Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.75
      1  1.75      chs /*	$NetBSD: pmap.c,v 1.75 2002/10/20 02:37:38 chs Exp $	*/
      2   1.1      gwr 
      3   1.1      gwr /*-
      4  1.10   jeremy  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5   1.1      gwr  * All rights reserved.
      6   1.1      gwr  *
      7   1.1      gwr  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1      gwr  * by Jeremy Cooper.
      9   1.1      gwr  *
     10   1.1      gwr  * Redistribution and use in source and binary forms, with or without
     11   1.1      gwr  * modification, are permitted provided that the following conditions
     12   1.1      gwr  * are met:
     13   1.1      gwr  * 1. Redistributions of source code must retain the above copyright
     14   1.1      gwr  *    notice, this list of conditions and the following disclaimer.
     15   1.1      gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1      gwr  *    notice, this list of conditions and the following disclaimer in the
     17   1.1      gwr  *    documentation and/or other materials provided with the distribution.
     18   1.1      gwr  * 3. All advertising materials mentioning features or use of this software
     19   1.1      gwr  *    must display the following acknowledgement:
     20   1.1      gwr  *        This product includes software developed by the NetBSD
     21   1.1      gwr  *        Foundation, Inc. and its contributors.
     22   1.1      gwr  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1      gwr  *    contributors may be used to endorse or promote products derived
     24   1.1      gwr  *    from this software without specific prior written permission.
     25   1.1      gwr  *
     26   1.1      gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1      gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1      gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1      gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1      gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1      gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1      gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1      gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1      gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1      gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1      gwr  * POSSIBILITY OF SUCH DAMAGE.
     37   1.1      gwr  */
     38   1.1      gwr 
     39   1.1      gwr /*
     40   1.1      gwr  * XXX These comments aren't quite accurate.  Need to change.
     41   1.1      gwr  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42   1.1      gwr  * into the CPU.  The 68851 maps virtual to physical addresses using
     43   1.1      gwr  * a multi-level table lookup, which is stored in the very memory that
     44   1.1      gwr  * it maps.  The number of levels of lookup is configurable from one
     45   1.1      gwr  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46   1.1      gwr  *
     47   1.1      gwr  * The MMU translates virtual addresses into physical addresses by
     48   1.1      gwr  * traversing these tables in a proccess called a 'table walk'.  The most
     49   1.1      gwr  * significant 7 bits of the Virtual Address ('VA') being translated are
     50   1.1      gwr  * used as an index into the level A table, whose base in physical memory
     51   1.1      gwr  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52   1.1      gwr  * address found at that index in the A table is used as the base
     53   1.1      gwr  * address for the next table, the B table.  The next six bits of the VA are
     54   1.1      gwr  * used as an index into the B table, which in turn gives the base address
     55   1.1      gwr  * of the third and final C table.
     56   1.1      gwr  *
     57   1.1      gwr  * The next six bits of the VA are used as an index into the C table to
     58   1.1      gwr  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59   1.1      gwr  * to which the remaining 13 bits of the VA are added, producing the
     60   1.1      gwr  * mapped physical address.
     61   1.1      gwr  *
     62   1.1      gwr  * To map the entire memory space in this manner would require 2114296 bytes
     63   1.1      gwr  * of page tables per process - quite expensive.  Instead we will
     64   1.1      gwr  * allocate a fixed but considerably smaller space for the page tables at
     65   1.1      gwr  * the time the VM system is initialized.  When the pmap code is asked by
     66   1.1      gwr  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67   1.1      gwr  * pool.  When there are no more tables in the pool, tables are stolen
     68   1.1      gwr  * from the oldest mapped entries in the tree.  This is only possible
     69   1.1      gwr  * because all memory mappings are stored in the kernel memory map
     70   1.1      gwr  * structures, independent of the pmap structures.  A VA which references
     71   1.1      gwr  * one of these invalidated maps will cause a page fault.  The kernel
     72   1.1      gwr  * will determine that the page fault was caused by a task using a valid
     73   1.1      gwr  * VA, but for some reason (which does not concern it), that address was
     74   1.1      gwr  * not mapped.  It will ask the pmap code to re-map the entry and then
     75   1.1      gwr  * it will resume executing the faulting task.
     76   1.1      gwr  *
     77   1.1      gwr  * In this manner the most efficient use of the page table space is
     78   1.1      gwr  * achieved.  Tasks which do not execute often will have their tables
     79   1.1      gwr  * stolen and reused by tasks which execute more frequently.  The best
     80   1.1      gwr  * size for the page table pool will probably be determined by
     81   1.1      gwr  * experimentation.
     82   1.1      gwr  *
     83   1.1      gwr  * You read all of the comments so far.  Good for you.
     84   1.1      gwr  * Now go play!
     85   1.1      gwr  */
     86   1.1      gwr 
     87   1.1      gwr /*** A Note About the 68851 Address Translation Cache
     88   1.1      gwr  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89   1.1      gwr  * or 'ATC'.  This cache stores the most recently used page descriptors
     90   1.1      gwr  * accessed by the MMU when it does translations.  Using a marker called a
     91   1.1      gwr  * 'task alias' the MMU can store the descriptors from 8 different table
     92   1.1      gwr  * spaces concurrently.  The task alias is associated with the base
     93   1.1      gwr  * address of the level A table of that address space.  When an address
     94   1.1      gwr  * space is currently active (the CRP currently points to its A table)
     95   1.1      gwr  * the only cached descriptors that will be obeyed are ones which have a
     96   1.1      gwr  * matching task alias of the current space associated with them.
     97   1.1      gwr  *
     98   1.1      gwr  * Since the cache is always consulted before any table lookups are done,
     99   1.1      gwr  * it is important that it accurately reflect the state of the MMU tables.
    100   1.1      gwr  * Whenever a change has been made to a table that has been loaded into
    101   1.1      gwr  * the MMU, the code must be sure to flush any cached entries that are
    102   1.1      gwr  * affected by the change.  These instances are documented in the code at
    103   1.1      gwr  * various points.
    104   1.1      gwr  */
    105   1.1      gwr /*** A Note About the Note About the 68851 Address Translation Cache
    106   1.1      gwr  * 4 months into this code I discovered that the sun3x does not have
    107   1.1      gwr  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108   1.1      gwr  * the 68030 CPU.
    109   1.1      gwr  * All though it behaves very similarly to the 68851, it only has 1 task
    110   1.8      gwr  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111   1.8      gwr  * of the previous note does not apply to the sun3x pmap.
    112   1.1      gwr  */
    113  1.45      gwr 
    114  1.45      gwr #include "opt_ddb.h"
    115   1.1      gwr 
    116   1.1      gwr #include <sys/param.h>
    117   1.1      gwr #include <sys/systm.h>
    118   1.1      gwr #include <sys/proc.h>
    119   1.1      gwr #include <sys/malloc.h>
    120  1.56  tsutsui #include <sys/pool.h>
    121   1.1      gwr #include <sys/user.h>
    122   1.1      gwr #include <sys/queue.h>
    123  1.20  thorpej #include <sys/kcore.h>
    124  1.38      gwr 
    125  1.38      gwr #include <uvm/uvm.h>
    126  1.43      mrg 
    127   1.1      gwr #include <machine/cpu.h>
    128  1.17      gwr #include <machine/kcore.h>
    129  1.33      gwr #include <machine/mon.h>
    130   1.1      gwr #include <machine/pmap.h>
    131   1.1      gwr #include <machine/pte.h>
    132  1.37      gwr #include <machine/vmparam.h>
    133  1.75      chs #include <m68k/cacheops.h>
    134  1.33      gwr 
    135  1.33      gwr #include <sun3/sun3/cache.h>
    136  1.33      gwr #include <sun3/sun3/machdep.h>
    137   1.1      gwr 
    138   1.1      gwr #include "pmap_pvt.h"
    139   1.1      gwr 
    140   1.1      gwr /* XXX - What headers declare these? */
    141   1.1      gwr extern struct pcb *curpcb;
    142   1.1      gwr extern int physmem;
    143   1.7      gwr 
    144   1.1      gwr /* Defined in locore.s */
    145   1.1      gwr extern char kernel_text[];
    146   1.1      gwr 
    147   1.1      gwr /* Defined by the linker */
    148   1.1      gwr extern char etext[], edata[], end[];
    149   1.1      gwr extern char *esym;	/* DDB */
    150   1.1      gwr 
    151   1.7      gwr /*************************** DEBUGGING DEFINITIONS ***********************
    152   1.7      gwr  * Macros, preprocessor defines and variables used in debugging can make *
    153   1.7      gwr  * code hard to read.  Anything used exclusively for debugging purposes  *
    154   1.7      gwr  * is defined here to avoid having such mess scattered around the file.  *
    155   1.7      gwr  *************************************************************************/
    156   1.8      gwr #ifdef	PMAP_DEBUG
    157   1.7      gwr /*
    158   1.7      gwr  * To aid the debugging process, macros should be expanded into smaller steps
    159   1.7      gwr  * that accomplish the same goal, yet provide convenient places for placing
    160   1.8      gwr  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    161   1.7      gwr  * 'INLINE' keyword is defined to an empty string.  This way, any function
    162   1.7      gwr  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    163   1.7      gwr  * a separate function, which is much easier to debug.
    164   1.7      gwr  */
    165   1.7      gwr #define	INLINE	/* nothing */
    166   1.7      gwr 
    167   1.1      gwr /*
    168   1.7      gwr  * It is sometimes convenient to watch the activity of a particular table
    169   1.7      gwr  * in the system.  The following variables are used for that purpose.
    170   1.1      gwr  */
    171   1.7      gwr a_tmgr_t *pmap_watch_atbl = 0;
    172   1.7      gwr b_tmgr_t *pmap_watch_btbl = 0;
    173   1.7      gwr c_tmgr_t *pmap_watch_ctbl = 0;
    174   1.1      gwr 
    175   1.7      gwr int pmap_debug = 0;
    176   1.7      gwr #define DPRINT(args) if (pmap_debug) printf args
    177   1.7      gwr 
    178   1.7      gwr #else	/********** Stuff below is defined if NOT debugging **************/
    179   1.7      gwr 
    180   1.7      gwr #define	INLINE	inline
    181  1.10   jeremy #define DPRINT(args)  /* nada */
    182   1.7      gwr 
    183  1.10   jeremy #endif	/* PMAP_DEBUG */
    184   1.7      gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/
    185   1.1      gwr 
    186   1.1      gwr /*** Management Structure - Memory Layout
    187   1.1      gwr  * For every MMU table in the sun3x pmap system there must be a way to
    188   1.1      gwr  * manage it; we must know which process is using it, what other tables
    189   1.1      gwr  * depend on it, and whether or not it contains any locked pages.  This
    190   1.1      gwr  * is solved by the creation of 'table management'  or 'tmgr'
    191   1.1      gwr  * structures.  One for each MMU table in the system.
    192   1.1      gwr  *
    193   1.1      gwr  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    194   1.1      gwr  *
    195   1.1      gwr  *      towards lower memory
    196   1.1      gwr  * kernAbase -> +-------------------------------------------------------+
    197   1.1      gwr  *              | Kernel     MMU A level table                          |
    198   1.1      gwr  * kernBbase -> +-------------------------------------------------------+
    199   1.1      gwr  *              | Kernel     MMU B level tables                         |
    200   1.1      gwr  * kernCbase -> +-------------------------------------------------------+
    201   1.1      gwr  *              |                                                       |
    202   1.1      gwr  *              | Kernel     MMU C level tables                         |
    203   1.1      gwr  *              |                                                       |
    204   1.7      gwr  * mmuCbase  -> +-------------------------------------------------------+
    205   1.7      gwr  *              | User       MMU C level tables                         |
    206   1.1      gwr  * mmuAbase  -> +-------------------------------------------------------+
    207   1.1      gwr  *              |                                                       |
    208   1.1      gwr  *              | User       MMU A level tables                         |
    209   1.1      gwr  *              |                                                       |
    210   1.1      gwr  * mmuBbase  -> +-------------------------------------------------------+
    211   1.1      gwr  *              | User       MMU B level tables                         |
    212   1.1      gwr  * tmgrAbase -> +-------------------------------------------------------+
    213   1.1      gwr  *              |  TMGR A level table structures                        |
    214   1.1      gwr  * tmgrBbase -> +-------------------------------------------------------+
    215   1.1      gwr  *              |  TMGR B level table structures                        |
    216   1.1      gwr  * tmgrCbase -> +-------------------------------------------------------+
    217   1.1      gwr  *              |  TMGR C level table structures                        |
    218   1.1      gwr  * pvbase    -> +-------------------------------------------------------+
    219   1.1      gwr  *              |  Physical to Virtual mapping table (list heads)       |
    220   1.1      gwr  * pvebase   -> +-------------------------------------------------------+
    221   1.1      gwr  *              |  Physical to Virtual mapping table (list elements)    |
    222   1.1      gwr  *              |                                                       |
    223   1.1      gwr  *              +-------------------------------------------------------+
    224   1.1      gwr  *      towards higher memory
    225   1.1      gwr  *
    226   1.1      gwr  * For every A table in the MMU A area, there will be a corresponding
    227   1.1      gwr  * a_tmgr structure in the TMGR A area.  The same will be true for
    228   1.1      gwr  * the B and C tables.  This arrangement will make it easy to find the
    229   1.1      gwr  * controling tmgr structure for any table in the system by use of
    230   1.1      gwr  * (relatively) simple macros.
    231   1.1      gwr  */
    232   1.7      gwr 
    233   1.7      gwr /*
    234   1.8      gwr  * Global variables for storing the base addresses for the areas
    235   1.1      gwr  * labeled above.
    236   1.1      gwr  */
    237  1.69      chs static vaddr_t  	kernAphys;
    238   1.1      gwr static mmu_long_dte_t	*kernAbase;
    239   1.1      gwr static mmu_short_dte_t	*kernBbase;
    240   1.1      gwr static mmu_short_pte_t	*kernCbase;
    241  1.15      gwr static mmu_short_pte_t	*mmuCbase;
    242  1.15      gwr static mmu_short_dte_t	*mmuBbase;
    243   1.1      gwr static mmu_long_dte_t	*mmuAbase;
    244   1.1      gwr static a_tmgr_t		*Atmgrbase;
    245   1.1      gwr static b_tmgr_t		*Btmgrbase;
    246   1.1      gwr static c_tmgr_t		*Ctmgrbase;
    247  1.15      gwr static pv_t 		*pvbase;
    248   1.1      gwr static pv_elem_t	*pvebase;
    249  1.15      gwr struct pmap 		kernel_pmap;
    250   1.1      gwr 
    251   1.8      gwr /*
    252   1.8      gwr  * This holds the CRP currently loaded into the MMU.
    253   1.8      gwr  */
    254   1.8      gwr struct mmu_rootptr kernel_crp;
    255   1.8      gwr 
    256   1.8      gwr /*
    257   1.8      gwr  * Just all around global variables.
    258   1.1      gwr  */
    259   1.1      gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    260   1.1      gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    261   1.1      gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    262   1.7      gwr 
    263   1.7      gwr 
    264   1.7      gwr /*
    265   1.7      gwr  * Flags used to mark the safety/availability of certain operations or
    266   1.7      gwr  * resources.
    267   1.7      gwr  */
    268  1.69      chs static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    269  1.24   jeremy int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    270   1.1      gwr 
    271   1.1      gwr /*
    272   1.1      gwr  * XXX:  For now, retain the traditional variables that were
    273   1.1      gwr  * used in the old pmap/vm interface (without NONCONTIG).
    274   1.1      gwr  */
    275   1.1      gwr /* Kernel virtual address space available: */
    276  1.69      chs vaddr_t	virtual_avail, virtual_end;
    277   1.1      gwr /* Physical address space available: */
    278  1.69      chs paddr_t	avail_start, avail_end;
    279   1.1      gwr 
    280   1.7      gwr /* This keep track of the end of the contiguously mapped range. */
    281  1.69      chs vaddr_t virtual_contig_end;
    282   1.7      gwr 
    283   1.7      gwr /* Physical address used by pmap_next_page() */
    284  1.69      chs paddr_t avail_next;
    285   1.7      gwr 
    286   1.7      gwr /* These are used by pmap_copy_page(), etc. */
    287  1.69      chs vaddr_t tmp_vpages[2];
    288   1.1      gwr 
    289  1.56  tsutsui /* memory pool for pmap structures */
    290  1.56  tsutsui struct pool	pmap_pmap_pool;
    291  1.56  tsutsui 
    292   1.7      gwr /*
    293   1.7      gwr  * The 3/80 is the only member of the sun3x family that has non-contiguous
    294   1.1      gwr  * physical memory.  Memory is divided into 4 banks which are physically
    295   1.1      gwr  * locatable on the system board.  Although the size of these banks varies
    296   1.1      gwr  * with the size of memory they contain, their base addresses are
    297   1.1      gwr  * permenently fixed.  The following structure, which describes these
    298   1.1      gwr  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    299   1.1      gwr  * structure provided by the ROM Monitor.
    300   1.1      gwr  *
    301   1.1      gwr  * For the other machines in the sun3x architecture which do have contiguous
    302   1.1      gwr  * RAM, this list will have only one entry, which will describe the entire
    303   1.1      gwr  * range of available memory.
    304   1.1      gwr  */
    305  1.20  thorpej struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    306   1.1      gwr u_int total_phys_mem;
    307   1.1      gwr 
    308   1.7      gwr /*************************************************************************/
    309   1.7      gwr 
    310   1.7      gwr /*
    311   1.7      gwr  * XXX - Should "tune" these based on statistics.
    312   1.7      gwr  *
    313   1.7      gwr  * My first guess about the relative numbers of these needed is
    314   1.7      gwr  * based on the fact that a "typical" process will have several
    315   1.7      gwr  * pages mapped at low virtual addresses (text, data, bss), then
    316   1.7      gwr  * some mapped shared libraries, and then some stack pages mapped
    317   1.7      gwr  * near the high end of the VA space.  Each process can use only
    318   1.7      gwr  * one A table, and most will use only two B tables (maybe three)
    319   1.7      gwr  * and probably about four C tables.  Therefore, the first guess
    320   1.7      gwr  * at the relative numbers of these needed is 1:2:4 -gwr
    321   1.7      gwr  *
    322   1.7      gwr  * The number of C tables needed is closely related to the amount
    323   1.7      gwr  * of physical memory available plus a certain amount attributable
    324   1.7      gwr  * to the use of double mappings.  With a few simulation statistics
    325   1.7      gwr  * we can find a reasonably good estimation of this unknown value.
    326   1.7      gwr  * Armed with that and the above ratios, we have a good idea of what
    327   1.7      gwr  * is needed at each level. -j
    328   1.7      gwr  *
    329   1.7      gwr  * Note: It is not physical memory memory size, but the total mapped
    330   1.7      gwr  * virtual space required by the combined working sets of all the
    331   1.7      gwr  * currently _runnable_ processes.  (Sleeping ones don't count.)
