pmap.c revision 1.3 1 1.3 gwr /* $NetBSD: pmap.c,v 1.3 1997/01/16 22:12:50 gwr Exp $ */
2 1.1 gwr
3 1.1 gwr /*-
4 1.1 gwr * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 1.1 gwr * All rights reserved.
6 1.1 gwr *
7 1.1 gwr * This code is derived from software contributed to The NetBSD Foundation
8 1.1 gwr * by Jeremy Cooper.
9 1.1 gwr *
10 1.1 gwr * Redistribution and use in source and binary forms, with or without
11 1.1 gwr * modification, are permitted provided that the following conditions
12 1.1 gwr * are met:
13 1.1 gwr * 1. Redistributions of source code must retain the above copyright
14 1.1 gwr * notice, this list of conditions and the following disclaimer.
15 1.1 gwr * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 gwr * notice, this list of conditions and the following disclaimer in the
17 1.1 gwr * documentation and/or other materials provided with the distribution.
18 1.1 gwr * 3. All advertising materials mentioning features or use of this software
19 1.1 gwr * must display the following acknowledgement:
20 1.1 gwr * This product includes software developed by the NetBSD
21 1.1 gwr * Foundation, Inc. and its contributors.
22 1.1 gwr * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 gwr * contributors may be used to endorse or promote products derived
24 1.1 gwr * from this software without specific prior written permission.
25 1.1 gwr *
26 1.1 gwr * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 gwr * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 gwr * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 gwr * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 gwr * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 gwr * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 gwr * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 gwr * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 gwr * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 gwr * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 gwr * POSSIBILITY OF SUCH DAMAGE.
37 1.1 gwr */
38 1.1 gwr
39 1.1 gwr /*
40 1.1 gwr * XXX These comments aren't quite accurate. Need to change.
41 1.1 gwr * The sun3x uses the MC68851 Memory Management Unit, which is built
42 1.1 gwr * into the CPU. The 68851 maps virtual to physical addresses using
43 1.1 gwr * a multi-level table lookup, which is stored in the very memory that
44 1.1 gwr * it maps. The number of levels of lookup is configurable from one
45 1.1 gwr * to four. In this implementation, we use three, named 'A' through 'C'.
46 1.1 gwr *
47 1.1 gwr * The MMU translates virtual addresses into physical addresses by
48 1.1 gwr * traversing these tables in a proccess called a 'table walk'. The most
49 1.1 gwr * significant 7 bits of the Virtual Address ('VA') being translated are
50 1.1 gwr * used as an index into the level A table, whose base in physical memory
51 1.1 gwr * is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
52 1.1 gwr * address found at that index in the A table is used as the base
53 1.1 gwr * address for the next table, the B table. The next six bits of the VA are
54 1.1 gwr * used as an index into the B table, which in turn gives the base address
55 1.1 gwr * of the third and final C table.
56 1.1 gwr *
57 1.1 gwr * The next six bits of the VA are used as an index into the C table to
58 1.1 gwr * locate a Page Table Entry (PTE). The PTE is a physical address in memory
59 1.1 gwr * to which the remaining 13 bits of the VA are added, producing the
60 1.1 gwr * mapped physical address.
61 1.1 gwr *
62 1.1 gwr * To map the entire memory space in this manner would require 2114296 bytes
63 1.1 gwr * of page tables per process - quite expensive. Instead we will
64 1.1 gwr * allocate a fixed but considerably smaller space for the page tables at
65 1.1 gwr * the time the VM system is initialized. When the pmap code is asked by
66 1.1 gwr * the kernel to map a VA to a PA, it allocates tables as needed from this
67 1.1 gwr * pool. When there are no more tables in the pool, tables are stolen
68 1.1 gwr * from the oldest mapped entries in the tree. This is only possible
69 1.1 gwr * because all memory mappings are stored in the kernel memory map
70 1.1 gwr * structures, independent of the pmap structures. A VA which references
71 1.1 gwr * one of these invalidated maps will cause a page fault. The kernel
72 1.1 gwr * will determine that the page fault was caused by a task using a valid
73 1.1 gwr * VA, but for some reason (which does not concern it), that address was
74 1.1 gwr * not mapped. It will ask the pmap code to re-map the entry and then
75 1.1 gwr * it will resume executing the faulting task.
76 1.1 gwr *
77 1.1 gwr * In this manner the most efficient use of the page table space is
78 1.1 gwr * achieved. Tasks which do not execute often will have their tables
79 1.1 gwr * stolen and reused by tasks which execute more frequently. The best
80 1.1 gwr * size for the page table pool will probably be determined by
81 1.1 gwr * experimentation.
82 1.1 gwr *
83 1.1 gwr * You read all of the comments so far. Good for you.
84 1.1 gwr * Now go play!
85 1.1 gwr */
86 1.1 gwr
87 1.1 gwr /*** A Note About the 68851 Address Translation Cache
88 1.1 gwr * The MC68851 has a 64 entry cache, called the Address Translation Cache
89 1.1 gwr * or 'ATC'. This cache stores the most recently used page descriptors
90 1.1 gwr * accessed by the MMU when it does translations. Using a marker called a
91 1.1 gwr * 'task alias' the MMU can store the descriptors from 8 different table
92 1.1 gwr * spaces concurrently. The task alias is associated with the base
93 1.1 gwr * address of the level A table of that address space. When an address
94 1.1 gwr * space is currently active (the CRP currently points to its A table)
95 1.1 gwr * the only cached descriptors that will be obeyed are ones which have a
96 1.1 gwr * matching task alias of the current space associated with them.
97 1.1 gwr *
98 1.1 gwr * Since the cache is always consulted before any table lookups are done,
99 1.1 gwr * it is important that it accurately reflect the state of the MMU tables.
100 1.1 gwr * Whenever a change has been made to a table that has been loaded into
101 1.1 gwr * the MMU, the code must be sure to flush any cached entries that are
102 1.1 gwr * affected by the change. These instances are documented in the code at
103 1.1 gwr * various points.
104 1.1 gwr */
105 1.1 gwr /*** A Note About the Note About the 68851 Address Translation Cache
106 1.1 gwr * 4 months into this code I discovered that the sun3x does not have
107 1.1 gwr * a MC68851 chip. Instead, it has a version of this MMU that is part of the
108 1.1 gwr * the 68030 CPU.
109 1.1 gwr * All though it behaves very similarly to the 68851, it only has 1 task
110 1.1 gwr * alias and a 22 entry cache. So sadly (or happily), the previous note
111 1.1 gwr * does not apply to the sun3x pmap.
112 1.1 gwr */
113 1.1 gwr
114 1.1 gwr #include <sys/param.h>
115 1.1 gwr #include <sys/systm.h>
116 1.1 gwr #include <sys/proc.h>
117 1.1 gwr #include <sys/malloc.h>
118 1.1 gwr #include <sys/user.h>
119 1.1 gwr #include <sys/queue.h>
120 1.1 gwr
121 1.1 gwr #include <vm/vm.h>
122 1.1 gwr #include <vm/vm_kern.h>
123 1.1 gwr #include <vm/vm_page.h>
124 1.1 gwr
125 1.1 gwr #include <machine/cpu.h>
126 1.1 gwr #include <machine/pmap.h>
127 1.1 gwr #include <machine/pte.h>
128 1.1 gwr #include <machine/mon.h>
129 1.1 gwr
130 1.1 gwr #include "machdep.h"
131 1.1 gwr #include "pmap_pvt.h"
132 1.1 gwr
133 1.1 gwr /* XXX - What headers declare these? */
134 1.1 gwr extern struct pcb *curpcb;
135 1.1 gwr extern int physmem;
136 1.1 gwr
137 1.1 gwr /* Defined in locore.s */
138 1.1 gwr extern char kernel_text[];
139 1.1 gwr
140 1.1 gwr /* Defined by the linker */
141 1.1 gwr extern char etext[], edata[], end[];
142 1.1 gwr extern char *esym; /* DDB */
143 1.1 gwr
144 1.1 gwr /*
145 1.1 gwr * I think it might be cleaner to have one of these in each of
146 1.3 gwr * the a_tmgr_t structures... -gwr
147 1.1 gwr */
148 1.3 gwr struct mmu_rootptr proc0crp;
149 1.1 gwr
150 1.1 gwr /* This is set by locore.s with the monitor's root ptr. */
151 1.3 gwr extern struct mmu_rootptr mon_crp;
152 1.1 gwr
153 1.1 gwr /*** Management Structure - Memory Layout
154 1.1 gwr * For every MMU table in the sun3x pmap system there must be a way to
155 1.1 gwr * manage it; we must know which process is using it, what other tables
156 1.1 gwr * depend on it, and whether or not it contains any locked pages. This
157 1.1 gwr * is solved by the creation of 'table management' or 'tmgr'
158 1.1 gwr * structures. One for each MMU table in the system.
159 1.1 gwr *
160 1.1 gwr * MAP OF MEMORY USED BY THE PMAP SYSTEM
161 1.1 gwr *
162 1.1 gwr * towards lower memory
163 1.1 gwr * kernAbase -> +-------------------------------------------------------+
164 1.1 gwr * | Kernel MMU A level table |
165 1.1 gwr * kernBbase -> +-------------------------------------------------------+
166 1.1 gwr * | Kernel MMU B level tables |
167 1.1 gwr * kernCbase -> +-------------------------------------------------------+
168 1.1 gwr * | |
169 1.1 gwr * | Kernel MMU C level tables |
170 1.1 gwr * | |
171 1.1 gwr * mmuAbase -> +-------------------------------------------------------+
172 1.1 gwr * | |
173 1.1 gwr * | User MMU A level tables |
174 1.1 gwr * | |
175 1.1 gwr * mmuBbase -> +-------------------------------------------------------+
176 1.1 gwr * | User MMU B level tables |
177 1.1 gwr * mmuCbase -> +-------------------------------------------------------+
178 1.1 gwr * | User MMU C level tables |
179 1.1 gwr * tmgrAbase -> +-------------------------------------------------------+
180 1.1 gwr * | TMGR A level table structures |
181 1.1 gwr * tmgrBbase -> +-------------------------------------------------------+
182 1.1 gwr * | TMGR B level table structures |
183 1.1 gwr * tmgrCbase -> +-------------------------------------------------------+
184 1.1 gwr * | TMGR C level table structures |
185 1.1 gwr * pvbase -> +-------------------------------------------------------+
186 1.1 gwr * | Physical to Virtual mapping table (list heads) |
187 1.1 gwr * pvebase -> +-------------------------------------------------------+
188 1.1 gwr * | Physical to Virtual mapping table (list elements) |
189 1.1 gwr * | |
190 1.1 gwr * +-------------------------------------------------------+
191 1.1 gwr * towards higher memory
192 1.1 gwr *
193 1.1 gwr * For every A table in the MMU A area, there will be a corresponding
194 1.1 gwr * a_tmgr structure in the TMGR A area. The same will be true for
195 1.1 gwr * the B and C tables. This arrangement will make it easy to find the
196 1.1 gwr * controling tmgr structure for any table in the system by use of
197 1.1 gwr * (relatively) simple macros.
198 1.1 gwr */
199 1.1 gwr /* Global variables for storing the base addresses for the areas
200 1.1 gwr * labeled above.
201 1.1 gwr */
202 1.1 gwr static mmu_long_dte_t *kernAbase;
203 1.1 gwr static mmu_short_dte_t *kernBbase;
204 1.1 gwr static mmu_short_pte_t *kernCbase;
205 1.1 gwr static mmu_long_dte_t *mmuAbase;
206 1.1 gwr static mmu_short_dte_t *mmuBbase;
207 1.1 gwr static mmu_short_pte_t *mmuCbase;
208 1.1 gwr static a_tmgr_t *Atmgrbase;
209 1.1 gwr static b_tmgr_t *Btmgrbase;
210 1.1 gwr static c_tmgr_t *Ctmgrbase;
211 1.1 gwr static pv_t *pvbase;
212 1.1 gwr static pv_elem_t *pvebase;
213 1.1 gwr
214 1.1 gwr /* Just all around global variables.
215 1.1 gwr */
216 1.1 gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
217 1.1 gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
218 1.1 gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
219 1.1 gwr struct pmap kernel_pmap;
220 1.1 gwr static a_tmgr_t *proc0Atmgr;
221 1.1 gwr a_tmgr_t *curatbl;
222 1.1 gwr static boolean_t pv_initialized = 0;
223 1.1 gwr static vm_offset_t last_mapped = 0;
224 1.1 gwr int tmp_vpages_inuse = 0;
225 1.1 gwr
226 1.1 gwr /*
227 1.1 gwr * XXX: For now, retain the traditional variables that were
228 1.1 gwr * used in the old pmap/vm interface (without NONCONTIG).
229 1.1 gwr */
230 1.1 gwr /* Kernel virtual address space available: */
231 1.1 gwr vm_offset_t virtual_avail, virtual_end;
232 1.1 gwr /* Physical address space available: */
233 1.1 gwr vm_offset_t avail_start, avail_end;
234 1.1 gwr
235 1.1 gwr vm_offset_t tmp_vpages[2];
236 1.1 gwr
237 1.1 gwr
238 1.1 gwr /* The 3/80 is the only member of the sun3x family that has non-contiguous
239 1.1 gwr * physical memory. Memory is divided into 4 banks which are physically
240 1.1 gwr * locatable on the system board. Although the size of these banks varies
241 1.1 gwr * with the size of memory they contain, their base addresses are
242 1.1 gwr * permenently fixed. The following structure, which describes these
243 1.1 gwr * banks, is initialized by pmap_bootstrap() after it reads from a similar
244 1.1 gwr * structure provided by the ROM Monitor.
245 1.1 gwr *
246 1.1 gwr * For the other machines in the sun3x architecture which do have contiguous
247 1.1 gwr * RAM, this list will have only one entry, which will describe the entire
248 1.1 gwr * range of available memory.
249 1.1 gwr */
250 1.1 gwr struct pmap_physmem_struct avail_mem[SUN3X_80_MEM_BANKS];
251 1.1 gwr u_int total_phys_mem;
252 1.1 gwr
253 1.1 gwr /* These macros map MMU tables to their corresponding manager structures.
254 1.1 gwr * They are needed quite often because many of the pointers in the pmap
255 1.1 gwr * system reference MMU tables and not the structures that control them.
256 1.1 gwr * There needs to be a way to find one when given the other and these
257 1.1 gwr * macros do so by taking advantage of the memory layout described above.
258 1.1 gwr * Here's a quick step through the first macro, mmuA2tmgr():
259 1.1 gwr *
260 1.1 gwr * 1) find the offset of the given MMU A table from the base of its table
261 1.1 gwr * pool (table - mmuAbase).
262 1.1 gwr * 2) convert this offset into a table index by dividing it by the
263 1.1 gwr * size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
264 1.1 gwr * 3) use this index to select the corresponding 'A' table manager
265 1.1 gwr * structure from the 'A' table manager pool (Atmgrbase[index]).
266 1.1 gwr */
267 1.1 gwr #define mmuA2tmgr(table) \
268 1.1 gwr (&Atmgrbase[\
269 1.1 gwr ((mmu_long_dte_t *)(table) - mmuAbase)\
270 1.1 gwr / MMU_A_TBL_SIZE\
271 1.1 gwr ])
272 1.1 gwr #define mmuB2tmgr(table) \
273 1.1 gwr (&Btmgrbase[\
274 1.1 gwr ((mmu_short_dte_t *)(table) - mmuBbase)\
275 1.1 gwr / MMU_B_TBL_SIZE\
276 1.1 gwr ])
277 1.1 gwr #define mmuC2tmgr(table) \
278 1.1 gwr (&Ctmgrbase[\
279 1.1 gwr ((mmu_short_pte_t *)(table) - mmuCbase)\
280 1.1 gwr / MMU_C_TBL_SIZE\
281 1.1 gwr ])
282 1.1 gwr #define pte2pve(pte) \
283 1.1 gwr (&pvebase[\
284 1.1 gwr ((mmu_short_pte_t *)(pte) - mmuCbase)\
285 1.1 gwr ])
286 1.1 gwr /* I don't think this is actually used.
287 1.1 gwr * #define pte2pv(pte) \
288 1.1 gwr * (pa2pv(\
289 1.1 gwr * (pte)->attr.raw & MMU_SHORT_PTE_BASEADDR\
290 1.1 gwr * ))
291 1.1 gwr */
292 1.1 gwr /* This is now a function call
293 1.1 gwr * #define pa2pv(pa) \
294 1.1 gwr * (&pvbase[(unsigned long)\
295 1.1 gwr * sun3x_btop(pa)\
296 1.1 gwr * ])
297 1.1 gwr */
298 1.1 gwr #define pve2pte(pve) \
299 1.1 gwr (&mmuCbase[(unsigned long)\
300 1.1 gwr (((pv_elem_t *)(pve)) - pvebase)\
301 1.1 gwr / sizeof(mmu_short_pte_t)\
302 1.1 gwr ])
303 1.1 gwr
304 1.1 gwr /*************************** TEMPORARY STATMENTS *************************
305 1.1 gwr * These statements will disappear once this code is integrated into the *
306 1.1 gwr * system. They are here only to make the code `stand alone'. *
307 1.1 gwr *************************************************************************/
308 1.1 gwr #define mmu_ptov(pa) ((unsigned long) KERNBASE + (unsigned long) (pa))
309 1.1 gwr #define mmu_vtop(va) ((unsigned long) (va) - (unsigned long) KERNBASE)
310 1.1 gwr #define NULL 0
311 1.1 gwr
312 1.1 gwr #define NUM_A_TABLES 20
313 1.1 gwr #define NUM_B_TABLES 60
314 1.1 gwr #define NUM_C_TABLES 60
315 1.1 gwr
316 1.1 gwr /*************************** MISCELANEOUS MACROS *************************/
317 1.1 gwr #define PMAP_LOCK() ; /* Nothing, for now */
318 1.1 gwr #define PMAP_UNLOCK() ; /* same. */
319 1.1 gwr /*************************** FUNCTION DEFINITIONS ************************
320 1.1 gwr * These appear here merely for the compiler to enforce type checking on *
321 1.1 gwr * all function calls. *
322 1.1 gwr *************************************************************************
323 1.1 gwr */
324 1.1 gwr
325 1.1 gwr /** External functions
326 1.1 gwr ** - functions used within this module but written elsewhere.
327 1.1 gwr ** both of these functions are in locore.s
328 1.1 gwr */
329 1.1 gwr void mmu_seturp __P((vm_offset_t));
330 1.1 gwr void mmu_flush __P((int, vm_offset_t));
331 1.1 gwr void mmu_flusha __P((void));
332 1.1 gwr
333 1.1 gwr /** Internal functions
334 1.1 gwr ** - all functions used only within this module are defined in
335 1.1 gwr ** pmap_pvt.h
336 1.1 gwr **/
337 1.1 gwr
338 1.1 gwr /** Interface functions
339 1.1 gwr ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
340 1.1 gwr ** defined.
