			INTERFACE
   2678   1.1      gwr  **
   2679   1.1      gwr  * Decrement a pmap's reference count and delete
   2680   1.1      gwr  * the pmap if it becomes zero.  Will be called
   2681   1.1      gwr  * only after all mappings have been removed.
   2682   1.1      gwr  */
   2683   1.1      gwr void
   2684   1.1      gwr pmap_destroy(pmap)
   2685   1.1      gwr 	pmap_t pmap;
   2686   1.1      gwr {
   2687   1.1      gwr 	if (pmap == NULL)
   2688   1.1      gwr 		return;
   2689   1.1      gwr 	if (pmap == &kernel_pmap)
   2690   1.1      gwr 		panic("pmap_destroy: kernel_pmap!");
   2691   1.1      gwr 	if (pmap_dereference(pmap) == 0) {
   2692   1.1      gwr 		pmap_release(pmap);
   2693   1.1      gwr 		free(pmap, M_VMPMAP);
   2694   1.1      gwr 	}
   2695   1.1      gwr }
   2696   1.1      gwr 
   2697   1.1      gwr /* pmap_is_referenced			INTERFACE
   2698   1.1      gwr  **
   2699   1.1      gwr  * Determine if the given physical page has been
   2700   1.1      gwr  * referenced (read from [or written to.])
   2701   1.1      gwr  */
   2702   1.1      gwr boolean_t
   2703   1.1      gwr pmap_is_referenced(pa)
   2704   1.1      gwr 	vm_offset_t pa;
   2705   1.1      gwr {
   2706   1.1      gwr 	pv_t      *pv;
   2707   1.7      gwr 	int       idx, s;
   2708   1.1      gwr 
   2709   1.1      gwr 	if (!pv_initialized)
   2710   1.1      gwr 		return FALSE;
   2711   1.7      gwr 	/* XXX - this may be unecessary. */
   2712   1.1      gwr 	if (!is_managed(pa))
   2713   1.1      gwr 		return FALSE;
   2714   1.1      gwr 
   2715   1.1      gwr 	pv = pa2pv(pa);
   2716   1.7      gwr 	/*
   2717   1.7      gwr 	 * Check the flags on the pv head.  If they are set,
   2718   1.1      gwr 	 * return immediately.  Otherwise a search must be done.
   2719   1.7      gwr 	 */
   2720   1.1      gwr 	if (pv->pv_flags & PV_FLAGS_USED)
   2721   1.1      gwr 		return TRUE;
   2722   1.7      gwr 	else {
   2723   1.7      gwr 		s = splimp();
   2724   1.7      gwr 		/*
   2725   1.7      gwr 		 * Search through all pv elements pointing
   2726   1.1      gwr 		 * to this page and query their reference bits
   2727   1.1      gwr 		 */
   2728   1.7      gwr 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2729   1.7      gwr 			pvebase[idx].pve_next)
   2730   1.7      gwr 			if (MMU_PTE_USED(kernCbase[idx])) {
   2731   1.7      gwr 				splx(s);
   2732   1.1      gwr 				return TRUE;
   2733   1.7      gwr 			}
   2734   1.7      gwr 		splx(s);
   2735   1.7      gwr 	}
   2736   1.1      gwr 
   2737   1.1      gwr 	return FALSE;
   2738   1.1      gwr }
   2739   1.1      gwr 
   2740   1.1      gwr /* pmap_is_modified			INTERFACE
   2741   1.1      gwr  **
   2742   1.1      gwr  * Determine if the given physical page has been
   2743   1.1      gwr  * modified (written to.)
   2744   1.1      gwr  */
   2745   1.1      gwr boolean_t
   2746   1.1      gwr pmap_is_modified(pa)
   2747   1.1      gwr 	vm_offset_t pa;
   2748   1.1      gwr {
   2749   1.1      gwr 	pv_t      *pv;
   2750   1.7      gwr 	int       idx, s;
   2751   1.1      gwr 
   2752   1.1      gwr 	if (!pv_initialized)
   2753   1.1      gwr 		return FALSE;
   2754   1.7      gwr 	/* XXX - this may be unecessary. */
   2755   1.1      gwr 	if (!is_managed(pa))
   2756   1.1      gwr 		return FALSE;
   2757   1.1      gwr 
   2758   1.1      gwr 	/* see comments in pmap_is_referenced() */
   2759   1.1      gwr 	pv = pa2pv(pa);
   2760   1.7      gwr 	if (pv->pv_flags & PV_FLAGS_MDFY) {
   2761   1.1      gwr 		return TRUE;
   2762   1.7      gwr 	} else {
   2763   1.7      gwr 		s = splimp();
   2764   1.7      gwr 		for (idx = pv->pv_idx; idx != PVE_EOL; idx =
   2765   1.7      gwr 			pvebase[idx].pve_next)
   2766   1.7      gwr 			if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2767   1.7      gwr 				splx(s);
   2768   1.1      gwr 				return TRUE;
   2769   1.7      gwr 			}
   2770   1.7      gwr 		splx(s);
   2771   1.7      gwr 	}
   2772   1.7      gwr 
   2773   1.1      gwr 	return FALSE;
   2774   1.1      gwr }
   2775   1.1      gwr 
   2776   1.1      gwr /* pmap_page_protect			INTERFACE
   2777   1.1      gwr  **
   2778   1.1      gwr  * Applies the given protection to all mappings to the given
   2779   1.1      gwr  * physical page.
   2780   1.1      gwr  */
   2781   1.1      gwr void
   2782   1.1      gwr pmap_page_protect(pa, prot)
   2783   1.1      gwr 	vm_offset_t pa;
   2784   1.1      gwr 	vm_prot_t prot;
   2785   1.1      gwr {
   2786   1.1      gwr 	pv_t      *pv;
   2787   1.7      gwr 	int       idx, s;
   2788   1.8      gwr 	vm_offset_t va;
   2789   1.1      gwr 	struct mmu_short_pte_struct *pte;
   2790   1.8      gwr 	c_tmgr_t  *c_tbl;
   2791   1.8      gwr 	pmap_t    pmap, curpmap;
   2792   1.1      gwr 
   2793   1.1      gwr 	if (!is_managed(pa))
   2794   1.1      gwr 		return;
   2795   1.1      gwr 
   2796   1.8      gwr 	curpmap = current_pmap();
   2797   1.1      gwr 	pv = pa2pv(pa);
   2798   1.7      gwr 	s = splimp();
   2799   1.7      gwr 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2800   1.7      gwr 		pte = &kernCbase[idx];
   2801   1.1      gwr 		switch (prot) {
   2802   1.1      gwr 			case VM_PROT_ALL:
   2803   1.1      gwr 				/* do nothing */
   2804   1.1      gwr 				break;
   2805   1.7      gwr 			case VM_PROT_EXECUTE:
   2806   1.1      gwr 			case VM_PROT_READ:
   2807   1.1      gwr 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2808   1.1      gwr 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2809   1.8      gwr 
   2810   1.8      gwr 				/*
   2811   1.8      gwr 				 * Determine the virtual address mapped by
   2812   1.8      gwr 				 * the PTE and flush ATC entries if necessary.
   2813   1.8      gwr 				 */
   2814   1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2815   1.8      gwr 				if (pmap == curpmap || pmap == pmap_kernel())
   2816   1.8      gwr 					TBIS(va);
   2817   1.1      gwr 				break;
   2818   1.1      gwr 			case VM_PROT_NONE:
   2819   1.7      gwr 				/* Save the mod/ref bits. */
   2820   1.7      gwr 				pv->pv_flags |= pte->attr.raw;
   2821   1.7      gwr 				/* Invalidate the PTE. */
   2822   1.7      gwr 				pte->attr.raw = MMU_DT_INVALID;
   2823   1.8      gwr 
   2824   1.8      gwr 				/*
   2825   1.8      gwr 				 * Update table counts.  And flush ATC entries
   2826   1.8      gwr 				 * if necessary.