    332   1.7      gwr  * The amount of physical memory should be irrelevant. -gwr
    333   1.7      gwr  */
    334  1.22   jeremy #ifdef	FIXED_NTABLES
    335   1.7      gwr #define NUM_A_TABLES	16
    336   1.7      gwr #define NUM_B_TABLES	32
    337   1.7      gwr #define NUM_C_TABLES	64
    338  1.22   jeremy #else
    339  1.22   jeremy unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    340  1.22   jeremy #endif	/* FIXED_NTABLES */
    341   1.7      gwr 
    342   1.7      gwr /*
    343   1.7      gwr  * This determines our total virtual mapping capacity.
    344   1.7      gwr  * Yes, it is a FIXED value so we can pre-allocate.
    345   1.7      gwr  */
    346   1.7      gwr #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    347  1.15      gwr 
    348  1.15      gwr /*
    349  1.15      gwr  * The size of the Kernel Virtual Address Space (KVAS)
    350  1.15      gwr  * for purposes of MMU table allocation is -KERNBASE
    351  1.15      gwr  * (length from KERNBASE to 0xFFFFffff)
    352  1.15      gwr  */
    353  1.15      gwr #define	KVAS_SIZE		(-KERNBASE)
    354  1.15      gwr 
    355  1.15      gwr /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    356  1.15      gwr #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    357  1.15      gwr #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    358  1.15      gwr #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    359   1.7      gwr 
    360   1.7      gwr /*************************** MISCELANEOUS MACROS *************************/
    361  1.55  tsutsui #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    362  1.55  tsutsui #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    363  1.55  tsutsui #define pmap_add_ref(pmap) ++pmap->pm_refcount
    364  1.55  tsutsui #define pmap_del_ref(pmap) --pmap->pm_refcount
    365  1.55  tsutsui #define pmap_refcount(pmap) pmap->pm_refcount
    366  1.64  thorpej 
    367  1.64  thorpej void *pmap_bootstrap_alloc(int);
    368   1.7      gwr 
    369  1.69      chs static INLINE void *mmu_ptov __P((paddr_t));
    370  1.69      chs static INLINE paddr_t mmu_vtop __P((void *));
    371   1.7      gwr 
    372   1.7      gwr #if	0
    373   1.7      gwr static INLINE a_tmgr_t * mmuA2tmgr __P((mmu_long_dte_t *));
    374  1.26   jeremy #endif /* 0 */
    375   1.7      gwr static INLINE b_tmgr_t * mmuB2tmgr __P((mmu_short_dte_t *));
    376   1.7      gwr static INLINE c_tmgr_t * mmuC2tmgr __P((mmu_short_pte_t *));
    377   1.7      gwr 
    378  1.69      chs static INLINE pv_t *pa2pv __P((paddr_t));
    379   1.7      gwr static INLINE int   pteidx __P((mmu_short_pte_t *));
    380   1.7      gwr static INLINE pmap_t current_pmap __P((void));
    381   1.7      gwr 
    382   1.7      gwr /*
    383   1.7      gwr  * We can always convert between virtual and physical addresses
    384   1.7      gwr  * for anything in the range [KERNBASE ... avail_start] because
    385   1.7      gwr  * that range is GUARANTEED to be mapped linearly.
    386   1.7      gwr  * We rely heavily upon this feature!
    387   1.7      gwr  */
    388   1.7      gwr static INLINE void *
    389   1.7      gwr mmu_ptov(pa)
    390  1.69      chs 	paddr_t pa;
    391   1.7      gwr {
    392  1.69      chs 	vaddr_t va;
    393   1.7      gwr 
    394   1.7      gwr 	va = (pa + KERNBASE);
    395   1.8      gwr #ifdef	PMAP_DEBUG
    396   1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    397   1.7      gwr 		panic("mmu_ptov");
    398   1.7      gwr #endif
    399   1.7      gwr 	return ((void*)va);
    400   1.7      gwr }
    401  1.69      chs 
    402  1.69      chs static INLINE paddr_t
    403   1.7      gwr mmu_vtop(vva)
    404   1.7      gwr 	void *vva;
    405   1.7      gwr {
    406  1.69      chs 	vaddr_t va;
    407   1.7      gwr 
    408  1.69      chs 	va = (vaddr_t)vva;
    409   1.8      gwr #ifdef	PMAP_DEBUG
    410   1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    411  1.72  tsutsui 		panic("mmu_vtop");
    412   1.7      gwr #endif
    413   1.7      gwr 	return (va - KERNBASE);
    414   1.7      gwr }
    415   1.7      gwr 
    416   1.7      gwr /*
    417   1.7      gwr  * These macros map MMU tables to their corresponding manager structures.
    418   1.1      gwr  * They are needed quite often because many of the pointers in the pmap
    419   1.1      gwr  * system reference MMU tables and not the structures that control them.
    420   1.1      gwr  * There needs to be a way to find one when given the other and these
    421   1.1      gwr  * macros do so by taking advantage of the memory layout described above.
    422   1.1      gwr  * Here's a quick step through the first macro, mmuA2tmgr():
    423   1.1      gwr  *
    424   1.1      gwr  * 1) find the offset of the given MMU A table from the base of its table
    425   1.1      gwr  *    pool (table - mmuAbase).
    426   1.1      gwr  * 2) convert this offset into a table index by dividing it by the
    427   1.1      gwr  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    428   1.1      gwr  * 3) use this index to select the corresponding 'A' table manager
    429   1.1      gwr  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    430   1.1      gwr  */
    431   1.7      gwr /*  This function is not currently used. */
    432   1.7      gwr #if	0
    433   1.7      gwr static INLINE a_tmgr_t *
    434   1.7      gwr mmuA2tmgr(mmuAtbl)
    435   1.7      gwr 	mmu_long_dte_t *mmuAtbl;
    436   1.7      gwr {
    437  1.69      chs 	int idx;
    438   1.7      gwr 
    439   1.7      gwr 	/* Which table is this in? */
    440   1.7      gwr 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    441   1.8      gwr #ifdef	PMAP_DEBUG
    442   1.7      gwr 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    443   1.7      gwr 		panic("mmuA2tmgr");
    444   1.7      gwr #endif
    445   1.7      gwr 	return (&Atmgrbase[idx]);
    446   1.7      gwr }
    447   1.7      gwr #endif	/* 0 */
    448   1.7      gwr 
    449   1.7      gwr static INLINE b_tmgr_t *
    450   1.7      gwr mmuB2tmgr(mmuBtbl)
    451   1.7      gwr 	mmu_short_dte_t *mmuBtbl;
    452   1.7      gwr {
    453  1.69      chs 	int idx;
    454   1.7      gwr 
    455   1.7      gwr 	/* Which table is this in? */
    456   1.7      gwr 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    457   1.8      gwr #ifdef	PMAP_DEBUG
    458   1.7      gwr 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    459   1.7      gwr 		panic("mmuB2tmgr");
    460   1.7      gwr #endif
    461   1.7      gwr 	return (&Btmgrbase[idx]);
    462   1.7      gwr }
    463   1.7      gwr 
    464   1.7      gwr /* mmuC2tmgr			INTERNAL
    465   1.7      gwr  **
    466   1.7      gwr  * Given a pte known to belong to a C table, return the address of
    467   1.7      gwr  * that table's management structure.
    468   1.7      gwr  */
    469   1.7      gwr static INLINE c_tmgr_t *
    470   1.7      gwr mmuC2tmgr(mmuCtbl)
    471   1.7      gwr 	mmu_short_pte_t *mmuCtbl;
    472   1.7      gwr {
    473  1.69      chs 	int idx;
    474   1.7      gwr 
    475   1.7      gwr 	/* Which table is this in? */
    476   1.7      gwr 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    477   1.8      gwr #ifdef	PMAP_DEBUG
    478   1.7      gwr 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    479   1.7      gwr 		panic("mmuC2tmgr");
    480   1.7      gwr #endif
    481   1.7      gwr 	return (&Ctmgrbase[idx]);
    482   1.7      gwr }
    483   1.7      gwr 
    484   1.8      gwr /* This is now a function call below.
    485   1.1      gwr  * #define pa2pv(pa) \
    486   1.1      gwr  *	(&pvbase[(unsigned long)\
    487  1.25    veego  *		m68k_btop(pa)\
    488   1.1      gwr  *	])
    489   1.1      gwr  */
    490   1.1      gwr 
    491   1.7      gwr /* pa2pv			INTERNAL
    492   1.7      gwr  **
    493   1.7      gwr  * Return the pv_list_head element which manages the given physical
    494   1.7      gwr  * address.
    495   1.7      gwr  */
    496   1.7      gwr static INLINE pv_t *
    497   1.7      gwr pa2pv(pa)
    498  1.69      chs 	paddr_t pa;
    499   1.7      gwr {
    500  1.69      chs 	struct pmap_physmem_struct *bank;
    501  1.69      chs 	int idx;
    502   1.7      gwr 
    503   1.7      gwr 	bank = &avail_mem[0];
    504   1.7      gwr 	while (pa >= bank->pmem_end)
    505   1.7      gwr 		bank = bank->pmem_next;
    506   1.7      gwr 
    507   1.7      gwr 	pa -= bank->pmem_start;
    508  1.25    veego 	idx = bank->pmem_pvbase + m68k_btop(pa);
    509   1.8      gwr #ifdef	PMAP_DEBUG
    510   1.7      gwr 	if ((idx < 0) || (idx >= physmem))
    511   1.7      gwr 		panic("pa2pv");
    512   1.7      gwr #endif
    513   1.7      gwr 	return &pvbase[idx];
    514   1.7      gwr }
    515   1.7      gwr 
    516   1.7      gwr /* pteidx			INTERNAL
    517   1.7      gwr  **
    518   1.7      gwr  * Return the index of the given PTE within the entire fixed table of
    519   1.7      gwr  * PTEs.
    520   1.7      gwr  */
    521   1.7      gwr static INLINE int
    522   1.7      gwr pteidx(pte)
    523   1.7      gwr 	mmu_short_pte_t *pte;
    524   1.7      gwr {
    525   1.7      gwr 	return (pte - kernCbase);
    526   1.7      gwr }
    527   1.7      gwr 
    528   1.7      gwr /*
    529   1.8      gwr  * This just offers a place to put some debugging checks,
    530   1.8      gwr  * and reduces the number of places "curproc" appears...
    531   1.7      gwr  */
    532   1.7      gwr static INLINE pmap_t
    533   1.7      gwr current_pmap()
    534   1.7      gwr {
    535   1.7      gwr 	struct proc *p;
    536   1.7      gwr 	struct vmspace *vm;
    537  1.67      chs 	struct vm_map *map;
    538   1.7      gwr 	pmap_t	pmap;
    539   1.7      gwr 
    540   1.7      gwr 	p = curproc;	/* XXX */
    541   1.9      gwr 	if (p == NULL)
    542   1.9      gwr 		pmap = &kernel_pmap;
    543   1.9      gwr 	else {
    544   1.9      gwr 		vm = p->p_vmspace;
    545   1.9      gwr 		map = &vm->vm_map;
    546   1.9      gwr 		pmap = vm_map_pmap(map);
    547   1.9      gwr 	}
    548   1.7      gwr 
    549   1.7      gwr 	return (pmap);
    550   1.7      gwr }
    551   1.7      gwr 
    552   1.7      gwr 
    553   1.1      gwr /*************************** FUNCTION DEFINITIONS ************************
    554   1.1      gwr  * These appear here merely for the compiler to enforce type checking on *
    555   1.1      gwr  * all function calls.                                                   *
    556   1.7      gwr  *************************************************************************/
    557   1.1      gwr 
    558   1.1      gwr /** Internal functions
    559  1.37      gwr  ** Most functions used only within this module are defined in
    560  1.37      gwr  **   pmap_pvt.h (why not here if used only here?)
    561   1.1      gwr  **/
    562  1.37      gwr static void pmap_page_upload __P((void));
    563   1.1      gwr 
    564   1.1      gwr /** Interface functions
    565   1.1      gwr  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    566   1.1      gwr  **   defined.
    567   1.1      gwr  **/
    568  1.36  thorpej void pmap_pinit __P((pmap_t));
    569  1.36  thorpej void pmap_release __P((pmap_t));
    570   1.1      gwr 
    571   1.1      gwr /********************************** CODE ********************************
    572   1.1      gwr  * Functions that are called from other parts of the kernel are labeled *
    573   1.1      gwr  * as 'INTERFACE' functions.  Functions that are only called from       *
    574   1.1      gwr  * within the pmap module are labeled as 'INTERNAL' functions.          *
    575   1.1      gwr  * Functions that are internal, but are not (currently) used at all are *
    576   1.1      gwr  * labeled 'INTERNAL_X'.                                                *
    577   1.1      gwr  ************************************************************************/
    578   1.1      gwr 
    579   1.1      gwr /* pmap_bootstrap			INTERNAL
    580   1.1      gwr  **
    581  1.33      gwr  * Initializes the pmap system.  Called at boot time from
    582  1.33      gwr  * locore2.c:_vm_init()
    583   1.1      gwr  *
    584   1.1      gwr  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    585   1.1      gwr  *           system implement pmap_steal_memory() is redundant.
    586   1.1      gwr  *           Don't release this code without removing one or the other!
    587   1.1      gwr  */
    588   1.1      gwr void
    589   1.1      gwr pmap_bootstrap(nextva)
    590  1.69      chs 	vaddr_t nextva;
    591   1.1      gwr {
    592   1.1      gwr 	struct physmemory *membank;
    593   1.1      gwr 	struct pmap_physmem_struct *pmap_membank;
    594  1.69      chs 	vaddr_t va, eva;
    595  1.69      chs 	paddr_t pa;
    596   1.1      gwr 	int b, c, i, j;	/* running table counts */
    597  1.40      gwr 	int size, resvmem;
    598   1.1      gwr 
    599   1.1      gwr 	/*
    600   1.1      gwr 	 * This function is called by __bootstrap after it has
    601   1.1      gwr 	 * determined the type of machine and made the appropriate
    602   1.1      gwr 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    603   1.1      gwr 	 * by that.)  It allocates and sets up enough of the pmap system
    604   1.1      gwr 	 * to manage the kernel's address space.
    605   1.1      gwr 	 */
    606   1.1      gwr 
    607   1.1      gwr 	/*
    608   1.7      gwr 	 * Determine the range of kernel virtual and physical
    609   1.7      gwr 	 * space available. Note that we ABSOLUTELY DEPEND on
    610   1.7      gwr 	 * the fact that the first bank of memory (4MB) is
    611   1.7      gwr 	 * mapped linearly to KERNBASE (which we guaranteed in
    612   1.7      gwr 	 * the first instructions of locore.s).
    613   1.7      gwr 	 * That is plenty for our bootstrap work.
    614   1.1      gwr 	 */
    615  1.25    veego 	virtual_avail = m68k_round_page(nextva);
    616   1.7      gwr 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    617   1.1      gwr 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    618   1.7      gwr 	/* Don't need avail_start til later. */
    619   1.1      gwr 
    620   1.7      gwr 	/* We may now call pmap_bootstrap_alloc(). */
    621   1.7      gwr 	bootstrap_alloc_enabled = TRUE;
    622   1.1      gwr 
    623   1.1      gwr 	/*
    624   1.1      gwr 	 * This is a somewhat unwrapped loop to deal with
    625   1.1      gwr 	 * copying the PROM's 'phsymem' banks into the pmap's
    626   1.1      gwr 	 * banks.  The following is always assumed:
    627   1.1      gwr 	 * 1. There is always at least one bank of memory.
    628   1.1      gwr 	 * 2. There is always a last bank of memory, and its
    629   1.1      gwr 	 *    pmem_next member must be set to NULL.
    630   1.1      gwr 	 */
    631   1.1      gwr 	membank = romVectorPtr->v_physmemory;
    632   1.1      gwr 	pmap_membank = avail_mem;
    633   1.1      gwr 	total_phys_mem = 0;
    634   1.1      gwr 
    635  1.40      gwr 	for (;;) { /* break on !membank */
    636   1.1      gwr 		pmap_membank->pmem_start = membank->address;
    637   1.1      gwr 		pmap_membank->pmem_end = membank->address + membank->size;
    638   1.1      gwr 		total_phys_mem += membank->size;
    639  1.40      gwr 		membank = membank->next;
    640  1.40      gwr 		if (!membank)
    641  1.40      gwr 			break;
    642   1.1      gwr 		/* This silly syntax arises because pmap_membank
    643   1.1      gwr 		 * is really a pre-allocated array, but it is put into
    644   1.1      gwr 		 * use as a linked list.
    645   1.1      gwr 		 */
    646   1.1      gwr 		pmap_membank->pmem_next = pmap_membank + 1;
    647   1.1      gwr 		pmap_membank = pmap_membank->pmem_next;
    648   1.1      gwr 	}
    649  1.40      gwr 	/* This is the last element. */
    650  1.40      gwr 	pmap_membank->pmem_next = NULL;
    651   1.1      gwr 
    652   1.1      gwr 	/*
    653  1.40      gwr 	 * Note: total_phys_mem, physmem represent
    654  1.40      gwr 	 * actual physical memory, including that
    655  1.40      gwr 	 * reserved for the PROM monitor.
    656   1.1      gwr 	 */
    657  1.40      gwr 	physmem = btoc(total_phys_mem);
    658   1.1      gwr 
    659   1.1      gwr 	/*
    660  1.60  tsutsui 	 * Avail_end is set to the first byte of physical memory
    661  1.60  tsutsui 	 * after the end of the last bank.  We use this only to
    662  1.60  tsutsui 	 * determine if a physical address is "managed" memory.
    663  1.60  tsutsui 	 * This address range should be reduced to prevent the
    664  1.40      gwr 	 * physical pages needed by the PROM monitor from being used
    665  1.40      gwr 	 * in the VM system.
    666   1.1      gwr 	 */
    667  1.40      gwr 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    668  1.40      gwr 	resvmem = m68k_round_page(resvmem);
    669  1.60  tsutsui 	avail_end = pmap_membank->pmem_end - resvmem;
    670   1.1      gwr 
    671   1.1      gwr 	/*
    672  1.15      gwr 	 * First allocate enough kernel MMU tables to map all
    673  1.15      gwr 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    674   1.1      gwr 	 * Note: All must be aligned on 256 byte boundaries.
    675  1.15      gwr 	 * Start with the level-A table (one of those).