341 1.1 gwr **/
342 1.1 gwr #ifdef INCLUDED_IN_PMAP_H
343 1.1 gwr void pmap_bootstrap __P((void));
344 1.1 gwr void *pmap_bootstrap_alloc __P((int));
345 1.1 gwr void pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
346 1.1 gwr pmap_t pmap_create __P((vm_size_t));
347 1.1 gwr void pmap_destroy __P((pmap_t));
348 1.1 gwr void pmap_reference __P((pmap_t));
349 1.1 gwr boolean_t pmap_is_referenced __P((vm_offset_t));
350 1.1 gwr boolean_t pmap_is_modified __P((vm_offset_t));
351 1.1 gwr void pmap_clear_modify __P((vm_offset_t));
352 1.1 gwr vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
353 1.1 gwr void pmap_activate __P((pmap_t, struct pcb *));
354 1.1 gwr int pmap_page_index __P((vm_offset_t));
355 1.1 gwr u_int pmap_free_pages __P((void));
356 1.1 gwr #endif /* INCLUDED_IN_PMAP_H */
357 1.1 gwr
358 1.1 gwr /********************************** CODE ********************************
359 1.1 gwr * Functions that are called from other parts of the kernel are labeled *
360 1.1 gwr * as 'INTERFACE' functions. Functions that are only called from *
361 1.1 gwr * within the pmap module are labeled as 'INTERNAL' functions. *
362 1.1 gwr * Functions that are internal, but are not (currently) used at all are *
363 1.1 gwr * labeled 'INTERNAL_X'. *
364 1.1 gwr ************************************************************************/
365 1.1 gwr
366 1.1 gwr /* pmap_bootstrap INTERNAL
367 1.1 gwr **
368 1.1 gwr * Initializes the pmap system. Called at boot time from sun3x_vm_init()
369 1.1 gwr * in _startup.c.
370 1.1 gwr *
371 1.1 gwr * Reminder: having a pmap_bootstrap_alloc() and also having the VM
372 1.1 gwr * system implement pmap_steal_memory() is redundant.
373 1.1 gwr * Don't release this code without removing one or the other!
374 1.1 gwr */
375 1.1 gwr void
376 1.1 gwr pmap_bootstrap(nextva)
377 1.1 gwr vm_offset_t nextva;
378 1.1 gwr {
379 1.1 gwr struct physmemory *membank;
380 1.1 gwr struct pmap_physmem_struct *pmap_membank;
381 1.1 gwr vm_offset_t va, pa, eva;
382 1.1 gwr int b, c, i, j; /* running table counts */
383 1.1 gwr int size;
384 1.1 gwr
385 1.1 gwr /*
386 1.1 gwr * This function is called by __bootstrap after it has
387 1.1 gwr * determined the type of machine and made the appropriate
388 1.1 gwr * patches to the ROM vectors (XXX- I don't quite know what I meant
389 1.1 gwr * by that.) It allocates and sets up enough of the pmap system
390 1.1 gwr * to manage the kernel's address space.
391 1.1 gwr */
392 1.1 gwr
393 1.1 gwr /* XXX - Attention: moved stuff. */
394 1.1 gwr
395 1.1 gwr /*
396 1.1 gwr * Determine the range of kernel virtual space available.
397 1.1 gwr */
398 1.1 gwr virtual_avail = sun3x_round_page(nextva);
399 1.1 gwr virtual_end = VM_MAX_KERNEL_ADDRESS;
400 1.1 gwr
401 1.1 gwr /*
402 1.1 gwr * Determine the range of physical memory available and
403 1.1 gwr * relay this information to the pmap via the avail_mem[]
404 1.1 gwr * array of physical memory segment structures.
405 1.1 gwr *
406 1.1 gwr * Avail_end is set to the first byte of physical memory
407 1.1 gwr * outside the last bank.
408 1.1 gwr */
409 1.1 gwr avail_start = virtual_avail - KERNBASE;
410 1.1 gwr
411 1.1 gwr /*
412 1.1 gwr * This is a somewhat unwrapped loop to deal with
413 1.1 gwr * copying the PROM's 'phsymem' banks into the pmap's
414 1.1 gwr * banks. The following is always assumed:
415 1.1 gwr * 1. There is always at least one bank of memory.
416 1.1 gwr * 2. There is always a last bank of memory, and its
417 1.1 gwr * pmem_next member must be set to NULL.
418 1.1 gwr * XXX - Use: do { ... } while (membank->next) instead?
419 1.1 gwr * XXX - Why copy this stuff at all? -gwr
420 1.1 gwr */
421 1.1 gwr membank = romVectorPtr->v_physmemory;
422 1.1 gwr pmap_membank = avail_mem;
423 1.1 gwr total_phys_mem = 0;
424 1.1 gwr
425 1.1 gwr while (membank->next) {
426 1.1 gwr pmap_membank->pmem_start = membank->address;
427 1.1 gwr pmap_membank->pmem_end = membank->address + membank->size;
428 1.1 gwr total_phys_mem += membank->size;
429 1.1 gwr /* This silly syntax arises because pmap_membank
430 1.1 gwr * is really a pre-allocated array, but it is put into
431 1.1 gwr * use as a linked list.
432 1.1 gwr */
433 1.1 gwr pmap_membank->pmem_next = pmap_membank + 1;
434 1.1 gwr pmap_membank = pmap_membank->pmem_next;
435 1.1 gwr membank = membank->next;
436 1.1 gwr }
437 1.1 gwr
438 1.1 gwr /*
439 1.1 gwr * XXX The last bank of memory should be reduced to exclude the
440 1.1 gwr * physical pages needed by the PROM monitor from being used
441 1.1 gwr * in the VM system. XXX - See below - Fix!
442 1.1 gwr */
443 1.1 gwr pmap_membank->pmem_start = membank->address;
444 1.1 gwr pmap_membank->pmem_end = membank->address + membank->size;
445 1.1 gwr pmap_membank->pmem_next = NULL;
446 1.1 gwr
447 1.1 gwr #if 0 /* XXX - Need to integrate this! */
448 1.1 gwr /*
449 1.1 gwr * The last few pages of physical memory are "owned" by
450 1.1 gwr * the PROM. The total amount of memory we are allowed
451 1.1 gwr * to use is given by the romvec pointer. -gwr
452 1.1 gwr *
453 1.1 gwr * We should dedicate different variables for 'useable'
454 1.1 gwr * and 'physically available'. Most users are used to the
455 1.1 gwr * kernel reporting the amount of memory 'physically available'
456 1.1 gwr * as opposed to 'useable by the kernel' at boot time. -j
457 1.1 gwr */
458 1.1 gwr total_phys_mem = *romVectorPtr->memoryAvail;
459 1.1 gwr #endif /* XXX */
460 1.1 gwr
461 1.1 gwr total_phys_mem += membank->size; /* XXX see above */
462 1.1 gwr physmem = btoc(total_phys_mem);
463 1.1 gwr avail_end = pmap_membank->pmem_end;
464 1.1 gwr avail_end = sun3x_trunc_page(avail_end);
465 1.1 gwr
466 1.1 gwr /* XXX - End moved stuff. */
467 1.1 gwr
468 1.1 gwr /*
469 1.1 gwr * The first step is to allocate MMU tables.
470 1.1 gwr * Note: All must be aligned on 256 byte boundaries.
471 1.1 gwr *
472 1.1 gwr * Start with the top level, or 'A' table.
473 1.1 gwr */
474 1.1 gwr kernAbase = (mmu_long_dte_t *) virtual_avail;
475 1.1 gwr size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
476 1.1 gwr bzero(kernAbase, size);
477 1.1 gwr avail_start += size;
478 1.1 gwr virtual_avail += size;
479 1.1 gwr
480 1.1 gwr /* Allocate enough B tables to map from KERNBASE to
481 1.1 gwr * the end of VM.
482 1.1 gwr */
483 1.1 gwr kernBbase = (mmu_short_dte_t *) virtual_avail;
484 1.1 gwr size = sizeof(mmu_short_dte_t) *
485 1.1 gwr (MMU_A_TBL_SIZE - MMU_TIA(KERNBASE)) * MMU_B_TBL_SIZE;
486 1.1 gwr bzero(kernBbase, size);
487 1.1 gwr avail_start += size;
488 1.1 gwr virtual_avail += size;
489 1.1 gwr
490 1.1 gwr /* Allocate enough C tables. */
491 1.1 gwr kernCbase = (mmu_short_pte_t *) virtual_avail;
492 1.1 gwr size = sizeof (mmu_short_pte_t) *
493 1.1 gwr (MMU_A_TBL_SIZE - MMU_TIA(KERNBASE))
494 1.1 gwr * MMU_B_TBL_SIZE * MMU_C_TBL_SIZE;
495 1.1 gwr bzero(kernCbase, size);
496 1.1 gwr avail_start += size;
497 1.1 gwr virtual_avail += size;
498 1.1 gwr
499 1.1 gwr /* For simplicity, the kernel's mappings will be editable as a
500 1.1 gwr * flat array of page table entries at kernCbase. The
501 1.1 gwr * higher level 'A' and 'B' tables must be initialized to point
502 1.1 gwr * to this lower one.
503 1.1 gwr */
504 1.1 gwr b = c = 0;
505 1.1 gwr
506 1.1 gwr /* Invalidate all mappings below KERNBASE in the A table.
507 1.1 gwr * This area has already been zeroed out, but it is good
508 1.1 gwr * practice to explicitly show that we are interpreting
509 1.1 gwr * it as a list of A table descriptors.
510 1.1 gwr */
511 1.1 gwr for (i = 0; i < MMU_TIA(KERNBASE); i++) {
512 1.1 gwr kernAbase[i].addr.raw = 0;
513 1.1 gwr }
514 1.1 gwr
515 1.1 gwr /* Set up the kernel A and B tables so that they will reference the
516 1.1 gwr * correct spots in the contiguous table of PTEs allocated for the
517 1.1 gwr * kernel's virtual memory space.
518 1.1 gwr */
519 1.1 gwr for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
520 1.1 gwr kernAbase[i].attr.raw =
521 1.1 gwr MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
522 1.1 gwr kernAbase[i].addr.raw = (unsigned long) mmu_vtop(&kernBbase[b]);
523 1.1 gwr
524 1.1 gwr for (j=0; j < MMU_B_TBL_SIZE; j++) {
525 1.1 gwr kernBbase[b + j].attr.raw =
526 1.1 gwr (unsigned long) mmu_vtop(&kernCbase[c])
527 1.1 gwr | MMU_DT_SHORT;
528 1.1 gwr c += MMU_C_TBL_SIZE;
529 1.1 gwr }
530 1.1 gwr b += MMU_B_TBL_SIZE;
531 1.1 gwr }
532 1.1 gwr
533 1.1 gwr /*
534 1.1 gwr * Now pmap_enter_kernel() may be used safely and will be
535 1.1 gwr * the main interface used by _startup.c and other various
536 1.1 gwr * modules to modify kernel mappings.
537 1.1 gwr *
538 1.1 gwr * Note: Our tables will NOT have the default linear mappings!
539 1.1 gwr */
540 1.1 gwr va = (vm_offset_t) KERNBASE;
541 1.1 gwr pa = mmu_vtop(KERNBASE);
542 1.1 gwr
543 1.1 gwr /*
544 1.1 gwr * The first page is the msgbuf page (data, non-cached).
545 1.1 gwr * Just fixup the mapping here; setup is in cpu_startup().
546 1.1 gwr * XXX - Make it non-cached?
547 1.1 gwr */
548 1.1 gwr pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
549 1.1 gwr va += NBPG; pa += NBPG;
550 1.1 gwr
551 1.1 gwr /* The tmporary stack page. */
552 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_ALL);
553 1.1 gwr va += NBPG; pa += NBPG;
554 1.1 gwr
555 1.1 gwr /*
556 1.1 gwr * Map all of the kernel's text segment as read-only and cacheable.
557 1.1 gwr * (Cacheable is implied by default). Unfortunately, the last bytes
558 1.1 gwr * of kernel text and the first bytes of kernel data will often be
559 1.1 gwr * sharing the same page. Therefore, the last page of kernel text
560 1.1 gwr * has to be mapped as read/write, to accomodate the data.
561 1.1 gwr */
562 1.1 gwr eva = sun3x_trunc_page((vm_offset_t)etext);
563 1.1 gwr for (; va < eva; pa += NBPG, va += NBPG)
564 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
565 1.1 gwr
566 1.1 gwr /* Map all of the kernel's data (including BSS) segment as read/write
567 1.1 gwr * and cacheable.
568 1.1 gwr */
569 1.1 gwr for (; va < (vm_offset_t) esym; pa += NBPG, va += NBPG)
570 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
571 1.1 gwr
572 1.1 gwr /* Map all of the data we have allocated since the start of this
573 1.1 gwr * function.
574 1.1 gwr */
575 1.1 gwr for (; va < virtual_avail; va += NBPG, pa += NBPG)
576 1.1 gwr pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
577 1.1 gwr
578 1.1 gwr /* Set 'last_mapped' to the address of the last physical page
579 1.1 gwr * that was mapped in the kernel. This variable is used by
580 1.1 gwr * pmap_bootstrap_alloc() to determine when it needs to map
581 1.1 gwr * a new page.
582 1.1 gwr *
583 1.1 gwr * XXX - This can be a lot simpler. We already know that the
584 1.1 gwr * first 4MB of memory (at least) is mapped PA=VA-KERNBASE,
585 1.1 gwr * so we should never need to creat any new mappings. -gwr
586 1.1 gwr *
587 1.1 gwr * True, but it only remains so as long as we are using the
588 1.1 gwr * ROM's CRP. Unless, of course, we copy these mappings into
589 1.1 gwr * our table. -j
590 1.1 gwr */
591 1.1 gwr last_mapped = sun3x_trunc_page(pa - (NBPG - 1));
592 1.1 gwr
593 1.1 gwr /* It is now safe to use pmap_bootstrap_alloc(). */
594 1.1 gwr
595 1.1 gwr pmap_alloc_usermmu(); /* Allocate user MMU tables. */
596 1.1 gwr pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
597 1.1 gwr pmap_alloc_pv(); /* Allocate physical->virtual map. */
598 1.1 gwr pmap_alloc_etc(); /* Allocate miscelaneous things. */
599 1.1 gwr
600 1.1 gwr /* Notify the VM system of our page size. */
601 1.1 gwr PAGE_SIZE = NBPG;
602 1.1 gwr vm_set_page_size();
603 1.1 gwr
604 1.1 gwr /* XXX - Attention: moved stuff. */
605 1.1 gwr
606 1.1 gwr /*
607 1.1 gwr * XXX - Make sure avail_start is within the low 4M range
608 1.1 gwr * that the Sun PROM guarantees will be mapped in?
609 1.1 gwr * Make sure it is below avail_end as well?
610 1.1 gwr */
611 1.1 gwr
612 1.1 gwr /*
613 1.1 gwr * Now steal some virtual addresses, but
614 1.1 gwr * not the physical pages behind them.
615 1.1 gwr */
616 1.1 gwr
617 1.1 gwr /*
618 1.1 gwr * vpages array: just some virtual addresses for
619 1.1 gwr * temporary mappings in the pmap module (two pages)
620 1.1 gwr */
621 1.1 gwr pmap_bootstrap_aalign(NBPG);
622 1.1 gwr tmp_vpages[0] = virtual_avail;
623 1.1 gwr virtual_avail += NBPG;
624 1.1 gwr tmp_vpages[1] = virtual_avail;
625 1.1 gwr virtual_avail += NBPG;
626 1.1 gwr
627 1.1 gwr /* XXX - End moved stuff. */
628 1.1 gwr
629 1.1 gwr /* It should be noted that none of these mappings take
630 1.1 gwr * effect until the MMU's root pointer is
631 1.1 gwr * is changed from the PROM map, to our own.
632 1.1 gwr */
633 1.1 gwr pmap_bootstrap_copyprom();
634 1.1 gwr pmap_takeover_mmu();
635 1.1 gwr }
636 1.1 gwr
637 1.1 gwr
638 1.1 gwr /* pmap_alloc_usermmu INTERNAL
639 1.1 gwr **
640 1.1 gwr * Called from pmap_bootstrap() to allocate MMU tables that will
641 1.1 gwr * eventually be used for user mappings.
642 1.1 gwr */
643 1.1 gwr void
644 1.1 gwr pmap_alloc_usermmu()
645 1.1 gwr {
646 1.1 gwr /* Allocate user MMU tables.
647 1.1 gwr * These must be aligned on 256 byte boundaries.
648 1.1 gwr */
649 1.1 gwr pmap_bootstrap_aalign(256);
650 1.1 gwr mmuAbase = (mmu_long_dte_t *)
651 1.1 gwr pmap_bootstrap_alloc(sizeof(mmu_long_dte_t)
652 1.1 gwr * MMU_A_TBL_SIZE
653 1.1 gwr * NUM_A_TABLES);
654 1.1 gwr mmuBbase = (mmu_short_dte_t *)
655 1.1 gwr pmap_bootstrap_alloc(sizeof(mmu_short_dte_t)
656 1.1 gwr * MMU_B_TBL_SIZE
657 1.1 gwr * NUM_B_TABLES);
658 1.1 gwr mmuCbase = (mmu_short_pte_t *)
659 1.1 gwr pmap_bootstrap_alloc(sizeof(mmu_short_pte_t)
660 1.1 gwr * MMU_C_TBL_SIZE
661 1.1 gwr * NUM_C_TABLES);
662 1.1 gwr }
663 1.1 gwr
664 1.1 gwr /* pmap_alloc_pv INTERNAL
665 1.1 gwr **
666 1.1 gwr * Called from pmap_bootstrap() to allocate the physical
667 1.1 gwr * to virtual mapping list. Each physical page of memory
668 1.1 gwr * in the system has a corresponding element in this list.
669 1.1 gwr */
670 1.1 gwr void
671 1.1 gwr pmap_alloc_pv()
672 1.1 gwr {
673 1.1 gwr int i;
674 1.1 gwr unsigned int total_mem;
675 1.1 gwr
676 1.1 gwr /* Allocate a pv_head structure for every page of physical
677 1.1 gwr * memory that will be managed by the system. Since memory on
678 1.1 gwr * the 3/80 is non-contiguous, we cannot arrive at a total page
679 1.1 gwr * count by subtraction of the lowest available address from the
680 1.1 gwr * highest, but rather we have to step through each memory
681 1.1 gwr * bank and add the number of pages in each to the total.
682 1.1 gwr *
683 1.1 gwr * At this time we also initialize the offset of each bank's
684 1.1 gwr * starting pv_head within the pv_head list so that the physical
685 1.1 gwr * memory state routines (pmap_is_referenced(),
686 1.1 gwr * pmap_is_modified(), et al.) can quickly find coresponding
687 1.1 gwr * pv_heads in spite of the non-contiguity.