   2827   1.8      gwr 				 */
   2828   1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2829   1.8      gwr 
   2830   1.8      gwr 				/*
   2831   1.8      gwr 				 * If the PTE belongs to the kernel map,
   2832   1.8      gwr 				 * be sure to flush the page it maps.
   2833   1.8      gwr 				 */
   2834   1.8      gwr 				if (pmap == pmap_kernel()) {
   2835   1.8      gwr 					TBIS(va);
   2836   1.8      gwr 				} else {
   2837   1.8      gwr 					/*
   2838   1.8      gwr 					 * The PTE belongs to a user map.
   2839   1.8      gwr 					 * update the entry count in the C
   2840   1.8      gwr 					 * table to which it belongs and flush
   2841   1.8      gwr 					 * the ATC if the mapping belongs to
   2842   1.8      gwr 					 * the current pmap.
   2843   1.8      gwr 					 */
   2844   1.8      gwr 					c_tbl->ct_ecnt--;
   2845   1.8      gwr 					if (pmap == curpmap)
   2846   1.8      gwr 						TBIS(va);
   2847   1.8      gwr 				}
   2848   1.1      gwr 				break;
   2849   1.1      gwr 			default:
   2850   1.1      gwr 				break;
   2851   1.1      gwr 		}
   2852   1.1      gwr 	}
   2853   1.8      gwr 
   2854   1.8      gwr 	/*
   2855   1.8      gwr 	 * If the protection code indicates that all mappings to the page
   2856   1.8      gwr 	 * be removed, truncate the PV list to zero entries.
   2857   1.8      gwr 	 */
   2858   1.7      gwr 	if (prot == VM_PROT_NONE)
   2859   1.7      gwr 		pv->pv_idx = PVE_EOL;
   2860   1.7      gwr 	splx(s);
   2861   1.1      gwr }
   2862   1.1      gwr 
   2863   1.7      gwr /* pmap_get_pteinfo		INTERNAL
   2864   1.1      gwr  **
   2865   1.7      gwr  * Called internally to find the pmap and virtual address within that
   2866   1.8      gwr  * map to which the pte at the given index maps.  Also includes the PTE's C
   2867   1.8      gwr  * table manager.
   2868   1.1      gwr  *
   2869   1.7      gwr  * Returns the pmap in the argument provided, and the virtual address
   2870   1.7      gwr  * by return value.
   2871   1.1      gwr  */
   2872   1.1      gwr vm_offset_t
   2873   1.8      gwr pmap_get_pteinfo(idx, pmap, tbl)
   2874   1.8      gwr 	u_int idx;
   2875   1.7      gwr 	pmap_t *pmap;
   2876   1.7      gwr 	c_tmgr_t **tbl;
   2877   1.1      gwr {
   2878   1.1      gwr 	a_tmgr_t    *a_tbl;
   2879   1.1      gwr 	b_tmgr_t    *b_tbl;
   2880   1.1      gwr 	c_tmgr_t    *c_tbl;
   2881   1.1      gwr 	vm_offset_t     va = 0;
   2882   1.1      gwr 
   2883   1.7      gwr 	/*
   2884   1.7      gwr 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2885   1.1      gwr 	 */
   2886   1.8      gwr 	if (idx >= NUM_KERN_PTES) {
   2887   1.7      gwr 		/*
   2888   1.7      gwr 		 * The PTE belongs to a user mapping.
   2889   1.8      gwr 		 * Find the virtual address by decoding table indices.
   2890   1.7      gwr 		 * Each successive decode will reveal the address from
   2891   1.7      gwr 		 * least to most significant bit fashion.
   2892   1.7      gwr 		 *
   2893   1.7      gwr 		 * 31                              0
   2894   1.7      gwr 		 * +-------------------------------+
   2895   1.8      gwr 		 * |AAAAAAABBBBBBCCCCCC............|
   2896   1.7      gwr 		 * +-------------------------------+
   2897   1.7      gwr 		 */
   2898   1.8      gwr 		/* XXX: c_tbl = mmuC2tmgr(pte); */
   2899   1.8      gwr 		/* XXX: Would like an inline for this to validate idx... */
   2900   1.8      gwr 		c_tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2901   1.7      gwr 		b_tbl = c_tbl->ct_parent;
   2902   1.8      gwr 		a_tbl = b_tbl->bt_parent;
   2903   1.8      gwr 		*pmap = a_tbl->at_parent;
   2904   1.8      gwr 		*tbl = c_tbl;
   2905   1.7      gwr 
   2906   1.8      gwr 		/* Start with the 'C' bits, then add B and A... */
   2907   1.8      gwr 		va |= ((idx % MMU_C_TBL_SIZE) << MMU_TIC_SHIFT);
   2908   1.7      gwr 		va |= (c_tbl->ct_pidx << MMU_TIB_SHIFT);
   2909   1.7      gwr 		va |= (b_tbl->bt_pidx << MMU_TIA_SHIFT);
   2910   1.7      gwr 	} else {
   2911   1.7      gwr 		/*
   2912   1.7      gwr 		 * The PTE belongs to the kernel map.
   2913   1.7      gwr 		 */
   2914   1.8      gwr 		*pmap = pmap_kernel();
   2915   1.8      gwr 
   2916   1.8      gwr 		va = sun3x_ptob(idx);
   2917   1.7      gwr 		va += KERNBASE;
   2918   1.7      gwr 	}
   2919   1.7      gwr 
   2920   1.1      gwr 	return va;
   2921   1.1      gwr }
   2922   1.1      gwr 
   2923   1.8      gwr #if	0	/* XXX - I am eliminating this function. */
   2924   1.1      gwr /* pmap_find_tic			INTERNAL
   2925   1.1      gwr  **
   2926   1.1      gwr  * Given the address of a pte, find the TIC (level 'C' table index) for
   2927   1.1      gwr  * the pte within its C table.
   2928   1.1      gwr  */
   2929   1.1      gwr char
   2930   1.1      gwr pmap_find_tic(pte)
   2931   1.1      gwr 	mmu_short_pte_t *pte;
   2932   1.1      gwr {
   2933   1.7      gwr 	return ((pte - mmuCbase) % MMU_C_TBL_SIZE);
   2934   1.1      gwr }
   2935   1.8      gwr #endif	/* 0 */
   2936   1.1      gwr 
   2937   1.1      gwr 
   2938   1.1      gwr /* pmap_clear_modify			INTERFACE
   2939   1.1      gwr  **
   2940   1.1      gwr  * Clear the modification bit on the page at the specified
   2941   1.1      gwr  * physical address.
   2942   1.1      gwr  *
   2943   1.1      gwr  */
   2944   1.1      gwr void
   2945   1.1      gwr pmap_clear_modify(pa)
   2946   1.1      gwr 	vm_offset_t pa;
   2947   1.1      gwr {
   2948   1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2949   1.1      gwr }
   2950   1.1      gwr 
   2951   1.1      gwr /* pmap_clear_reference			INTERFACE
   2952   1.1      gwr  **
   2953   1.1      gwr  * Clear the referenced bit on the page at the specified
   2954   1.1      gwr  * physical address.
   2955   1.1      gwr  */
   2956   1.1      gwr void
   2957   1.1      gwr pmap_clear_reference(pa)
   2958   1.1      gwr 	vm_offset_t pa;
   2959   1.1      gwr {
   2960   1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2961   1.1      gwr }
   2962   1.1      gwr 
   2963   1.1      gwr /* pmap_clear_pv			INTERNAL
   2964   1.1      gwr  **
   2965   1.1      gwr  * Clears the specified flag from the specified physical address.
   2966   1.1      gwr  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2967   1.1      gwr  *
   2968   1.1      gwr  * Flag is one of:
   2969   1.1      gwr  *   PV_FLAGS_MDFY - Page modified bit.
   2970   1.1      gwr  *   PV_FLAGS_USED - Page used (referenced) bit.
   2971   1.1      gwr  *
   2972   1.1      gwr  * This routine must not only clear the flag on the pv list
   2973   1.1      gwr  * head.  It must also clear the bit on every pte in the pv
   2974   1.1      gwr  * list associated with the address.