    676   1.1      gwr 	 */
    677  1.69      chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    678   1.7      gwr 	kernAbase = pmap_bootstrap_alloc(size);
    679  1.71  tsutsui 	memset(kernAbase, 0, size);
    680   1.1      gwr 
    681  1.15      gwr 	/* Now the level-B kernel tables... */
    682  1.15      gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    683   1.7      gwr 	kernBbase = pmap_bootstrap_alloc(size);
    684  1.71  tsutsui 	memset(kernBbase, 0, size);
    685   1.1      gwr 
    686  1.15      gwr 	/* Now the level-C kernel tables... */
    687  1.15      gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    688  1.15      gwr 	kernCbase = pmap_bootstrap_alloc(size);
    689  1.71  tsutsui 	memset(kernCbase, 0, size);
    690   1.7      gwr 	/*
    691   1.7      gwr 	 * Note: In order for the PV system to work correctly, the kernel
    692   1.7      gwr 	 * and user-level C tables must be allocated contiguously.
    693   1.7      gwr 	 * Nothing should be allocated between here and the allocation of
    694   1.7      gwr 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    695   1.7      gwr 	 * then compute a pointer for mmuCbase instead of this...
    696  1.15      gwr 	 *
    697  1.15      gwr 	 * Allocate user MMU tables.
    698  1.70      wiz 	 * These must be contiguous with the preceding.
    699   1.7      gwr 	 */
    700  1.22   jeremy 
    701  1.22   jeremy #ifndef	FIXED_NTABLES
    702  1.22   jeremy 	/*
    703  1.22   jeremy 	 * The number of user-level C tables that should be allocated is
    704  1.22   jeremy 	 * related to the size of physical memory.  In general, there should
    705  1.22   jeremy 	 * be enough tables to map four times the amount of available RAM.
    706  1.22   jeremy 	 * The extra amount is needed because some table space is wasted by
    707  1.22   jeremy 	 * fragmentation.
    708  1.22   jeremy 	 */
    709  1.22   jeremy 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    710  1.22   jeremy 	NUM_B_TABLES = NUM_C_TABLES / 2;
    711  1.22   jeremy 	NUM_A_TABLES = NUM_B_TABLES / 2;
    712  1.22   jeremy #endif	/* !FIXED_NTABLES */
    713  1.22   jeremy 
    714  1.15      gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    715  1.15      gwr 	mmuCbase = pmap_bootstrap_alloc(size);
    716  1.15      gwr 
    717  1.15      gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    718  1.15      gwr 	mmuBbase = pmap_bootstrap_alloc(size);
    719   1.1      gwr 
    720  1.69      chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    721  1.15      gwr 	mmuAbase = pmap_bootstrap_alloc(size);
    722   1.7      gwr 
    723   1.7      gwr 	/*
    724   1.7      gwr 	 * Fill in the never-changing part of the kernel tables.
    725   1.7      gwr 	 * For simplicity, the kernel's mappings will be editable as a
    726   1.1      gwr 	 * flat array of page table entries at kernCbase.  The
    727   1.1      gwr 	 * higher level 'A' and 'B' tables must be initialized to point
    728   1.1      gwr 	 * to this lower one.
    729   1.1      gwr 	 */
    730   1.1      gwr 	b = c = 0;
    731   1.1      gwr 
    732   1.7      gwr 	/*
    733   1.7      gwr 	 * Invalidate all mappings below KERNBASE in the A table.
    734   1.1      gwr 	 * This area has already been zeroed out, but it is good
    735   1.1      gwr 	 * practice to explicitly show that we are interpreting
    736   1.1      gwr 	 * it as a list of A table descriptors.
    737   1.1      gwr 	 */
    738   1.1      gwr 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    739   1.1      gwr 		kernAbase[i].addr.raw = 0;
    740   1.1      gwr 	}
    741   1.1      gwr 
    742   1.7      gwr 	/*
    743   1.7      gwr 	 * Set up the kernel A and B tables so that they will reference the
    744   1.1      gwr 	 * correct spots in the contiguous table of PTEs allocated for the
    745   1.1      gwr 	 * kernel's virtual memory space.
    746   1.1      gwr 	 */
    747   1.1      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    748   1.1      gwr 		kernAbase[i].attr.raw =
    749   1.1      gwr 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    750   1.7      gwr 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    751   1.1      gwr 
    752   1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    753   1.7      gwr 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    754   1.1      gwr 				| MMU_DT_SHORT;
    755   1.1      gwr 			c += MMU_C_TBL_SIZE;
    756   1.1      gwr 		}
    757   1.1      gwr 		b += MMU_B_TBL_SIZE;
    758   1.1      gwr 	}
    759   1.1      gwr 
    760   1.7      gwr 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    761   1.7      gwr 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    762   1.7      gwr 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    763   1.7      gwr 
    764   1.7      gwr 	/*
    765   1.7      gwr 	 * We are now done with pmap_bootstrap_alloc().  Round up
    766   1.7      gwr 	 * `virtual_avail' to the nearest page, and set the flag
    767   1.7      gwr 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    768   1.7      gwr 	 */
    769   1.7      gwr 	pmap_bootstrap_aalign(NBPG);
    770   1.7      gwr 	bootstrap_alloc_enabled = FALSE;
    771   1.7      gwr 
    772   1.7      gwr 	/*
    773   1.7      gwr 	 * Now that we are done with pmap_bootstrap_alloc(), we
    774   1.7      gwr 	 * must save the virtual and physical addresses of the
    775   1.7      gwr 	 * end of the linearly mapped range, which are stored in
    776   1.7      gwr 	 * virtual_contig_end and avail_start, respectively.
    777   1.7      gwr 	 * These variables will never change after this point.
    778   1.7      gwr 	 */
    779   1.7      gwr 	virtual_contig_end = virtual_avail;
    780   1.7      gwr 	avail_start = virtual_avail - KERNBASE;
    781   1.7      gwr 
    782   1.7      gwr 	/*
    783   1.7      gwr 	 * `avail_next' is a running pointer used by pmap_next_page() to
    784   1.7      gwr 	 * keep track of the next available physical page to be handed
    785   1.7      gwr 	 * to the VM system during its initialization, in which it
    786   1.7      gwr 	 * asks for physical pages, one at a time.
    787   1.7      gwr 	 */
    788   1.7      gwr 	avail_next = avail_start;
    789   1.7      gwr 
    790   1.7      gwr 	/*
    791   1.7      gwr 	 * Now allocate some virtual addresses, but not the physical pages
    792   1.7      gwr 	 * behind them.  Note that virtual_avail is already page-aligned.
    793   1.7      gwr 	 *
    794   1.7      gwr 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    795   1.7      gwr 	 * kernel mappings in the pmap module to facilitate various physical
    796   1.7      gwr 	 * address-oritented operations.
    797   1.7      gwr 	 */
    798   1.7      gwr 	tmp_vpages[0] = virtual_avail;
    799   1.7      gwr 	virtual_avail += NBPG;
    800   1.7      gwr 	tmp_vpages[1] = virtual_avail;
    801   1.7      gwr 	virtual_avail += NBPG;
    802   1.7      gwr 
    803   1.7      gwr 	/** Initialize the PV system **/
    804   1.7      gwr 	pmap_init_pv();
    805   1.7      gwr 
    806   1.7      gwr 	/*
    807   1.7      gwr 	 * Fill in the kernel_pmap structure and kernel_crp.
    808   1.7      gwr 	 */
    809   1.7      gwr 	kernAphys = mmu_vtop(kernAbase);
    810   1.7      gwr 	kernel_pmap.pm_a_tmgr = NULL;
    811   1.7      gwr 	kernel_pmap.pm_a_phys = kernAphys;
    812   1.7      gwr 	kernel_pmap.pm_refcount = 1; /* always in use */
    813  1.55  tsutsui 	simple_lock_init(&kernel_pmap.pm_lock);
    814   1.7      gwr 
    815   1.7      gwr 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    816   1.7      gwr 	kernel_crp.rp_addr = kernAphys;
    817   1.7      gwr 
    818   1.1      gwr 	/*
    819   1.1      gwr 	 * Now pmap_enter_kernel() may be used safely and will be
    820   1.7      gwr 	 * the main interface used hereafter to modify the kernel's
    821   1.7      gwr 	 * virtual address space.  Note that since we are still running
    822   1.7      gwr 	 * under the PROM's address table, none of these table modifications
    823   1.7      gwr 	 * actually take effect until pmap_takeover_mmu() is called.
    824   1.1      gwr 	 *
    825   1.7      gwr 	 * Note: Our tables do NOT have the PROM linear mappings!
    826   1.7      gwr 	 * Only the mappings created here exist in our tables, so
    827   1.7      gwr 	 * remember to map anything we expect to use.
    828   1.1      gwr 	 */
    829  1.69      chs 	va = (vaddr_t)KERNBASE;
    830   1.7      gwr 	pa = 0;
    831   1.1      gwr 
    832   1.1      gwr 	/*
    833   1.7      gwr 	 * The first page of the kernel virtual address space is the msgbuf
    834   1.7      gwr 	 * page.  The page attributes (data, non-cached) are set here, while
    835   1.7      gwr 	 * the address is assigned to this global pointer in cpu_startup().
    836  1.29      gwr 	 * It is non-cached, mostly due to paranoia.
    837   1.1      gwr 	 */
    838  1.29      gwr 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    839  1.29      gwr 	va += NBPG; pa += NBPG;
    840   1.1      gwr 
    841   1.7      gwr 	/* Next page is used as the temporary stack. */
    842   1.1      gwr 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    843   1.1      gwr 	va += NBPG; pa += NBPG;
    844   1.1      gwr 
    845   1.1      gwr 	/*
    846   1.1      gwr 	 * Map all of the kernel's text segment as read-only and cacheable.
    847   1.1      gwr 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    848   1.1      gwr 	 * of kernel text and the first bytes of kernel data will often be
    849   1.1      gwr 	 * sharing the same page.  Therefore, the last page of kernel text
    850   1.1      gwr 	 * has to be mapped as read/write, to accomodate the data.
    851   1.1      gwr 	 */
    852  1.69      chs 	eva = m68k_trunc_page((vaddr_t)etext);
    853   1.7      gwr 	for (; va < eva; va += NBPG, pa += NBPG)
    854   1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    855   1.1      gwr 
    856   1.7      gwr 	/*
    857   1.7      gwr 	 * Map all of the kernel's data as read/write and cacheable.
    858   1.7      gwr 	 * This includes: data, BSS, symbols, and everything in the
    859   1.7      gwr 	 * contiguous memory used by pmap_bootstrap_alloc()
    860   1.1      gwr 	 */
    861   1.7      gwr 	for (; pa < avail_start; va += NBPG, pa += NBPG)
    862   1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    863   1.1      gwr 
    864   1.7      gwr 	/*
    865   1.7      gwr 	 * At this point we are almost ready to take over the MMU.  But first
    866   1.7      gwr 	 * we must save the PROM's address space in our map, as we call its
    867   1.7      gwr 	 * routines and make references to its data later in the kernel.
    868   1.1      gwr 	 */
    869   1.7      gwr 	pmap_bootstrap_copyprom();
    870   1.7      gwr 	pmap_takeover_mmu();
    871  1.13      gwr 	pmap_bootstrap_setprom();
    872   1.1      gwr 
    873   1.1      gwr 	/* Notify the VM system of our page size. */
    874  1.57  tsutsui 	uvmexp.pagesize = NBPG;
    875  1.43      mrg 	uvm_setpagesize();
    876  1.37      gwr 
    877  1.37      gwr 	pmap_page_upload();
    878   1.1      gwr }
    879   1.1      gwr 
    880   1.1      gwr 
    881   1.1      gwr /* pmap_alloc_usermmu			INTERNAL
    882   1.1      gwr  **
    883   1.1      gwr  * Called from pmap_bootstrap() to allocate MMU tables that will
    884   1.1      gwr  * eventually be used for user mappings.
    885   1.1      gwr  */
    886   1.1      gwr void
    887   1.1      gwr pmap_alloc_usermmu()
    888   1.1      gwr {
    889   1.7      gwr 	/* XXX: Moved into caller. */
    890   1.1      gwr }
    891   1.1      gwr 
    892   1.1      gwr /* pmap_alloc_pv			INTERNAL
    893   1.1      gwr  **
    894   1.1      gwr  * Called from pmap_bootstrap() to allocate the physical
    895   1.1      gwr  * to virtual mapping list.  Each physical page of memory
    896   1.1      gwr  * in the system has a corresponding element in this list.
    897   1.1      gwr  */
    898   1.1      gwr void
    899   1.1      gwr pmap_alloc_pv()
    900   1.1      gwr {
    901   1.1      gwr 	int	i;
    902   1.1      gwr 	unsigned int	total_mem;
    903   1.1      gwr 
    904   1.7      gwr 	/*
    905   1.7      gwr 	 * Allocate a pv_head structure for every page of physical
    906   1.1      gwr 	 * memory that will be managed by the system.  Since memory on
    907   1.1      gwr 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    908   1.1      gwr 	 * count by subtraction of the lowest available address from the
    909   1.1      gwr 	 * highest, but rather we have to step through each memory
    910   1.1      gwr 	 * bank and add the number of pages in each to the total.
    911   1.1      gwr 	 *
    912   1.1      gwr 	 * At this time we also initialize the offset of each bank's
    913   1.1      gwr 	 * starting pv_head within the pv_head list so that the physical
    914   1.1      gwr 	 * memory state routines (pmap_is_referenced(),
    915   1.1      gwr 	 * pmap_is_modified(), et al.) can quickly find coresponding
    916   1.1      gwr 	 * pv_heads in spite of the non-contiguity.
    917   1.1      gwr 	 */
    918   1.1      gwr 	total_mem = 0;
    919  1.20  thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    920  1.25    veego 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    921   1.1      gwr 		total_mem += avail_mem[i].pmem_end -
    922   1.1      gwr 			avail_mem[i].pmem_start;
    923   1.1      gwr 		if (avail_mem[i].pmem_next == NULL)
    924   1.1      gwr 			break;
    925   1.1      gwr 	}
    926   1.1      gwr 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    927  1.25    veego 		m68k_btop(total_phys_mem));
    928   1.1      gwr }
    929   1.1      gwr 
    930   1.1      gwr /* pmap_alloc_usertmgr			INTERNAL
    931   1.1      gwr  **
    932   1.1      gwr  * Called from pmap_bootstrap() to allocate the structures which
    933   1.1      gwr  * facilitate management of user MMU tables.  Each user MMU table
    934   1.1      gwr  * in the system has one such structure associated with it.
    935   1.1      gwr  */
    936   1.1      gwr void
    937   1.1      gwr pmap_alloc_usertmgr()
    938   1.1      gwr {
    939   1.1      gwr 	/* Allocate user MMU table managers */
    940   1.7      gwr 	/* It would be a lot simpler to just make these BSS, but */
    941   1.7      gwr 	/* we may want to change their size at boot time... -j */
    942   1.1      gwr 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    943   1.1      gwr 		* NUM_A_TABLES);
    944   1.1      gwr 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    945   1.1      gwr 		* NUM_B_TABLES);
    946   1.1      gwr 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    947   1.1      gwr 		* NUM_C_TABLES);
    948   1.1      gwr 
    949   1.7      gwr 	/*
    950   1.7      gwr 	 * Allocate PV list elements for the physical to virtual
    951   1.1      gwr 	 * mapping system.
    952   1.1      gwr 	 */
    953   1.1      gwr 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    954   1.7      gwr 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    955   1.1      gwr }
    956   1.1      gwr 
    957   1.1      gwr /* pmap_bootstrap_copyprom()			INTERNAL
    958   1.1      gwr  **
    959   1.1      gwr  * Copy the PROM mappings into our own tables.  Note, we
    960   1.1      gwr  * can use physical addresses until __bootstrap returns.
    961   1.1      gwr  */
    962   1.1      gwr void
    963   1.1      gwr pmap_bootstrap_copyprom()
    964   1.1      gwr {
    965  1.33      gwr 	struct sunromvec *romp;
    966   1.1      gwr 	int *mon_ctbl;
    967   1.1      gwr 	mmu_short_pte_t *kpte;
    968   1.1      gwr 	int i, len;
    969   1.1      gwr 
    970   1.1      gwr 	romp = romVectorPtr;
    971   1.1      gwr 
    972   1.1      gwr 	/*
    973  1.33      gwr 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    974  1.33      gwr 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    975   1.1      gwr 	 */
    976   1.1      gwr 	mon_ctbl = *romp->monptaddr;
    977  1.33      gwr 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
    978   1.1      gwr 	kpte = &kernCbase[i];
    979  1.33      gwr 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
    980   1.1      gwr 
    981   1.1      gwr 	for (i = 0; i < len; i++) {
    982   1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
    983   1.1      gwr 	}
    984   1.1      gwr 
    985   1.1      gwr 	/*
    986   1.1      gwr 	 * Copy the mappings at MON_DVMA_BASE (to the end).
    987   1.1      gwr 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
    988  1.32      gwr 	 * Actually, we only want the last page, which the
    989  1.32      gwr 	 * PROM has set up for use by the "ie" driver.
    990  1.32      gwr 	 * (The i82686 needs its SCP there.)
    991  1.32      gwr 	 * If we copy all the mappings, pmap_enter_kernel
    992  1.32      gwr 	 * may complain about finding valid PTEs that are
    993  1.32      gwr 	 * not recorded in our PV lists...
    994   1.1      gwr 	 */
    995   1.1      gwr 	mon_ctbl = *romp->shadowpteaddr;
    996  1.33      gwr 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
    997   1.1      gwr 	kpte = &kernCbase[i];
    998  1.33      gwr 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
    999  1.32      gwr 	for (i = (len-1); i < len; i++) {
   1000   1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
   1001   1.1      gwr 	}
   1002   1.1      gwr }
   1003   1.1      gwr 
   1004   1.1      gwr /* pmap_takeover_mmu			INTERNAL
   1005   1.1      gwr  **
   1006   1.1      gwr  * Called from pmap_bootstrap() after it has copied enough of the
   1007   1.1      gwr  * PROM mappings into the kernel map so that we can use our own
   1008   1.1      gwr  * MMU table.
   1009   1.1      gwr  */
   1010   1.1      gwr void
   1011   1.1      gwr pmap_takeover_mmu()
   1012   1.1      gwr {
   1013   1.1      gwr 
   1014  1.13      gwr 	loadcrp(&kernel_crp);
   1015   1.1      gwr }
   1016   1.1      gwr 
   1017  1.13      gwr /* pmap_bootstrap_setprom()			INTERNAL
   1018  1.13      gwr  **
   1019  1.13      gwr  * Set the PROM mappings so it can see kernel space.
   1020  1.13      gwr  * Note that physical addresses are used here, which
   1021  1.13      gwr  * we can get away with because this runs with the
   1022  1.13      gwr  * low 1GB set for transparent translation.