688 1.1 gwr */
689 1.1 gwr
690 1.1 gwr total_mem = 0;
691 1.1 gwr for (i = 0; i < SUN3X_80_MEM_BANKS; i++) {
692 1.1 gwr avail_mem[i].pmem_pvbase = sun3x_btop(total_mem);
693 1.1 gwr total_mem += avail_mem[i].pmem_end -
694 1.1 gwr avail_mem[i].pmem_start;
695 1.1 gwr if (avail_mem[i].pmem_next == NULL)
696 1.1 gwr break;
697 1.1 gwr }
698 1.1 gwr #ifdef PMAP_DEBUG
699 1.1 gwr if (total_mem != total_phys_mem)
700 1.1 gwr panic("pmap_alloc_pv did not arrive at correct page count");
701 1.1 gwr #endif
702 1.1 gwr
703 1.1 gwr pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
704 1.1 gwr sun3x_btop(total_phys_mem));
705 1.1 gwr }
706 1.1 gwr
707 1.1 gwr /* pmap_alloc_usertmgr INTERNAL
708 1.1 gwr **
709 1.1 gwr * Called from pmap_bootstrap() to allocate the structures which
710 1.1 gwr * facilitate management of user MMU tables. Each user MMU table
711 1.1 gwr * in the system has one such structure associated with it.
712 1.1 gwr */
713 1.1 gwr void
714 1.1 gwr pmap_alloc_usertmgr()
715 1.1 gwr {
716 1.1 gwr /* Allocate user MMU table managers */
717 1.1 gwr /* XXX - It would be a lot simpler to just make these BSS. -gwr */
718 1.1 gwr Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
719 1.1 gwr * NUM_A_TABLES);
720 1.1 gwr Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
721 1.1 gwr * NUM_B_TABLES);
722 1.1 gwr Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
723 1.1 gwr * NUM_C_TABLES);
724 1.1 gwr
725 1.1 gwr /* Allocate PV list elements for the physical to virtual
726 1.1 gwr * mapping system.
727 1.1 gwr */
728 1.1 gwr pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
729 1.1 gwr sizeof(struct pv_elem_struct)
730 1.1 gwr * MMU_C_TBL_SIZE
731 1.1 gwr * NUM_C_TABLES );
732 1.1 gwr }
733 1.1 gwr
734 1.1 gwr /* pmap_alloc_etc INTERNAL
735 1.1 gwr **
736 1.1 gwr * Called from pmap_bootstrap() to allocate any remaining pieces
737 1.1 gwr * that didn't fit neatly into any of the other pmap_alloc
738 1.1 gwr * functions.
739 1.1 gwr */
740 1.1 gwr void
741 1.1 gwr pmap_alloc_etc()
742 1.1 gwr {
743 1.1 gwr /* Allocate an A table manager for the kernel_pmap */
744 1.1 gwr proc0Atmgr = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t));
745 1.1 gwr }
746 1.1 gwr
747 1.1 gwr /* pmap_bootstrap_copyprom() INTERNAL
748 1.1 gwr **
749 1.1 gwr * Copy the PROM mappings into our own tables. Note, we
750 1.1 gwr * can use physical addresses until __bootstrap returns.
751 1.1 gwr */
752 1.1 gwr void
753 1.1 gwr pmap_bootstrap_copyprom()
754 1.1 gwr {
755 1.1 gwr MachMonRomVector *romp;
756 1.1 gwr int *mon_ctbl;
757 1.1 gwr mmu_short_pte_t *kpte;
758 1.1 gwr int i, len;
759 1.1 gwr
760 1.1 gwr romp = romVectorPtr;
761 1.1 gwr
762 1.1 gwr /*
763 1.1 gwr * Copy the mappings in MON_KDB_START...MONEND
764 1.1 gwr * Note: mon_ctbl[0] maps MON_KDB_START
765 1.1 gwr */
766 1.1 gwr mon_ctbl = *romp->monptaddr;
767 1.1 gwr i = sun3x_btop(MON_KDB_START - KERNBASE);
768 1.1 gwr kpte = &kernCbase[i];
769 1.1 gwr len = sun3x_btop(MONEND - MON_KDB_START);
770 1.1 gwr
771 1.1 gwr for (i = 0; i < len; i++) {
772 1.1 gwr kpte[i].attr.raw = mon_ctbl[i];
773 1.1 gwr }
774 1.1 gwr
775 1.1 gwr /*
776 1.1 gwr * Copy the mappings at MON_DVMA_BASE (to the end).
777 1.1 gwr * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
778 1.1 gwr * XXX - This does not appear to be necessary, but
779 1.1 gwr * I'm not sure yet if it is or not. -gwr
780 1.1 gwr */
781 1.1 gwr mon_ctbl = *romp->shadowpteaddr;
782 1.1 gwr i = sun3x_btop(MON_DVMA_BASE - KERNBASE);
783 1.1 gwr kpte = &kernCbase[i];
784 1.1 gwr len = sun3x_btop(MON_DVMA_SIZE);
785 1.1 gwr
786 1.1 gwr for (i = 0; i < len; i++) {
787 1.1 gwr kpte[i].attr.raw = mon_ctbl[i];
788 1.1 gwr }
789 1.1 gwr }
790 1.1 gwr
791 1.1 gwr /* pmap_takeover_mmu INTERNAL
792 1.1 gwr **
793 1.1 gwr * Called from pmap_bootstrap() after it has copied enough of the
794 1.1 gwr * PROM mappings into the kernel map so that we can use our own
795 1.1 gwr * MMU table.
796 1.1 gwr */
797 1.1 gwr void
798 1.1 gwr pmap_takeover_mmu()
799 1.1 gwr {
800 1.1 gwr vm_offset_t tbladdr;
801 1.1 gwr
802 1.1 gwr tbladdr = mmu_vtop((vm_offset_t) kernAbase);
803 1.1 gwr mon_printf("pmap_takeover_mmu: tbladdr=0x%x\n", tbladdr);
804 1.1 gwr
805 1.1 gwr /* Initialize the CPU Root Pointer (CRP) for proc0. */
806 1.1 gwr /* XXX: I'd prefer per-process CRP storage. -gwr */
807 1.1 gwr proc0crp.limit = 0x80000003; /* limit and type */
808 1.1 gwr proc0crp.paddr = tbladdr; /* phys. addr. */
809 1.1 gwr curpcb->pcb_mmuctx = (int) &proc0crp;
810 1.1 gwr
811 1.1 gwr mon_printf("pmap_takeover_mmu: loadcrp...\n");
812 1.3 gwr loadcrp(curpcb->pcb_mmuctx);
813 1.1 gwr mon_printf("pmap_takeover_mmu: survived!\n");
814 1.1 gwr }
815 1.1 gwr
816 1.1 gwr /* pmap_init INTERFACE
817 1.1 gwr **
818 1.1 gwr * Called at the end of vm_init() to set up the pmap system to go
819 1.1 gwr * into full time operation.
820 1.1 gwr */
821 1.1 gwr void
822 1.1 gwr pmap_init()
823 1.1 gwr {
824 1.1 gwr /** Initialize the manager pools **/
825 1.1 gwr TAILQ_INIT(&a_pool);
826 1.1 gwr TAILQ_INIT(&b_pool);
827 1.1 gwr TAILQ_INIT(&c_pool);
828 1.1 gwr
829 1.1 gwr /** Initialize the PV system **/
830 1.1 gwr pmap_init_pv();
831 1.1 gwr
832 1.1 gwr /** Zero out the kernel's pmap **/
833 1.1 gwr bzero(&kernel_pmap, sizeof(struct pmap));
834 1.1 gwr
835 1.1 gwr /* Initialize the A table manager that is used in pmaps which
836 1.1 gwr * do not have an A table of their own. This table uses the
837 1.1 gwr * kernel, or 'proc0' level A MMU table, which contains no valid
838 1.1 gwr * user space mappings. Any user process that attempts to execute
839 1.1 gwr * using this A table will fault. At which point the VM system will
840 1.1 gwr * call pmap_enter, which will then allocate it an A table of its own
841 1.1 gwr * from the pool.
842 1.1 gwr */
843 1.1 gwr proc0Atmgr->at_dtbl = kernAbase;
844 1.1 gwr proc0Atmgr->at_parent = &kernel_pmap;
845 1.1 gwr kernel_pmap.pm_a_tbl = proc0Atmgr;
846 1.1 gwr
847 1.1 gwr /**************************************************************
848 1.1 gwr * Initialize all tmgr structures and MMU tables they manage. *
849 1.1 gwr **************************************************************/
850 1.1 gwr /** Initialize A tables **/
851 1.1 gwr pmap_init_a_tables();
852 1.1 gwr /** Initialize B tables **/
853 1.1 gwr pmap_init_b_tables();
854 1.1 gwr /** Initialize C tables **/
855 1.1 gwr pmap_init_c_tables();
856 1.1 gwr }
857 1.1 gwr
858 1.1 gwr /* pmap_init_a_tables() INTERNAL
859 1.1 gwr **
860 1.1 gwr * Initializes all A managers, their MMU A tables, and inserts
861 1.1 gwr * them into the A manager pool for use by the system.
862 1.1 gwr */
863 1.1 gwr void
864 1.1 gwr pmap_init_a_tables()
865 1.1 gwr {
866 1.1 gwr int i;
867 1.1 gwr a_tmgr_t *a_tbl;
868 1.1 gwr
869 1.1 gwr for (i=0; i < NUM_A_TABLES; i++) {
870 1.1 gwr /* Select the next available A manager from the pool */
871 1.1 gwr a_tbl = &Atmgrbase[i];
872 1.1 gwr
873 1.1 gwr /* Clear its parent entry. Set its wired and valid
874 1.1 gwr * entry count to zero.
875 1.1 gwr */
876 1.1 gwr a_tbl->at_parent = NULL;
877 1.1 gwr a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
878 1.1 gwr
879 1.1 gwr /* Assign it the next available MMU A table from the pool */
880 1.1 gwr a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
881 1.1 gwr
882 1.1 gwr /* Initialize the MMU A table with the table in the `proc0',
883 1.1 gwr * or kernel, mapping. This ensures that every process has
884 1.1 gwr * the kernel mapped in the top part of its address space.
885 1.1 gwr */
886 1.1 gwr bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
887 1.1 gwr sizeof(mmu_long_dte_t));
888 1.1 gwr
889 1.1 gwr /* Finally, insert the manager into the A pool,
890 1.1 gwr * making it ready to be used by the system.
891 1.1 gwr */
892 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
893 1.1 gwr }
894 1.1 gwr }
895 1.1 gwr
896 1.1 gwr /* pmap_init_b_tables() INTERNAL
897 1.1 gwr **
898 1.1 gwr * Initializes all B table managers, their MMU B tables, and
899 1.1 gwr * inserts them into the B manager pool for use by the system.
900 1.1 gwr */
901 1.1 gwr void
902 1.1 gwr pmap_init_b_tables()
903 1.1 gwr {
904 1.1 gwr int i,j;
905 1.1 gwr b_tmgr_t *b_tbl;
906 1.1 gwr
907 1.1 gwr for (i=0; i < NUM_B_TABLES; i++) {
908 1.1 gwr /* Select the next available B manager from the pool */
909 1.1 gwr b_tbl = &Btmgrbase[i];
910 1.1 gwr
911 1.1 gwr b_tbl->bt_parent = NULL; /* clear its parent, */
912 1.1 gwr b_tbl->bt_pidx = 0; /* parent index, */
913 1.1 gwr b_tbl->bt_wcnt = 0; /* wired entry count, */
914 1.1 gwr b_tbl->bt_ecnt = 0; /* valid entry count. */
915 1.1 gwr
916 1.1 gwr /* Assign it the next available MMU B table from the pool */
917 1.1 gwr b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
918 1.1 gwr
919 1.1 gwr /* Invalidate every descriptor in the table */
920 1.1 gwr for (j=0; j < MMU_B_TBL_SIZE; j++)
921 1.1 gwr b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
922 1.1 gwr
923 1.1 gwr /* Insert the manager into the B pool */
924 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
925 1.1 gwr }
926 1.1 gwr }
927 1.1 gwr
928 1.1 gwr /* pmap_init_c_tables() INTERNAL
929 1.1 gwr **
930 1.1 gwr * Initializes all C table managers, their MMU C tables, and
931 1.1 gwr * inserts them into the C manager pool for use by the system.
932 1.1 gwr */
933 1.1 gwr void
934 1.1 gwr pmap_init_c_tables()
935 1.1 gwr {
936 1.1 gwr int i,j;
937 1.1 gwr c_tmgr_t *c_tbl;
938 1.1 gwr
939 1.1 gwr for (i=0; i < NUM_C_TABLES; i++) {
940 1.1 gwr /* Select the next available C manager from the pool */
941 1.1 gwr c_tbl = &Ctmgrbase[i];
942 1.1 gwr
943 1.1 gwr c_tbl->ct_parent = NULL; /* clear its parent, */
944 1.1 gwr c_tbl->ct_pidx = 0; /* parent index, */
945 1.1 gwr c_tbl->ct_wcnt = 0; /* wired entry count, */
946 1.1 gwr c_tbl->ct_ecnt = 0; /* valid entry count. */
947 1.1 gwr
948 1.1 gwr /* Assign it the next available MMU C table from the pool */
949 1.1 gwr c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
950 1.1 gwr
951 1.1 gwr for (j=0; j < MMU_C_TBL_SIZE; j++)
952 1.1 gwr c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
953 1.1 gwr
954 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
955 1.1 gwr }
956 1.1 gwr }
957 1.1 gwr
958 1.1 gwr /* pmap_init_pv() INTERNAL
959 1.1 gwr **
960 1.1 gwr * Initializes the Physical to Virtual mapping system.
961 1.1 gwr */
962 1.1 gwr void
963 1.1 gwr pmap_init_pv()
964 1.1 gwr {
965 1.1 gwr bzero(pvbase, sizeof(pv_t) * sun3x_btop(total_phys_mem));
966 1.1 gwr pv_initialized = TRUE;
967 1.1 gwr }
968 1.1 gwr
969 1.1 gwr /* get_a_table INTERNAL
970 1.1 gwr **
971 1.1 gwr * Retrieve and return a level A table for use in a user map.
972 1.1 gwr */
973 1.1 gwr a_tmgr_t *
974 1.1 gwr get_a_table()
975 1.1 gwr {
976 1.1 gwr a_tmgr_t *tbl;
977 1.1 gwr
978 1.1 gwr /* Get the top A table in the pool */
979 1.1 gwr tbl = a_pool.tqh_first;
980 1.1 gwr if (tbl == NULL)
981 1.1 gwr panic("get_a_table: out of A tables.");
982 1.1 gwr TAILQ_REMOVE(&a_pool, tbl, at_link);
983 1.1 gwr /* If the table has a non-null parent pointer then it is in use.
984 1.1 gwr * Forcibly abduct it from its parent and clear its entries.
985 1.1 gwr * No re-entrancy worries here. This table would not be in the
986 1.1 gwr * table pool unless it was available for use.
987 1.1 gwr */
988 1.1 gwr if (tbl->at_parent) {
989 1.1 gwr tbl->at_parent->pm_stats.resident_count -= free_a_table(tbl);
990 1.1 gwr tbl->at_parent->pm_a_tbl = proc0Atmgr;
991 1.1 gwr }
992 1.1 gwr #ifdef NON_REENTRANT
993 1.1 gwr /* If the table isn't to be wired down, re-insert it at the
994 1.1 gwr * end of the pool.
995 1.1 gwr */
996 1.1 gwr if (!wired)
997 1.1 gwr /* Quandary - XXX
998 1.1 gwr * Would it be better to let the calling function insert this
999 1.1 gwr * table into the queue? By inserting it here, we are allowing
1000 1.1 gwr * it to be stolen immediately. The calling function is
1001 1.1 gwr * probably not expecting to use a table that it is not
1002 1.1 gwr * assured full control of.
1003 1.1 gwr * Answer - In the intrest of re-entrancy, it is best to let
1004 1.1 gwr * the calling function determine when a table is available
1005 1.1 gwr * for use. Therefore this code block is not used.
1006 1.1 gwr */
1007 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
1008 1.1 gwr #endif /* NON_REENTRANT */
1009 1.1 gwr return tbl;
1010 1.1 gwr }
1011 1.1 gwr
1012 1.1 gwr /* get_b_table INTERNAL
1013 1.1 gwr **
1014 1.1 gwr * Return a level B table for use.
1015 1.1 gwr */
1016 1.1 gwr b_tmgr_t *
1017 1.1 gwr get_b_table()
1018 1.1 gwr {
1019 1.1 gwr b_tmgr_t *tbl;
1020 1.1 gwr
1021 1.1 gwr /* See 'get_a_table' for comments. */
1022 1.1 gwr tbl = b_pool.tqh_first;
1023 1.1 gwr if (tbl == NULL)
1024 1.1 gwr panic("get_b_table: out of B tables.");
1025 1.1 gwr TAILQ_REMOVE(&b_pool, tbl, bt_link);
1026 1.1 gwr if (tbl->bt_parent) {
1027 1.1 gwr tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1028 1.1 gwr tbl->bt_parent->at_ecnt--;
1029 1.1 gwr tbl->bt_parent->at_parent->pm_stats.resident_count -=
1030 1.1 gwr free_b_table(tbl);
1031 1.1 gwr }
1032 1.1 gwr #ifdef NON_REENTRANT
1033 1.1 gwr if (!wired)
1034 1.1 gwr /* XXX see quandary in get_b_table */
1035 1.1 gwr /* XXX start lock */
1036 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
1037 1.1 gwr /* XXX end lock */
1038 1.1 gwr #endif /* NON_REENTRANT */
1039 1.1 gwr return tbl;
1040 1.1 gwr }
1041 1.1 gwr
1042 1.1 gwr /* get_c_table INTERNAL
1043 1.1 gwr **
1044 1.1 gwr * Return a level C table for use.
1045 1.1 gwr */
1046 1.1 gwr c_tmgr_t *
1047 1.1 gwr get_c_table()
1048 1.1 gwr {
1049 1.1 gwr c_tmgr_t *tbl;
1050 1.1 gwr
1051 1.1 gwr /* See 'get_a_table' for comments */
1052 1.1 gwr tbl = c_pool.tqh_first;
1053 1.1 gwr if (tbl == NULL)
1054 1.1 gwr panic("get_c_table: out of C tables.");
1055 1.1 gwr TAILQ_REMOVE(&c_pool, tbl, ct_link);
1056 1.1 gwr if (tbl->ct_parent) {
1057 1.1 gwr tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1058 1.1 gwr tbl->ct_parent->bt_ecnt--;
1059 1.1 gwr tbl->ct_parent->bt_parent->at_parent->pm_stats.resident_count
1060 1.1 gwr -= free_c_table(tbl);
1061 1.1 gwr }
1062 1.1 gwr #ifdef NON_REENTRANT
1063 1.1 gwr if (!wired)
1064 1.1 gwr /* XXX See quandary in get_a_table */
1065 1.1 gwr /* XXX start lock */
1066 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
1067 1.1 gwr /* XXX end lock */
1068 1.1 gwr #endif /* NON_REENTRANT */
1069 1.1 gwr
1070 1.1 gwr return tbl;
1071 1.1 gwr }
1072 1.1 gwr
1073 1.1 gwr /* The following 'free_table' and 'steal_table' functions are called to
1074 1.1 gwr * detach tables from their current obligations (parents and children) and
1075 1.1 gwr * prepare them for reuse in another mapping.