   2975   1.1      gwr  */
   2976   1.1      gwr void
   2977   1.1      gwr pmap_clear_pv(pa, flag)
   2978   1.1      gwr 	vm_offset_t pa;
   2979   1.1      gwr 	int flag;
   2980   1.1      gwr {
   2981   1.1      gwr 	pv_t      *pv;
   2982   1.7      gwr 	int       idx, s;
   2983   1.7      gwr 	vm_offset_t     va;
   2984   1.7      gwr 	pmap_t          pmap;
   2985   1.1      gwr 	mmu_short_pte_t *pte;
   2986   1.7      gwr 	c_tmgr_t        *c_tbl;
   2987   1.1      gwr 
   2988   1.1      gwr 	pv = pa2pv(pa);
   2989   1.7      gwr 
   2990   1.7      gwr 	s = splimp();
   2991   1.1      gwr 	pv->pv_flags &= ~(flag);
   2992   1.7      gwr 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2993   1.7      gwr 		pte = &kernCbase[idx];
   2994   1.1      gwr 		pte->attr.raw &= ~(flag);
   2995   1.7      gwr 		/*
   2996   1.7      gwr 		 * The MC68030 MMU will not set the modified or
   2997   1.7      gwr 		 * referenced bits on any MMU tables for which it has
   2998   1.7      gwr 		 * a cached descriptor with its modify bit set.  To insure
   2999   1.7      gwr 		 * that it will modify these bits on the PTE during the next
   3000   1.7      gwr 		 * time it is written to or read from, we must flush it from
   3001   1.7      gwr 		 * the ATC.
   3002   1.7      gwr 		 *
   3003   1.7      gwr 		 * Ordinarily it is only necessary to flush the descriptor
   3004   1.7      gwr 		 * if it is used in the current address space.  But since I
   3005   1.7      gwr 		 * am not sure that there will always be a notion of
   3006   1.7      gwr 		 * 'the current address space' when this function is called,
   3007   1.7      gwr 		 * I will skip the test and always flush the address.  It
   3008   1.7      gwr 		 * does no harm.
   3009   1.7      gwr 		 */
   3010   1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3011   1.7      gwr 		TBIS(va);
   3012   1.1      gwr 	}
   3013   1.7      gwr 	splx(s);
   3014   1.1      gwr }
   3015   1.1      gwr 
   3016   1.1      gwr /* pmap_extract			INTERFACE
   3017   1.1      gwr  **
   3018   1.1      gwr  * Return the physical address mapped by the virtual address
   3019   1.8      gwr  * in the specified pmap or 0 if it is not known.
   3020   1.1      gwr  *
   3021   1.1      gwr  * Note: this function should also apply an exclusive lock
   3022   1.1      gwr  * on the pmap system during its duration.
   3023   1.1      gwr  */
   3024   1.1      gwr vm_offset_t
   3025   1.1      gwr pmap_extract(pmap, va)
   3026   1.1      gwr 	pmap_t      pmap;
   3027   1.1      gwr 	vm_offset_t va;
   3028   1.1      gwr {
   3029   1.1      gwr 	int a_idx, b_idx, pte_idx;
   3030   1.1      gwr 	a_tmgr_t	*a_tbl;
   3031   1.1      gwr 	b_tmgr_t	*b_tbl;
   3032   1.1      gwr 	c_tmgr_t	*c_tbl;
   3033   1.1      gwr 	mmu_short_pte_t	*c_pte;
   3034   1.1      gwr 
   3035   1.1      gwr 	if (pmap == pmap_kernel())
   3036   1.1      gwr 		return pmap_extract_kernel(va);
   3037   1.1      gwr 	if (pmap == NULL)
   3038   1.1      gwr 		return 0;
   3039   1.1      gwr 
   3040   1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   3041   1.7      gwr 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   3042   1.1      gwr 		return 0;
   3043   1.1      gwr 
   3044   1.7      gwr 	if (!MMU_VALID_DT(*c_pte))
   3045   1.1      gwr 		return 0;
   3046   1.7      gwr 
   3047   1.8      gwr 	return (MMU_PTE_PA(*c_pte));
   3048   1.1      gwr }
   3049   1.1      gwr 
   3050   1.1      gwr /* pmap_extract_kernel		INTERNAL
   3051   1.1      gwr  **
   3052   1.8      gwr  * Extract a translation from the kernel address space.
   3053   1.1      gwr  */
   3054   1.1      gwr vm_offset_t
   3055   1.1      gwr pmap_extract_kernel(va)
   3056   1.1      gwr 	vm_offset_t va;
   3057   1.1      gwr {
   3058   1.1      gwr 	mmu_short_pte_t *pte;
   3059   1.1      gwr 
   3060   1.8      gwr 	pte = &kernCbase[(u_int) sun3x_btop(va - KERNBASE)];
   3061   1.1      gwr 	return MMU_PTE_PA(*pte);
   3062   1.1      gwr }
   3063   1.1      gwr 
   3064   1.1      gwr /* pmap_remove_kernel		INTERNAL
   3065   1.1      gwr  **
   3066   1.1      gwr  * Remove the mapping of a range of virtual addresses from the kernel map.
   3067   1.9      gwr  * The arguments are already page-aligned.
   3068   1.1      gwr  */
   3069   1.1      gwr void
   3070   1.9      gwr pmap_remove_kernel(sva, eva)
   3071   1.9      gwr 	vm_offset_t sva;
   3072   1.9      gwr 	vm_offset_t eva;
   3073   1.1      gwr {
   3074   1.9      gwr 	int idx, eidx;
   3075   1.9      gwr 
   3076   1.9      gwr #ifdef	PMAP_DEBUG
   3077   1.9      gwr 	if ((sva & PGOFSET) || (eva & PGOFSET))
   3078   1.9      gwr 		panic("pmap_remove_kernel: alignment");
   3079   1.9      gwr #endif
   3080   1.1      gwr 
   3081   1.9      gwr 	idx  = sun3x_btop(sva - KERNBASE);
   3082   1.9      gwr 	eidx = sun3x_btop(eva - KERNBASE);
   3083   1.9      gwr 
   3084   1.9      gwr 	while (idx < eidx)
   3085   1.9      gwr 		pmap_remove_pte(&kernCbase[idx++]);
   3086   1.7      gwr 	/* Always flush the ATC when maniplating the kernel address space. */
   3087   1.8      gwr 	TBIAS();
   3088   1.1      gwr }
   3089   1.1      gwr 
   3090   1.1      gwr /* pmap_remove			INTERFACE
   3091   1.1      gwr  **
   3092   1.1      gwr  * Remove the mapping of a range of virtual addresses from the given pmap.
   3093   1.7      gwr  *
   3094   1.7      gwr  * If the range contains any wired entries, this function will probably create
   3095   1.7      gwr  * disaster.
   3096   1.1      gwr  */
   3097   1.1      gwr void
   3098   1.1      gwr pmap_remove(pmap, start, end)
   3099   1.1      gwr 	pmap_t pmap;
   3100   1.1      gwr 	vm_offset_t start;
   3101   1.1      gwr 	vm_offset_t end;
   3102   1.1      gwr {
   3103   1.7      gwr 
   3104   1.1      gwr 	if (pmap == pmap_kernel()) {
   3105   1.1      gwr 		pmap_remove_kernel(start, end);
   3106   1.1      gwr 		return;
   3107   1.1      gwr 	}
   3108   1.1      gwr 
   3109   1.7      gwr 	/*
   3110   1.7      gwr 	 * XXX - Temporary(?) statement to prevent panic caused
   3111   1.7      gwr 	 * by vm_alloc_with_pager() handing us a software map (ie NULL)
   3112   1.7      gwr 	 * to remove because it couldn't get backing store.
   3113   1.7      gwr 	 * (I guess.)
   3114   1.7      gwr 	 */
   3115   1.7      gwr 	if (pmap == NULL)
   3116   1.7      gwr 		return;
   3117   1.7      gwr 
   3118   1.7      gwr 	/*
   3119   1.7      gwr 	 * If the pmap doesn't have an A table of its own, it has no mappings
   3120   1.7      gwr 	 * that can be removed.