   1023  1.13      gwr  */
   1024  1.13      gwr void
   1025  1.13      gwr pmap_bootstrap_setprom()
   1026  1.13      gwr {
   1027  1.13      gwr 	mmu_long_dte_t *mon_dte;
   1028  1.13      gwr 	extern struct mmu_rootptr mon_crp;
   1029  1.13      gwr 	int i;
   1030  1.13      gwr 
   1031  1.13      gwr 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1032  1.13      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1033  1.13      gwr 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1034  1.13      gwr 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1035  1.13      gwr 	}
   1036  1.13      gwr }
   1037  1.13      gwr 
   1038  1.13      gwr 
   1039   1.1      gwr /* pmap_init			INTERFACE
   1040   1.1      gwr  **
   1041   1.1      gwr  * Called at the end of vm_init() to set up the pmap system to go
   1042   1.7      gwr  * into full time operation.  All initialization of kernel_pmap
   1043   1.7      gwr  * should be already done by now, so this should just do things
   1044   1.7      gwr  * needed for user-level pmaps to work.
   1045   1.1      gwr  */
   1046   1.1      gwr void
   1047   1.1      gwr pmap_init()
   1048   1.1      gwr {
   1049   1.1      gwr 	/** Initialize the manager pools **/
   1050   1.1      gwr 	TAILQ_INIT(&a_pool);
   1051   1.1      gwr 	TAILQ_INIT(&b_pool);
   1052   1.1      gwr 	TAILQ_INIT(&c_pool);
   1053   1.1      gwr 
   1054   1.1      gwr 	/**************************************************************
   1055   1.1      gwr 	 * Initialize all tmgr structures and MMU tables they manage. *
   1056   1.1      gwr 	 **************************************************************/
   1057   1.1      gwr 	/** Initialize A tables **/
   1058   1.1      gwr 	pmap_init_a_tables();
   1059   1.1      gwr 	/** Initialize B tables **/
   1060   1.1      gwr 	pmap_init_b_tables();
   1061   1.1      gwr 	/** Initialize C tables **/
   1062   1.1      gwr 	pmap_init_c_tables();
   1063  1.56  tsutsui 
   1064  1.56  tsutsui 	/** Initialize the pmap pools **/
   1065  1.56  tsutsui 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1066  1.74  thorpej 	    &pool_allocator_nointr);
   1067   1.1      gwr }
   1068   1.1      gwr 
   1069   1.1      gwr /* pmap_init_a_tables()			INTERNAL
   1070   1.1      gwr  **
   1071   1.1      gwr  * Initializes all A managers, their MMU A tables, and inserts
   1072   1.1      gwr  * them into the A manager pool for use by the system.
   1073   1.1      gwr  */
   1074   1.1      gwr void
   1075   1.1      gwr pmap_init_a_tables()
   1076   1.1      gwr {
   1077   1.1      gwr 	int i;
   1078   1.1      gwr 	a_tmgr_t *a_tbl;
   1079   1.1      gwr 
   1080   1.1      gwr 	for (i=0; i < NUM_A_TABLES; i++) {
   1081   1.1      gwr 		/* Select the next available A manager from the pool */
   1082   1.1      gwr 		a_tbl = &Atmgrbase[i];
   1083   1.1      gwr 
   1084   1.7      gwr 		/*
   1085   1.7      gwr 		 * Clear its parent entry.  Set its wired and valid
   1086   1.1      gwr 		 * entry count to zero.
   1087   1.1      gwr 		 */
   1088   1.1      gwr 		a_tbl->at_parent = NULL;
   1089   1.1      gwr 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1090   1.1      gwr 
   1091   1.1      gwr 		/* Assign it the next available MMU A table from the pool */
   1092   1.1      gwr 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1093   1.1      gwr 
   1094   1.7      gwr 		/*
   1095   1.7      gwr 		 * Initialize the MMU A table with the table in the `proc0',
   1096   1.1      gwr 		 * or kernel, mapping.  This ensures that every process has
   1097   1.1      gwr 		 * the kernel mapped in the top part of its address space.
   1098   1.1      gwr 		 */
   1099  1.71  tsutsui 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
   1100   1.1      gwr 			sizeof(mmu_long_dte_t));
   1101   1.1      gwr 
   1102   1.7      gwr 		/*
   1103   1.7      gwr 		 * Finally, insert the manager into the A pool,
   1104   1.1      gwr 		 * making it ready to be used by the system.
   1105   1.1      gwr 		 */
   1106   1.1      gwr 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1107   1.1      gwr     }
   1108   1.1      gwr }
   1109   1.1      gwr 
   1110   1.1      gwr /* pmap_init_b_tables()			INTERNAL
   1111   1.1      gwr  **
   1112   1.1      gwr  * Initializes all B table managers, their MMU B tables, and
   1113   1.1      gwr  * inserts them into the B manager pool for use by the system.
   1114   1.1      gwr  */
   1115   1.1      gwr void
   1116   1.1      gwr pmap_init_b_tables()
   1117   1.1      gwr {
   1118   1.1      gwr 	int i,j;
   1119   1.1      gwr 	b_tmgr_t *b_tbl;
   1120   1.1      gwr 
   1121   1.1      gwr 	for (i=0; i < NUM_B_TABLES; i++) {
   1122   1.1      gwr 		/* Select the next available B manager from the pool */
   1123   1.1      gwr 		b_tbl = &Btmgrbase[i];
   1124   1.1      gwr 
   1125   1.1      gwr 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1126   1.1      gwr 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1127   1.1      gwr 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1128   1.1      gwr 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1129   1.1      gwr 
   1130   1.1      gwr 		/* Assign it the next available MMU B table from the pool */
   1131   1.1      gwr 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1132   1.1      gwr 
   1133   1.1      gwr 		/* Invalidate every descriptor in the table */
   1134   1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1135   1.1      gwr 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1136   1.1      gwr 
   1137   1.1      gwr 		/* Insert the manager into the B pool */
   1138   1.1      gwr 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1139   1.1      gwr 	}
   1140   1.1      gwr }
   1141   1.1      gwr 
   1142   1.1      gwr /* pmap_init_c_tables()			INTERNAL
   1143   1.1      gwr  **
   1144   1.1      gwr  * Initializes all C table managers, their MMU C tables, and
   1145   1.1      gwr  * inserts them into the C manager pool for use by the system.
   1146   1.1      gwr  */
   1147   1.1      gwr void
   1148   1.1      gwr pmap_init_c_tables()
   1149   1.1      gwr {
   1150   1.1      gwr 	int i,j;
   1151   1.1      gwr 	c_tmgr_t *c_tbl;
   1152   1.1      gwr 
   1153   1.1      gwr 	for (i=0; i < NUM_C_TABLES; i++) {
   1154   1.1      gwr 		/* Select the next available C manager from the pool */
   1155   1.1      gwr 		c_tbl = &Ctmgrbase[i];
   1156   1.1      gwr 
   1157   1.1      gwr 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1158   1.1      gwr 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1159   1.1      gwr 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1160  1.26   jeremy 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1161  1.26   jeremy 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1162  1.26   jeremy 		c_tbl->ct_va = 0;		/* base of managed range */
   1163   1.1      gwr 
   1164   1.1      gwr 		/* Assign it the next available MMU C table from the pool */
   1165   1.1      gwr 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1166   1.1      gwr 
   1167   1.1      gwr 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1168   1.1      gwr 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1169   1.1      gwr 
   1170   1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1171   1.1      gwr 	}
   1172   1.1      gwr }
   1173   1.1      gwr 
   1174   1.1      gwr /* pmap_init_pv()			INTERNAL
   1175   1.1      gwr  **
   1176   1.1      gwr  * Initializes the Physical to Virtual mapping system.
   1177   1.1      gwr  */
   1178   1.1      gwr void
   1179   1.1      gwr pmap_init_pv()
   1180   1.1      gwr {
   1181   1.7      gwr 	int	i;
   1182   1.7      gwr 
   1183   1.7      gwr 	/* Initialize every PV head. */
   1184  1.25    veego 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1185   1.7      gwr 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1186   1.7      gwr 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1187   1.7      gwr 	}
   1188   1.1      gwr }
   1189   1.1      gwr 
   1190   1.1      gwr /* get_a_table			INTERNAL
   1191   1.1      gwr  **
   1192   1.1      gwr  * Retrieve and return a level A table for use in a user map.
   1193   1.1      gwr  */
   1194   1.1      gwr a_tmgr_t *
   1195   1.1      gwr get_a_table()
   1196   1.1      gwr {
   1197   1.1      gwr 	a_tmgr_t *tbl;
   1198   1.7      gwr 	pmap_t pmap;
   1199   1.1      gwr 
   1200   1.1      gwr 	/* Get the top A table in the pool */
   1201   1.1      gwr 	tbl = a_pool.tqh_first;
   1202   1.7      gwr 	if (tbl == NULL) {
   1203   1.7      gwr 		/*
   1204   1.7      gwr 		 * XXX - Instead of panicing here and in other get_x_table
   1205   1.7      gwr 		 * functions, we do have the option of sleeping on the head of
   1206   1.7      gwr 		 * the table pool.  Any function which updates the table pool
   1207   1.7      gwr 		 * would then issue a wakeup() on the head, thus waking up any
   1208   1.7      gwr 		 * processes waiting for a table.
   1209   1.7      gwr 		 *
   1210   1.7      gwr 		 * Actually, the place to sleep would be when some process
   1211   1.7      gwr 		 * asks for a "wired" mapping that would run us short of
   1212   1.7      gwr 		 * mapping resources.  This design DEPENDS on always having
   1213   1.7      gwr 		 * some mapping resources in the pool for stealing, so we
   1214   1.7      gwr 		 * must make sure we NEVER let the pool become empty. -gwr
   1215   1.7      gwr 		 */
   1216   1.1      gwr 		panic("get_a_table: out of A tables.");
   1217   1.7      gwr 	}
   1218   1.7      gwr 
   1219   1.1      gwr 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1220   1.7      gwr 	/*
   1221   1.7      gwr 	 * If the table has a non-null parent pointer then it is in use.
   1222   1.1      gwr 	 * Forcibly abduct it from its parent and clear its entries.
   1223   1.1      gwr 	 * No re-entrancy worries here.  This table would not be in the
   1224   1.1      gwr 	 * table pool unless it was available for use.
   1225   1.7      gwr 	 *
   1226   1.7      gwr 	 * Note that the second argument to free_a_table() is FALSE.  This
   1227   1.7      gwr 	 * indicates that the table should not be relinked into the A table
   1228   1.7      gwr 	 * pool.  That is a job for the function that called us.
   1229   1.1      gwr 	 */
   1230   1.1      gwr 	if (tbl->at_parent) {
   1231   1.7      gwr 		pmap = tbl->at_parent;
   1232   1.8      gwr 		free_a_table(tbl, FALSE);
   1233   1.7      gwr 		pmap->pm_a_tmgr = NULL;
   1234   1.7      gwr 		pmap->pm_a_phys = kernAphys;
   1235   1.1      gwr 	}
   1236   1.1      gwr 	return tbl;
   1237   1.1      gwr }
   1238   1.1      gwr 
   1239   1.1      gwr /* get_b_table			INTERNAL
   1240   1.1      gwr  **
   1241   1.1      gwr  * Return a level B table for use.
   1242   1.1      gwr  */
   1243   1.1      gwr b_tmgr_t *
   1244   1.1      gwr get_b_table()
   1245   1.1      gwr {
   1246   1.1      gwr 	b_tmgr_t *tbl;
   1247   1.1      gwr 
   1248   1.1      gwr 	/* See 'get_a_table' for comments. */
   1249   1.1      gwr 	tbl = b_pool.tqh_first;
   1250   1.1      gwr 	if (tbl == NULL)
   1251   1.1      gwr 		panic("get_b_table: out of B tables.");
   1252   1.1      gwr 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1253   1.1      gwr 	if (tbl->bt_parent) {
   1254   1.1      gwr 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1255   1.1      gwr 		tbl->bt_parent->at_ecnt--;
   1256   1.8      gwr 		free_b_table(tbl, FALSE);
   1257   1.1      gwr 	}
   1258   1.1      gwr 	return tbl;
   1259   1.1      gwr }
   1260   1.1      gwr 
   1261   1.1      gwr /* get_c_table			INTERNAL
   1262   1.1      gwr  **
   1263   1.1      gwr  * Return a level C table for use.
   1264   1.1      gwr  */
   1265   1.1      gwr c_tmgr_t *
   1266   1.1      gwr get_c_table()
   1267   1.1      gwr {
   1268   1.1      gwr 	c_tmgr_t *tbl;
   1269   1.1      gwr 
   1270   1.1      gwr 	/* See 'get_a_table' for comments */
   1271   1.1      gwr 	tbl = c_pool.tqh_first;
   1272   1.1      gwr 	if (tbl == NULL)
   1273   1.1      gwr 		panic("get_c_table: out of C tables.");
   1274   1.1      gwr 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1275   1.1      gwr 	if (tbl->ct_parent) {
   1276   1.1      gwr 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1277   1.1      gwr 		tbl->ct_parent->bt_ecnt--;
   1278   1.8      gwr 		free_c_table(tbl, FALSE);
   1279   1.1      gwr 	}
   1280   1.1      gwr 	return tbl;
   1281   1.1      gwr }
   1282   1.1      gwr 
   1283   1.7      gwr /*
   1284   1.7      gwr  * The following 'free_table' and 'steal_table' functions are called to
   1285   1.1      gwr  * detach tables from their current obligations (parents and children) and
   1286   1.1      gwr  * prepare them for reuse in another mapping.
   1287   1.1      gwr  *
   1288   1.1      gwr  * Free_table is used when the calling function will handle the fate
   1289   1.1      gwr  * of the parent table, such as returning it to the free pool when it has
   1290   1.1      gwr  * no valid entries.  Functions that do not want to handle this should
   1291   1.1      gwr  * call steal_table, in which the parent table's descriptors and entry
   1292   1.1      gwr  * count are automatically modified when this table is removed.
   1293   1.1      gwr  */
   1294   1.1      gwr 
   1295   1.1      gwr /* free_a_table			INTERNAL
   1296   1.1      gwr  **
   1297   1.1      gwr  * Unmaps the given A table and all child tables from their current
   1298   1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1299   1.7      gwr  * If 'relink' is true, the function will return the table to the head
   1300   1.7      gwr  * of the available table pool.
   1301   1.1      gwr  *
   1302   1.1      gwr  * Cache note: The MC68851 will automatically flush all
   1303   1.1      gwr  * descriptors derived from a given A table from its
   1304   1.1      gwr  * Automatic Translation Cache (ATC) if we issue a
   1305   1.1      gwr  * 'PFLUSHR' instruction with the base address of the
   1306   1.1      gwr  * table.  This function should do, and does so.
   1307   1.1      gwr  * Note note: We are using an MC68030 - there is no
   1308   1.1      gwr  * PFLUSHR.
   1309   1.1      gwr  */
   1310   1.1      gwr int
   1311   1.7      gwr free_a_table(a_tbl, relink)
   1312   1.1      gwr 	a_tmgr_t *a_tbl;
   1313   1.7      gwr 	boolean_t relink;
   1314   1.1      gwr {
   1315   1.1      gwr 	int i, removed_cnt;
   1316   1.1      gwr 	mmu_long_dte_t	*dte;
   1317   1.1      gwr 	mmu_short_dte_t *dtbl;
   1318   1.1      gwr 	b_tmgr_t	*tmgr;
   1319   1.1      gwr 
   1320   1.7      gwr 	/*
   1321   1.7      gwr 	 * Flush the ATC cache of all cached descriptors derived
   1322   1.1      gwr 	 * from this table.
   1323  1.22   jeremy 	 * Sun3x does not use 68851's cached table feature
   1324   1.1      gwr 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1325   1.1      gwr 	 */
   1326   1.1      gwr 
   1327   1.7      gwr 	/*
   1328   1.7      gwr 	 * Remove any pending cache flushes that were designated
   1329   1.1      gwr 	 * for the pmap this A table belongs to.
   1330   1.1      gwr 	 * a_tbl->parent->atc_flushq[0] = 0;
   1331  1.22   jeremy 	 * Not implemented in sun3x.
   1332   1.1      gwr 	 */
   1333   1.1      gwr 
   1334   1.7      gwr 	/*
   1335   1.7      gwr 	 * All A tables in the system should retain a map for the
   1336   1.1      gwr 	 * kernel. If the table contains any valid descriptors
   1337   1.1      gwr 	 * (other than those for the kernel area), invalidate them all,
   1338   1.1      gwr 	 * stopping short of the kernel's entries.
   1339   1.1      gwr 	 */
   1340   1.1      gwr 	removed_cnt = 0;
   1341   1.1      gwr 	if (a_tbl->at_ecnt) {
   1342   1.1      gwr 		dte = a_tbl->at_dtbl;
   1343   1.8      gwr 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1344   1.7      gwr 			/*
   1345   1.7      gwr 			 * If a table entry points to a valid B table, free
   1346   1.1      gwr 			 * it and its children.
   1347   1.1      gwr 			 */
   1348   1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1349   1.7      gwr 				/*
   1350   1.7      gwr 				 * The following block does several things,
   1351   1.1      gwr 				 * from innermost expression to the
   1352   1.1      gwr 				 * outermost:
   1353   1.1      gwr 				 * 1) It extracts the base (cc 1996)
   1354   1.1      gwr 				 *    address of the B table pointed
   1355   1.1      gwr 				 *    to in the A table entry dte[i].
   1356   1.1      gwr 				 * 2) It converts this base address into
   1357   1.1      gwr 				 *    the virtual address it can be
   1358   1.1      gwr 				 *    accessed with. (all MMU tables point
   1359   1.1      gwr 				 *    to physical addresses.)
   1360   1.1      gwr 				 * 3) It finds the corresponding manager
   1361   1.1      gwr 				 *    structure which manages this MMU table.
   1362   1.1      gwr 				 * 4) It frees the manager structure.
   1363   1.1      gwr 				 *    (This frees the MMU table and all
   1364   1.1      gwr 				 *    child tables. See 'free_b_table' for
   1365   1.1      gwr 				 *    details.)
   1366   1.1      gwr 				 */
   1367   1.7      gwr 				dtbl = mmu_ptov(dte[i].addr.raw);
   1368   1.1      gwr 				tmgr = mmuB2tmgr(dtbl);
   1369   1.7      gwr 				removed_cnt += free_b_table(tmgr, TRUE);
   1370   1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1371   1.1      gwr 			}
   1372   1.8      gwr 		}
   1373   1.8      gwr 		a_tbl->at_ecnt = 0;
   1374   1.1      gwr 	}
   1375   1.7      gwr 	if (relink) {
   1376   1.7      gwr 		a_tbl->at_parent = NULL;
   1377   1.7      gwr 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1378   1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1379   1.7      gwr 	}
   1380   1.1      gwr 	return removed_cnt;
   1381   1.1      gwr }
   1382   1.1      gwr 
   1383   1.1      gwr /* free_b_table			INTERNAL
   1384   1.1      gwr  **
   1385   1.1      gwr  * Unmaps the given B table and all its children from their current
   1386   1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1387   1.1      gwr  * (For comments, see 'free_a_table()').