1076 1.1 gwr *
1077 1.1 gwr * Free_table is used when the calling function will handle the fate
1078 1.1 gwr * of the parent table, such as returning it to the free pool when it has
1079 1.1 gwr * no valid entries. Functions that do not want to handle this should
1080 1.1 gwr * call steal_table, in which the parent table's descriptors and entry
1081 1.1 gwr * count are automatically modified when this table is removed.
1082 1.1 gwr */
1083 1.1 gwr
1084 1.1 gwr /* free_a_table INTERNAL
1085 1.1 gwr **
1086 1.1 gwr * Unmaps the given A table and all child tables from their current
1087 1.1 gwr * mappings. Returns the number of pages that were invalidated.
1088 1.1 gwr *
1089 1.1 gwr * Cache note: The MC68851 will automatically flush all
1090 1.1 gwr * descriptors derived from a given A table from its
1091 1.1 gwr * Automatic Translation Cache (ATC) if we issue a
1092 1.1 gwr * 'PFLUSHR' instruction with the base address of the
1093 1.1 gwr * table. This function should do, and does so.
1094 1.1 gwr * Note note: We are using an MC68030 - there is no
1095 1.1 gwr * PFLUSHR.
1096 1.1 gwr */
1097 1.1 gwr int
1098 1.1 gwr free_a_table(a_tbl)
1099 1.1 gwr a_tmgr_t *a_tbl;
1100 1.1 gwr {
1101 1.1 gwr int i, removed_cnt;
1102 1.1 gwr mmu_long_dte_t *dte;
1103 1.1 gwr mmu_short_dte_t *dtbl;
1104 1.1 gwr b_tmgr_t *tmgr;
1105 1.1 gwr
1106 1.1 gwr /* Flush the ATC cache of all cached descriptors derived
1107 1.1 gwr * from this table.
1108 1.1 gwr * XXX - Sun3x does not use 68851's cached table feature
1109 1.1 gwr * flush_atc_crp(mmu_vtop(a_tbl->dte));
1110 1.1 gwr */
1111 1.1 gwr
1112 1.1 gwr /* Remove any pending cache flushes that were designated
1113 1.1 gwr * for the pmap this A table belongs to.
1114 1.1 gwr * a_tbl->parent->atc_flushq[0] = 0;
1115 1.1 gwr * XXX - Not implemented in sun3x.
1116 1.1 gwr */
1117 1.1 gwr
1118 1.1 gwr /* All A tables in the system should retain a map for the
1119 1.1 gwr * kernel. If the table contains any valid descriptors
1120 1.1 gwr * (other than those for the kernel area), invalidate them all,
1121 1.1 gwr * stopping short of the kernel's entries.
1122 1.1 gwr */
1123 1.1 gwr removed_cnt = 0;
1124 1.1 gwr if (a_tbl->at_ecnt) {
1125 1.1 gwr dte = a_tbl->at_dtbl;
1126 1.1 gwr for (i=0; i < MMU_TIA(KERNBASE); i++)
1127 1.1 gwr /* If a table entry points to a valid B table, free
1128 1.1 gwr * it and its children.
1129 1.1 gwr */
1130 1.1 gwr if (MMU_VALID_DT(dte[i])) {
1131 1.1 gwr /* The following block does several things,
1132 1.1 gwr * from innermost expression to the
1133 1.1 gwr * outermost:
1134 1.1 gwr * 1) It extracts the base (cc 1996)
1135 1.1 gwr * address of the B table pointed
1136 1.1 gwr * to in the A table entry dte[i].
1137 1.1 gwr * 2) It converts this base address into
1138 1.1 gwr * the virtual address it can be
1139 1.1 gwr * accessed with. (all MMU tables point
1140 1.1 gwr * to physical addresses.)
1141 1.1 gwr * 3) It finds the corresponding manager
1142 1.1 gwr * structure which manages this MMU table.
1143 1.1 gwr * 4) It frees the manager structure.
1144 1.1 gwr * (This frees the MMU table and all
1145 1.1 gwr * child tables. See 'free_b_table' for
1146 1.1 gwr * details.)
1147 1.1 gwr */
1148 1.1 gwr dtbl = (mmu_short_dte_t *) MMU_DTE_PA(dte[i]);
1149 1.1 gwr dtbl = (mmu_short_dte_t *) mmu_ptov(dtbl);
1150 1.1 gwr tmgr = mmuB2tmgr(dtbl);
1151 1.1 gwr removed_cnt += free_b_table(tmgr);
1152 1.1 gwr }
1153 1.1 gwr }
1154 1.1 gwr a_tbl->at_ecnt = 0;
1155 1.1 gwr return removed_cnt;
1156 1.1 gwr }
1157 1.1 gwr
1158 1.1 gwr /* free_b_table INTERNAL
1159 1.1 gwr **
1160 1.1 gwr * Unmaps the given B table and all its children from their current
1161 1.1 gwr * mappings. Returns the number of pages that were invalidated.
1162 1.1 gwr * (For comments, see 'free_a_table()').
1163 1.1 gwr */
1164 1.1 gwr int
1165 1.1 gwr free_b_table(b_tbl)
1166 1.1 gwr b_tmgr_t *b_tbl;
1167 1.1 gwr {
1168 1.1 gwr int i, removed_cnt;
1169 1.1 gwr mmu_short_dte_t *dte;
1170 1.1 gwr mmu_short_pte_t *dtbl;
1171 1.1 gwr c_tmgr_t *tmgr;
1172 1.1 gwr
1173 1.1 gwr removed_cnt = 0;
1174 1.1 gwr if (b_tbl->bt_ecnt) {
1175 1.1 gwr dte = b_tbl->bt_dtbl;
1176 1.1 gwr for (i=0; i < MMU_B_TBL_SIZE; i++)
1177 1.1 gwr if (MMU_VALID_DT(dte[i])) {
1178 1.1 gwr dtbl = (mmu_short_pte_t *) MMU_DTE_PA(dte[i]);
1179 1.1 gwr dtbl = (mmu_short_pte_t *) mmu_ptov(dtbl);
1180 1.1 gwr tmgr = mmuC2tmgr(dtbl);
1181 1.1 gwr removed_cnt += free_c_table(tmgr);
1182 1.1 gwr }
1183 1.1 gwr }
1184 1.1 gwr
1185 1.1 gwr b_tbl->bt_ecnt = 0;
1186 1.1 gwr return removed_cnt;
1187 1.1 gwr }
1188 1.1 gwr
1189 1.1 gwr /* free_c_table INTERNAL
1190 1.1 gwr **
1191 1.1 gwr * Unmaps the given C table from use and returns it to the pool for
1192 1.1 gwr * re-use. Returns the number of pages that were invalidated.
1193 1.1 gwr *
1194 1.1 gwr * This function preserves any physical page modification information
1195 1.1 gwr * contained in the page descriptors within the C table by calling
1196 1.1 gwr * 'pmap_remove_pte().'
1197 1.1 gwr */
1198 1.1 gwr int
1199 1.1 gwr free_c_table(c_tbl)
1200 1.1 gwr c_tmgr_t *c_tbl;
1201 1.1 gwr {
1202 1.1 gwr int i, removed_cnt;
1203 1.1 gwr
1204 1.1 gwr removed_cnt = 0;
1205 1.1 gwr if (c_tbl->ct_ecnt)
1206 1.1 gwr for (i=0; i < MMU_C_TBL_SIZE; i++)
1207 1.1 gwr if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
1208 1.1 gwr pmap_remove_pte(&c_tbl->ct_dtbl[i]);
1209 1.1 gwr removed_cnt++;
1210 1.1 gwr }
1211 1.1 gwr c_tbl->ct_ecnt = 0;
1212 1.1 gwr return removed_cnt;
1213 1.1 gwr }
1214 1.1 gwr
1215 1.1 gwr /* free_c_table_novalid INTERNAL
1216 1.1 gwr **
1217 1.1 gwr * Frees the given C table manager without checking to see whether
1218 1.1 gwr * or not it contains any valid page descriptors as it is assumed
1219 1.1 gwr * that it does not.
1220 1.1 gwr */
1221 1.1 gwr void
1222 1.1 gwr free_c_table_novalid(c_tbl)
1223 1.1 gwr c_tmgr_t *c_tbl;
1224 1.1 gwr {
1225 1.1 gwr TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1226 1.1 gwr TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1227 1.1 gwr c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1228 1.1 gwr }
1229 1.1 gwr
1230 1.1 gwr /* pmap_remove_pte INTERNAL
1231 1.1 gwr **
1232 1.1 gwr * Unmap the given pte and preserve any page modification
1233 1.1 gwr * information by transfering it to the pv head of the
1234 1.1 gwr * physical page it maps to. This function does not update
1235 1.1 gwr * any reference counts because it is assumed that the calling
1236 1.1 gwr * function will do so. If the calling function does not have the
1237 1.1 gwr * ability to do so, the function pmap_dereference_pte() exists
1238 1.1 gwr * for this purpose.
1239 1.1 gwr */
1240 1.1 gwr void
1241 1.1 gwr pmap_remove_pte(pte)
1242 1.1 gwr mmu_short_pte_t *pte;
1243 1.1 gwr {
1244 1.1 gwr vm_offset_t pa;
1245 1.1 gwr pv_t *pv;
1246 1.1 gwr pv_elem_t *pve;
1247 1.1 gwr
1248 1.1 gwr pa = MMU_PTE_PA(*pte);
1249 1.1 gwr if (is_managed(pa)) {
1250 1.1 gwr pv = pa2pv(pa);
1251 1.1 gwr /* Save the mod/ref bits of the pte by simply
1252 1.1 gwr * ORing the entire pte onto the pv_flags member
1253 1.1 gwr * of the pv structure.
1254 1.1 gwr * There is no need to use a separate bit pattern
1255 1.1 gwr * for usage information on the pv head than that
1256 1.1 gwr * which is used on the MMU ptes.
1257 1.1 gwr */
1258 1.1 gwr pv->pv_flags |= pte->attr.raw;
1259 1.1 gwr
1260 1.1 gwr pve = pte2pve(pte);
1261 1.1 gwr if (pve == pv->pv_head.lh_first)
1262 1.1 gwr pv->pv_head.lh_first = pve->pve_link.le_next;
1263 1.1 gwr LIST_REMOVE(pve, pve_link);
1264 1.1 gwr }
1265 1.1 gwr
1266 1.1 gwr pte->attr.raw = MMU_DT_INVALID;
1267 1.1 gwr }
1268 1.1 gwr
1269 1.1 gwr /* pmap_dereference_pte INTERNAL
1270 1.1 gwr **
1271 1.1 gwr * Update the necessary reference counts in any tables and pmaps to
1272 1.1 gwr * reflect the removal of the given pte. Only called when no knowledge of
1273 1.1 gwr * the pte's associated pmap is unknown. This only occurs in the PV call
1274 1.1 gwr * 'pmap_page_protect()' with a protection of VM_PROT_NONE, which means
1275 1.1 gwr * that all references to a given physical page must be removed.
1276 1.1 gwr */
1277 1.1 gwr void
1278 1.1 gwr pmap_dereference_pte(pte)
1279 1.1 gwr mmu_short_pte_t *pte;
1280 1.1 gwr {
1281 1.1 gwr c_tmgr_t *c_tbl;
1282 1.1 gwr
1283 1.1 gwr c_tbl = pmap_find_c_tmgr(pte);
1284 1.1 gwr c_tbl->ct_parent->bt_parent->at_parent->pm_stats.resident_count--;
1285 1.1 gwr if (--c_tbl->ct_ecnt == 0)
1286 1.1 gwr free_c_table_novalid(c_tbl);
1287 1.1 gwr }
1288 1.1 gwr
1289 1.1 gwr /* pmap_stroll INTERNAL
1290 1.1 gwr **
1291 1.1 gwr * Retrieve the addresses of all table managers involved in the mapping of
1292 1.1 gwr * the given virtual address. If the table walk completed sucessfully,
1293 1.1 gwr * return TRUE. If it was only partial sucessful, return FALSE.
1294 1.1 gwr * The table walk performed by this function is important to many other
1295 1.1 gwr * functions in this module.
1296 1.1 gwr */
1297 1.1 gwr boolean_t
1298 1.1 gwr pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
1299 1.1 gwr pmap_t pmap;
1300 1.1 gwr vm_offset_t va;
1301 1.1 gwr a_tmgr_t **a_tbl;
1302 1.1 gwr b_tmgr_t **b_tbl;
1303 1.1 gwr c_tmgr_t **c_tbl;
1304 1.1 gwr mmu_short_pte_t **pte;
1305 1.1 gwr int *a_idx, *b_idx, *pte_idx;
1306 1.1 gwr {
1307 1.1 gwr mmu_long_dte_t *a_dte; /* A: long descriptor table */
1308 1.1 gwr mmu_short_dte_t *b_dte; /* B: short descriptor table */
1309 1.1 gwr
1310 1.1 gwr if (pmap == pmap_kernel())
1311 1.1 gwr return FALSE;
1312 1.1 gwr
1313 1.1 gwr /* Does the given pmap have an A table? */
1314 1.1 gwr *a_tbl = pmap->pm_a_tbl;
1315 1.1 gwr if (*a_tbl == NULL)
1316 1.1 gwr return FALSE; /* No. Return unknown. */
1317 1.1 gwr /* Does the A table have a valid B table
1318 1.1 gwr * under the corresponding table entry?
1319 1.1 gwr */
1320 1.1 gwr *a_idx = MMU_TIA(va);
1321 1.1 gwr a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1322 1.1 gwr if (!MMU_VALID_DT(*a_dte))
1323 1.1 gwr return FALSE; /* No. Return unknown. */
1324 1.1 gwr /* Yes. Extract B table from the A table. */
1325 1.1 gwr *b_tbl = pmap_find_b_tmgr(
1326 1.1 gwr (mmu_short_dte_t *) mmu_ptov(
1327 1.1 gwr MMU_DTE_PA(*a_dte)
1328 1.1 gwr )
1329 1.1 gwr );
1330 1.1 gwr /* Does the B table have a valid C table
1331 1.1 gwr * under the corresponding table entry?
1332 1.1 gwr */
1333 1.1 gwr *b_idx = MMU_TIB(va);
1334 1.1 gwr b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1335 1.1 gwr if (!MMU_VALID_DT(*b_dte))
1336 1.1 gwr return FALSE; /* No. Return unknown. */
1337 1.1 gwr /* Yes. Extract C table from the B table. */
1338 1.1 gwr *c_tbl = pmap_find_c_tmgr(
1339 1.1 gwr (mmu_short_pte_t *) mmu_ptov(
1340 1.1 gwr MMU_DTE_PA(*b_dte)
1341 1.1 gwr )
1342 1.1 gwr );
1343 1.1 gwr *pte_idx = MMU_TIC(va);
1344 1.1 gwr *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1345 1.1 gwr
1346 1.1 gwr return TRUE;
1347 1.1 gwr }
1348 1.1 gwr
1349 1.1 gwr /* pmap_enter INTERFACE
1350 1.1 gwr **
1351 1.1 gwr * Called by the kernel to map a virtual address
1352 1.1 gwr * to a physical address in the given process map.
1353 1.1 gwr *
1354 1.1 gwr * Note: this function should apply an exclusive lock
1355 1.1 gwr * on the pmap system for its duration. (it certainly
1356 1.1 gwr * would save my hair!!)
1357 1.1 gwr */
1358 1.1 gwr void
1359 1.1 gwr pmap_enter(pmap, va, pa, prot, wired)
1360 1.1 gwr pmap_t pmap;
1361 1.1 gwr vm_offset_t va;
1362 1.1 gwr vm_offset_t pa;
1363 1.1 gwr vm_prot_t prot;
1364 1.1 gwr boolean_t wired;
1365 1.1 gwr {
1366 1.1 gwr u_int a_idx, b_idx, pte_idx; /* table indexes (fix grammar) */
1367 1.1 gwr a_tmgr_t *a_tbl; /* A: long descriptor table manager */
1368 1.1 gwr b_tmgr_t *b_tbl; /* B: short descriptor table manager */
1369 1.1 gwr c_tmgr_t *c_tbl; /* C: short page table manager */
1370 1.1 gwr mmu_long_dte_t *a_dte; /* A: long descriptor table */
1371 1.1 gwr mmu_short_dte_t *b_dte; /* B: short descriptor table */
1372 1.1 gwr mmu_short_pte_t *c_pte; /* C: short page descriptor table */
1373 1.1 gwr pv_t *pv; /* pv list head */
1374 1.1 gwr pv_elem_t *pve; /* pv element */
1375 1.1 gwr enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
1376 1.1 gwr
1377 1.1 gwr if (pmap == NULL)
1378 1.1 gwr return;
1379 1.1 gwr if (pmap == pmap_kernel()) {
1380 1.1 gwr pmap_enter_kernel(va, pa, prot);
1381 1.1 gwr return;
1382 1.1 gwr }
1383 1.1 gwr
1384 1.1 gwr /* For user mappings we walk along the MMU tables of the given
1385 1.1 gwr * pmap, reaching a PTE which describes the virtual page being
1386 1.1 gwr * mapped or changed. If any level of the walk ends in an invalid
1387 1.1 gwr * entry, a table must be allocated and the entry must be updated
1388 1.1 gwr * to point to it.
1389 1.1 gwr * There is a bit of confusion as to whether this code must be
1390 1.1 gwr * re-entrant. For now we will assume it is. To support
1391 1.1 gwr * re-entrancy we must unlink tables from the table pool before
1392 1.1 gwr * we assume we may use them. Tables are re-linked into the pool
1393 1.1 gwr * when we are finished with them at the end of the function.
1394 1.1 gwr * But I don't feel like doing that until we have proof that this
1395 1.1 gwr * needs to be re-entrant.
1396 1.1 gwr * 'llevel' records which tables need to be relinked.
1397 1.1 gwr */
1398 1.1 gwr llevel = NONE;
1399 1.1 gwr
1400 1.1 gwr /* Step 1 - Retrieve the A table from the pmap. If it is the default
1401 1.1 gwr * A table (commonly known as the 'proc0' A table), allocate a new one.
1402 1.1 gwr */
1403 1.1 gwr
1404 1.1 gwr a_tbl = pmap->pm_a_tbl;
1405 1.1 gwr if (a_tbl == proc0Atmgr) {
1406 1.1 gwr pmap->pm_a_tbl = a_tbl = get_a_table();
1407 1.1 gwr if (!wired)
1408 1.1 gwr llevel = NEWA;
1409 1.1 gwr } else {
1410 1.1 gwr /* Use the A table already allocated for this pmap.