   3121   1.1      gwr 	 */
   3122   1.7      gwr 	if (pmap->pm_a_tmgr == NULL)
   3123   1.7      gwr 		return;
   3124   1.7      gwr 
   3125   1.7      gwr 	/*
   3126   1.7      gwr 	 * Remove the specified range from the pmap.  If the function
   3127   1.7      gwr 	 * returns true, the operation removed all the valid mappings
   3128   1.7      gwr 	 * in the pmap and freed its A table.  If this happened to the
   3129   1.7      gwr 	 * currently loaded pmap, the MMU root pointer must be reloaded
   3130   1.7      gwr 	 * with the default 'kernel' map.
   3131   1.7      gwr 	 */
   3132   1.7      gwr 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   3133   1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   3134   1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   3135   1.9      gwr 			loadcrp(&kernel_crp);
   3136   1.9      gwr 			/* will do TLB flush below */
   3137   1.9      gwr 		}
   3138   1.7      gwr 		pmap->pm_a_tmgr = NULL;
   3139   1.7      gwr 		pmap->pm_a_phys = kernAphys;
   3140   1.1      gwr 	}
   3141   1.9      gwr 
   3142   1.9      gwr 	/*
   3143   1.9      gwr 	 * If we just modified the current address space,
   3144   1.9      gwr 	 * make sure to flush the MMU cache.
   3145   1.9      gwr 	 *
   3146   1.9      gwr 	 * XXX - this could be an unecessarily large flush.
   3147   1.9      gwr 	 * XXX - Could decide, based on the size of the VA range
   3148   1.9      gwr 	 * to be removed, whether to flush "by pages" or "all".
   3149   1.9      gwr 	 */
   3150   1.9      gwr 	if (pmap == current_pmap())
   3151   1.9      gwr 		TBIAU();
   3152   1.1      gwr }
   3153   1.1      gwr 
   3154   1.1      gwr /* pmap_remove_a			INTERNAL
   3155   1.1      gwr  **
   3156   1.1      gwr  * This is function number one in a set of three that removes a range
   3157   1.1      gwr  * of memory in the most efficient manner by removing the highest possible
   3158   1.1      gwr  * tables from the memory space.  This particular function attempts to remove
   3159   1.1      gwr  * as many B tables as it can, delegating the remaining fragmented ranges to
   3160   1.1      gwr  * pmap_remove_b().
   3161   1.1      gwr  *
   3162   1.7      gwr  * If the removal operation results in an empty A table, the function returns
   3163   1.7      gwr  * TRUE.
   3164   1.7      gwr  *
   3165   1.1      gwr  * It's ugly but will do for now.
   3166   1.1      gwr  */
   3167   1.7      gwr boolean_t
   3168   1.1      gwr pmap_remove_a(a_tbl, start, end)
   3169   1.1      gwr 	a_tmgr_t *a_tbl;
   3170   1.1      gwr 	vm_offset_t start;
   3171   1.1      gwr 	vm_offset_t end;
   3172   1.1      gwr {
   3173   1.7      gwr 	boolean_t empty;
   3174   1.1      gwr 	int idx;
   3175   1.7      gwr 	vm_offset_t nstart, nend;
   3176   1.1      gwr 	b_tmgr_t *b_tbl;
   3177   1.1      gwr 	mmu_long_dte_t  *a_dte;
   3178   1.1      gwr 	mmu_short_dte_t *b_dte;
   3179   1.8      gwr 
   3180   1.7      gwr 	/*
   3181   1.7      gwr 	 * The following code works with what I call a 'granularity
   3182   1.7      gwr 	 * reduction algorithim'.  A range of addresses will always have
   3183   1.7      gwr 	 * the following properties, which are classified according to
   3184   1.7      gwr 	 * how the range relates to the size of the current granularity
   3185   1.7      gwr 	 * - an A table entry:
   3186   1.7      gwr 	 *
   3187   1.7      gwr 	 *            1 2       3 4
   3188   1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   3189   1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   3190   1.7      gwr 	 *
   3191   1.7      gwr 	 * A range will always start on a granularity boundary, illustrated
   3192   1.7      gwr 	 * by '+' signs in the table above, or it will start at some point
   3193   1.7      gwr 	 * inbetween a granularity boundary, as illustrated by point 1.
   3194   1.7      gwr 	 * The first step in removing a range of addresses is to remove the
   3195   1.7      gwr 	 * range between 1 and 2, the nearest granularity boundary.  This
   3196   1.7      gwr 	 * job is handled by the section of code governed by the
   3197   1.7      gwr 	 * 'if (start < nstart)' statement.
   3198   1.7      gwr 	 *
   3199   1.7      gwr 	 * A range will always encompass zero or more intergral granules,
   3200   1.7      gwr 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3201   1.7      gwr 	 * remove.  The removal of these granules is the second step, and
   3202   1.7      gwr 	 * is handled by the code block 'if (nstart < nend)'.
   3203   1.7      gwr 	 *
   3204   1.7      gwr 	 * Lastly, a range will always end on a granularity boundary,
   3205   1.7      gwr 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3206   1.7      gwr 	 * 4.  The last step involves removing this range and is handled by
   3207   1.7      gwr 	 * the code block 'if (nend < end)'.
   3208   1.7      gwr 	 */
   3209   1.1      gwr 	nstart = MMU_ROUND_UP_A(start);
   3210   1.1      gwr 	nend = MMU_ROUND_A(end);
   3211   1.1      gwr 
   3212   1.1      gwr 	if (start < nstart) {
   3213   1.7      gwr 		/*
   3214   1.7      gwr 		 * This block is executed if the range starts between
   3215   1.7      gwr 		 * a granularity boundary.
   3216   1.7      gwr 		 *
   3217   1.7      gwr 		 * First find the DTE which is responsible for mapping
   3218   1.7      gwr 		 * the start of the range.
   3219   1.7      gwr 		 */
   3220   1.1      gwr 		idx = MMU_TIA(start);
   3221   1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3222   1.7      gwr 
   3223   1.7      gwr 		/*
   3224   1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3225   1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3226   1.7      gwr 		 * a finer granularity.
   3227   1.7      gwr 		 */
   3228   1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3229   1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3230   1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3231   1.7      gwr 
   3232   1.7      gwr 			/*
   3233   1.7      gwr 			 * The sub range to be removed starts at the start
   3234   1.7      gwr 			 * of the full range we were asked to remove, and ends
   3235   1.7      gwr 			 * at the greater of:
   3236   1.7      gwr 			 * 1. The end of the full range, -or-
   3237   1.7      gwr 			 * 2. The end of the full range, rounded down to the
   3238   1.7      gwr 			 *    nearest granularity boundary.
   3239   1.7      gwr 			 */
   3240   1.7      gwr 			if (end < nstart)
   3241   1.8      gwr 				empty = pmap_remove_b(b_tbl, start, end);
   3242   1.7      gwr 			else
   3243   1.8      gwr 				empty = pmap_remove_b(b_tbl, start, nstart);
   3244   1.7      gwr 
   3245   1.7      gwr 			/*
   3246   1.7      gwr 			 * If the removal resulted in an empty B table,
   3247   1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3248   1.7      gwr 			 * the valid entry count of the A table.
   3249   1.7      gwr 			 */
   3250   1.7      gwr 			if (empty) {
   3251   1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3252   1.7      gwr 				a_tbl->at_ecnt--;
   3253   1.1      gwr 			}
   3254   1.1      gwr 		}
   3255   1.7      gwr 		/*
   3256   1.7      gwr 		 * If the DTE is invalid, the address range is already non-
   3257   1.7      gwr 		 * existant and can simply be skipped.
   3258   1.7      gwr 		 */
   3259   1.1      gwr 	}
   3260   1.1      gwr 	if (nstart < nend) {
   3261   1.7      gwr 		/*
   3262   1.8      gwr 		 * This block is executed if the range spans a whole number
   3263   1.7      gwr 		 * multiple of granules (A table entries.)