   1388   1.1      gwr  */
   1389   1.1      gwr int
   1390   1.7      gwr free_b_table(b_tbl, relink)
   1391   1.1      gwr 	b_tmgr_t *b_tbl;
   1392   1.7      gwr 	boolean_t relink;
   1393   1.1      gwr {
   1394   1.1      gwr 	int i, removed_cnt;
   1395   1.1      gwr 	mmu_short_dte_t *dte;
   1396   1.1      gwr 	mmu_short_pte_t	*dtbl;
   1397   1.1      gwr 	c_tmgr_t	*tmgr;
   1398   1.1      gwr 
   1399   1.1      gwr 	removed_cnt = 0;
   1400   1.1      gwr 	if (b_tbl->bt_ecnt) {
   1401   1.1      gwr 		dte = b_tbl->bt_dtbl;
   1402   1.8      gwr 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1403   1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1404   1.7      gwr 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1405   1.1      gwr 				tmgr = mmuC2tmgr(dtbl);
   1406   1.7      gwr 				removed_cnt += free_c_table(tmgr, TRUE);
   1407   1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1408   1.1      gwr 			}
   1409   1.8      gwr 		}
   1410   1.8      gwr 		b_tbl->bt_ecnt = 0;
   1411   1.1      gwr 	}
   1412   1.1      gwr 
   1413   1.7      gwr 	if (relink) {
   1414   1.7      gwr 		b_tbl->bt_parent = NULL;
   1415   1.7      gwr 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1416   1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1417   1.7      gwr 	}
   1418   1.1      gwr 	return removed_cnt;
   1419   1.1      gwr }
   1420   1.1      gwr 
   1421   1.1      gwr /* free_c_table			INTERNAL
   1422   1.1      gwr  **
   1423   1.1      gwr  * Unmaps the given C table from use and returns it to the pool for
   1424   1.1      gwr  * re-use.  Returns the number of pages that were invalidated.
   1425   1.1      gwr  *
   1426   1.1      gwr  * This function preserves any physical page modification information
   1427   1.1      gwr  * contained in the page descriptors within the C table by calling
   1428   1.1      gwr  * 'pmap_remove_pte().'
   1429   1.1      gwr  */
   1430   1.1      gwr int
   1431   1.7      gwr free_c_table(c_tbl, relink)
   1432   1.1      gwr 	c_tmgr_t *c_tbl;
   1433   1.7      gwr 	boolean_t relink;
   1434   1.1      gwr {
   1435   1.1      gwr 	int i, removed_cnt;
   1436   1.1      gwr 
   1437   1.1      gwr 	removed_cnt = 0;
   1438   1.8      gwr 	if (c_tbl->ct_ecnt) {
   1439   1.8      gwr 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1440   1.1      gwr 			if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
   1441   1.1      gwr 				pmap_remove_pte(&c_tbl->ct_dtbl[i]);
   1442   1.1      gwr 				removed_cnt++;
   1443   1.1      gwr 			}
   1444   1.8      gwr 		}
   1445   1.8      gwr 		c_tbl->ct_ecnt = 0;
   1446   1.8      gwr 	}
   1447   1.8      gwr 
   1448   1.7      gwr 	if (relink) {
   1449   1.7      gwr 		c_tbl->ct_parent = NULL;
   1450   1.7      gwr 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1451   1.7      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1452   1.7      gwr 	}
   1453   1.1      gwr 	return removed_cnt;
   1454   1.1      gwr }
   1455   1.1      gwr 
   1456   1.1      gwr 
   1457   1.1      gwr /* pmap_remove_pte			INTERNAL
   1458   1.1      gwr  **
   1459   1.1      gwr  * Unmap the given pte and preserve any page modification
   1460   1.1      gwr  * information by transfering it to the pv head of the
   1461   1.1      gwr  * physical page it maps to.  This function does not update
   1462   1.1      gwr  * any reference counts because it is assumed that the calling
   1463   1.8      gwr  * function will do so.
   1464   1.1      gwr  */
   1465   1.1      gwr void
   1466   1.1      gwr pmap_remove_pte(pte)
   1467   1.1      gwr 	mmu_short_pte_t *pte;
   1468   1.1      gwr {
   1469   1.7      gwr 	u_short     pv_idx, targ_idx;
   1470  1.69      chs 	paddr_t     pa;
   1471   1.1      gwr 	pv_t       *pv;
   1472   1.1      gwr 
   1473   1.1      gwr 	pa = MMU_PTE_PA(*pte);
   1474   1.1      gwr 	if (is_managed(pa)) {
   1475   1.1      gwr 		pv = pa2pv(pa);
   1476   1.7      gwr 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1477   1.7      gwr 
   1478   1.7      gwr 		/*
   1479   1.7      gwr 		 * If the PTE being removed is the first (or only) PTE in
   1480   1.7      gwr 		 * the list of PTEs currently mapped to this page, remove the
   1481   1.7      gwr 		 * PTE by changing the index found on the PV head.  Otherwise
   1482   1.7      gwr 		 * a linear search through the list will have to be executed
   1483   1.7      gwr 		 * in order to find the PVE which points to the PTE being
   1484   1.7      gwr 		 * removed, so that it may be modified to point to its new
   1485   1.7      gwr 		 * neighbor.
   1486   1.7      gwr 		 */
   1487  1.69      chs 
   1488   1.7      gwr 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1489   1.7      gwr 		if (pv_idx == targ_idx) {
   1490   1.7      gwr 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1491   1.7      gwr 		} else {
   1492  1.69      chs 
   1493   1.7      gwr 			/*
   1494  1.32      gwr 			 * Find the PV element pointing to the target
   1495  1.32      gwr 			 * element.  Note: may have pv_idx==PVE_EOL
   1496   1.7      gwr 			 */
   1497  1.69      chs 
   1498  1.32      gwr 			for (;;) {
   1499  1.32      gwr 				if (pv_idx == PVE_EOL) {
   1500  1.32      gwr 					goto pv_not_found;
   1501  1.32      gwr 				}
   1502  1.32      gwr 				if (pvebase[pv_idx].pve_next == targ_idx)
   1503  1.32      gwr 					break;
   1504   1.7      gwr 				pv_idx = pvebase[pv_idx].pve_next;
   1505   1.7      gwr 			}
   1506  1.69      chs 
   1507   1.7      gwr 			/*
   1508   1.7      gwr 			 * At this point, pv_idx is the index of the PV
   1509   1.7      gwr 			 * element just before the target element in the list.
   1510   1.7      gwr 			 * Unlink the target.
   1511   1.7      gwr 			 */
   1512  1.69      chs 
   1513   1.7      gwr 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1514   1.7      gwr 		}
   1515  1.69      chs 
   1516   1.7      gwr 		/*
   1517   1.7      gwr 		 * Save the mod/ref bits of the pte by simply
   1518   1.1      gwr 		 * ORing the entire pte onto the pv_flags member
   1519   1.1      gwr 		 * of the pv structure.
   1520   1.1      gwr 		 * There is no need to use a separate bit pattern
   1521   1.1      gwr 		 * for usage information on the pv head than that
   1522   1.1      gwr 		 * which is used on the MMU ptes.
   1523   1.1      gwr 		 */
   1524  1.69      chs 
   1525  1.69      chs pv_not_found:
   1526   1.7      gwr 		pv->pv_flags |= (u_short) pte->attr.raw;
   1527   1.1      gwr 	}
   1528   1.1      gwr 	pte->attr.raw = MMU_DT_INVALID;
   1529   1.1      gwr }
   1530   1.1      gwr 
   1531   1.1      gwr /* pmap_stroll			INTERNAL
   1532   1.1      gwr  **
   1533   1.1      gwr  * Retrieve the addresses of all table managers involved in the mapping of
   1534   1.1      gwr  * the given virtual address.  If the table walk completed sucessfully,
   1535   1.7      gwr  * return TRUE.  If it was only partially sucessful, return FALSE.
   1536   1.1      gwr  * The table walk performed by this function is important to many other
   1537   1.1      gwr  * functions in this module.
   1538   1.7      gwr  *
   1539   1.7      gwr  * Note: This function ought to be easier to read.
   1540   1.1      gwr  */
   1541   1.1      gwr boolean_t
   1542   1.1      gwr pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
   1543   1.1      gwr 	pmap_t pmap;
   1544  1.69      chs 	vaddr_t va;
   1545   1.1      gwr 	a_tmgr_t **a_tbl;
   1546   1.1      gwr 	b_tmgr_t **b_tbl;
   1547   1.1      gwr 	c_tmgr_t **c_tbl;
   1548   1.1      gwr 	mmu_short_pte_t **pte;
   1549   1.1      gwr 	int *a_idx, *b_idx, *pte_idx;
   1550   1.1      gwr {
   1551   1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1552   1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1553   1.1      gwr 
   1554   1.1      gwr 	if (pmap == pmap_kernel())
   1555   1.1      gwr 		return FALSE;
   1556   1.1      gwr 
   1557   1.7      gwr 	/* Does the given pmap have its own A table? */
   1558   1.7      gwr 	*a_tbl = pmap->pm_a_tmgr;
   1559   1.1      gwr 	if (*a_tbl == NULL)
   1560   1.1      gwr 		return FALSE; /* No.  Return unknown. */
   1561   1.1      gwr 	/* Does the A table have a valid B table
   1562   1.1      gwr 	 * under the corresponding table entry?
   1563   1.1      gwr 	 */
   1564   1.1      gwr 	*a_idx = MMU_TIA(va);
   1565   1.1      gwr 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1566   1.1      gwr 	if (!MMU_VALID_DT(*a_dte))
   1567   1.1      gwr 		return FALSE; /* No. Return unknown. */
   1568   1.1      gwr 	/* Yes. Extract B table from the A table. */
   1569   1.7      gwr 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1570   1.1      gwr 	/* Does the B table have a valid C table
   1571   1.1      gwr 	 * under the corresponding table entry?
   1572   1.1      gwr 	 */
   1573   1.1      gwr 	*b_idx = MMU_TIB(va);
   1574   1.1      gwr 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1575   1.1      gwr 	if (!MMU_VALID_DT(*b_dte))
   1576   1.1      gwr 		return FALSE; /* No. Return unknown. */
   1577   1.1      gwr 	/* Yes. Extract C table from the B table. */
   1578   1.7      gwr 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1579   1.1      gwr 	*pte_idx = MMU_TIC(va);
   1580   1.1      gwr 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1581   1.1      gwr 
   1582   1.1      gwr 	return	TRUE;
   1583   1.1      gwr }
   1584   1.1      gwr 
   1585   1.1      gwr /* pmap_enter			INTERFACE
   1586   1.1      gwr  **
   1587   1.1      gwr  * Called by the kernel to map a virtual address
   1588   1.1      gwr  * to a physical address in the given process map.
   1589   1.1      gwr  *
   1590   1.1      gwr  * Note: this function should apply an exclusive lock
   1591   1.1      gwr  * on the pmap system for its duration.  (it certainly
   1592   1.1      gwr  * would save my hair!!)
   1593   1.7      gwr  * This function ought to be easier to read.
   1594   1.1      gwr  */
   1595  1.51  thorpej int
   1596  1.51  thorpej pmap_enter(pmap, va, pa, prot, flags)
   1597   1.1      gwr 	pmap_t	pmap;
   1598  1.69      chs 	vaddr_t va;
   1599  1.69      chs 	paddr_t pa;
   1600   1.1      gwr 	vm_prot_t prot;
   1601  1.51  thorpej 	int flags;
   1602   1.1      gwr {
   1603   1.7      gwr 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1604   1.7      gwr 	u_short nidx;            /* PV list index                     */
   1605  1.52   jeremy 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1606   1.8      gwr 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1607   1.1      gwr 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1608   1.1      gwr 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1609   1.1      gwr 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1610   1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1611   1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1612   1.1      gwr 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1613   1.1      gwr 	pv_t      *pv;           /* pv list head                      */
   1614  1.52   jeremy 	boolean_t wired;         /* is the mapping to be wired?       */
   1615   1.1      gwr 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1616   1.1      gwr 
   1617   1.1      gwr 	if (pmap == pmap_kernel()) {
   1618   1.1      gwr 		pmap_enter_kernel(va, pa, prot);
   1619  1.61      chs 		return 0;
   1620   1.1      gwr 	}
   1621   1.7      gwr 
   1622  1.52   jeremy 	/*
   1623  1.52   jeremy 	 * Determine if the mapping should be wired.
   1624  1.52   jeremy 	 */
   1625  1.52   jeremy 	wired = ((flags & PMAP_WIRED) != 0);
   1626  1.52   jeremy 
   1627  1.52   jeremy 	/*
   1628  1.52   jeremy 	 * NOTE1:
   1629  1.52   jeremy 	 *
   1630  1.52   jeremy 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1631  1.52   jeremy 	 * that it now accepts a 'flags' argument.  This new argument
   1632  1.52   jeremy 	 * contains bit-flags for the architecture-independent (UVM) system to
   1633  1.52   jeremy 	 * use in signalling certain mapping requirements to the architecture-
   1634  1.52   jeremy 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1635  1.52   jeremy 	 * one of the flags within it.
   1636  1.52   jeremy 	 *
   1637  1.52   jeremy 	 * In addition to flags signaled by the architecture-independent
   1638  1.52   jeremy 	 * system, parts of the architecture-dependent section of the sun3x
   1639  1.52   jeremy 	 * kernel pass their own flags in the lower, unused bits of the
   1640  1.52   jeremy 	 * physical address supplied to this function.  These flags are
   1641  1.52   jeremy 	 * extracted and stored in the temporary variable 'mapflags'.
   1642  1.52   jeremy 	 *
   1643  1.52   jeremy 	 * Extract sun3x specific flags from the physical address.
   1644  1.52   jeremy 	 */
   1645  1.52   jeremy 	mapflags  = (pa & ~MMU_PAGE_MASK);
   1646  1.52   jeremy 	pa       &= MMU_PAGE_MASK;
   1647   1.7      gwr 
   1648   1.7      gwr 	/*
   1649  1.22   jeremy 	 * Determine if the physical address being mapped is on-board RAM.
   1650  1.22   jeremy 	 * Any other area of the address space is likely to belong to a
   1651  1.22   jeremy 	 * device and hence it would be disasterous to cache its contents.
   1652   1.7      gwr 	 */
   1653   1.7      gwr 	if ((managed = is_managed(pa)) == FALSE)
   1654  1.52   jeremy 		mapflags |= PMAP_NC;
   1655   1.7      gwr 
   1656   1.7      gwr 	/*
   1657   1.7      gwr 	 * For user mappings we walk along the MMU tables of the given
   1658   1.1      gwr 	 * pmap, reaching a PTE which describes the virtual page being
   1659   1.1      gwr 	 * mapped or changed.  If any level of the walk ends in an invalid
   1660   1.1      gwr 	 * entry, a table must be allocated and the entry must be updated
   1661   1.1      gwr 	 * to point to it.
   1662   1.1      gwr 	 * There is a bit of confusion as to whether this code must be
   1663   1.1      gwr 	 * re-entrant.  For now we will assume it is.  To support
   1664   1.1      gwr 	 * re-entrancy we must unlink tables from the table pool before
   1665   1.1      gwr 	 * we assume we may use them.  Tables are re-linked into the pool
   1666   1.1      gwr 	 * when we are finished with them at the end of the function.
   1667   1.1      gwr 	 * But I don't feel like doing that until we have proof that this
   1668   1.1      gwr 	 * needs to be re-entrant.
   1669   1.1      gwr 	 * 'llevel' records which tables need to be relinked.
   1670   1.1      gwr 	 */
   1671   1.1      gwr 	llevel = NONE;
   1672   1.1      gwr 
   1673   1.7      gwr 	/*
   1674   1.7      gwr 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1675   1.7      gwr 	 * A table, allocate a new one from the available pool.
   1676   1.1      gwr 	 */
   1677   1.1      gwr 
   1678   1.7      gwr 	a_tbl = pmap->pm_a_tmgr;
   1679   1.7      gwr 	if (a_tbl == NULL) {
   1680   1.7      gwr 		/*
   1681   1.7      gwr 		 * This pmap does not currently have an A table.  Allocate
   1682   1.7      gwr 		 * a new one.
   1683   1.7      gwr 		 */
   1684   1.7      gwr 		a_tbl = get_a_table();
   1685   1.7      gwr 		a_tbl->at_parent = pmap;
   1686   1.7      gwr 
   1687   1.7      gwr 		/*
   1688   1.7      gwr 		 * Assign this new A table to the pmap, and calculate its
   1689   1.7      gwr 		 * physical address so that loadcrp() can be used to make
   1690   1.7      gwr 		 * the table active.
   1691   1.7      gwr 		 */
   1692   1.7      gwr 		pmap->pm_a_tmgr = a_tbl;
   1693   1.7      gwr 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1694   1.7      gwr 
   1695   1.7      gwr 		/*
   1696   1.7      gwr 		 * If the process receiving a new A table is the current
   1697   1.7      gwr 		 * process, we are responsible for setting the MMU so that
   1698   1.9      gwr 		 * it becomes the current address space.  This only adds
   1699   1.9      gwr 		 * new mappings, so no need to flush anything.
   1700   1.7      gwr 		 */
   1701   1.9      gwr 		if (pmap == current_pmap()) {
   1702   1.9      gwr 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1703   1.9      gwr 			loadcrp(&kernel_crp);
   1704   1.9      gwr 		}
   1705   1.7      gwr 
   1706   1.1      gwr 		if (!wired)
   1707   1.1      gwr 			llevel = NEWA;
   1708   1.1      gwr 	} else {
   1709   1.7      gwr 		/*
   1710   1.7      gwr 		 * Use the A table already allocated for this pmap.
   1711   1.1      gwr 		 * Unlink it from the A table pool if necessary.
   1712   1.1      gwr 		 */
   1713   1.1      gwr 		if (wired && !a_tbl->at_wcnt)
   1714   1.1      gwr 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1715   1.1      gwr 	}
   1716   1.1      gwr 
   1717   1.7      gwr 	/*
   1718   1.7      gwr 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1719   1.1      gwr 	 * allocate one.