1411 1.1 gwr * Unlink it from the A table pool if necessary.
1412 1.1 gwr */
1413 1.1 gwr if (wired && !a_tbl->at_wcnt)
1414 1.1 gwr TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1415 1.1 gwr }
1416 1.1 gwr
1417 1.1 gwr /* Step 2 - Walk into the B table. If there is no valid B table,
1418 1.1 gwr * allocate one.
1419 1.1 gwr */
1420 1.1 gwr
1421 1.1 gwr a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
1422 1.1 gwr a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1423 1.1 gwr if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
1424 1.1 gwr /* Yes, it points to a valid B table. Use it. */
1425 1.1 gwr /*************************************
1426 1.1 gwr * a_idx *
1427 1.1 gwr * v *
1428 1.1 gwr * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1429 1.1 gwr * | | | | | | | | | | | | *
1430 1.1 gwr * +-+-+-+-+-+-+-+-+-+-+-+- *
1431 1.1 gwr * | *
1432 1.1 gwr * \- b_tbl -> +-+- *
1433 1.1 gwr * | | *
1434 1.1 gwr * +-+- *
1435 1.1 gwr *************************************/
1436 1.1 gwr b_dte = (mmu_short_dte_t *) mmu_ptov(a_dte->addr.raw);
1437 1.1 gwr b_tbl = mmuB2tmgr(b_dte);
1438 1.1 gwr if (wired && !b_tbl->bt_wcnt) {
1439 1.1 gwr /* If mapping is wired and table is not */
1440 1.1 gwr TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1441 1.1 gwr a_tbl->at_wcnt++; /* Update parent table's wired
1442 1.1 gwr * entry count. */
1443 1.1 gwr }
1444 1.1 gwr } else {
1445 1.1 gwr b_tbl = get_b_table(); /* No, need to allocate a new B table */
1446 1.1 gwr /* Point the parent A table descriptor to this new B table. */
1447 1.1 gwr a_dte->addr.raw = (unsigned long) mmu_vtop(b_tbl->bt_dtbl);
1448 1.1 gwr a_dte->attr.attr_struct.dt = MMU_DT_SHORT;
1449 1.1 gwr /* Create the necessary back references to the parent table */
1450 1.1 gwr b_tbl->bt_parent = a_tbl;
1451 1.1 gwr b_tbl->bt_pidx = a_idx;
1452 1.1 gwr /* If this table is to be wired, make sure the parent A table
1453 1.1 gwr * wired count is updated to reflect that it has another wired
1454 1.1 gwr * entry.
1455 1.1 gwr */
1456 1.1 gwr a_tbl->at_ecnt++; /* Update parent's valid entry count */
1457 1.1 gwr if (wired)
1458 1.1 gwr a_tbl->at_wcnt++;
1459 1.1 gwr else if (llevel == NONE)
1460 1.1 gwr llevel = NEWB;
1461 1.1 gwr }
1462 1.1 gwr
1463 1.1 gwr /* Step 3 - Walk into the C table, if there is no valid C table,
1464 1.1 gwr * allocate one.
1465 1.1 gwr */
1466 1.1 gwr
1467 1.1 gwr b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
1468 1.1 gwr b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1469 1.1 gwr if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
1470 1.1 gwr /* Yes, it points to a valid C table. Use it. */
1471 1.1 gwr /**************************************
1472 1.1 gwr * c_idx *
1473 1.1 gwr * | v *
1474 1.1 gwr * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1475 1.1 gwr * | | | | | | | | | | | *
1476 1.1 gwr * +-+-+-+-+-+-+-+-+-+-+- *
1477 1.1 gwr * | *
1478 1.1 gwr * \- c_tbl -> +-+-- *
1479 1.1 gwr * | | | *
1480 1.1 gwr * +-+-- *
1481 1.1 gwr **************************************/
1482 1.1 gwr c_pte = (mmu_short_pte_t *) MMU_PTE_PA(*b_dte);
1483 1.1 gwr c_pte = (mmu_short_pte_t *) mmu_ptov(c_pte);
1484 1.1 gwr c_tbl = mmuC2tmgr(c_pte);
1485 1.1 gwr if (wired && !c_tbl->ct_wcnt) {
1486 1.1 gwr /* If mapping is wired and table is not */
1487 1.1 gwr TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1488 1.1 gwr b_tbl->bt_wcnt++;
1489 1.1 gwr }
1490 1.1 gwr } else {
1491 1.1 gwr c_tbl = get_c_table(); /* No, need to allocate a new C table */
1492 1.1 gwr /* Point the parent B table descriptor to this new C table. */
1493 1.1 gwr b_dte->attr.raw = (unsigned long) mmu_vtop(c_tbl->ct_dtbl);
1494 1.1 gwr b_dte->attr.attr_struct.dt = MMU_DT_SHORT;
1495 1.1 gwr /* Create the necessary back references to the parent table */
1496 1.1 gwr c_tbl->ct_parent = b_tbl;
1497 1.1 gwr c_tbl->ct_pidx = b_idx;
1498 1.1 gwr /* If this table is to be wired, make sure the parent B table
1499 1.1 gwr * wired count is updated to reflect that it has another wired
1500 1.1 gwr * entry.
1501 1.1 gwr */
1502 1.1 gwr b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1503 1.1 gwr if (wired)
1504 1.1 gwr b_tbl->bt_wcnt++;
1505 1.1 gwr else if (llevel == NONE)
1506 1.1 gwr llevel = NEWC;
1507 1.1 gwr }
1508 1.1 gwr
1509 1.1 gwr /* Step 4 - Deposit a page descriptor (PTE) into the appropriate
1510 1.1 gwr * slot of the C table, describing the PA to which the VA is mapped.
1511 1.1 gwr */
1512 1.1 gwr
1513 1.1 gwr pte_idx = MMU_TIC(va);
1514 1.1 gwr c_pte = &c_tbl->ct_dtbl[pte_idx];
1515 1.1 gwr if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1516 1.1 gwr /* If the PTE is currently valid, then this function call
1517 1.1 gwr * is just a synonym for one (or more) of the following
1518 1.1 gwr * operations:
1519 1.1 gwr * change protections on a page
1520 1.1 gwr * change wiring status of a page
1521 1.1 gwr * remove the mapping of a page
1522 1.1 gwr */
1523 1.1 gwr /* Is the new address the same as the old? */
1524 1.1 gwr if (MMU_PTE_PA(*c_pte) == pa) {
1525 1.1 gwr /* Yes, do nothing. */
1526 1.1 gwr } else {
1527 1.1 gwr /* No, remove the old entry */
1528 1.1 gwr pmap_remove_pte(c_pte);
1529 1.1 gwr }
1530 1.1 gwr } else {
1531 1.1 gwr /* No, update the valid entry count in the C table */
1532 1.1 gwr c_tbl->ct_ecnt++;
1533 1.1 gwr /* and in pmap */
1534 1.1 gwr pmap->pm_stats.resident_count++;
1535 1.1 gwr }
1536 1.1 gwr /* Map the page. */
1537 1.1 gwr c_pte->attr.raw = ((unsigned long) pa | MMU_DT_PAGE);
1538 1.1 gwr
1539 1.1 gwr if (wired) /* Does the entry need to be wired? */ {
1540 1.1 gwr c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1541 1.1 gwr }
1542 1.1 gwr
1543 1.1 gwr /* If the physical address being mapped is managed by the PV
1544 1.1 gwr * system then link the pte into the list of pages mapped to that
1545 1.1 gwr * address.
1546 1.1 gwr */
1547 1.1 gwr if (is_managed(pa)) {
1548 1.1 gwr pv = pa2pv(pa);
1549 1.1 gwr pve = pte2pve(c_pte);
1550 1.1 gwr LIST_INSERT_HEAD(&pv->pv_head, pve, pve_link);
1551 1.1 gwr }
1552 1.1 gwr
1553 1.1 gwr /* Move any allocated tables back into the active pool. */
1554 1.1 gwr
1555 1.1 gwr switch (llevel) {
1556 1.1 gwr case NEWA:
1557 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1558 1.1 gwr /* FALLTHROUGH */
1559 1.1 gwr case NEWB:
1560 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1561 1.1 gwr /* FALLTHROUGH */
1562 1.1 gwr case NEWC:
1563 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1564 1.1 gwr /* FALLTHROUGH */
1565 1.1 gwr default:
1566 1.1 gwr break;
1567 1.1 gwr }
1568 1.1 gwr }
1569 1.1 gwr
1570 1.1 gwr /* pmap_enter_kernel INTERNAL
1571 1.1 gwr **
1572 1.1 gwr * Map the given virtual address to the given physical address within the
1573 1.1 gwr * kernel address space. This function exists because the kernel map does
1574 1.1 gwr * not do dynamic table allocation. It consists of a contiguous array of ptes
1575 1.1 gwr * and can be edited directly without the need to walk through any tables.
1576 1.1 gwr *
1577 1.1 gwr * XXX: "Danger, Will Robinson!"
1578 1.1 gwr * Note that the kernel should never take a fault on any page
1579 1.1 gwr * between [ KERNBASE .. virtual_avail ] and this is checked in
1580 1.1 gwr * trap.c for kernel-mode MMU faults. This means that mappings
1581 1.1 gwr * created in that range must be implicily wired. -gwr
1582 1.1 gwr */
1583 1.1 gwr void
1584 1.1 gwr pmap_enter_kernel(va, pa, prot)
1585 1.1 gwr vm_offset_t va;
1586 1.1 gwr vm_offset_t pa;
1587 1.1 gwr vm_prot_t prot;
1588 1.1 gwr {
1589 1.1 gwr boolean_t was_valid = FALSE;
1590 1.1 gwr mmu_short_pte_t *pte;
1591 1.1 gwr
1592 1.1 gwr /* XXX - This array is traditionally named "Sysmap" */
1593 1.1 gwr pte = &kernCbase[(unsigned long) sun3x_btop(va - KERNBASE)];
1594 1.1 gwr if (MMU_VALID_DT(*pte))
1595 1.1 gwr was_valid = TRUE;
1596 1.1 gwr
1597 1.1 gwr pte->attr.raw = (pa | MMU_DT_PAGE);
1598 1.1 gwr
1599 1.1 gwr if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
1600 1.1 gwr pte->attr.raw |= MMU_SHORT_PTE_WP;
1601 1.1 gwr if (pa & PMAP_NC)
1602 1.1 gwr pte->attr.raw |= MMU_SHORT_PTE_CI;
1603 1.1 gwr if (was_valid) {
1604 1.1 gwr /* mmu_flusha(FC_SUPERD, va); */
1605 1.1 gwr /* mmu_flusha(); */
1606 1.1 gwr TBIA();
1607 1.1 gwr }
1608 1.1 gwr
1609 1.1 gwr }
1610 1.1 gwr
1611 1.1 gwr /* pmap_protect INTERFACE
1612 1.1 gwr **
1613 1.1 gwr * Apply the given protection to the given virtual address within
1614 1.1 gwr * the given map.
1615 1.1 gwr *
1616 1.1 gwr * It is ok for the protection applied to be stronger than what is
1617 1.1 gwr * specified. We use this to our advantage when the given map has no
1618 1.1 gwr * mapping for the virtual address. By returning immediately when this
1619 1.1 gwr * is discovered, we are effectively applying a protection of VM_PROT_NONE,
1620 1.1 gwr * and therefore do not need to map the page just to apply a protection
1621 1.1 gwr * code. Only pmap_enter() needs to create new mappings if they do not exist.
1622 1.1 gwr */
1623 1.1 gwr void
1624 1.1 gwr pmap_protect(pmap, va, pa, prot)
1625 1.1 gwr pmap_t pmap;
1626 1.1 gwr vm_offset_t va, pa;
1627 1.1 gwr vm_prot_t prot;
1628 1.1 gwr {
1629 1.1 gwr int a_idx, b_idx, c_idx;
1630 1.1 gwr a_tmgr_t *a_tbl;
1631 1.1 gwr b_tmgr_t *b_tbl;
1632 1.1 gwr c_tmgr_t *c_tbl;
1633 1.1 gwr mmu_short_pte_t *pte;
1634 1.1 gwr
1635 1.1 gwr if (pmap == NULL)
1636 1.1 gwr return;
1637 1.1 gwr if (pmap == pmap_kernel()) {
1638 1.1 gwr pmap_protect_kernel(va, pa, prot);
1639 1.1 gwr return;
1640 1.1 gwr }
1641 1.1 gwr
1642 1.1 gwr /* Retrieve the mapping from the given pmap. If it does
1643 1.1 gwr * not exist then we need not do anything more.
1644 1.1 gwr */
1645 1.1 gwr if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte,
1646 1.1 gwr &a_idx, &b_idx, &c_idx) == FALSE) {
1647 1.1 gwr return;
1648 1.1 gwr }
1649 1.1 gwr
1650 1.1 gwr switch (prot) {
1651 1.1 gwr case VM_PROT_ALL:
1652 1.1 gwr /* this should never happen in a sane system */
1653 1.1 gwr break;
1654 1.1 gwr case VM_PROT_READ:
1655 1.1 gwr case VM_PROT_READ|VM_PROT_EXECUTE:
1656 1.1 gwr /* make the mapping read-only */
1657 1.1 gwr pte->attr.raw |= MMU_SHORT_PTE_WP;
1658 1.1 gwr break;
1659 1.1 gwr case VM_PROT_NONE:
1660 1.1 gwr /* this is an alias for 'pmap_remove' */
1661 1.1 gwr pmap_dereference_pte(pte);
1662 1.1 gwr break;
1663 1.1 gwr default:
1664 1.1 gwr break;
1665 1.1 gwr }
1666 1.1 gwr }
1667 1.1 gwr
1668 1.1 gwr /* pmap_protect_kernel INTERNAL
1669 1.1 gwr **
1670 1.1 gwr * Apply the given protection code to a kernel address mapping.
1671 1.1 gwr */
1672 1.1 gwr void
1673 1.1 gwr pmap_protect_kernel(va, pa, prot)
1674 1.1 gwr vm_offset_t va, pa;
1675 1.1 gwr vm_prot_t prot;
1676 1.1 gwr {
1677 1.1 gwr mmu_short_pte_t *pte;
1678 1.1 gwr
1679 1.1 gwr pte = &kernCbase[(unsigned long) sun3x_btop(va - KERNBASE)];
1680 1.1 gwr if (MMU_VALID_DT(*pte)) {
1681 1.1 gwr switch (prot) {
1682 1.1 gwr case VM_PROT_ALL:
1683 1.1 gwr break;
1684 1.1 gwr case VM_PROT_READ:
1685 1.1 gwr case VM_PROT_READ|VM_PROT_EXECUTE:
1686 1.1 gwr pte->attr.raw |= MMU_SHORT_PTE_WP;
1687 1.1 gwr break;
1688 1.1 gwr case VM_PROT_NONE:
1689 1.1 gwr /* this is an alias for 'pmap_remove_kernel' */
1690 1.1 gwr pte->attr.raw = MMU_DT_INVALID;
1691 1.1 gwr break;
1692 1.1 gwr default:
1693 1.1 gwr break;
1694 1.1 gwr }
1695 1.1 gwr }
1696 1.1 gwr /* since this is the kernel, immediately flush any cached
1697 1.1 gwr * descriptors for this address.
1698 1.1 gwr */
1699 1.1 gwr /* mmu_flush(FC_SUPERD, va); */
1700 1.1 gwr TBIS(va);
1701 1.1 gwr }
1702 1.1 gwr
1703 1.1 gwr /* pmap_change_wiring INTERFACE
1704 1.1 gwr **
1705 1.1 gwr * Changes the wiring of the specified page.
1706 1.1 gwr *
1707 1.1 gwr * This function is called from vm_fault.c to unwire
1708 1.1 gwr * a mapping. It really should be called 'pmap_unwire'
1709 1.1 gwr * because it is never asked to do anything but remove
1710 1.1 gwr * wirings.
1711 1.1 gwr */
1712 1.1 gwr void
1713 1.1 gwr pmap_change_wiring(pmap, va, wire)
1714 1.1 gwr pmap_t pmap;
1715 1.1 gwr vm_offset_t va;
1716 1.1 gwr boolean_t wire;
1717 1.1 gwr {
1718 1.1 gwr int a_idx, b_idx, c_idx;
1719 1.1 gwr a_tmgr_t *a_tbl;
1720 1.1 gwr b_tmgr_t *b_tbl;
1721 1.1 gwr c_tmgr_t *c_tbl;
1722 1.1 gwr mmu_short_pte_t *pte;
1723 1.1 gwr
1724 1.1 gwr /* Kernel mappings always remain wired. */
1725 1.1 gwr if (pmap == pmap_kernel())
1726 1.1 gwr return;
1727 1.1 gwr
1728 1.1 gwr #ifdef PMAP_DEBUG
1729 1.1 gwr if (wire == TRUE)
1730 1.1 gwr panic("pmap_change_wiring: wire requested.");
1731 1.1 gwr #endif
1732 1.1 gwr
1733 1.1 gwr /* Walk through the tables. If the walk terminates without
1734 1.1 gwr * a valid PTE then the address wasn't wired in the first place.
1735 1.1 gwr * Return immediately.
1736 1.1 gwr */
1737 1.1 gwr if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
1738 1.1 gwr &b_idx, &c_idx) == FALSE)
1739 1.1 gwr return;
1740 1.1 gwr
1741 1.1 gwr
1742 1.1 gwr /* Is the PTE wired? If not, return. */
1743 1.1 gwr if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
1744 1.1 gwr return;
1745 1.1 gwr
1746 1.1 gwr /* Remove the wiring bit. */
1747 1.1 gwr pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
1748 1.1 gwr
1749 1.1 gwr /* Decrement the wired entry count in the C table.
1750 1.1 gwr * If it reaches zero the following things happen:
1751 1.1 gwr * 1. The table no longer has any wired entries and is considered
1752 1.1 gwr * unwired.
1753 1.1 gwr * 2. It is placed on the available queue.
1754 1.1 gwr * 3. The parent table's wired entry count is decremented.
1755 1.1 gwr * 4. If it reaches zero, this process repeats at step 1 and
1756 1.1 gwr * stops at after reaching the A table.
1757 1.1 gwr */
1758 1.1 gwr if (c_tbl->ct_wcnt-- == 0) {
1759 1.1 gwr TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1760 1.1 gwr if (b_tbl->bt_wcnt-- == 0) {
1761 1.1 gwr TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1762 1.1 gwr if (a_tbl->at_wcnt-- == 0) {
1763 1.1 gwr TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1764 1.1 gwr }
1765 1.1 gwr }
1766 1.1 gwr }
1767 1.1 gwr
1768 1.1 gwr pmap->pm_stats.wired_count--;
1769 1.1 gwr }
1770 1.1 gwr
1771 1.1 gwr /* pmap_pageable INTERFACE
1772 1.1 gwr **
1773 1.1 gwr * Make the specified range of addresses within the given pmap,
1774 1.1 gwr * 'pageable' or 'not-pageable'. A pageable page must not cause
1775 1.1 gwr * any faults when referenced. A non-pageable page may.