   3264   1.7      gwr 		 *
   3265   1.7      gwr 		 * First find the DTE which is responsible for mapping
   3266   1.7      gwr 		 * the start of the first granule involved.
   3267   1.7      gwr 		 */
   3268   1.1      gwr 		idx = MMU_TIA(nstart);
   3269   1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3270   1.7      gwr 
   3271   1.7      gwr 		/*
   3272   1.7      gwr 		 * Remove entire sub-granules (B tables) one at a time,
   3273   1.7      gwr 		 * until reaching the end of the range.
   3274   1.7      gwr 		 */
   3275   1.7      gwr 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3276   1.1      gwr 			if (MMU_VALID_DT(*a_dte)) {
   3277   1.7      gwr 				/*
   3278   1.7      gwr 				 * Find the B table manager for the
   3279   1.7      gwr 				 * entry and free it.
   3280   1.7      gwr 				 */
   3281   1.7      gwr 				b_dte = mmu_ptov(a_dte->addr.raw);
   3282   1.1      gwr 				b_tbl = mmuB2tmgr(b_dte);
   3283   1.7      gwr 				free_b_table(b_tbl, TRUE);
   3284   1.7      gwr 
   3285   1.7      gwr 				/*
   3286   1.7      gwr 				 * Invalidate the DTE that points to the
   3287   1.7      gwr 				 * B table and decrement the valid entry
   3288   1.7      gwr 				 * count of the A table.
   3289   1.7      gwr 				 */
   3290   1.1      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3291   1.1      gwr 				a_tbl->at_ecnt--;
   3292   1.1      gwr 			}
   3293   1.1      gwr 	}
   3294   1.1      gwr 	if (nend < end) {
   3295   1.7      gwr 		/*
   3296   1.7      gwr 		 * This block is executed if the range ends beyond a
   3297   1.7      gwr 		 * granularity boundary.
   3298   1.7      gwr 		 *
   3299   1.7      gwr 		 * First find the DTE which is responsible for mapping
   3300   1.7      gwr 		 * the start of the nearest (rounded down) granularity
   3301   1.7      gwr 		 * boundary.
   3302   1.7      gwr 		 */
   3303   1.1      gwr 		idx = MMU_TIA(nend);
   3304   1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3305   1.7      gwr 
   3306   1.7      gwr 		/*
   3307   1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3308   1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3309   1.7      gwr 		 * a finer granularity.
   3310   1.7      gwr 		 */
   3311   1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3312   1.7      gwr 			/*
   3313   1.7      gwr 			 * Find the B table manager for the entry
   3314   1.7      gwr 			 * and hand it to pmap_remove_b() along with
   3315   1.7      gwr 			 * the sub range.
   3316   1.7      gwr 			 */
   3317   1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3318   1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3319   1.7      gwr 
   3320   1.8      gwr 			empty = pmap_remove_b(b_tbl, nend, end);
   3321   1.7      gwr 
   3322   1.7      gwr 			/*
   3323   1.7      gwr 			 * If the removal resulted in an empty B table,
   3324   1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3325   1.7      gwr 			 * the valid entry count of the A table.
   3326   1.7      gwr 			 */
   3327   1.7      gwr 			if (empty) {
   3328   1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3329   1.7      gwr 				a_tbl->at_ecnt--;
   3330   1.7      gwr 			}
   3331   1.1      gwr 		}
   3332   1.1      gwr 	}
   3333   1.7      gwr 
   3334   1.7      gwr 	/*
   3335   1.7      gwr 	 * If there are no more entries in the A table, release it
   3336   1.7      gwr 	 * back to the available pool and return TRUE.
   3337   1.7      gwr 	 */
   3338   1.7      gwr 	if (a_tbl->at_ecnt == 0) {
   3339   1.7      gwr 		a_tbl->at_parent = NULL;
   3340   1.7      gwr 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3341   1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3342   1.7      gwr 		empty = TRUE;
   3343   1.7      gwr 	} else {
   3344   1.7      gwr 		empty = FALSE;
   3345   1.7      gwr 	}
   3346   1.7      gwr 
   3347   1.7      gwr 	return empty;
   3348   1.1      gwr }
   3349   1.1      gwr 
   3350   1.1      gwr /* pmap_remove_b			INTERNAL
   3351   1.1      gwr  **
   3352   1.1      gwr  * Remove a range of addresses from an address space, trying to remove entire
   3353   1.1      gwr  * C tables if possible.
   3354   1.7      gwr  *
   3355   1.7      gwr  * If the operation results in an empty B table, the function returns TRUE.
   3356   1.1      gwr  */
   3357   1.7      gwr boolean_t
   3358   1.8      gwr pmap_remove_b(b_tbl, start, end)
   3359   1.1      gwr 	b_tmgr_t *b_tbl;
   3360   1.1      gwr 	vm_offset_t start;
   3361   1.1      gwr 	vm_offset_t end;
   3362   1.1      gwr {
   3363   1.7      gwr 	boolean_t empty;
   3364   1.1      gwr 	int idx;
   3365   1.1      gwr 	vm_offset_t nstart, nend, rstart;
   3366   1.1      gwr 	c_tmgr_t *c_tbl;
   3367   1.1      gwr 	mmu_short_dte_t  *b_dte;
   3368   1.1      gwr 	mmu_short_pte_t  *c_dte;
   3369   1.1      gwr 
   3370   1.1      gwr 
   3371   1.1      gwr 	nstart = MMU_ROUND_UP_B(start);
   3372   1.1      gwr 	nend = MMU_ROUND_B(end);
   3373   1.1      gwr 
   3374   1.1      gwr 	if (start < nstart) {
   3375   1.1      gwr 		idx = MMU_TIB(start);
   3376   1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3377   1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3378   1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3379   1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3380   1.7      gwr 			if (end < nstart)
   3381   1.8      gwr 				empty = pmap_remove_c(c_tbl, start, end);
   3382   1.7      gwr 			else
   3383   1.8      gwr 				empty = pmap_remove_c(c_tbl, start, nstart);
   3384   1.7      gwr 			if (empty) {
   3385   1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3386   1.7      gwr 				b_tbl->bt_ecnt--;
   3387   1.1      gwr 			}
   3388   1.1      gwr 		}
   3389   1.1      gwr 	}
   3390   1.1      gwr 	if (nstart < nend) {
   3391   1.1      gwr 		idx = MMU_TIB(nstart);
   3392   1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3393   1.1      gwr 		rstart = nstart;
   3394   1.1      gwr 		while (rstart < nend) {
   3395   1.1      gwr 			if (MMU_VALID_DT(*b_dte)) {
   3396   1.7      gwr 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3397   1.1      gwr 				c_tbl = mmuC2tmgr(c_dte);
   3398   1.7      gwr 				free_c_table(c_tbl, TRUE);
   3399   1.1      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3400   1.1      gwr 				b_tbl->bt_ecnt--;
   3401   1.1      gwr 			}
   3402   1.1      gwr 			b_dte++;
   3403   1.1      gwr 			rstart += MMU_TIB_RANGE;
   3404   1.1      gwr 		}
   3405   1.1      gwr 	}
   3406   1.1      gwr 	if (nend < end) {
   3407   1.1      gwr 		idx = MMU_TIB(nend);
   3408   1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3409   1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3410   1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3411   1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3412   1.8      gwr 			empty = pmap_remove_c(c_tbl, nend, end);
   3413   1.7      gwr 			if (empty) {
   3414   1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3415   1.7      gwr 				b_tbl->bt_ecnt--;
   3416   1.7      gwr 			}
   3417   1.1      gwr 		}
   3418   1.1      gwr 	}
   3419   1.7      gwr 
   3420   1.7      gwr 	if (b_tbl->bt_ecnt == 0) {
   3421   1.7      gwr 		b_tbl->bt_parent = NULL;
   3422   1.7      gwr 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3423   1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3424   1.7      gwr 		empty = TRUE;
   3425   1.7      gwr 	} else {
   3426   1.7      gwr 		empty = FALSE;
   3427   1.7      gwr 	}
   3428   1.7      gwr 
   3429   1.7      gwr 	return empty;
   3430   1.1      gwr }
   3431   1.1      gwr 
   3432   1.1      gwr /* pmap_remove_c			INTERNAL
   3433   1.1      gwr  **
   3434   1.1      gwr  * Remove a range of addresses from the given C table.