   1720   1.1      gwr 	 */
   1721   1.1      gwr 
   1722   1.1      gwr 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1723   1.1      gwr 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1724   1.1      gwr 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1725   1.7      gwr 		/* The descriptor is valid.  Use the B table it points to. */
   1726   1.1      gwr 		/*************************************
   1727   1.1      gwr 		 *               a_idx               *
   1728   1.1      gwr 		 *                 v                 *
   1729   1.1      gwr 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1730   1.1      gwr 		 *          | | | | | | | | | | | |  *
   1731   1.1      gwr 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1732   1.1      gwr 		 *                 |                 *
   1733   1.1      gwr 		 *                 \- b_tbl -> +-+-  *
   1734   1.1      gwr 		 *                             | |   *
   1735   1.1      gwr 		 *                             +-+-  *
   1736   1.1      gwr 		 *************************************/
   1737   1.7      gwr 		b_dte = mmu_ptov(a_dte->addr.raw);
   1738   1.1      gwr 		b_tbl = mmuB2tmgr(b_dte);
   1739   1.7      gwr 
   1740   1.7      gwr 		/*
   1741   1.7      gwr 		 * If the requested mapping must be wired, but this table
   1742   1.7      gwr 		 * being used to map it is not, the table must be removed
   1743   1.7      gwr 		 * from the available pool and its wired entry count
   1744   1.7      gwr 		 * incremented.
   1745   1.7      gwr 		 */
   1746   1.1      gwr 		if (wired && !b_tbl->bt_wcnt) {
   1747   1.1      gwr 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1748   1.7      gwr 			a_tbl->at_wcnt++;
   1749   1.1      gwr 		}
   1750   1.1      gwr 	} else {
   1751   1.7      gwr 		/* The descriptor is invalid.  Allocate a new B table. */
   1752   1.7      gwr 		b_tbl = get_b_table();
   1753   1.7      gwr 
   1754   1.1      gwr 		/* Point the parent A table descriptor to this new B table. */
   1755   1.7      gwr 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1756   1.7      gwr 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1757   1.7      gwr 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1758   1.7      gwr 
   1759   1.1      gwr 		/* Create the necessary back references to the parent table */
   1760   1.1      gwr 		b_tbl->bt_parent = a_tbl;
   1761   1.1      gwr 		b_tbl->bt_pidx = a_idx;
   1762   1.7      gwr 
   1763   1.7      gwr 		/*
   1764   1.7      gwr 		 * If this table is to be wired, make sure the parent A table
   1765   1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1766   1.1      gwr 		 * entry.
   1767   1.1      gwr 		 */
   1768   1.1      gwr 		if (wired)
   1769   1.1      gwr 			a_tbl->at_wcnt++;
   1770   1.1      gwr 		else if (llevel == NONE)
   1771   1.1      gwr 			llevel = NEWB;
   1772   1.1      gwr 	}
   1773   1.1      gwr 
   1774   1.7      gwr 	/*
   1775   1.7      gwr 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1776   1.1      gwr 	 * allocate one.
   1777   1.1      gwr 	 */
   1778   1.1      gwr 
   1779   1.1      gwr 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1780   1.1      gwr 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1781   1.1      gwr 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1782   1.7      gwr 		/* The descriptor is valid.  Use the C table it points to. */
   1783   1.1      gwr 		/**************************************
   1784   1.1      gwr 		 *               c_idx                *
   1785   1.1      gwr 		 * |                v                 *
   1786   1.1      gwr 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1787   1.1      gwr 		 *             | | | | | | | | | | |  *
   1788   1.1      gwr 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1789   1.1      gwr 		 *                  |                 *
   1790   1.1      gwr 		 *                  \- c_tbl -> +-+-- *
   1791   1.1      gwr 		 *                              | | | *
   1792   1.1      gwr 		 *                              +-+-- *
   1793   1.1      gwr 		 **************************************/
   1794   1.7      gwr 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1795   1.1      gwr 		c_tbl = mmuC2tmgr(c_pte);
   1796   1.7      gwr 
   1797   1.7      gwr 		/* If mapping is wired and table is not */
   1798   1.1      gwr 		if (wired && !c_tbl->ct_wcnt) {
   1799   1.1      gwr 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1800   1.1      gwr 			b_tbl->bt_wcnt++;
   1801   1.1      gwr 		}
   1802   1.1      gwr 	} else {
   1803   1.7      gwr 		/* The descriptor is invalid.  Allocate a new C table. */
   1804   1.7      gwr 		c_tbl = get_c_table();
   1805   1.7      gwr 
   1806   1.1      gwr 		/* Point the parent B table descriptor to this new C table. */
   1807   1.7      gwr 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1808   1.7      gwr 		b_dte->attr.raw |= MMU_DT_SHORT;
   1809   1.7      gwr 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1810   1.7      gwr 
   1811   1.1      gwr 		/* Create the necessary back references to the parent table */
   1812   1.1      gwr 		c_tbl->ct_parent = b_tbl;
   1813   1.1      gwr 		c_tbl->ct_pidx = b_idx;
   1814  1.26   jeremy 		/*
   1815  1.26   jeremy 		 * Store the pmap and base virtual managed address for faster
   1816  1.26   jeremy 		 * retrieval in the PV functions.
   1817  1.26   jeremy 		 */
   1818  1.26   jeremy 		c_tbl->ct_pmap = pmap;
   1819  1.26   jeremy 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1820   1.7      gwr 
   1821   1.7      gwr 		/*
   1822   1.7      gwr 		 * If this table is to be wired, make sure the parent B table
   1823   1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1824   1.1      gwr 		 * entry.
   1825   1.1      gwr 		 */
   1826   1.1      gwr 		if (wired)
   1827   1.1      gwr 			b_tbl->bt_wcnt++;
   1828   1.1      gwr 		else if (llevel == NONE)
   1829   1.1      gwr 			llevel = NEWC;
   1830   1.1      gwr 	}
   1831   1.1      gwr 
   1832   1.7      gwr 	/*
   1833   1.7      gwr 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1834   1.1      gwr 	 * slot of the C table, describing the PA to which the VA is mapped.
   1835   1.1      gwr 	 */
   1836   1.1      gwr 
   1837   1.1      gwr 	pte_idx = MMU_TIC(va);
   1838   1.1      gwr 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1839   1.1      gwr 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1840   1.7      gwr 		/*
   1841   1.7      gwr 		 * The PTE is currently valid.  This particular call
   1842   1.1      gwr 		 * is just a synonym for one (or more) of the following
   1843   1.1      gwr 		 * operations:
   1844   1.7      gwr 		 *     change protection of a page
   1845   1.1      gwr 		 *     change wiring status of a page
   1846   1.1      gwr 		 *     remove the mapping of a page
   1847   1.7      gwr 		 *
   1848   1.7      gwr 		 * XXX - Semi critical: This code should unwire the PTE
   1849   1.7      gwr 		 * and, possibly, associated parent tables if this is a
   1850   1.7      gwr 		 * change wiring operation.  Currently it does not.
   1851   1.7      gwr 		 *
   1852  1.47  thorpej 		 * This may be ok if pmap_unwire() is the only
   1853   1.7      gwr 		 * interface used to UNWIRE a page.
   1854   1.1      gwr 		 */
   1855   1.7      gwr 
   1856   1.7      gwr 		/* First check if this is a wiring operation. */
   1857   1.7      gwr 		if (wired && (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)) {
   1858   1.7      gwr 			/*
   1859   1.7      gwr 			 * The PTE is already wired.  To prevent it from being
   1860   1.7      gwr 			 * counted as a new wiring operation, reset the 'wired'
   1861   1.7      gwr 			 * variable.
   1862   1.7      gwr 			 */
   1863   1.7      gwr 			wired = FALSE;
   1864   1.7      gwr 		}
   1865   1.7      gwr 
   1866   1.1      gwr 		/* Is the new address the same as the old? */
   1867   1.1      gwr 		if (MMU_PTE_PA(*c_pte) == pa) {
   1868   1.7      gwr 			/*
   1869   1.7      gwr 			 * Yes, mark that it does not need to be reinserted
   1870   1.7      gwr 			 * into the PV list.
   1871   1.7      gwr 			 */
   1872   1.7      gwr 			insert = FALSE;
   1873   1.7      gwr 
   1874   1.7      gwr 			/*
   1875   1.7      gwr 			 * Clear all but the modified, referenced and wired
   1876   1.7      gwr 			 * bits on the PTE.
   1877   1.7      gwr 			 */
   1878   1.7      gwr 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1879   1.7      gwr 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1880   1.1      gwr 		} else {
   1881   1.1      gwr 			/* No, remove the old entry */
   1882   1.1      gwr 			pmap_remove_pte(c_pte);
   1883   1.7      gwr 			insert = TRUE;
   1884   1.1      gwr 		}
   1885   1.8      gwr 
   1886   1.8      gwr 		/*
   1887   1.8      gwr 		 * TLB flush is only necessary if modifying current map.
   1888   1.8      gwr 		 * However, in pmap_enter(), the pmap almost always IS
   1889   1.8      gwr 		 * the current pmap, so don't even bother to check.
   1890   1.8      gwr 		 */
   1891   1.8      gwr 		TBIS(va);
   1892   1.1      gwr 	} else {
   1893   1.7      gwr 		/*
   1894   1.7      gwr 		 * The PTE is invalid.  Increment the valid entry count in
   1895   1.8      gwr 		 * the C table manager to reflect the addition of a new entry.
   1896   1.7      gwr 		 */
   1897   1.1      gwr 		c_tbl->ct_ecnt++;
   1898   1.8      gwr 
   1899   1.8      gwr 		/* XXX - temporarily make sure the PTE is cleared. */
   1900   1.8      gwr 		c_pte->attr.raw = 0;
   1901   1.1      gwr 
   1902   1.7      gwr 		/* It will also need to be inserted into the PV list. */
   1903   1.7      gwr 		insert = TRUE;
   1904   1.7      gwr 	}
   1905   1.7      gwr 
   1906   1.7      gwr 	/*
   1907   1.7      gwr 	 * If page is changing from unwired to wired status, set an unused bit
   1908   1.7      gwr 	 * within the PTE to indicate that it is wired.  Also increment the
   1909   1.7      gwr 	 * wired entry count in the C table manager.
   1910   1.7      gwr 	 */
   1911   1.7      gwr 	if (wired) {
   1912   1.1      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1913   1.7      gwr 		c_tbl->ct_wcnt++;
   1914   1.1      gwr 	}
   1915   1.1      gwr 
   1916   1.7      gwr 	/*
   1917   1.7      gwr 	 * Map the page, being careful to preserve modify/reference/wired
   1918   1.7      gwr 	 * bits.  At this point it is assumed that the PTE either has no bits
   1919   1.7      gwr 	 * set, or if there are set bits, they are only modified, reference or
   1920   1.7      gwr 	 * wired bits.  If not, the following statement will cause erratic
   1921   1.7      gwr 	 * behavior.
   1922   1.7      gwr 	 */
   1923   1.8      gwr #ifdef	PMAP_DEBUG
   1924   1.7      gwr 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1925   1.7      gwr 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1926   1.7      gwr 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1927   1.7      gwr 		Debugger();
   1928   1.7      gwr 	}
   1929   1.7      gwr #endif
   1930   1.7      gwr 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   1931   1.7      gwr 
   1932   1.7      gwr 	/*
   1933   1.7      gwr 	 * If the mapping should be read-only, set the write protect
   1934   1.7      gwr 	 * bit in the PTE.
   1935   1.7      gwr 	 */
   1936   1.7      gwr 	if (!(prot & VM_PROT_WRITE))
   1937   1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   1938   1.7      gwr 
   1939   1.7      gwr 	/*
   1940   1.7      gwr 	 * If the mapping should be cache inhibited (indicated by the flag
   1941   1.7      gwr 	 * bits found on the lower order of the physical address.)
   1942   1.7      gwr 	 * mark the PTE as a cache inhibited page.
   1943   1.7      gwr 	 */
   1944  1.52   jeremy 	if (mapflags & PMAP_NC)
   1945   1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   1946   1.7      gwr 
   1947   1.7      gwr 	/*
   1948   1.7      gwr 	 * If the physical address being mapped is managed by the PV
   1949   1.7      gwr 	 * system then link the pte into the list of pages mapped to that
   1950   1.7      gwr 	 * address.
   1951   1.7      gwr 	 */
   1952   1.7      gwr 	if (insert && managed) {
   1953   1.7      gwr 		pv = pa2pv(pa);
   1954   1.7      gwr 		nidx = pteidx(c_pte);
   1955   1.7      gwr 
   1956   1.7      gwr 		pvebase[nidx].pve_next = pv->pv_idx;
   1957   1.7      gwr 		pv->pv_idx = nidx;
   1958   1.7      gwr 	}
   1959   1.1      gwr 
   1960   1.1      gwr 	/* Move any allocated tables back into the active pool. */
   1961   1.1      gwr 
   1962   1.1      gwr 	switch (llevel) {
   1963   1.1      gwr 		case NEWA:
   1964   1.1      gwr 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1965   1.1      gwr 			/* FALLTHROUGH */
   1966   1.1      gwr 		case NEWB:
   1967   1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1968   1.1      gwr 			/* FALLTHROUGH */
   1969   1.1      gwr 		case NEWC:
   1970   1.1      gwr 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1971   1.1      gwr 			/* FALLTHROUGH */
   1972   1.1      gwr 		default:
   1973   1.1      gwr 			break;
   1974   1.1      gwr 	}
   1975  1.51  thorpej 
   1976  1.61      chs 	return 0;
   1977   1.1      gwr }
   1978   1.1      gwr 
   1979   1.1      gwr /* pmap_enter_kernel			INTERNAL
   1980   1.1      gwr  **
   1981   1.1      gwr  * Map the given virtual address to the given physical address within the
   1982   1.1      gwr  * kernel address space.  This function exists because the kernel map does
   1983   1.1      gwr  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   1984   1.1      gwr  * and can be edited directly without the need to walk through any tables.
   1985   1.1      gwr  *
   1986   1.1      gwr  * XXX: "Danger, Will Robinson!"
   1987   1.1      gwr  * Note that the kernel should never take a fault on any page
   1988   1.1      gwr  * between [ KERNBASE .. virtual_avail ] and this is checked in
   1989   1.1      gwr  * trap.c for kernel-mode MMU faults.  This means that mappings
   1990   1.1      gwr  * created in that range must be implicily wired. -gwr
   1991   1.1      gwr  */
   1992   1.1      gwr void
   1993   1.1      gwr pmap_enter_kernel(va, pa, prot)
   1994  1.69      chs 	vaddr_t va;
   1995  1.69      chs 	paddr_t pa;
   1996   1.1      gwr 	vm_prot_t   prot;
   1997   1.1      gwr {
   1998   1.7      gwr 	boolean_t       was_valid, insert;
   1999  1.32      gwr 	u_short         pte_idx;
   2000  1.69      chs 	int             flags;
   2001   1.1      gwr 	mmu_short_pte_t *pte;
   2002   1.7      gwr 	pv_t            *pv;
   2003  1.69      chs 	paddr_t     old_pa;
   2004   1.7      gwr 
   2005  1.32      gwr 	flags = (pa & ~MMU_PAGE_MASK);
   2006  1.32      gwr 	pa &= MMU_PAGE_MASK;
   2007  1.32      gwr 
   2008  1.32      gwr 	if (is_managed(pa))
   2009  1.32      gwr 		insert = TRUE;
   2010  1.32      gwr 	else
   2011  1.32      gwr 		insert = FALSE;
   2012   1.7      gwr 
   2013   1.7      gwr 	/*
   2014   1.7      gwr 	 * Calculate the index of the PTE being modified.
   2015   1.7      gwr 	 */
   2016  1.25    veego 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2017   1.1      gwr 
   2018  1.22   jeremy 	/* This array is traditionally named "Sysmap" */
   2019   1.7      gwr 	pte = &kernCbase[pte_idx];
   2020   1.7      gwr 
   2021   1.7      gwr 	if (MMU_VALID_DT(*pte)) {
   2022   1.1      gwr 		was_valid = TRUE;
   2023   1.7      gwr 		/*
   2024  1.32      gwr 		 * If the PTE already maps a different
   2025  1.32      gwr 		 * physical address, umap and pv_unlink.
   2026  1.24   jeremy 		 */
   2027  1.24   jeremy 		old_pa = MMU_PTE_PA(*pte);
   2028  1.32      gwr 		if (pa != old_pa)
   2029  1.32      gwr 			pmap_remove_pte(pte);
   2030  1.32      gwr 		else {
   2031  1.24   jeremy 		    /*
   2032  1.32      gwr 		     * Old PA and new PA are the same.  No need to
   2033  1.32      gwr 		     * relink the mapping within the PV list.
   2034  1.24   jeremy 		     */
   2035  1.24   jeremy 		     insert = FALSE;
   2036   1.8      gwr 
   2037   1.7      gwr 		    /*
   2038  1.24   jeremy 		     * Save any mod/ref bits on the PTE.
   2039   1.7      gwr 		     */
   2040  1.24   jeremy 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2041   1.7      gwr 		}
   2042   1.7      gwr 	} else {
   2043   1.8      gwr 		pte->attr.raw = MMU_DT_INVALID;
   2044   1.7      gwr 		was_valid = FALSE;
   2045   1.7      gwr 	}
   2046   1.7      gwr 
   2047   1.7      gwr 	/*
   2048   1.8      gwr 	 * Map the page.  Being careful to preserve modified/referenced bits
   2049   1.8      gwr 	 * on the PTE.
   2050   1.7      gwr 	 */
   2051   1.7      gwr 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2052   1.1      gwr 
   2053   1.1      gwr 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2054   1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2055   1.7      gwr 	if (flags & PMAP_NC)
   2056   1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2057   1.8      gwr 	if (was_valid)
   2058   1.7      gwr 		TBIS(va);
   2059   1.1      gwr 
   2060   1.7      gwr 	/*
   2061   1.7      gwr 	 * Insert the PTE into the PV system, if need be.
   2062   1.7      gwr 	 */
   2063   1.7      gwr 	if (insert) {
   2064   1.7      gwr 		pv = pa2pv(pa);
   2065   1.7      gwr 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2066   1.7      gwr 		pv->pv_idx = pte_idx;
   2067   1.7      gwr 	}
   2068  1.34      gwr }
   2069  1.34      gwr 
   2070  1.49      chs void
   2071  1.49      chs pmap_kenter_pa(va, pa, prot)
   2072  1.49      chs 	vaddr_t va;
   2073  1.49      chs 	paddr_t pa;
   2074  1.49      chs 	vm_prot_t prot;
   2075  1.49      chs {
   2076  1.69      chs 	mmu_short_pte_t	*pte;
   2077  1.69      chs 
   2078  1.69      chs 	/* This array is traditionally named "Sysmap" */
   2079  1.69      chs 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
   2080  1.69      chs 
   2081  1.69      chs 	KASSERT(!MMU_VALID_DT(*pte));
   2082  1.69      chs 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2083  1.69      chs 	if (!(prot & VM_PROT_WRITE))
   2084  1.69      chs 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2085  1.49      chs }
   2086  1.49      chs 
   2087  1.49      chs void
   2088  1.49      chs pmap_kremove(va, len)
   2089  1.49      chs 	vaddr_t va;
   2090  1.49      chs 	vsize_t len;
   2091  1.49      chs {
   2092  1.69      chs 	int idx, eidx;
   2093  1.69      chs 
   2094  1.69      chs #ifdef	PMAP_DEBUG
   2095  1.69      chs 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2096  1.72  tsutsui 		panic("pmap_kremove: alignment");
   2097  1.69      chs #endif
   2098  1.69      chs 
   2099  1.69      chs 	idx  = m68k_btop(va - KERNBASE);
   2100  1.69      chs 	eidx = m68k_btop(va + len - KERNBASE);
   2101  1.69      chs 
   2102  1.69      chs 	while (idx < eidx) {
   2103  1.69      chs 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2104  1.69      chs 		TBIS(va);
   2105  1.69      chs 		va += NBPG;
   2106  1.49      chs 	}
   2107  1.49      chs }
   2108  1.49      chs 
   2109  1.35   jeremy /* pmap_map			INTERNAL
   2110  1.35   jeremy  **
   2111  1.35   jeremy  * Map a contiguous range of physical memory into a contiguous range of
   2112  1.35   jeremy  * the kernel virtual address space.