1776 1.1 gwr *
1777 1.1 gwr * This routine is only advisory. The VM system will call pmap_enter()
1778 1.1 gwr * to wire or unwire pages that are going to be made pageable before calling
1779 1.1 gwr * this function. By the time this routine is called, everything that needs
1780 1.1 gwr * to be done has already been done.
1781 1.1 gwr */
1782 1.1 gwr void
1783 1.1 gwr pmap_pageable(pmap, start, end, pageable)
1784 1.1 gwr pmap_t pmap;
1785 1.1 gwr vm_offset_t start, end;
1786 1.1 gwr boolean_t pageable;
1787 1.1 gwr {
1788 1.1 gwr /* not implemented. */
1789 1.1 gwr }
1790 1.1 gwr
1791 1.1 gwr /* pmap_copy INTERFACE
1792 1.1 gwr **
1793 1.1 gwr * Copy the mappings of a range of addresses in one pmap, into
1794 1.1 gwr * the destination address of another.
1795 1.1 gwr *
1796 1.1 gwr * This routine is advisory. Should we one day decide that MMU tables
1797 1.1 gwr * may be shared by more than one pmap, this function should be used to
1798 1.1 gwr * link them together. Until that day however, we do nothing.
1799 1.1 gwr */
1800 1.1 gwr void
1801 1.1 gwr pmap_copy(pmap_a, pmap_b, dst, len, src)
1802 1.1 gwr pmap_t pmap_a, pmap_b;
1803 1.1 gwr vm_offset_t dst;
1804 1.1 gwr vm_size_t len;
1805 1.1 gwr vm_offset_t src;
1806 1.1 gwr {
1807 1.1 gwr /* not implemented. */
1808 1.1 gwr }
1809 1.1 gwr
1810 1.1 gwr /* pmap_copy_page INTERFACE
1811 1.1 gwr **
1812 1.1 gwr * Copy the contents of one physical page into another.
1813 1.1 gwr *
1814 1.1 gwr * This function makes use of two virtual pages allocated in sun3x_vm_init()
1815 1.1 gwr * (found in _startup.c) to map the two specified physical pages into the
1816 1.1 gwr * kernel address space. It then uses bcopy() to copy one into the other.
1817 1.1 gwr */
1818 1.1 gwr void
1819 1.1 gwr pmap_copy_page(src, dst)
1820 1.1 gwr vm_offset_t src, dst;
1821 1.1 gwr {
1822 1.1 gwr PMAP_LOCK();
1823 1.1 gwr if (tmp_vpages_inuse)
1824 1.1 gwr panic("pmap_copy_page: temporary vpages are in use.");
1825 1.1 gwr tmp_vpages_inuse++;
1826 1.1 gwr
1827 1.1 gwr pmap_enter_kernel(tmp_vpages[0], src, VM_PROT_READ);
1828 1.1 gwr pmap_enter_kernel(tmp_vpages[1], dst, VM_PROT_READ|VM_PROT_WRITE);
1829 1.1 gwr bcopy((char *) tmp_vpages[1], (char *) tmp_vpages[0], NBPG);
1830 1.1 gwr /* xxx - there's no real need to unmap the mappings is there? */
1831 1.1 gwr
1832 1.1 gwr tmp_vpages_inuse--;
1833 1.1 gwr PMAP_UNLOCK();
1834 1.1 gwr }
1835 1.1 gwr
1836 1.1 gwr /* pmap_zero_page INTERFACE
1837 1.1 gwr **
1838 1.1 gwr * Zero the contents of the specified physical page.
1839 1.1 gwr *
1840 1.1 gwr * Uses one of the virtual pages allocated in sun3x_vm_init() (_startup.c)
1841 1.1 gwr * to map the specified page into the kernel address space. Then uses
1842 1.1 gwr * bzero() to zero out the page.
1843 1.1 gwr */
1844 1.1 gwr void
1845 1.1 gwr pmap_zero_page(pa)
1846 1.1 gwr vm_offset_t pa;
1847 1.1 gwr {
1848 1.1 gwr PMAP_LOCK();
1849 1.1 gwr if (tmp_vpages_inuse)
1850 1.1 gwr panic("pmap_zero_page: temporary vpages are in use.");
1851 1.1 gwr tmp_vpages_inuse++;
1852 1.1 gwr
1853 1.1 gwr pmap_enter_kernel(tmp_vpages[0], pa, VM_PROT_READ|VM_PROT_WRITE);
1854 1.1 gwr bzero((char *) tmp_vpages[0], NBPG);
1855 1.1 gwr /* xxx - there's no real need to unmap the mapping is there? */
1856 1.1 gwr
1857 1.1 gwr tmp_vpages_inuse--;
1858 1.1 gwr PMAP_UNLOCK();
1859 1.1 gwr }
1860 1.1 gwr
1861 1.1 gwr /* pmap_collect INTERFACE
1862 1.1 gwr **
1863 1.1 gwr * Called from the VM system to collect unused pages in the given
1864 1.1 gwr * pmap.
1865 1.1 gwr *
1866 1.1 gwr * No one implements it, so I'm not even sure how it is supposed to
1867 1.1 gwr * 'collect' anything anyways. There's nothing to do but do what everyone
1868 1.1 gwr * else does..
1869 1.1 gwr */
1870 1.1 gwr void
1871 1.1 gwr pmap_collect(pmap)
1872 1.1 gwr pmap_t pmap;
1873 1.1 gwr {
1874 1.1 gwr /* not implemented. */
1875 1.1 gwr }
1876 1.1 gwr
1877 1.1 gwr /* pmap_create INTERFACE
1878 1.1 gwr **
1879 1.1 gwr * Create and return a pmap structure.
1880 1.1 gwr */
1881 1.1 gwr pmap_t
1882 1.1 gwr pmap_create(size)
1883 1.1 gwr vm_size_t size;
1884 1.1 gwr {
1885 1.1 gwr pmap_t pmap;
1886 1.1 gwr
1887 1.1 gwr if (size)
1888 1.1 gwr return NULL;
1889 1.1 gwr
1890 1.1 gwr pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
1891 1.1 gwr pmap_pinit(pmap);
1892 1.1 gwr
1893 1.1 gwr return pmap;
1894 1.1 gwr }
1895 1.1 gwr
1896 1.1 gwr /* pmap_pinit INTERNAL
1897 1.1 gwr **
1898 1.1 gwr * Initialize a pmap structure.
1899 1.1 gwr */
1900 1.1 gwr void
1901 1.1 gwr pmap_pinit(pmap)
1902 1.1 gwr pmap_t pmap;
1903 1.1 gwr {
1904 1.1 gwr bzero(pmap, sizeof(struct pmap));
1905 1.1 gwr pmap->pm_a_tbl = proc0Atmgr;
1906 1.1 gwr }
1907 1.1 gwr
1908 1.1 gwr /* pmap_release INTERFACE
1909 1.1 gwr **
1910 1.1 gwr * Release any resources held by the given pmap.
1911 1.1 gwr *
1912 1.1 gwr * This is the reverse analog to pmap_pinit. It does not
1913 1.1 gwr * necessarily mean for the pmap structure to be deallocated,
1914 1.1 gwr * as in pmap_destroy.
1915 1.1 gwr */
1916 1.1 gwr void
1917 1.1 gwr pmap_release(pmap)
1918 1.1 gwr pmap_t pmap;
1919 1.1 gwr {
1920 1.1 gwr /* As long as the pmap contains no mappings,
1921 1.1 gwr * which always should be the case whenever
1922 1.1 gwr * this function is called, there really should
1923 1.1 gwr * be nothing to do.
1924 1.1 gwr */
1925 1.1 gwr #ifdef PMAP_DEBUG
1926 1.1 gwr if (pmap == NULL)
1927 1.1 gwr return;
1928 1.1 gwr if (pmap == pmap_kernel())
1929 1.1 gwr panic("pmap_release: kernel pmap release requested.");
1930 1.1 gwr if (pmap->pm_a_tbl != proc0Atmgr)
1931 1.1 gwr panic("pmap_release: pmap not empty.");
1932 1.1 gwr #endif
1933 1.1 gwr }
1934 1.1 gwr
1935 1.1 gwr /* pmap_reference INTERFACE
1936 1.1 gwr **
1937 1.1 gwr * Increment the reference count of a pmap.
1938 1.1 gwr */
1939 1.1 gwr void
1940 1.1 gwr pmap_reference(pmap)
1941 1.1 gwr pmap_t pmap;
1942 1.1 gwr {
1943 1.1 gwr if (pmap == NULL)
1944 1.1 gwr return;
1945 1.1 gwr
1946 1.1 gwr /* pmap_lock(pmap); */
1947 1.1 gwr pmap->pm_refcount++;
1948 1.1 gwr /* pmap_unlock(pmap); */
1949 1.1 gwr }
1950 1.1 gwr
1951 1.1 gwr /* pmap_dereference INTERNAL
1952 1.1 gwr **
1953 1.1 gwr * Decrease the reference count on the given pmap
1954 1.1 gwr * by one and return the current count.
1955 1.1 gwr */
1956 1.1 gwr int
1957 1.1 gwr pmap_dereference(pmap)
1958 1.1 gwr pmap_t pmap;
1959 1.1 gwr {
1960 1.1 gwr int rtn;
1961 1.1 gwr
1962 1.1 gwr if (pmap == NULL)
1963 1.1 gwr return 0;
1964 1.1 gwr
1965 1.1 gwr /* pmap_lock(pmap); */
1966 1.1 gwr rtn = --pmap->pm_refcount;
1967 1.1 gwr /* pmap_unlock(pmap); */
1968 1.1 gwr
1969 1.1 gwr return rtn;
1970 1.1 gwr }
1971 1.1 gwr
1972 1.1 gwr /* pmap_destroy INTERFACE
1973 1.1 gwr **
1974 1.1 gwr * Decrement a pmap's reference count and delete
1975 1.1 gwr * the pmap if it becomes zero. Will be called
1976 1.1 gwr * only after all mappings have been removed.
1977 1.1 gwr */
1978 1.1 gwr void
1979 1.1 gwr pmap_destroy(pmap)
1980 1.1 gwr pmap_t pmap;
1981 1.1 gwr {
1982 1.1 gwr if (pmap == NULL)
1983 1.1 gwr return;
1984 1.1 gwr if (pmap == &kernel_pmap)
1985 1.1 gwr panic("pmap_destroy: kernel_pmap!");
1986 1.1 gwr if (pmap_dereference(pmap) == 0) {
1987 1.1 gwr pmap_release(pmap);
1988 1.1 gwr free(pmap, M_VMPMAP);
1989 1.1 gwr }
1990 1.1 gwr }
1991 1.1 gwr
1992 1.1 gwr /* pmap_is_referenced INTERFACE
1993 1.1 gwr **
1994 1.1 gwr * Determine if the given physical page has been
1995 1.1 gwr * referenced (read from [or written to.])
1996 1.1 gwr */
1997 1.1 gwr boolean_t
1998 1.1 gwr pmap_is_referenced(pa)
1999 1.1 gwr vm_offset_t pa;
2000 1.1 gwr {
2001 1.1 gwr pv_t *pv;
2002 1.1 gwr pv_elem_t *pve;
2003 1.1 gwr struct mmu_short_pte_struct *pte;
2004 1.1 gwr
2005 1.1 gwr if (!pv_initialized)
2006 1.1 gwr return FALSE;
2007 1.1 gwr if (!is_managed(pa))
2008 1.1 gwr return FALSE;
2009 1.1 gwr
2010 1.1 gwr pv = pa2pv(pa);
2011 1.1 gwr /* Check the flags on the pv head. If they are set,
2012 1.1 gwr * return immediately. Otherwise a search must be done.
2013 1.1 gwr */
2014 1.1 gwr if (pv->pv_flags & PV_FLAGS_USED)
2015 1.1 gwr return TRUE;
2016 1.1 gwr else
2017 1.1 gwr /* Search through all pv elements pointing
2018 1.1 gwr * to this page and query their reference bits
2019 1.1 gwr */
2020 1.1 gwr for (pve = pv->pv_head.lh_first;
2021 1.1 gwr pve != NULL;
2022 1.1 gwr pve = pve->pve_link.le_next) {
2023 1.1 gwr pte = pve2pte(pve);
2024 1.1 gwr if (MMU_PTE_USED(*pte))
2025 1.1 gwr return TRUE;
2026 1.1 gwr }
2027 1.1 gwr
2028 1.1 gwr return FALSE;
2029 1.1 gwr }
2030 1.1 gwr
2031 1.1 gwr /* pmap_is_modified INTERFACE
2032 1.1 gwr **
2033 1.1 gwr * Determine if the given physical page has been
2034 1.1 gwr * modified (written to.)
2035 1.1 gwr */
2036 1.1 gwr boolean_t
2037 1.1 gwr pmap_is_modified(pa)
2038 1.1 gwr vm_offset_t pa;
2039 1.1 gwr {
2040 1.1 gwr pv_t *pv;
2041 1.1 gwr pv_elem_t *pve;
2042 1.1 gwr
2043 1.1 gwr if (!pv_initialized)
2044 1.1 gwr return FALSE;
2045 1.1 gwr if (!is_managed(pa))
2046 1.1 gwr return FALSE;
2047 1.1 gwr
2048 1.1 gwr /* see comments in pmap_is_referenced() */
2049 1.1 gwr pv = pa2pv(pa);
2050 1.1 gwr if (pv->pv_flags & PV_FLAGS_MDFY)
2051 1.1 gwr return TRUE;
2052 1.1 gwr else
2053 1.1 gwr for (pve = pv->pv_head.lh_first; pve != NULL;
2054 1.1 gwr pve = pve->pve_link.le_next) {
2055 1.1 gwr struct mmu_short_pte_struct *pte;
2056 1.1 gwr pte = pve2pte(pve);
2057 1.1 gwr if (MMU_PTE_MODIFIED(*pte))
2058 1.1 gwr return TRUE;
2059 1.1 gwr }
2060 1.1 gwr return FALSE;
2061 1.1 gwr }
2062 1.1 gwr
2063 1.1 gwr /* pmap_page_protect INTERFACE
2064 1.1 gwr **
2065 1.1 gwr * Applies the given protection to all mappings to the given
2066 1.1 gwr * physical page.
2067 1.1 gwr */
2068 1.1 gwr void
2069 1.1 gwr pmap_page_protect(pa, prot)
2070 1.1 gwr vm_offset_t pa;
2071 1.1 gwr vm_prot_t prot;
2072 1.1 gwr {
2073 1.1 gwr pv_t *pv;
2074 1.1 gwr pv_elem_t *pve;
2075 1.1 gwr struct mmu_short_pte_struct *pte;
2076 1.1 gwr
2077 1.1 gwr if (!is_managed(pa))
2078 1.1 gwr return;
2079 1.1 gwr
2080 1.1 gwr pv = pa2pv(pa);
2081 1.1 gwr for (pve = pv->pv_head.lh_first; pve != NULL;
2082 1.1 gwr pve = pve->pve_link.le_next) {
2083 1.1 gwr pte = pve2pte(pve);
2084 1.1 gwr switch (prot) {
2085 1.1 gwr case VM_PROT_ALL:
2086 1.1 gwr /* do nothing */
2087 1.1 gwr break;
2088 1.1 gwr case VM_PROT_READ:
2089 1.1 gwr case VM_PROT_READ|VM_PROT_EXECUTE:
2090 1.1 gwr pte->attr.raw |= MMU_SHORT_PTE_WP;
2091 1.1 gwr break;
2092 1.1 gwr case VM_PROT_NONE:
2093 1.1 gwr pmap_dereference_pte(pte);
2094 1.1 gwr break;
2095 1.1 gwr default:
2096 1.1 gwr break;
2097 1.1 gwr }
2098 1.1 gwr }
2099 1.1 gwr }
2100 1.1 gwr
2101 1.1 gwr /* pmap_who_owns_pte INTERNAL
2102 1.1 gwr **
2103 1.1 gwr * Called internally to find which pmap the given pte is
2104 1.1 gwr * a member of.
2105 1.1 gwr */
2106 1.1 gwr pmap_t
2107 1.1 gwr pmap_who_owns_pte(pte)
2108 1.1 gwr mmu_short_pte_t *pte;
2109 1.1 gwr {
2110 1.1 gwr c_tmgr_t *c_tbl;
2111 1.1 gwr
2112 1.1 gwr c_tbl = pmap_find_c_tmgr(pte);
2113 1.1 gwr
2114 1.1 gwr return c_tbl->ct_parent->bt_parent->at_parent;
2115 1.1 gwr }
2116 1.1 gwr
2117 1.1 gwr /* pmap_find_va INTERNAL_X
2118 1.1 gwr **
2119 1.1 gwr * Called internally to find the virtual address that the
2120 1.1 gwr * given pte maps.
2121 1.1 gwr *
2122 1.1 gwr * Note: I don't know if this function will ever be used, but I've
2123 1.1 gwr * implemented it just in case.
2124 1.1 gwr */
2125 1.1 gwr vm_offset_t
2126 1.1 gwr pmap_find_va(pte)
2127 1.1 gwr mmu_short_pte_t *pte;
2128 1.1 gwr {
2129 1.1 gwr a_tmgr_t *a_tbl;
2130 1.1 gwr b_tmgr_t *b_tbl;
2131 1.1 gwr c_tmgr_t *c_tbl;
2132 1.1 gwr vm_offset_t va = 0;
2133 1.1 gwr
2134 1.1 gwr /* Find the virtual address by decoding table indexes.
2135 1.1 gwr * Each successive decode will reveal the address from
2136 1.1 gwr * least to most significant bit fashion.
2137 1.1 gwr *
2138 1.1 gwr * 31 0
2139 1.1 gwr * +-------------------------------+
2140 1.1 gwr * |AAAAAAABBBBBBCCCCCCxxxxxxxxxxxx|
2141 1.1 gwr * +-------------------------------+
2142 1.1 gwr *
2143 1.1 gwr * Start with the 'C' bits.
2144 1.1 gwr */
2145 1.1 gwr va |= (pmap_find_tic(pte) << MMU_TIC_SHIFT);
2146 1.1 gwr c_tbl = pmap_find_c_tmgr(pte);
2147 1.1 gwr b_tbl = c_tbl->ct_parent;
2148 1.1 gwr
2149 1.1 gwr /* Add the 'B' bits. */
2150 1.1 gwr va |= (c_tbl->ct_pidx << MMU_TIB_SHIFT);
2151 1.1 gwr a_tbl = b_tbl->bt_parent;
2152 1.1 gwr
2153 1.1 gwr /* Add the 'A' bits. */
2154 1.1 gwr va |= (b_tbl->bt_pidx << MMU_TIA_SHIFT);
2155 1.1 gwr
2156 1.1 gwr return va;
2157 1.1 gwr }
2158 1.1 gwr
2159 1.1 gwr /**** These functions should be removed. Structures have changed, making ****
2160 1.1 gwr **** them uneccessary. ****/
2161 1.1 gwr
2162 1.1 gwr /* pmap_find_tic INTERNAL
2163 1.1 gwr **
2164 1.1 gwr * Given the address of a pte, find the TIC (level 'C' table index) for
2165 1.1 gwr * the pte within its C table.