   3435   1.1      gwr  */
   3436   1.7      gwr boolean_t
   3437   1.8      gwr pmap_remove_c(c_tbl, start, end)
   3438   1.1      gwr 	c_tmgr_t *c_tbl;
   3439   1.1      gwr 	vm_offset_t start;
   3440   1.1      gwr 	vm_offset_t end;
   3441   1.1      gwr {
   3442   1.7      gwr 	boolean_t empty;
   3443   1.1      gwr 	int idx;
   3444   1.1      gwr 	mmu_short_pte_t *c_pte;
   3445   1.1      gwr 
   3446   1.1      gwr 	idx = MMU_TIC(start);
   3447   1.1      gwr 	c_pte = &c_tbl->ct_dtbl[idx];
   3448   1.8      gwr 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3449   1.7      gwr 		if (MMU_VALID_DT(*c_pte)) {
   3450   1.1      gwr 			pmap_remove_pte(c_pte);
   3451   1.7      gwr 			c_tbl->ct_ecnt--;
   3452   1.7      gwr 		}
   3453   1.1      gwr 	}
   3454   1.7      gwr 
   3455   1.7      gwr 	if (c_tbl->ct_ecnt == 0) {
   3456   1.7      gwr 		c_tbl->ct_parent = NULL;
   3457   1.7      gwr 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3458   1.9      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3459   1.9      gwr 		empty = TRUE;
   3460   1.9      gwr 	} else {
   3461   1.9      gwr 		empty = FALSE;
   3462   1.9      gwr 	}
   3463   1.7      gwr 
   3464   1.9      gwr 	return empty;
   3465   1.1      gwr }
   3466   1.1      gwr 
   3467   1.1      gwr /* is_managed				INTERNAL
   3468   1.1      gwr  **
   3469   1.1      gwr  * Determine if the given physical address is managed by the PV system.
   3470   1.1      gwr  * Note that this logic assumes that no one will ask for the status of
   3471   1.1      gwr  * addresses which lie in-between the memory banks on the 3/80.  If they
   3472   1.1      gwr  * do so, it will falsely report that it is managed.
   3473   1.7      gwr  *
   3474   1.8      gwr  * Note: A "managed" address is one that was reported to the VM system as
   3475   1.8      gwr  * a "usable page" during system startup.  As such, the VM system expects the
   3476   1.8      gwr  * pmap module to keep an accurate track of the useage of those pages.
   3477   1.8      gwr  * Any page not given to the VM system at startup does not exist (as far as
   3478   1.8      gwr  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3479   1.8      gwr  * those pages which belong to the ROM monitor and the memory allocated before
   3480   1.8      gwr  * the VM system was started.
   3481   1.1      gwr  */
   3482   1.1      gwr boolean_t
   3483   1.1      gwr is_managed(pa)
   3484   1.1      gwr 	vm_offset_t pa;
   3485   1.1      gwr {
   3486   1.1      gwr 	if (pa >= avail_start && pa < avail_end)
   3487   1.1      gwr 		return TRUE;
   3488   1.1      gwr 	else
   3489   1.1      gwr 		return FALSE;
   3490   1.1      gwr }
   3491   1.1      gwr 
   3492   1.1      gwr /* pmap_bootstrap_alloc			INTERNAL
   3493   1.1      gwr  **
   3494   1.1      gwr  * Used internally for memory allocation at startup when malloc is not
   3495   1.1      gwr  * available.  This code will fail once it crosses the first memory
   3496   1.1      gwr  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3497   1.1      gwr  * will be in charge of allocation.
   3498   1.1      gwr  */
   3499   1.1      gwr void *
   3500   1.1      gwr pmap_bootstrap_alloc(size)
   3501   1.1      gwr 	int size;
   3502   1.1      gwr {
   3503   1.1      gwr 	void *rtn;
   3504   1.1      gwr 
   3505   1.8      gwr #ifdef	PMAP_DEBUG
   3506   1.7      gwr 	if (bootstrap_alloc_enabled == FALSE) {
   3507   1.7      gwr 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3508   1.7      gwr 		sunmon_abort();
   3509   1.7      gwr 	}
   3510   1.7      gwr #endif
   3511   1.7      gwr 
   3512   1.1      gwr 	rtn = (void *) virtual_avail;
   3513   1.1      gwr 	virtual_avail += size;
   3514   1.1      gwr 
   3515   1.8      gwr #ifdef	PMAP_DEBUG
   3516   1.7      gwr 	if (virtual_avail > virtual_contig_end) {
   3517   1.7      gwr 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3518   1.7      gwr 		sunmon_abort();
   3519   1.1      gwr 	}
   3520   1.7      gwr #endif
   3521   1.1      gwr 
   3522   1.1      gwr 	return rtn;
   3523   1.1      gwr }
   3524   1.1      gwr 
   3525   1.1      gwr /* pmap_bootstap_aalign			INTERNAL
   3526   1.1      gwr  **
   3527   1.7      gwr  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3528   1.7      gwr  * return a chunk of memory aligned to the specified size.
   3529   1.8      gwr  *
   3530   1.8      gwr  * Note: This function will only support alignment sizes that are powers
   3531   1.8      gwr  * of two.
   3532   1.1      gwr  */
   3533   1.1      gwr void
   3534   1.1      gwr pmap_bootstrap_aalign(size)
   3535   1.1      gwr 	int size;
   3536   1.1      gwr {
   3537   1.7      gwr 	int off;
   3538   1.7      gwr 
   3539   1.7      gwr 	off = virtual_avail & (size - 1);
   3540   1.7      gwr 	if (off) {
   3541   1.7      gwr 		(void) pmap_bootstrap_alloc(size - off);
   3542   1.1      gwr 	}
   3543   1.1      gwr }
   3544   1.7      gwr 
   3545   1.8      gwr /* pmap_pa_exists
   3546   1.8      gwr  **
   3547   1.8      gwr  * Used by the /dev/mem driver to see if a given PA is memory
   3548   1.8      gwr  * that can be mapped.  (The PA is not in a hole.)
   3549   1.8      gwr  */
   3550   1.8      gwr int
   3551   1.8      gwr pmap_pa_exists(pa)
   3552   1.8      gwr 	vm_offset_t pa;
   3553   1.8      gwr {
   3554   1.8      gwr 	/* XXX - NOTYET */
   3555   1.8      gwr 	return (0);
   3556   1.8      gwr }
   3557   1.8      gwr 
   3558   1.1      gwr /* pmap_activate			INTERFACE
   3559   1.1      gwr  **
   3560   1.7      gwr  * This is called by locore.s:cpu_switch when we are switching to a
   3561   1.7      gwr  * new process.  This should load the MMU context for the new proc.
   3562   1.7      gwr  * XXX - Later, this should be done directly in locore.s
   3563   1.1      gwr  */
   3564   1.1      gwr void
   3565   1.7      gwr pmap_activate(pmap)
   3566   1.1      gwr pmap_t	pmap;
   3567   1.1      gwr {
   3568   1.7      gwr 	u_long rootpa;
   3569   1.7      gwr 
   3570   1.7      gwr 	/* Only do reload/flush if we have to. */
   3571   1.7      gwr 	rootpa = pmap->pm_a_phys;
   3572   1.7      gwr 	if (kernel_crp.rp_addr != rootpa) {
   3573   1.7      gwr 		DPRINT(("pmap_activate(%p)\n", pmap));
   3574   1.7      gwr 		kernel_crp.rp_addr = rootpa;
   3575   1.7      gwr 		loadcrp(&kernel_crp);
   3576   1.8      gwr 		TBIAU();
   3577   1.7      gwr 	}
   3578   1.1      gwr }
   3579   1.1      gwr 
   3580   1.1      gwr 
   3581   1.1      gwr /* pmap_update
   3582   1.1      gwr  **
   3583   1.1      gwr  * Apply any delayed changes scheduled for all pmaps immediately.