   2113  1.35   jeremy  *
   2114  1.35   jeremy  * Used for device mappings and early mapping of the kernel text/data/bss.
   2115  1.35   jeremy  * Returns the first virtual address beyond the end of the range.
   2116  1.34      gwr  */
   2117  1.69      chs vaddr_t
   2118  1.34      gwr pmap_map(va, pa, endpa, prot)
   2119  1.69      chs 	vaddr_t	va;
   2120  1.69      chs 	paddr_t	pa;
   2121  1.69      chs 	paddr_t	endpa;
   2122  1.34      gwr 	int		prot;
   2123  1.34      gwr {
   2124  1.34      gwr 	int sz;
   2125  1.34      gwr 
   2126  1.34      gwr 	sz = endpa - pa;
   2127  1.34      gwr 	do {
   2128  1.34      gwr 		pmap_enter_kernel(va, pa, prot);
   2129  1.34      gwr 		va += NBPG;
   2130  1.34      gwr 		pa += NBPG;
   2131  1.34      gwr 		sz -= NBPG;
   2132  1.34      gwr 	} while (sz > 0);
   2133  1.73    chris 	pmap_update(pmap_kernel());
   2134  1.34      gwr 	return(va);
   2135   1.1      gwr }
   2136   1.1      gwr 
   2137   1.1      gwr /* pmap_protect			INTERFACE
   2138   1.1      gwr  **
   2139   1.7      gwr  * Apply the given protection to the given virtual address range within
   2140   1.1      gwr  * the given map.
   2141   1.1      gwr  *
   2142   1.1      gwr  * It is ok for the protection applied to be stronger than what is
   2143   1.1      gwr  * specified.  We use this to our advantage when the given map has no
   2144   1.7      gwr  * mapping for the virtual address.  By skipping a page when this
   2145   1.1      gwr  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2146   1.1      gwr  * and therefore do not need to map the page just to apply a protection
   2147   1.1      gwr  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2148   1.7      gwr  *
   2149   1.7      gwr  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2150   1.7      gwr  *       setup, and then manual scrolling in the for() loop.
   2151   1.1      gwr  */
   2152   1.1      gwr void
   2153   1.7      gwr pmap_protect(pmap, startva, endva, prot)
   2154   1.1      gwr 	pmap_t pmap;
   2155  1.69      chs 	vaddr_t startva, endva;
   2156   1.1      gwr 	vm_prot_t prot;
   2157   1.1      gwr {
   2158   1.7      gwr 	boolean_t iscurpmap;
   2159   1.1      gwr 	int a_idx, b_idx, c_idx;
   2160   1.1      gwr 	a_tmgr_t *a_tbl;
   2161   1.1      gwr 	b_tmgr_t *b_tbl;
   2162   1.1      gwr 	c_tmgr_t *c_tbl;
   2163   1.1      gwr 	mmu_short_pte_t *pte;
   2164   1.1      gwr 
   2165   1.1      gwr 	if (pmap == pmap_kernel()) {
   2166   1.7      gwr 		pmap_protect_kernel(startva, endva, prot);
   2167   1.1      gwr 		return;
   2168   1.1      gwr 	}
   2169   1.1      gwr 
   2170  1.11   jeremy 	/*
   2171  1.12   jeremy 	 * In this particular pmap implementation, there are only three
   2172  1.12   jeremy 	 * types of memory protection: 'all' (read/write/execute),
   2173  1.12   jeremy 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2174  1.12   jeremy 	 * It is not possible for us to treat 'executable' as a separate
   2175  1.12   jeremy 	 * protection type.  Therefore, protection requests that seek to
   2176  1.12   jeremy 	 * remove execute permission while retaining read or write, and those
   2177  1.12   jeremy 	 * that make little sense (write-only for example) are ignored.
   2178  1.11   jeremy 	 */
   2179  1.12   jeremy 	switch (prot) {
   2180  1.12   jeremy 		case VM_PROT_NONE:
   2181  1.12   jeremy 			/*
   2182  1.12   jeremy 			 * A request to apply the protection code of
   2183  1.12   jeremy 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2184  1.12   jeremy 			 */
   2185  1.12   jeremy 			pmap_remove(pmap, startva, endva);
   2186  1.12   jeremy 			return;
   2187  1.12   jeremy 		case	VM_PROT_EXECUTE:
   2188  1.12   jeremy 		case	VM_PROT_READ:
   2189  1.12   jeremy 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2190  1.12   jeremy 			/* continue */
   2191  1.12   jeremy 			break;
   2192  1.12   jeremy 		case	VM_PROT_WRITE:
   2193  1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_READ:
   2194  1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2195  1.12   jeremy 		case	VM_PROT_ALL:
   2196  1.12   jeremy 			/* None of these should happen in a sane system. */
   2197  1.12   jeremy 			return;
   2198  1.11   jeremy 	}
   2199  1.11   jeremy 
   2200  1.11   jeremy 	/*
   2201  1.11   jeremy 	 * If the pmap has no A table, it has no mappings and therefore
   2202  1.11   jeremy 	 * there is nothing to protect.
   2203  1.11   jeremy 	 */
   2204  1.11   jeremy 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2205  1.11   jeremy 		return;
   2206  1.11   jeremy 
   2207  1.11   jeremy 	a_idx = MMU_TIA(startva);
   2208  1.11   jeremy 	b_idx = MMU_TIB(startva);
   2209  1.11   jeremy 	c_idx = MMU_TIC(startva);
   2210  1.11   jeremy 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2211  1.11   jeremy 
   2212   1.7      gwr 	iscurpmap = (pmap == current_pmap());
   2213  1.11   jeremy 	while (startva < endva) {
   2214  1.11   jeremy 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2215  1.11   jeremy 		  if (b_tbl == NULL) {
   2216  1.11   jeremy 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2217  1.69      chs 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2218  1.69      chs 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2219  1.11   jeremy 		  }
   2220  1.11   jeremy 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2221  1.11   jeremy 		    if (c_tbl == NULL) {
   2222  1.11   jeremy 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2223  1.69      chs 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2224  1.69      chs 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2225  1.11   jeremy 		    }
   2226  1.11   jeremy 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2227  1.11   jeremy 		      pte = &c_tbl->ct_dtbl[c_idx];
   2228  1.12   jeremy 		      /* make the mapping read-only */
   2229  1.12   jeremy 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2230  1.11   jeremy 		      /*
   2231  1.11   jeremy 		       * If we just modified the current address space,
   2232  1.11   jeremy 		       * flush any translations for the modified page from
   2233  1.11   jeremy 		       * the translation cache and any data from it in the
   2234  1.11   jeremy 		       * data cache.
   2235  1.11   jeremy 		       */
   2236  1.11   jeremy 		      if (iscurpmap)
   2237  1.11   jeremy 		          TBIS(startva);
   2238  1.11   jeremy 		    }
   2239  1.11   jeremy 		    startva += NBPG;
   2240   1.1      gwr 
   2241  1.11   jeremy 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2242  1.11   jeremy 		      c_tbl = NULL;
   2243  1.11   jeremy 		      c_idx = 0;
   2244  1.11   jeremy 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2245  1.11   jeremy 		        b_tbl = NULL;
   2246  1.11   jeremy 		        b_idx = 0;
   2247  1.11   jeremy 		      }
   2248  1.11   jeremy 		    }
   2249  1.11   jeremy 		  } else { /* C table wasn't valid */
   2250  1.11   jeremy 		    c_tbl = NULL;
   2251  1.11   jeremy 		    c_idx = 0;
   2252  1.11   jeremy 		    startva += MMU_TIB_RANGE;
   2253  1.11   jeremy 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2254  1.11   jeremy 		      b_tbl = NULL;
   2255  1.11   jeremy 		      b_idx = 0;
   2256  1.11   jeremy 		    }
   2257  1.11   jeremy 		  } /* C table */
   2258  1.11   jeremy 		} else { /* B table wasn't valid */
   2259  1.11   jeremy 		  b_tbl = NULL;
   2260  1.11   jeremy 		  b_idx = 0;
   2261  1.11   jeremy 		  startva += MMU_TIA_RANGE;
   2262  1.11   jeremy 		  a_idx++;
   2263  1.11   jeremy 		} /* B table */
   2264   1.1      gwr 	}
   2265   1.1      gwr }
   2266   1.1      gwr 
   2267   1.1      gwr /* pmap_protect_kernel			INTERNAL
   2268   1.1      gwr  **
   2269   1.7      gwr  * Apply the given protection code to a kernel address range.
   2270   1.1      gwr  */
   2271   1.1      gwr void
   2272   1.7      gwr pmap_protect_kernel(startva, endva, prot)
   2273  1.69      chs 	vaddr_t startva, endva;
   2274   1.1      gwr 	vm_prot_t prot;
   2275   1.1      gwr {
   2276  1.69      chs 	vaddr_t va;
   2277   1.1      gwr 	mmu_short_pte_t *pte;
   2278   1.1      gwr 
   2279  1.25    veego 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2280   1.7      gwr 	for (va = startva; va < endva; va += NBPG, pte++) {
   2281   1.7      gwr 		if (MMU_VALID_DT(*pte)) {
   2282   1.7      gwr 		    switch (prot) {
   2283   1.7      gwr 		        case VM_PROT_ALL:
   2284   1.7      gwr 		            break;
   2285   1.7      gwr 		        case VM_PROT_EXECUTE:
   2286   1.7      gwr 		        case VM_PROT_READ:
   2287   1.7      gwr 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2288   1.7      gwr 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2289   1.7      gwr 		            break;
   2290   1.7      gwr 		        case VM_PROT_NONE:
   2291   1.7      gwr 		            /* this is an alias for 'pmap_remove_kernel' */
   2292   1.7      gwr 		            pmap_remove_pte(pte);
   2293   1.7      gwr 		            break;
   2294   1.7      gwr 		        default:
   2295   1.7      gwr 		            break;
   2296   1.7      gwr 		    }
   2297   1.7      gwr 		    /*
   2298   1.7      gwr 		     * since this is the kernel, immediately flush any cached
   2299   1.7      gwr 		     * descriptors for this address.
   2300   1.7      gwr 		     */
   2301   1.7      gwr 		    TBIS(va);
   2302   1.1      gwr 		}
   2303   1.1      gwr 	}
   2304   1.1      gwr }
   2305   1.1      gwr 
   2306  1.47  thorpej /* pmap_unwire				INTERFACE
   2307   1.1      gwr  **
   2308  1.47  thorpej  * Clear the wired attribute of the specified page.
   2309   1.1      gwr  *
   2310   1.1      gwr  * This function is called from vm_fault.c to unwire
   2311  1.47  thorpej  * a mapping.
   2312   1.1      gwr  */
   2313   1.1      gwr void
   2314  1.47  thorpej pmap_unwire(pmap, va)
   2315   1.1      gwr 	pmap_t pmap;
   2316  1.69      chs 	vaddr_t va;
   2317   1.1      gwr {
   2318   1.1      gwr 	int a_idx, b_idx, c_idx;
   2319   1.1      gwr 	a_tmgr_t *a_tbl;
   2320   1.1      gwr 	b_tmgr_t *b_tbl;
   2321   1.1      gwr 	c_tmgr_t *c_tbl;
   2322   1.1      gwr 	mmu_short_pte_t *pte;
   2323   1.1      gwr 
   2324   1.1      gwr 	/* Kernel mappings always remain wired. */
   2325   1.1      gwr 	if (pmap == pmap_kernel())
   2326   1.1      gwr 		return;
   2327   1.1      gwr 
   2328   1.7      gwr 	/*
   2329   1.7      gwr 	 * Walk through the tables.  If the walk terminates without
   2330   1.1      gwr 	 * a valid PTE then the address wasn't wired in the first place.
   2331   1.1      gwr 	 * Return immediately.
   2332   1.1      gwr 	 */
   2333   1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2334   1.1      gwr 		&b_idx, &c_idx) == FALSE)
   2335   1.1      gwr 		return;
   2336   1.1      gwr 
   2337   1.1      gwr 
   2338   1.1      gwr 	/* Is the PTE wired?  If not, return. */
   2339   1.1      gwr 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2340   1.1      gwr 		return;
   2341   1.1      gwr 
   2342   1.1      gwr 	/* Remove the wiring bit. */
   2343   1.1      gwr 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2344   1.1      gwr 
   2345   1.7      gwr 	/*
   2346   1.7      gwr 	 * Decrement the wired entry count in the C table.
   2347   1.1      gwr 	 * If it reaches zero the following things happen:
   2348   1.1      gwr 	 * 1. The table no longer has any wired entries and is considered
   2349   1.1      gwr 	 *    unwired.
   2350   1.1      gwr 	 * 2. It is placed on the available queue.
   2351   1.1      gwr 	 * 3. The parent table's wired entry count is decremented.
   2352   1.1      gwr 	 * 4. If it reaches zero, this process repeats at step 1 and
   2353   1.1      gwr 	 *    stops at after reaching the A table.
   2354   1.1      gwr 	 */
   2355   1.7      gwr 	if (--c_tbl->ct_wcnt == 0) {
   2356   1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2357   1.7      gwr 		if (--b_tbl->bt_wcnt == 0) {
   2358   1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2359   1.7      gwr 			if (--a_tbl->at_wcnt == 0) {
   2360   1.1      gwr 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2361   1.1      gwr 			}
   2362   1.1      gwr 		}
   2363   1.1      gwr 	}
   2364   1.1      gwr }
   2365   1.1      gwr 
   2366   1.1      gwr /* pmap_copy				INTERFACE
   2367   1.1      gwr  **
   2368   1.1      gwr  * Copy the mappings of a range of addresses in one pmap, into
   2369   1.1      gwr  * the destination address of another.
   2370   1.1      gwr  *
   2371   1.1      gwr  * This routine is advisory.  Should we one day decide that MMU tables
   2372   1.1      gwr  * may be shared by more than one pmap, this function should be used to
   2373   1.1      gwr  * link them together.  Until that day however, we do nothing.
   2374   1.1      gwr  */
   2375   1.1      gwr void
   2376   1.1      gwr pmap_copy(pmap_a, pmap_b, dst, len, src)
   2377   1.1      gwr 	pmap_t pmap_a, pmap_b;
   2378  1.69      chs 	vaddr_t dst;
   2379  1.69      chs 	vsize_t len;
   2380  1.69      chs 	vaddr_t src;
   2381   1.1      gwr {
   2382   1.1      gwr 	/* not implemented. */
   2383   1.1      gwr }
   2384   1.1      gwr 
   2385   1.1      gwr /* pmap_copy_page			INTERFACE
   2386   1.1      gwr  **
   2387   1.1      gwr  * Copy the contents of one physical page into another.
   2388   1.1      gwr  *
   2389   1.7      gwr  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2390  1.24   jeremy  * to map the two specified physical pages into the kernel address space.
   2391   1.7      gwr  *
   2392   1.7      gwr  * Note: We could use the transparent translation registers to make the
   2393   1.7      gwr  * mappings.  If we do so, be sure to disable interrupts before using them.
   2394   1.1      gwr  */
   2395   1.1      gwr void
   2396  1.24   jeremy pmap_copy_page(srcpa, dstpa)
   2397  1.69      chs 	paddr_t srcpa, dstpa;
   2398   1.1      gwr {
   2399  1.69      chs 	vaddr_t srcva, dstva;
   2400  1.23   jeremy 	int s;
   2401  1.24   jeremy 
   2402  1.24   jeremy 	srcva = tmp_vpages[0];
   2403  1.24   jeremy 	dstva = tmp_vpages[1];
   2404   1.1      gwr 
   2405  1.58  thorpej 	s = splvm();
   2406  1.69      chs #ifdef DIAGNOSTIC
   2407  1.24   jeremy 	if (tmp_vpages_inuse++)
   2408  1.24   jeremy 		panic("pmap_copy_page: temporary vpages are in use.");
   2409  1.69      chs #endif
   2410  1.23   jeremy 
   2411  1.23   jeremy 	/* Map pages as non-cacheable to avoid cache polution? */
   2412  1.69      chs 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
   2413  1.69      chs 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2414   1.7      gwr 
   2415  1.24   jeremy 	/* Hand-optimized version of bcopy(src, dst, NBPG) */
   2416  1.24   jeremy 	copypage((char *) srcva, (char *) dstva);
   2417  1.24   jeremy 
   2418  1.69      chs 	pmap_kremove(srcva, NBPG);
   2419  1.69      chs 	pmap_kremove(dstva, NBPG);
   2420  1.24   jeremy 
   2421  1.69      chs #ifdef DIAGNOSTIC
   2422  1.24   jeremy 	--tmp_vpages_inuse;
   2423  1.69      chs #endif
   2424  1.23   jeremy 	splx(s);
   2425   1.1      gwr }
   2426   1.1      gwr 
   2427   1.1      gwr /* pmap_zero_page			INTERFACE
   2428   1.1      gwr  **
   2429   1.1      gwr  * Zero the contents of the specified physical page.
   2430   1.1      gwr  *
   2431   1.7      gwr  * Uses one of the virtual pages allocated in pmap_boostrap()
   2432  1.24   jeremy  * to map the specified page into the kernel address space.