2166 1.1 gwr */
2167 1.1 gwr char
2168 1.1 gwr pmap_find_tic(pte)
2169 1.1 gwr mmu_short_pte_t *pte;
2170 1.1 gwr {
2171 1.1 gwr return ((mmuCbase - pte) % MMU_C_TBL_SIZE);
2172 1.1 gwr }
2173 1.1 gwr
2174 1.1 gwr /* pmap_find_tib INTERNAL
2175 1.1 gwr **
2176 1.1 gwr * Given the address of dte known to belong to a B table, find the TIB
2177 1.1 gwr * (level 'B' table index) for the dte within its table.
2178 1.1 gwr */
2179 1.1 gwr char
2180 1.1 gwr pmap_find_tib(dte)
2181 1.1 gwr mmu_short_dte_t *dte;
2182 1.1 gwr {
2183 1.1 gwr return ((mmuBbase - dte) % MMU_B_TBL_SIZE);
2184 1.1 gwr }
2185 1.1 gwr
2186 1.1 gwr /* pmap_find_tia INTERNAL
2187 1.1 gwr **
2188 1.1 gwr * Given the address of a dte known to belong to an A table, find the
2189 1.1 gwr * TIA (level 'C' table index) for the dte withing its table.
2190 1.1 gwr */
2191 1.1 gwr char
2192 1.1 gwr pmap_find_tia(dte)
2193 1.1 gwr mmu_long_dte_t *dte;
2194 1.1 gwr {
2195 1.1 gwr return ((mmuAbase - dte) % MMU_A_TBL_SIZE);
2196 1.1 gwr }
2197 1.1 gwr
2198 1.1 gwr /**** This one should stay ****/
2199 1.1 gwr
2200 1.1 gwr /* pmap_find_c_tmgr INTERNAL
2201 1.1 gwr **
2202 1.1 gwr * Given a pte known to belong to a C table, return the address of that
2203 1.1 gwr * table's management structure.
2204 1.1 gwr */
2205 1.1 gwr c_tmgr_t *
2206 1.1 gwr pmap_find_c_tmgr(pte)
2207 1.1 gwr mmu_short_pte_t *pte;
2208 1.1 gwr {
2209 1.1 gwr return &Ctmgrbase[
2210 1.1 gwr ((mmuCbase - pte) / sizeof(*pte) / MMU_C_TBL_SIZE)
2211 1.1 gwr ];
2212 1.1 gwr }
2213 1.1 gwr
2214 1.1 gwr /* pmap_find_b_tmgr INTERNAL
2215 1.1 gwr **
2216 1.1 gwr * Given a dte known to belong to a B table, return the address of that
2217 1.1 gwr * table's management structure.
2218 1.1 gwr */
2219 1.1 gwr b_tmgr_t *
2220 1.1 gwr pmap_find_b_tmgr(dte)
2221 1.1 gwr mmu_short_dte_t *dte;
2222 1.1 gwr {
2223 1.1 gwr return &Btmgrbase[
2224 1.1 gwr ((mmuBbase - dte) / sizeof(*dte) / MMU_B_TBL_SIZE)
2225 1.1 gwr ];
2226 1.1 gwr }
2227 1.1 gwr
2228 1.1 gwr /* pmap_find_a_tmgr INTERNAL
2229 1.1 gwr **
2230 1.1 gwr * Given a dte known to belong to an A table, return the address of that
2231 1.1 gwr * table's management structure.
2232 1.1 gwr */
2233 1.1 gwr a_tmgr_t *
2234 1.1 gwr pmap_find_a_tmgr(dte)
2235 1.1 gwr mmu_long_dte_t *dte;
2236 1.1 gwr {
2237 1.1 gwr return &Atmgrbase[
2238 1.1 gwr ((mmuAbase - dte) / sizeof(*dte) / MMU_A_TBL_SIZE)
2239 1.1 gwr ];
2240 1.1 gwr }
2241 1.1 gwr
2242 1.1 gwr /**** End of functions that should be removed. ****
2243 1.1 gwr **** ****/
2244 1.1 gwr
2245 1.1 gwr /* pmap_clear_modify INTERFACE
2246 1.1 gwr **
2247 1.1 gwr * Clear the modification bit on the page at the specified
2248 1.1 gwr * physical address.
2249 1.1 gwr *
2250 1.1 gwr */
2251 1.1 gwr void
2252 1.1 gwr pmap_clear_modify(pa)
2253 1.1 gwr vm_offset_t pa;
2254 1.1 gwr {
2255 1.1 gwr pmap_clear_pv(pa, PV_FLAGS_MDFY);
2256 1.1 gwr }
2257 1.1 gwr
2258 1.1 gwr /* pmap_clear_reference INTERFACE
2259 1.1 gwr **
2260 1.1 gwr * Clear the referenced bit on the page at the specified
2261 1.1 gwr * physical address.
2262 1.1 gwr */
2263 1.1 gwr void
2264 1.1 gwr pmap_clear_reference(pa)
2265 1.1 gwr vm_offset_t pa;
2266 1.1 gwr {
2267 1.1 gwr pmap_clear_pv(pa, PV_FLAGS_USED);
2268 1.1 gwr }
2269 1.1 gwr
2270 1.1 gwr /* pmap_clear_pv INTERNAL
2271 1.1 gwr **
2272 1.1 gwr * Clears the specified flag from the specified physical address.
2273 1.1 gwr * (Used by pmap_clear_modify() and pmap_clear_reference().)
2274 1.1 gwr *
2275 1.1 gwr * Flag is one of:
2276 1.1 gwr * PV_FLAGS_MDFY - Page modified bit.
2277 1.1 gwr * PV_FLAGS_USED - Page used (referenced) bit.
2278 1.1 gwr *
2279 1.1 gwr * This routine must not only clear the flag on the pv list
2280 1.1 gwr * head. It must also clear the bit on every pte in the pv
2281 1.1 gwr * list associated with the address.
2282 1.1 gwr */
2283 1.1 gwr void
2284 1.1 gwr pmap_clear_pv(pa, flag)
2285 1.1 gwr vm_offset_t pa;
2286 1.1 gwr int flag;
2287 1.1 gwr {
2288 1.1 gwr pv_t *pv;
2289 1.1 gwr pv_elem_t *pve;
2290 1.1 gwr mmu_short_pte_t *pte;
2291 1.1 gwr
2292 1.1 gwr pv = pa2pv(pa);
2293 1.1 gwr pv->pv_flags &= ~(flag);
2294 1.1 gwr for (pve = pv->pv_head.lh_first; pve != NULL;
2295 1.1 gwr pve = pve->pve_link.le_next) {
2296 1.1 gwr pte = pve2pte(pve);
2297 1.1 gwr pte->attr.raw &= ~(flag);
2298 1.1 gwr }
2299 1.1 gwr }
2300 1.1 gwr
2301 1.1 gwr /* pmap_extract INTERFACE
2302 1.1 gwr **
2303 1.1 gwr * Return the physical address mapped by the virtual address
2304 1.1 gwr * in the specified pmap or 0 if it is not known.
2305 1.1 gwr *
2306 1.1 gwr * Note: this function should also apply an exclusive lock
2307 1.1 gwr * on the pmap system during its duration.
2308 1.1 gwr */
2309 1.1 gwr vm_offset_t
2310 1.1 gwr pmap_extract(pmap, va)
2311 1.1 gwr pmap_t pmap;
2312 1.1 gwr vm_offset_t va;
2313 1.1 gwr {
2314 1.1 gwr int a_idx, b_idx, pte_idx;
2315 1.1 gwr a_tmgr_t *a_tbl;
2316 1.1 gwr b_tmgr_t *b_tbl;
2317 1.1 gwr c_tmgr_t *c_tbl;
2318 1.1 gwr mmu_short_pte_t *c_pte;
2319 1.1 gwr
2320 1.1 gwr if (pmap == pmap_kernel())
2321 1.1 gwr return pmap_extract_kernel(va);
2322 1.1 gwr if (pmap == NULL)
2323 1.1 gwr return 0;
2324 1.1 gwr
2325 1.1 gwr if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2326 1.1 gwr &c_pte, &a_idx, &b_idx, &pte_idx) == FALSE);
2327 1.1 gwr return 0;
2328 1.1 gwr
2329 1.1 gwr if (MMU_VALID_DT(*c_pte))
2330 1.1 gwr return MMU_PTE_PA(*c_pte);
2331 1.1 gwr else
2332 1.1 gwr return 0;
2333 1.1 gwr }
2334 1.1 gwr
2335 1.1 gwr /* pmap_extract_kernel INTERNAL
2336 1.1 gwr **
2337 1.1 gwr * Extract a traslation from the kernel address space.
2338 1.1 gwr */
2339 1.1 gwr vm_offset_t
2340 1.1 gwr pmap_extract_kernel(va)
2341 1.1 gwr vm_offset_t va;
2342 1.1 gwr {
2343 1.1 gwr mmu_short_pte_t *pte;
2344 1.1 gwr
2345 1.1 gwr pte = &kernCbase[(unsigned long) sun3x_btop(va - KERNBASE)];
2346 1.1 gwr return MMU_PTE_PA(*pte);
2347 1.1 gwr }
2348 1.1 gwr
2349 1.1 gwr /* pmap_remove_kernel INTERNAL
2350 1.1 gwr **
2351 1.1 gwr * Remove the mapping of a range of virtual addresses from the kernel map.
2352 1.1 gwr */
2353 1.1 gwr void
2354 1.1 gwr pmap_remove_kernel(start, end)
2355 1.1 gwr vm_offset_t start;
2356 1.1 gwr vm_offset_t end;
2357 1.1 gwr {
2358 1.1 gwr start -= KERNBASE;
2359 1.1 gwr end -= KERNBASE;
2360 1.1 gwr start = sun3x_round_page(start); /* round down */
2361 1.1 gwr start = sun3x_btop(start);
2362 1.1 gwr end += MMU_PAGE_SIZE - 1; /* next round operation will be up */
2363 1.1 gwr end = sun3x_round_page(end); /* round */
2364 1.1 gwr end = sun3x_btop(end);
2365 1.1 gwr
2366 1.1 gwr while (start < end)
2367 1.1 gwr kernCbase[start++].attr.raw = MMU_DT_INVALID;
2368 1.1 gwr }
2369 1.1 gwr
2370 1.1 gwr /* pmap_remove INTERFACE
2371 1.1 gwr **
2372 1.1 gwr * Remove the mapping of a range of virtual addresses from the given pmap.
2373 1.1 gwr */
2374 1.1 gwr void
2375 1.1 gwr pmap_remove(pmap, start, end)
2376 1.1 gwr pmap_t pmap;
2377 1.1 gwr vm_offset_t start;
2378 1.1 gwr vm_offset_t end;
2379 1.1 gwr {
2380 1.1 gwr if (pmap == pmap_kernel()) {
2381 1.1 gwr pmap_remove_kernel(start, end);
2382 1.1 gwr return;
2383 1.1 gwr }
2384 1.1 gwr pmap_remove_a(pmap->pm_a_tbl, start, end);
2385 1.1 gwr
2386 1.1 gwr /* If we just modified the current address space,
2387 1.1 gwr * make sure to flush the MMU cache.
2388 1.1 gwr */
2389 1.1 gwr if (curatbl == pmap->pm_a_tbl) {
2390 1.1 gwr /* mmu_flusha(); */
2391 1.1 gwr TBIA();
2392 1.1 gwr }
2393 1.1 gwr }
2394 1.1 gwr
2395 1.1 gwr /* pmap_remove_a INTERNAL
2396 1.1 gwr **
2397 1.1 gwr * This is function number one in a set of three that removes a range
2398 1.1 gwr * of memory in the most efficient manner by removing the highest possible
2399 1.1 gwr * tables from the memory space. This particular function attempts to remove
2400 1.1 gwr * as many B tables as it can, delegating the remaining fragmented ranges to
2401 1.1 gwr * pmap_remove_b().
2402 1.1 gwr *
2403 1.1 gwr * It's ugly but will do for now.
2404 1.1 gwr */
2405 1.1 gwr void
2406 1.1 gwr pmap_remove_a(a_tbl, start, end)
2407 1.1 gwr a_tmgr_t *a_tbl;
2408 1.1 gwr vm_offset_t start;
2409 1.1 gwr vm_offset_t end;
2410 1.1 gwr {
2411 1.1 gwr int idx;
2412 1.1 gwr vm_offset_t nstart, nend, rstart;
2413 1.1 gwr b_tmgr_t *b_tbl;
2414 1.1 gwr mmu_long_dte_t *a_dte;
2415 1.1 gwr mmu_short_dte_t *b_dte;
2416 1.1 gwr
2417 1.1 gwr
2418 1.1 gwr if (a_tbl == proc0Atmgr) /* If the pmap has no A table, return */
2419 1.1 gwr return;
2420 1.1 gwr
2421 1.1 gwr nstart = MMU_ROUND_UP_A(start);
2422 1.1 gwr nend = MMU_ROUND_A(end);
2423 1.1 gwr
2424 1.1 gwr if (start < nstart) {
2425 1.1 gwr idx = MMU_TIA(start);
2426 1.1 gwr a_dte = &a_tbl->at_dtbl[idx];
2427 1.1 gwr if (MMU_VALID_DT(*a_dte)) {
2428 1.1 gwr b_dte = (mmu_short_dte_t *) MMU_DTE_PA(*a_dte);
2429 1.1 gwr b_dte = (mmu_short_dte_t *) mmu_ptov(b_dte);
2430 1.1 gwr b_tbl = mmuB2tmgr(b_dte);
2431 1.1 gwr if (end < nstart) {
2432 1.1 gwr pmap_remove_b(b_tbl, start, end);
2433 1.1 gwr return;
2434 1.1 gwr } else {
2435 1.1 gwr pmap_remove_b(b_tbl, start, nstart);
2436 1.1 gwr }
2437 1.1 gwr } else if (end < nstart) {
2438 1.1 gwr return;
2439 1.1 gwr }
2440 1.1 gwr }
2441 1.1 gwr if (nstart < nend) {
2442 1.1 gwr idx = MMU_TIA(nstart);
2443 1.1 gwr a_dte = &a_tbl->at_dtbl[idx];
2444 1.1 gwr rstart = nstart;
2445 1.1 gwr while (rstart < nend) {
2446 1.1 gwr if (MMU_VALID_DT(*a_dte)) {
2447 1.1 gwr b_dte = (mmu_short_dte_t *) MMU_DTE_PA(*a_dte);
2448 1.1 gwr b_dte = (mmu_short_dte_t *) mmu_ptov(b_dte);
2449 1.1 gwr b_tbl = mmuB2tmgr(b_dte);
2450 1.1 gwr a_dte->attr.raw = MMU_DT_INVALID;
2451 1.1 gwr a_tbl->at_ecnt--;
2452 1.1 gwr free_b_table(b_tbl);
2453 1.1 gwr TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
2454 1.1 gwr TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
2455 1.1 gwr }
2456 1.1 gwr a_dte++;
2457 1.1 gwr rstart += MMU_TIA_RANGE;
2458 1.1 gwr }
2459 1.1 gwr }
2460 1.1 gwr if (nend < end) {
2461 1.1 gwr idx = MMU_TIA(nend);
2462 1.1 gwr a_dte = &a_tbl->at_dtbl[idx];
2463 1.1 gwr if (MMU_VALID_DT(*a_dte)) {
2464 1.1 gwr b_dte = (mmu_short_dte_t *) MMU_DTE_PA(*a_dte);
2465 1.1 gwr b_dte = (mmu_short_dte_t *) mmu_ptov(b_dte);
2466 1.1 gwr b_tbl = mmuB2tmgr(b_dte);
2467 1.1 gwr pmap_remove_b(b_tbl, nend, end);
2468 1.1 gwr }
2469 1.1 gwr }
2470 1.1 gwr }
2471 1.1 gwr
2472 1.1 gwr /* pmap_remove_b INTERNAL
2473 1.1 gwr **
2474 1.1 gwr * Remove a range of addresses from an address space, trying to remove entire
2475 1.1 gwr * C tables if possible.
2476 1.1 gwr */
2477 1.1 gwr void
2478 1.1 gwr pmap_remove_b(b_tbl, start, end)
2479 1.1 gwr b_tmgr_t *b_tbl;
2480 1.1 gwr vm_offset_t start;
2481 1.1 gwr vm_offset_t end;
2482 1.1 gwr {
2483 1.1 gwr int idx;
2484 1.1 gwr vm_offset_t nstart, nend, rstart;
2485 1.1 gwr c_tmgr_t *c_tbl;
2486 1.1 gwr mmu_short_dte_t *b_dte;
2487 1.1 gwr mmu_short_pte_t *c_dte;
2488 1.1 gwr
2489 1.1 gwr
2490 1.1 gwr nstart = MMU_ROUND_UP_B(start);
2491 1.1 gwr nend = MMU_ROUND_B(end);
2492 1.1 gwr
2493 1.1 gwr if (start < nstart) {
2494 1.1 gwr idx = MMU_TIB(start);
2495 1.1 gwr b_dte = &b_tbl->bt_dtbl[idx];
2496 1.1 gwr if (MMU_VALID_DT(*b_dte)) {
2497 1.1 gwr c_dte = (mmu_short_pte_t *) MMU_DTE_PA(*b_dte);
2498 1.1 gwr c_dte = (mmu_short_pte_t *) mmu_ptov(c_dte);
2499 1.1 gwr c_tbl = mmuC2tmgr(c_dte);
2500 1.1 gwr if (end < nstart) {
2501 1.1 gwr pmap_remove_c(c_tbl, start, end);
2502 1.1 gwr return;
2503 1.1 gwr } else {
2504 1.1 gwr pmap_remove_c(c_tbl, start, nstart);
2505 1.1 gwr }
2506 1.1 gwr } else if (end < nstart) {
2507 1.1 gwr return;
2508 1.1 gwr }
2509 1.1 gwr }
2510 1.1 gwr if (nstart < nend) {
2511 1.1 gwr idx = MMU_TIB(nstart);
2512 1.1 gwr b_dte = &b_tbl->bt_dtbl[idx];
2513 1.1 gwr rstart = nstart;
2514 1.1 gwr while (rstart < nend) {
2515 1.1 gwr if (MMU_VALID_DT(*b_dte)) {
2516 1.1 gwr c_dte = (mmu_short_pte_t *) MMU_DTE_PA(*b_dte);
2517 1.1 gwr c_dte = (mmu_short_pte_t *) mmu_ptov(c_dte);
2518 1.1 gwr c_tbl = mmuC2tmgr(c_dte);
2519 1.1 gwr b_dte->attr.raw = MMU_DT_INVALID;
2520 1.1 gwr b_tbl->bt_ecnt--;
2521 1.1 gwr free_c_table(c_tbl);
2522 1.1 gwr TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
2523 1.1 gwr TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
2524 1.1 gwr }
2525 1.1 gwr b_dte++;
2526 1.1 gwr rstart += MMU_TIB_RANGE;
2527 1.1 gwr }
2528 1.1 gwr }
2529 1.1 gwr if (nend < end) {
2530 1.1 gwr idx = MMU_TIB(nend);
2531 1.1 gwr b_dte = &b_tbl->bt_dtbl[idx];
2532 1.1 gwr if (MMU_VALID_DT(*b_dte)) {
2533 1.1 gwr c_dte = (mmu_short_pte_t *) MMU_DTE_PA(*b_dte);
2534 1.1 gwr c_dte = (mmu_short_pte_t *) mmu_ptov(c_dte);
2535 1.1 gwr c_tbl = mmuC2tmgr(c_dte);
2536 1.1 gwr pmap_remove_c(c_tbl, nend, end);
2537 1.1 gwr }
2538 1.1 gwr }
2539 1.1 gwr }
2540 1.1 gwr
2541 1.1 gwr /* pmap_remove_c INTERNAL
2542 1.1 gwr **
2543 1.1 gwr * Remove a range of addresses from the given C table.