   3584   1.1      gwr  *
   3585   1.1      gwr  * No delayed operations are currently done in this pmap.
   3586   1.1      gwr  */
   3587   1.1      gwr void
   3588   1.1      gwr pmap_update()
   3589   1.1      gwr {
   3590   1.1      gwr 	/* not implemented. */
   3591   1.1      gwr }
   3592   1.1      gwr 
   3593   1.1      gwr /* pmap_virtual_space			INTERFACE
   3594   1.1      gwr  **
   3595   1.1      gwr  * Return the current available range of virtual addresses in the
   3596   1.1      gwr  * arguuments provided.  Only really called once.
   3597   1.1      gwr  */
   3598   1.1      gwr void
   3599   1.1      gwr pmap_virtual_space(vstart, vend)
   3600   1.1      gwr 	vm_offset_t *vstart, *vend;
   3601   1.1      gwr {
   3602   1.1      gwr 	*vstart = virtual_avail;
   3603   1.1      gwr 	*vend = virtual_end;
   3604   1.1      gwr }
   3605   1.1      gwr 
   3606   1.1      gwr /* pmap_free_pages			INTERFACE
   3607   1.1      gwr  **
   3608   1.1      gwr  * Return the number of physical pages still available.
   3609   1.1      gwr  *
   3610   1.1      gwr  * This is probably going to be a mess, but it's only called
   3611   1.1      gwr  * once and it's the only function left that I have to implement!
   3612   1.1      gwr  */
   3613   1.1      gwr u_int
   3614   1.1      gwr pmap_free_pages()
   3615   1.1      gwr {
   3616   1.1      gwr 	int i;
   3617   1.1      gwr 	u_int left;
   3618   1.1      gwr 	vm_offset_t avail;
   3619   1.1      gwr 
   3620   1.7      gwr 	avail = avail_next;
   3621   1.1      gwr 	left = 0;
   3622   1.1      gwr 	i = 0;
   3623   1.1      gwr 	while (avail >= avail_mem[i].pmem_end) {
   3624   1.1      gwr 		if (avail_mem[i].pmem_next == NULL)
   3625   1.1      gwr 			return 0;
   3626   1.1      gwr 		i++;
   3627   1.1      gwr 	}
   3628   1.1      gwr 	while (i < SUN3X_80_MEM_BANKS) {
   3629   1.1      gwr 		if (avail < avail_mem[i].pmem_start) {
   3630   1.1      gwr 			/* Avail is inside a hole, march it
   3631   1.1      gwr 			 * up to the next bank.
   3632   1.1      gwr 			 */
   3633   1.1      gwr 			avail = avail_mem[i].pmem_start;
   3634   1.1      gwr 		}
   3635   1.1      gwr 		left += sun3x_btop(avail_mem[i].pmem_end - avail);
   3636   1.1      gwr 		if (avail_mem[i].pmem_next == NULL)
   3637   1.1      gwr 			break;
   3638   1.1      gwr 		i++;
   3639   1.1      gwr 	}
   3640   1.1      gwr 
   3641   1.1      gwr 	return left;
   3642   1.1      gwr }
   3643   1.1      gwr 
   3644   1.1      gwr /* pmap_page_index			INTERFACE
   3645   1.1      gwr  **
   3646   1.1      gwr  * Return the index of the given physical page in a list of useable
   3647   1.1      gwr  * physical pages in the system.  Holes in physical memory may be counted
   3648   1.1      gwr  * if so desired.  As long as pmap_free_pages() and pmap_page_index()
   3649   1.1      gwr  * agree as to whether holes in memory do or do not count as valid pages,
   3650   1.1      gwr  * it really doesn't matter.  However, if you like to save a little
   3651   1.1      gwr  * memory, don't count holes as valid pages.  This is even more true when
   3652   1.1      gwr  * the holes are large.
   3653   1.1      gwr  *
   3654   1.8      gwr  * We will not count holes as valid pages.  We can generate page indices
   3655   1.1      gwr  * that conform to this by using the memory bank structures initialized
   3656   1.1      gwr  * in pmap_alloc_pv().
   3657   1.1      gwr  */
   3658   1.1      gwr int
   3659   1.1      gwr pmap_page_index(pa)
   3660   1.1      gwr 	vm_offset_t pa;
   3661   1.1      gwr {
   3662   1.1      gwr 	struct pmap_physmem_struct *bank = avail_mem;
   3663   1.1      gwr 
   3664   1.7      gwr 	/* Search for the memory bank with this page. */
   3665   1.7      gwr 	/* XXX - What if it is not physical memory? */
   3666   1.1      gwr 	while (pa > bank->pmem_end)
   3667   1.1      gwr 		bank = bank->pmem_next;
   3668   1.1      gwr 	pa -= bank->pmem_start;
   3669   1.1      gwr 
   3670   1.1      gwr 	return (bank->pmem_pvbase + sun3x_btop(pa));
   3671   1.1      gwr }
   3672   1.1      gwr 
   3673   1.1      gwr /* pmap_next_page			INTERFACE
   3674   1.1      gwr  **
   3675   1.1      gwr  * Place the physical address of the next available page in the
   3676   1.1      gwr  * argument given.  Returns FALSE if there are no more pages left.
   3677   1.1      gwr  *
   3678   1.1      gwr  * This function must jump over any holes in physical memory.
   3679   1.1      gwr  * Once this function is used, any use of pmap_bootstrap_alloc()
   3680   1.1      gwr  * is a sin.  Sinners will be punished with erratic behavior.
   3681   1.1      gwr  */
   3682   1.1      gwr boolean_t
   3683   1.1      gwr pmap_next_page(pa)
   3684   1.1      gwr 	vm_offset_t *pa;
   3685   1.1      gwr {
   3686   1.1      gwr 	static struct pmap_physmem_struct *curbank = avail_mem;
   3687   1.1      gwr 
   3688   1.8      gwr 	/* XXX - temporary ROM saving hack. */
   3689   1.8      gwr 	if (avail_next >= avail_end)
   3690   1.8      gwr 		return FALSE;
   3691   1.8      gwr 
   3692   1.7      gwr 	if (avail_next >= curbank->pmem_end)
   3693   1.1      gwr 		if (curbank->pmem_next == NULL)
   3694   1.1      gwr 			return FALSE;
   3695   1.1      gwr 		else {
   3696   1.1      gwr 			curbank = curbank->pmem_next;
   3697   1.7      gwr 			avail_next = curbank->pmem_start;
   3698   1.1      gwr 		}
   3699   1.1      gwr 
   3700   1.7      gwr 	*pa = avail_next;
   3701   1.7      gwr 	avail_next += NBPG;
   3702   1.1      gwr 	return TRUE;
   3703   1.1      gwr }
   3704   1.8      gwr 
   3705   1.8      gwr /* pmap_count			INTERFACE
   3706   1.8      gwr  **
   3707   1.8      gwr  * Return the number of resident (valid) pages in the given pmap.
   3708   1.8      gwr  *
   3709   1.8      gwr  * Note:  If this function is handed the kernel map, it will report
   3710   1.8      gwr  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3711   1.8      gwr  * map statistics.
   3712   1.8      gwr  */
   3713   1.8      gwr segsz_t
   3714   1.8      gwr pmap_count(pmap, type)
   3715   1.8      gwr 	pmap_t pmap;
   3716   1.8      gwr 	int    type;
   3717   1.8      gwr {
   3718   1.8      gwr 	u_int     count;
   3719   1.8      gwr 	int       a_idx, b_idx;
   3720   1.8      gwr 	a_tmgr_t *a_tbl;
   3721   1.8      gwr 	b_tmgr_t *b_tbl;
   3722   1.8      gwr 	c_tmgr_t *c_tbl;
   3723   1.8      gwr 
   3724   1.8      gwr 	/*
   3725   1.8      gwr 	 * If the pmap does not have its own A table manager, it has no
   3726   1.8      gwr 	 * valid entires.
   3727   1.8      gwr 	 */
   3728   1.8      gwr 	if (pmap->pm_a_tmgr == NULL)
   3729   1.8      gwr 		return 0;
   3730   1.8      gwr 
   3731   1.8      gwr 	a_tbl = pmap->pm_a_tmgr;
   3732   1.8      gwr 
   3733   1.8      gwr 	count = 0;
   3734   1.8      gwr 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3735   1.8      gwr 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3736   1.8      gwr 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3737   1.8      gwr 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3738   1.8      gwr 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3739   1.8      gwr 	                c_tbl = mmuC2tmgr(
   3740   1.8      gwr 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3741   1.8      gwr 	                if (type == 0)
   3742   1.8      gwr 	                    /*
   3743   1.8      gwr 	                     * A resident entry count has been requested.
   3744   1.8      gwr 	                     */
   3745   1.8      gwr 	                    count += c_tbl->ct_ecnt;
   3746   1.8      gwr 	                else
   3747   1.8      gwr 	                    /*
   3748   1.8      gwr 	                     * A wired entry count has been requested.
   3749   1.8      gwr 	                     */
   3750   1.8      gwr 	                    count += c_tbl->ct_wcnt;
   3751   1.8      gwr 	            }
   3752   1.8      gwr 	        }
   3753   1.8      gwr 	    }
   3754   1.8      gwr 	}
   3755   1.8      gwr 
   3756   1.8      gwr 	return count;
   3757   1.8      gwr }
   3758   1.8      gwr 
   3759   1.1      gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3760   1.1      gwr  * The following routines are only used by DDB for tricky kernel text    *
   3761   1.1      gwr  * text operations in db_memrw.c.  They are provided for sun3            *
   3762   1.1      gwr  * compatibility.                                                        *
   3763   1.1      gwr  *************************************************************************/
   3764   1.1      gwr /* get_pte			INTERNAL
   3765   1.1      gwr  **
   3766   1.1      gwr  * Return the page descriptor the describes the kernel mapping
   3767   1.1      gwr  * of the given virtual address.
   3768   1.1      gwr  */
   3769  1.14      gwr extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3770  1.13      gwr u_long
   3771  1.13      gwr get_pte(va)
   3772  1.13      gwr 	vm_offset_t va;
   3773  1.13      gwr {
   3774  1.13      gwr 	u_long pte_pa;
   3775  1.13      gwr 	mmu_short_pte_t *pte;
   3776  1.13      gwr 
   3777  1.13      gwr 	/* Get the physical address of the PTE */
   3778  1.13      gwr 	pte_pa = ptest_addr(va & ~PGOFSET);
   3779  1.13      gwr 
   3780  1.13      gwr 	/* Convert to a virtual address... */
   3781  1.13      gwr 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3782  1.13      gwr 
   3783  1.13      gwr 	/* Make sure it is in our level-C tables... */
   3784  1.13      gwr 	if ((pte < kernCbase) ||
   3785  1.13      gwr 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3786  1.13      gwr 		return 0;
   3787  1.13      gwr 
   3788  1.13      gwr 	/* ... and just return its contents. */
   3789  1.13      gwr 	return (pte->attr.raw);
   3790  1.13      gwr }
   3791  1.13      gwr 
   3792   1.1      gwr 
   3793   1.1      gwr /* set_pte			INTERNAL
   3794   1.1      gwr  **
   3795   1.1      gwr  * Set the page descriptor that describes the kernel mapping
   3796   1.1      gwr  * of the given virtual address.
   3797   1.1      gwr  */
   3798   1.1      gwr void
   3799   1.1      gwr set_pte(va, pte)
   3800   1.1      gwr 	vm_offset_t va;
   3801   1.1      gwr 	vm_offset_t pte;
   3802   1.1      gwr {
   3803   1.1      gwr 	u_long idx;
   3804   1.1      gwr 
   3805   1.7      gwr 	if (va < KERNBASE)
   3806   1.7      gwr 		return;
   3807   1.7      gwr 
   3808   1.7      gwr 	idx = (unsigned long) sun3x_btop(va - KERNBASE);
   3809   1.1      gwr 	kernCbase[idx].attr.raw = pte;
   3810   1.1      gwr }
   3811   1.7      gwr 
   3812   1.8      gwr #ifdef	PMAP_DEBUG
   3813   1.7      gwr /************************** DEBUGGING ROUTINES **************************
   3814   1.7      gwr  * The following routines are meant to be an aid to debugging the pmap  *
   3815   1.7      gwr  * system.  They are callable from the DDB command line and should be   *
   3816   1.7      gwr  * prepared to be handed unstable or incomplete states of the system.   *
   3817   1.7      gwr  ************************************************************************/
   3818   1.7      gwr 
   3819   1.7      gwr /* pv_list
   3820   1.7      gwr  **
   3821   1.7      gwr  * List all pages found on the pv list for the given physical page.
   3822   1.8      gwr  * To avoid endless loops, the listing will stop at the end of the list
   3823   1.7      gwr  * or after 'n' entries - whichever comes first.
   3824   1.7      gwr  */
   3825   1.7      gwr void
   3826   1.7      gwr pv_list(pa, n)
   3827   1.7      gwr 	vm_offset_t pa;
   3828   1.7      gwr 	int n;
   3829   1.7      gwr {
   3830   1.7      gwr 	int  idx;
   3831   1.7      gwr 	vm_offset_t va;
   3832   1.7      gwr 	pv_t *pv;
   3833   1.7      gwr 	c_tmgr_t *c_tbl;
   3834   1.7      gwr 	pmap_t pmap;
   3835   1.7      gwr 
   3836   1.7      gwr 	pv = pa2pv(pa);
   3837   1.7      gwr 	idx = pv->pv_idx;
   3838   1.7      gwr 
   3839   1.7      gwr 	for (;idx != PVE_EOL && n > 0; idx=pvebase[idx].pve_next, n--) {
   3840   1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3841   1.7      gwr 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3842   1.7      gwr 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3843   1.7      gwr 	}
   3844   1.7      gwr }
   3845   1.8      gwr #endif	/* PMAP_DEBUG */
   3846   1.1      gwr 
   3847   1.1      gwr #ifdef NOT_YET
   3848   1.1      gwr /* and maybe not ever */
   3849   1.1      gwr /************************** LOW-LEVEL ROUTINES **************************
   3850   1.1      gwr  * These routines will eventualy be re-written into assembly and placed *
   3851   1.1      gwr  * in locore.s.  They are here now as stubs so that the pmap module can *
   3852   1.1      gwr  * be linked as a standalone user program for testing.                  *
   3853   1.1      gwr  ************************************************************************/
   3854   1.1      gwr /* flush_atc_crp			INTERNAL
   3855   1.1      gwr  **
   3856   1.1      gwr  * Flush all page descriptors derived from the given CPU Root Pointer
   3857   1.1      gwr  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3858   1.1      gwr  * cache.
   3859   1.1      gwr  */
   3860   1.1      gwr void
   3861   1.1      gwr flush_atc_crp(a_tbl)
   3862   1.1      gwr {
   3863   1.1      gwr 	mmu_long_rp_t rp;
   3864   1.1      gwr 
   3865   1.1      gwr 	/* Create a temporary root table pointer that points to the
   3866   1.1      gwr 	 * given A table.
   3867   1.1      gwr 	 */
   3868   1.1      gwr 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3869   1.1      gwr 	rp.addr.raw = (unsigned int) a_tbl;
   3870   1.1      gwr 
   3871   1.1      gwr 	mmu_pflushr(&rp);
   3872   1.1      gwr 	/* mmu_pflushr:
   3873   1.1      gwr 	 * 	movel   sp(4)@,a0
   3874   1.1      gwr 	 * 	pflushr a0@
   3875   1.1      gwr 	 *	rts
   3876   1.1      gwr 	 */
   3877   1.1      gwr }
   3878   1.1      gwr #endif /* NOT_YET */
   3879