2544 1.1 gwr */
2545 1.1 gwr void
2546 1.1 gwr pmap_remove_c(c_tbl, start, end)
2547 1.1 gwr c_tmgr_t *c_tbl;
2548 1.1 gwr vm_offset_t start;
2549 1.1 gwr vm_offset_t end;
2550 1.1 gwr {
2551 1.1 gwr int idx;
2552 1.1 gwr mmu_short_pte_t *c_pte;
2553 1.1 gwr
2554 1.1 gwr idx = MMU_TIC(start);
2555 1.1 gwr c_pte = &c_tbl->ct_dtbl[idx];
2556 1.1 gwr while (start < end) {
2557 1.1 gwr if (MMU_VALID_DT(*c_pte))
2558 1.1 gwr pmap_remove_pte(c_pte);
2559 1.1 gwr c_tbl->ct_ecnt--;
2560 1.1 gwr start += MMU_PAGE_SIZE;
2561 1.1 gwr c_pte++;
2562 1.1 gwr }
2563 1.1 gwr }
2564 1.1 gwr
2565 1.1 gwr /* is_managed INTERNAL
2566 1.1 gwr **
2567 1.1 gwr * Determine if the given physical address is managed by the PV system.
2568 1.1 gwr * Note that this logic assumes that no one will ask for the status of
2569 1.1 gwr * addresses which lie in-between the memory banks on the 3/80. If they
2570 1.1 gwr * do so, it will falsely report that it is managed.
2571 1.1 gwr */
2572 1.1 gwr boolean_t
2573 1.1 gwr is_managed(pa)
2574 1.1 gwr vm_offset_t pa;
2575 1.1 gwr {
2576 1.1 gwr if (pa >= avail_start && pa < avail_end)
2577 1.1 gwr return TRUE;
2578 1.1 gwr else
2579 1.1 gwr return FALSE;
2580 1.1 gwr }
2581 1.1 gwr
2582 1.1 gwr /* pa2pv INTERNAL
2583 1.1 gwr **
2584 1.1 gwr * Return the pv_list_head element which manages the given physical
2585 1.1 gwr * address.
2586 1.1 gwr */
2587 1.1 gwr pv_t *
2588 1.1 gwr pa2pv(pa)
2589 1.1 gwr vm_offset_t pa;
2590 1.1 gwr {
2591 1.1 gwr struct pmap_physmem_struct *bank = &avail_mem[0];
2592 1.1 gwr
2593 1.1 gwr while (pa >= bank->pmem_end)
2594 1.1 gwr bank = bank->pmem_next;
2595 1.1 gwr
2596 1.1 gwr pa -= bank->pmem_start;
2597 1.1 gwr return &pvbase[bank->pmem_pvbase + sun3x_btop(pa)];
2598 1.1 gwr }
2599 1.1 gwr
2600 1.1 gwr /* pmap_bootstrap_alloc INTERNAL
2601 1.1 gwr **
2602 1.1 gwr * Used internally for memory allocation at startup when malloc is not
2603 1.1 gwr * available. This code will fail once it crosses the first memory
2604 1.1 gwr * bank boundary on the 3/80. Hopefully by then however, the VM system
2605 1.1 gwr * will be in charge of allocation.
2606 1.1 gwr */
2607 1.1 gwr void *
2608 1.1 gwr pmap_bootstrap_alloc(size)
2609 1.1 gwr int size;
2610 1.1 gwr {
2611 1.1 gwr void *rtn;
2612 1.1 gwr
2613 1.1 gwr rtn = (void *) virtual_avail;
2614 1.1 gwr
2615 1.1 gwr /* While the size is greater than a page, map single pages,
2616 1.1 gwr * decreasing size until it is less than a page.
2617 1.1 gwr */
2618 1.1 gwr while (size > NBPG) {
2619 1.1 gwr (void) pmap_bootstrap_alloc(NBPG);
2620 1.1 gwr
2621 1.1 gwr /* If the above code is ok, let's keep it.
2622 1.1 gwr * It looks cooler than:
2623 1.1 gwr * virtual_avail += NBPG;
2624 1.1 gwr * avail_start += NBPG;
2625 1.1 gwr * last_mapped = sun3x_trunc_page(avail_start);
2626 1.1 gwr * pmap_enter_kernel(last_mapped, last_mapped + KERNBASE,
2627 1.1 gwr * VM_PROT_READ|VM_PROT_WRITE);
2628 1.1 gwr */
2629 1.1 gwr
2630 1.1 gwr size -= NBPG;
2631 1.1 gwr }
2632 1.1 gwr avail_start += size;
2633 1.1 gwr virtual_avail += size;
2634 1.1 gwr
2635 1.1 gwr /* did the allocation cross a page boundary? */
2636 1.1 gwr if (last_mapped != sun3x_trunc_page(avail_start)) {
2637 1.1 gwr last_mapped = sun3x_trunc_page(avail_start);
2638 1.1 gwr pmap_enter_kernel(last_mapped + KERNBASE, last_mapped,
2639 1.1 gwr VM_PROT_READ|VM_PROT_WRITE);
2640 1.1 gwr }
2641 1.1 gwr
2642 1.1 gwr return rtn;
2643 1.1 gwr }
2644 1.1 gwr
2645 1.1 gwr /* pmap_bootstap_aalign INTERNAL
2646 1.1 gwr **
2647 1.1 gwr * Used to insure that the next call to pmap_bootstrap_alloc() will return
2648 1.1 gwr * a chunk of memory aligned to the specified size.
2649 1.1 gwr */
2650 1.1 gwr void
2651 1.1 gwr pmap_bootstrap_aalign(size)
2652 1.1 gwr int size;
2653 1.1 gwr {
2654 1.1 gwr if (((unsigned int) avail_start % size) != 0) {
2655 1.1 gwr (void) pmap_bootstrap_alloc(size -
2656 1.1 gwr ((unsigned int) (avail_start % size)));
2657 1.1 gwr }
2658 1.1 gwr }
2659 1.1 gwr
2660 1.1 gwr #if 0
2661 1.1 gwr /* pmap_activate INTERFACE
2662 1.1 gwr **
2663 1.1 gwr * Make the virtual to physical mappings contained in the given
2664 1.1 gwr * pmap the current map used by the system.
2665 1.1 gwr */
2666 1.1 gwr void
2667 1.1 gwr pmap_activate(pmap, pcbp)
2668 1.1 gwr pmap_t pmap;
2669 1.1 gwr struct pcb *pcbp;
2670 1.1 gwr {
2671 1.1 gwr vm_offset_t pa;
2672 1.1 gwr /* Save the A table being loaded in 'curatbl'.
2673 1.1 gwr * pmap_remove() uses this variable to determine if a given A
2674 1.1 gwr * table is currently being used as the system map. If so, it
2675 1.1 gwr * will issue an MMU cache flush whenever mappings are removed.
2676 1.1 gwr */
2677 1.1 gwr curatbl = pmap->pm_a_tbl;
2678 1.1 gwr /* call the locore routine to set the user root pointer table */
2679 1.1 gwr pa = mmu_vtop(pmap->pm_a_tbl->at_dtbl);
2680 1.1 gwr mmu_seturp(pa);
2681 1.1 gwr }
2682 1.1 gwr #endif
2683 1.1 gwr
2684 1.1 gwr /* pmap_pa_exists
2685 1.1 gwr **
2686 1.1 gwr * Used by the /dev/mem driver to see if a given PA is memory
2687 1.1 gwr * that can be mapped. (The PA is not in a hole.)
2688 1.1 gwr */
2689 1.1 gwr int
2690 1.1 gwr pmap_pa_exists(pa)
2691 1.1 gwr vm_offset_t pa;
2692 1.1 gwr {
2693 1.1 gwr /* XXX - NOTYET */
2694 1.1 gwr return (0);
2695 1.1 gwr }
2696 1.1 gwr
2697 1.1 gwr
2698 1.1 gwr /* pmap_update
2699 1.1 gwr **
2700 1.1 gwr * Apply any delayed changes scheduled for all pmaps immediately.
2701 1.1 gwr *
2702 1.1 gwr * No delayed operations are currently done in this pmap.
2703 1.1 gwr */
2704 1.1 gwr void
2705 1.1 gwr pmap_update()
2706 1.1 gwr {
2707 1.1 gwr /* not implemented. */
2708 1.1 gwr }
2709 1.1 gwr
2710 1.1 gwr /* pmap_virtual_space INTERFACE
2711 1.1 gwr **
2712 1.1 gwr * Return the current available range of virtual addresses in the
2713 1.1 gwr * arguuments provided. Only really called once.
2714 1.1 gwr */
2715 1.1 gwr void
2716 1.1 gwr pmap_virtual_space(vstart, vend)
2717 1.1 gwr vm_offset_t *vstart, *vend;
2718 1.1 gwr {
2719 1.1 gwr *vstart = virtual_avail;
2720 1.1 gwr *vend = virtual_end;
2721 1.1 gwr }
2722 1.1 gwr
2723 1.1 gwr /* pmap_free_pages INTERFACE
2724 1.1 gwr **
2725 1.1 gwr * Return the number of physical pages still available.
2726 1.1 gwr *
2727 1.1 gwr * This is probably going to be a mess, but it's only called
2728 1.1 gwr * once and it's the only function left that I have to implement!
2729 1.1 gwr */
2730 1.1 gwr u_int
2731 1.1 gwr pmap_free_pages()
2732 1.1 gwr {
2733 1.1 gwr int i;
2734 1.1 gwr u_int left;
2735 1.1 gwr vm_offset_t avail;
2736 1.1 gwr
2737 1.1 gwr avail = sun3x_round_up_page(avail_start);
2738 1.1 gwr
2739 1.1 gwr left = 0;
2740 1.1 gwr i = 0;
2741 1.1 gwr while (avail >= avail_mem[i].pmem_end) {
2742 1.1 gwr if (avail_mem[i].pmem_next == NULL)
2743 1.1 gwr return 0;
2744 1.1 gwr i++;
2745 1.1 gwr }
2746 1.1 gwr while (i < SUN3X_80_MEM_BANKS) {
2747 1.1 gwr if (avail < avail_mem[i].pmem_start) {
2748 1.1 gwr /* Avail is inside a hole, march it
2749 1.1 gwr * up to the next bank.
2750 1.1 gwr */
2751 1.1 gwr avail = avail_mem[i].pmem_start;
2752 1.1 gwr }
2753 1.1 gwr left += sun3x_btop(avail_mem[i].pmem_end - avail);
2754 1.1 gwr if (avail_mem[i].pmem_next == NULL)
2755 1.1 gwr break;
2756 1.1 gwr i++;
2757 1.1 gwr }
2758 1.1 gwr
2759 1.1 gwr return left;
2760 1.1 gwr }
2761 1.1 gwr
2762 1.1 gwr /* pmap_page_index INTERFACE
2763 1.1 gwr **
2764 1.1 gwr * Return the index of the given physical page in a list of useable
2765 1.1 gwr * physical pages in the system. Holes in physical memory may be counted
2766 1.1 gwr * if so desired. As long as pmap_free_pages() and pmap_page_index()
2767 1.1 gwr * agree as to whether holes in memory do or do not count as valid pages,
2768 1.1 gwr * it really doesn't matter. However, if you like to save a little
2769 1.1 gwr * memory, don't count holes as valid pages. This is even more true when
2770 1.1 gwr * the holes are large.
2771 1.1 gwr *
2772 1.1 gwr * We will not count holes as valid pages. We can generate page indexes
2773 1.1 gwr * that conform to this by using the memory bank structures initialized
2774 1.1 gwr * in pmap_alloc_pv().
2775 1.1 gwr */
2776 1.1 gwr int
2777 1.1 gwr pmap_page_index(pa)
2778 1.1 gwr vm_offset_t pa;
2779 1.1 gwr {
2780 1.1 gwr struct pmap_physmem_struct *bank = avail_mem;
2781 1.1 gwr
2782 1.1 gwr while (pa > bank->pmem_end)
2783 1.1 gwr bank = bank->pmem_next;
2784 1.1 gwr pa -= bank->pmem_start;
2785 1.1 gwr
2786 1.1 gwr return (bank->pmem_pvbase + sun3x_btop(pa));
2787 1.1 gwr }
2788 1.1 gwr
2789 1.1 gwr /* pmap_next_page INTERFACE
2790 1.1 gwr **
2791 1.1 gwr * Place the physical address of the next available page in the
2792 1.1 gwr * argument given. Returns FALSE if there are no more pages left.
2793 1.1 gwr *
2794 1.1 gwr * This function must jump over any holes in physical memory.
2795 1.1 gwr * Once this function is used, any use of pmap_bootstrap_alloc()
2796 1.1 gwr * is a sin. Sinners will be punished with erratic behavior.
2797 1.1 gwr */
2798 1.1 gwr boolean_t
2799 1.1 gwr pmap_next_page(pa)
2800 1.1 gwr vm_offset_t *pa;
2801 1.1 gwr {
2802 1.1 gwr static boolean_t initialized = FALSE;
2803 1.1 gwr static struct pmap_physmem_struct *curbank = avail_mem;
2804 1.1 gwr
2805 1.1 gwr if (!initialized) {
2806 1.1 gwr pmap_bootstrap_aalign(NBPG);
2807 1.1 gwr initialized = TRUE;
2808 1.1 gwr }
2809 1.1 gwr
2810 1.1 gwr if (avail_start >= curbank->pmem_end)
2811 1.1 gwr if (curbank->pmem_next == NULL)
2812 1.1 gwr return FALSE;
2813 1.1 gwr else {
2814 1.1 gwr curbank = curbank->pmem_next;
2815 1.1 gwr avail_start = curbank->pmem_start;
2816 1.1 gwr }
2817 1.1 gwr
2818 1.1 gwr *pa = avail_start;
2819 1.1 gwr avail_start += NBPG;
2820 1.1 gwr return TRUE;
2821 1.1 gwr }
2822 1.1 gwr
2823 1.1 gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
2824 1.1 gwr * The following routines are only used by DDB for tricky kernel text *
2825 1.1 gwr * text operations in db_memrw.c. They are provided for sun3 *
2826 1.1 gwr * compatibility. *
2827 1.1 gwr *************************************************************************/
2828 1.1 gwr /* get_pte INTERNAL
2829 1.1 gwr **
2830 1.1 gwr * Return the page descriptor the describes the kernel mapping
2831 1.1 gwr * of the given virtual address.
2832 1.1 gwr *
2833 1.1 gwr * XXX - It might be nice if this worked outside of the MMU
2834 1.1 gwr * structures we manage. (Could do it with ptest). -gwr
2835 1.1 gwr */
2836 1.1 gwr vm_offset_t
2837 1.1 gwr get_pte(va)
2838 1.1 gwr vm_offset_t va;
2839 1.1 gwr {
2840 1.1 gwr u_long idx;
2841 1.1 gwr
2842 1.1 gwr idx = (unsigned long) sun3x_btop(mmu_vtop(va));
2843 1.1 gwr return (kernCbase[idx].attr.raw);
2844 1.1 gwr }
2845 1.1 gwr
2846 1.1 gwr /* set_pte INTERNAL
2847 1.1 gwr **
2848 1.1 gwr * Set the page descriptor that describes the kernel mapping
2849 1.1 gwr * of the given virtual address.
2850 1.1 gwr */
2851 1.1 gwr void
2852 1.1 gwr set_pte(va, pte)
2853 1.1 gwr vm_offset_t va;
2854 1.1 gwr vm_offset_t pte;
2855 1.1 gwr {
2856 1.1 gwr u_long idx;
2857 1.1 gwr
2858 1.1 gwr idx = (unsigned long) sun3x_btop(mmu_vtop(va));
2859 1.1 gwr kernCbase[idx].attr.raw = pte;
2860 1.1 gwr }
2861 1.1 gwr
2862 1.1 gwr #ifdef NOT_YET
2863 1.1 gwr /* and maybe not ever */
2864 1.1 gwr /************************** LOW-LEVEL ROUTINES **************************
2865 1.1 gwr * These routines will eventualy be re-written into assembly and placed *
2866 1.1 gwr * in locore.s. They are here now as stubs so that the pmap module can *
2867 1.1 gwr * be linked as a standalone user program for testing. *
2868 1.1 gwr ************************************************************************/
2869 1.1 gwr /* flush_atc_crp INTERNAL
2870 1.1 gwr **
2871 1.1 gwr * Flush all page descriptors derived from the given CPU Root Pointer
2872 1.1 gwr * (CRP), or 'A' table as it is known here, from the 68851's automatic
2873 1.1 gwr * cache.
2874 1.1 gwr */
2875 1.1 gwr void
2876 1.1 gwr flush_atc_crp(a_tbl)
2877 1.1 gwr {
2878 1.1 gwr mmu_long_rp_t rp;
2879 1.1 gwr
2880 1.1 gwr /* Create a temporary root table pointer that points to the
2881 1.1 gwr * given A table.
2882 1.1 gwr */
2883 1.1 gwr rp.attr.raw = ~MMU_LONG_RP_LU;
2884 1.1 gwr rp.addr.raw = (unsigned int) a_tbl;
2885 1.1 gwr
2886 1.1 gwr mmu_pflushr(&rp);
2887 1.1 gwr /* mmu_pflushr:
2888 1.1 gwr * movel sp(4)@,a0
2889 1.1 gwr * pflushr a0@
2890 1.1 gwr * rts
2891 1.1 gwr */
2892 1.1 gwr }
2893 1.1 gwr #endif /* NOT_YET */
2894