   2433   1.1      gwr  */
   2434   1.1      gwr void
   2435  1.24   jeremy pmap_zero_page(dstpa)
   2436  1.69      chs 	paddr_t dstpa;
   2437   1.1      gwr {
   2438  1.69      chs 	vaddr_t dstva;
   2439  1.23   jeremy 	int s;
   2440  1.23   jeremy 
   2441  1.24   jeremy 	dstva = tmp_vpages[1];
   2442  1.58  thorpej 	s = splvm();
   2443  1.69      chs #ifdef DIAGNOSTIC
   2444  1.26   jeremy 	if (tmp_vpages_inuse++)
   2445  1.24   jeremy 		panic("pmap_zero_page: temporary vpages are in use.");
   2446  1.69      chs #endif
   2447  1.24   jeremy 
   2448  1.24   jeremy 	/* The comments in pmap_copy_page() above apply here also. */
   2449  1.69      chs 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2450  1.24   jeremy 
   2451  1.24   jeremy 	/* Hand-optimized version of bzero(ptr, NBPG) */
   2452  1.24   jeremy 	zeropage((char *) dstva);
   2453   1.1      gwr 
   2454  1.69      chs 	pmap_kremove(dstva, NBPG);
   2455  1.69      chs #ifdef DIAGNOSTIC
   2456  1.24   jeremy 	--tmp_vpages_inuse;
   2457  1.69      chs #endif
   2458  1.23   jeremy 	splx(s);
   2459   1.1      gwr }
   2460   1.1      gwr 
   2461   1.1      gwr /* pmap_collect			INTERFACE
   2462   1.1      gwr  **
   2463   1.7      gwr  * Called from the VM system when we are about to swap out
   2464   1.7      gwr  * the process using this pmap.  This should give up any
   2465   1.7      gwr  * resources held here, including all its MMU tables.
   2466   1.1      gwr  */
   2467   1.1      gwr void
   2468   1.1      gwr pmap_collect(pmap)
   2469   1.1      gwr 	pmap_t pmap;
   2470   1.1      gwr {
   2471   1.7      gwr 	/* XXX - todo... */
   2472   1.1      gwr }
   2473   1.1      gwr 
   2474   1.1      gwr /* pmap_create			INTERFACE
   2475   1.1      gwr  **
   2476   1.1      gwr  * Create and return a pmap structure.
   2477   1.1      gwr  */
   2478   1.1      gwr pmap_t
   2479  1.49      chs pmap_create()
   2480   1.1      gwr {
   2481   1.1      gwr 	pmap_t	pmap;
   2482   1.1      gwr 
   2483  1.56  tsutsui 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2484   1.1      gwr 	pmap_pinit(pmap);
   2485   1.1      gwr 	return pmap;
   2486   1.1      gwr }
   2487   1.1      gwr 
   2488   1.1      gwr /* pmap_pinit			INTERNAL
   2489   1.1      gwr  **
   2490   1.1      gwr  * Initialize a pmap structure.
   2491   1.1      gwr  */
   2492   1.1      gwr void
   2493   1.1      gwr pmap_pinit(pmap)
   2494   1.1      gwr 	pmap_t pmap;
   2495   1.1      gwr {
   2496  1.71  tsutsui 	memset(pmap, 0, sizeof(struct pmap));
   2497   1.7      gwr 	pmap->pm_a_tmgr = NULL;
   2498   1.7      gwr 	pmap->pm_a_phys = kernAphys;
   2499  1.55  tsutsui 	pmap->pm_refcount = 1;
   2500  1.55  tsutsui 	simple_lock_init(&pmap->pm_lock);
   2501   1.1      gwr }
   2502   1.1      gwr 
   2503   1.1      gwr /* pmap_release				INTERFACE
   2504   1.1      gwr  **
   2505   1.1      gwr  * Release any resources held by the given pmap.
   2506   1.1      gwr  *
   2507   1.1      gwr  * This is the reverse analog to pmap_pinit.  It does not
   2508   1.1      gwr  * necessarily mean for the pmap structure to be deallocated,
   2509   1.1      gwr  * as in pmap_destroy.
   2510   1.1      gwr  */
   2511   1.1      gwr void
   2512   1.1      gwr pmap_release(pmap)
   2513   1.1      gwr 	pmap_t pmap;
   2514   1.1      gwr {
   2515   1.7      gwr 	/*
   2516   1.7      gwr 	 * As long as the pmap contains no mappings,
   2517   1.1      gwr 	 * which always should be the case whenever
   2518   1.1      gwr 	 * this function is called, there really should
   2519   1.1      gwr 	 * be nothing to do.
   2520   1.1      gwr 	 */
   2521   1.1      gwr #ifdef	PMAP_DEBUG
   2522   1.1      gwr 	if (pmap == pmap_kernel())
   2523   1.9      gwr 		panic("pmap_release: kernel pmap");
   2524   1.1      gwr #endif
   2525   1.9      gwr 	/*
   2526   1.9      gwr 	 * XXX - If this pmap has an A table, give it back.
   2527   1.9      gwr 	 * The pmap SHOULD be empty by now, and pmap_remove
   2528   1.9      gwr 	 * should have already given back the A table...
   2529   1.9      gwr 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2530   1.9      gwr 	 * at this point, which means some mapping was not
   2531   1.9      gwr 	 * removed when it should have been. -gwr
   2532   1.9      gwr 	 */
   2533   1.7      gwr 	if (pmap->pm_a_tmgr != NULL) {
   2534   1.9      gwr 		/* First make sure we are not using it! */
   2535   1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2536   1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   2537   1.9      gwr 			loadcrp(&kernel_crp);
   2538   1.9      gwr 		}
   2539  1.13      gwr #ifdef	PMAP_DEBUG /* XXX - todo! */
   2540  1.13      gwr 		/* XXX - Now complain... */
   2541  1.13      gwr 		printf("pmap_release: still have table\n");
   2542  1.13      gwr 		Debugger();
   2543  1.13      gwr #endif
   2544   1.7      gwr 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2545   1.7      gwr 		pmap->pm_a_tmgr = NULL;
   2546   1.7      gwr 		pmap->pm_a_phys = kernAphys;
   2547   1.7      gwr 	}
   2548   1.1      gwr }
   2549   1.1      gwr 
   2550   1.1      gwr /* pmap_reference			INTERFACE
   2551   1.1      gwr  **
   2552   1.1      gwr  * Increment the reference count of a pmap.
   2553   1.1      gwr  */
   2554   1.1      gwr void
   2555   1.1      gwr pmap_reference(pmap)
   2556   1.1      gwr 	pmap_t pmap;
   2557   1.1      gwr {
   2558  1.55  tsutsui 	pmap_lock(pmap);
   2559  1.55  tsutsui 	pmap_add_ref(pmap);
   2560  1.55  tsutsui 	pmap_unlock(pmap);
   2561   1.1      gwr }
   2562   1.1      gwr 
   2563   1.1      gwr /* pmap_dereference			INTERNAL
   2564   1.1      gwr  **
   2565   1.1      gwr  * Decrease the reference count on the given pmap
   2566   1.1      gwr  * by one and return the current count.
   2567   1.1      gwr  */
   2568   1.1      gwr int
   2569   1.1      gwr pmap_dereference(pmap)
   2570   1.1      gwr 	pmap_t pmap;
   2571   1.1      gwr {
   2572   1.1      gwr 	int rtn;
   2573   1.1      gwr 
   2574  1.55  tsutsui 	pmap_lock(pmap);
   2575  1.55  tsutsui 	rtn = pmap_del_ref(pmap);
   2576  1.55  tsutsui 	pmap_unlock(pmap);
   2577   1.1      gwr 
   2578   1.1      gwr 	return rtn;
   2579   1.1      gwr }
   2580   1.1      gwr 
   2581   1.1      gwr /* pmap_destroy			INTERFACE
   2582   1.1      gwr  **
   2583   1.1      gwr  * Decrement a pmap's reference count and delete
   2584   1.1      gwr  * the pmap if it becomes zero.  Will be called
   2585   1.1      gwr  * only after all mappings have been removed.
   2586   1.1      gwr  */
   2587   1.1      gwr void
   2588   1.1      gwr pmap_destroy(pmap)
   2589   1.1      gwr 	pmap_t pmap;
   2590   1.1      gwr {
   2591   1.1      gwr 	if (pmap_dereference(pmap) == 0) {
   2592   1.1      gwr 		pmap_release(pmap);
   2593  1.56  tsutsui 		pool_put(&pmap_pmap_pool, pmap);
   2594   1.1      gwr 	}
   2595   1.1      gwr }
   2596   1.1      gwr 
   2597   1.1      gwr /* pmap_is_referenced			INTERFACE
   2598   1.1      gwr  **
   2599   1.1      gwr  * Determine if the given physical page has been
   2600   1.1      gwr  * referenced (read from [or written to.])
   2601   1.1      gwr  */
   2602   1.1      gwr boolean_t
   2603  1.49      chs pmap_is_referenced(pg)
   2604  1.49      chs 	struct vm_page *pg;
   2605   1.1      gwr {
   2606  1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2607   1.1      gwr 	pv_t      *pv;
   2608  1.69      chs 	int       idx;
   2609   1.1      gwr 
   2610   1.7      gwr 	/*
   2611   1.7      gwr 	 * Check the flags on the pv head.  If they are set,
   2612   1.1      gwr 	 * return immediately.  Otherwise a search must be done.
   2613   1.7      gwr 	 */
   2614  1.69      chs 
   2615  1.69      chs 	pv = pa2pv(pa);
   2616   1.1      gwr 	if (pv->pv_flags & PV_FLAGS_USED)
   2617   1.1      gwr 		return TRUE;
   2618  1.32      gwr 
   2619  1.32      gwr 	/*
   2620  1.32      gwr 	 * Search through all pv elements pointing
   2621  1.32      gwr 	 * to this page and query their reference bits
   2622  1.32      gwr 	 */
   2623  1.32      gwr 
   2624  1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2625  1.32      gwr 		if (MMU_PTE_USED(kernCbase[idx])) {
   2626  1.32      gwr 			return TRUE;
   2627  1.32      gwr 		}
   2628   1.7      gwr 	}
   2629   1.1      gwr 	return FALSE;
   2630   1.1      gwr }
   2631   1.1      gwr 
   2632   1.1      gwr /* pmap_is_modified			INTERFACE
   2633   1.1      gwr  **
   2634   1.1      gwr  * Determine if the given physical page has been
   2635   1.1      gwr  * modified (written to.)
   2636   1.1      gwr  */
   2637   1.1      gwr boolean_t
   2638  1.49      chs pmap_is_modified(pg)
   2639  1.49      chs 	struct vm_page *pg;
   2640   1.1      gwr {
   2641  1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2642   1.1      gwr 	pv_t      *pv;
   2643  1.69      chs 	int       idx;
   2644   1.1      gwr 
   2645   1.1      gwr 	/* see comments in pmap_is_referenced() */
   2646   1.1      gwr 	pv = pa2pv(pa);
   2647  1.32      gwr 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2648   1.1      gwr 		return TRUE;
   2649  1.32      gwr 
   2650  1.32      gwr 	for (idx = pv->pv_idx;
   2651  1.32      gwr 		 idx != PVE_EOL;
   2652  1.32      gwr 		 idx = pvebase[idx].pve_next) {
   2653  1.32      gwr 
   2654  1.32      gwr 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2655  1.32      gwr 			return TRUE;
   2656  1.32      gwr 		}
   2657   1.7      gwr 	}
   2658   1.7      gwr 
   2659   1.1      gwr 	return FALSE;
   2660   1.1      gwr }
   2661   1.1      gwr 
   2662   1.1      gwr /* pmap_page_protect			INTERFACE
   2663   1.1      gwr  **
   2664   1.1      gwr  * Applies the given protection to all mappings to the given
   2665   1.1      gwr  * physical page.
   2666   1.1      gwr  */
   2667   1.1      gwr void
   2668  1.49      chs pmap_page_protect(pg, prot)
   2669  1.49      chs 	struct vm_page *pg;
   2670   1.1      gwr 	vm_prot_t prot;
   2671   1.1      gwr {
   2672  1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2673   1.1      gwr 	pv_t      *pv;
   2674  1.69      chs 	int       idx;
   2675  1.69      chs 	vaddr_t va;
   2676   1.1      gwr 	struct mmu_short_pte_struct *pte;
   2677   1.8      gwr 	c_tmgr_t  *c_tbl;
   2678   1.8      gwr 	pmap_t    pmap, curpmap;
   2679   1.1      gwr 
   2680   1.8      gwr 	curpmap = current_pmap();
   2681   1.1      gwr 	pv = pa2pv(pa);
   2682  1.32      gwr 
   2683  1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2684   1.7      gwr 		pte = &kernCbase[idx];
   2685   1.1      gwr 		switch (prot) {
   2686   1.1      gwr 			case VM_PROT_ALL:
   2687   1.1      gwr 				/* do nothing */
   2688   1.1      gwr 				break;
   2689   1.7      gwr 			case VM_PROT_EXECUTE:
   2690   1.1      gwr 			case VM_PROT_READ:
   2691   1.1      gwr 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2692   1.8      gwr 				/*
   2693   1.8      gwr 				 * Determine the virtual address mapped by
   2694   1.8      gwr 				 * the PTE and flush ATC entries if necessary.
   2695   1.8      gwr 				 */
   2696   1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2697  1.69      chs 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2698   1.8      gwr 				if (pmap == curpmap || pmap == pmap_kernel())
   2699   1.8      gwr 					TBIS(va);
   2700   1.1      gwr 				break;
   2701   1.1      gwr 			case VM_PROT_NONE:
   2702   1.7      gwr 				/* Save the mod/ref bits. */
   2703   1.7      gwr 				pv->pv_flags |= pte->attr.raw;
   2704   1.7      gwr 				/* Invalidate the PTE. */
   2705   1.7      gwr 				pte->attr.raw = MMU_DT_INVALID;
   2706   1.8      gwr 
   2707   1.8      gwr 				/*
   2708   1.8      gwr 				 * Update table counts.  And flush ATC entries
   2709   1.8      gwr 				 * if necessary.
   2710   1.8      gwr 				 */
   2711   1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2712   1.8      gwr 
   2713   1.8      gwr 				/*
   2714   1.8      gwr 				 * If the PTE belongs to the kernel map,
   2715   1.8      gwr 				 * be sure to flush the page it maps.
   2716   1.8      gwr 				 */
   2717   1.8      gwr 				if (pmap == pmap_kernel()) {
   2718   1.8      gwr 					TBIS(va);
   2719   1.8      gwr 				} else {
   2720   1.8      gwr 					/*
   2721   1.8      gwr 					 * The PTE belongs to a user map.
   2722   1.8      gwr 					 * update the entry count in the C
   2723   1.8      gwr 					 * table to which it belongs and flush
   2724   1.8      gwr 					 * the ATC if the mapping belongs to
   2725   1.8      gwr 					 * the current pmap.
   2726   1.8      gwr 					 */
   2727   1.8      gwr 					c_tbl->ct_ecnt--;
   2728   1.8      gwr 					if (pmap == curpmap)
   2729   1.8      gwr 						TBIS(va);
   2730   1.8      gwr 				}
   2731   1.1      gwr 				break;
   2732   1.1      gwr 			default:
   2733   1.1      gwr 				break;
   2734   1.1      gwr 		}
   2735   1.1      gwr 	}
   2736   1.8      gwr 
   2737   1.8      gwr 	/*
   2738   1.8      gwr 	 * If the protection code indicates that all mappings to the page
   2739   1.8      gwr 	 * be removed, truncate the PV list to zero entries.
   2740   1.8      gwr 	 */
   2741   1.7      gwr 	if (prot == VM_PROT_NONE)
   2742   1.7      gwr 		pv->pv_idx = PVE_EOL;
   2743   1.1      gwr }
   2744   1.1      gwr 
   2745   1.7      gwr /* pmap_get_pteinfo		INTERNAL
   2746   1.1      gwr  **
   2747   1.7      gwr  * Called internally to find the pmap and virtual address within that
   2748   1.8      gwr  * map to which the pte at the given index maps.  Also includes the PTE's C
   2749   1.8      gwr  * table manager.
   2750   1.1      gwr  *
   2751   1.7      gwr  * Returns the pmap in the argument provided, and the virtual address
   2752   1.7      gwr  * by return value.
   2753   1.1      gwr  */
   2754  1.69      chs vaddr_t
   2755   1.8      gwr pmap_get_pteinfo(idx, pmap, tbl)
   2756   1.8      gwr 	u_int idx;
   2757   1.7      gwr 	pmap_t *pmap;
   2758   1.7      gwr 	c_tmgr_t **tbl;
   2759   1.1      gwr {
   2760  1.69      chs 	vaddr_t     va = 0;
   2761   1.1      gwr 
   2762   1.7      gwr 	/*
   2763   1.7      gwr 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2764   1.1      gwr 	 */
   2765   1.8      gwr 	if (idx >= NUM_KERN_PTES) {
   2766   1.7      gwr 		/*
   2767   1.7      gwr 		 * The PTE belongs to a user mapping.
   2768   1.7      gwr 		 */
   2769   1.8      gwr 		/* XXX: Would like an inline for this to validate idx... */
   2770  1.26   jeremy 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2771  1.26   jeremy 
   2772  1.26   jeremy 		*pmap = (*tbl)->ct_pmap;
   2773  1.26   jeremy 		/*
   2774  1.26   jeremy 		 * To find the va to which the PTE maps, we first take
   2775  1.26   jeremy 		 * the table's base virtual address mapping which is stored
   2776  1.26   jeremy 		 * in ct_va.  We then increment this address by a page for
   2777  1.26   jeremy 		 * every slot skipped until we reach the PTE.
   2778  1.26   jeremy 		 */
   2779  1.26   jeremy 		va =    (*tbl)->ct_va;
   2780  1.26   jeremy 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2781   1.7      gwr 	} else {
   2782   1.7      gwr 		/*
   2783   1.7      gwr 		 * The PTE belongs to the kernel map.
   2784   1.7      gwr 		 */
   2785   1.8      gwr 		*pmap = pmap_kernel();
   2786   1.8      gwr 
   2787  1.25    veego 		va = m68k_ptob(idx);
   2788   1.7      gwr 		va += KERNBASE;
   2789   1.7      gwr 	}
   2790   1.7      gwr 
   2791   1.1      gwr 	return va;
   2792   1.1      gwr }
   2793   1.1      gwr 
   2794   1.1      gwr /* pmap_clear_modify			INTERFACE
   2795   1.1      gwr  **
   2796   1.1      gwr  * Clear the modification bit on the page at the specified
   2797   1.1      gwr  * physical address.
   2798   1.1      gwr  *
   2799   1.1      gwr  */
   2800  1.49      chs boolean_t
   2801  1.49      chs pmap_clear_modify(pg)
   2802  1.49      chs 	struct vm_page *pg;
   2803   1.1      gwr {
   2804  1.49      chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2805  1.49      chs 	boolean_t rv;
   2806  1.49      chs 
   2807  1.49      chs 	rv = pmap_is_modified(pg);
   2808   1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2809  1.49      chs 	return rv;
   2810   1.1      gwr }
   2811   1.1      gwr 
   2812   1.1      gwr /* pmap_clear_reference			INTERFACE
   2813   1.1      gwr  **
   2814   1.1      gwr  * Clear the referenced bit on the page at the specified
   2815   1.1      gwr  * physical address.
   2816   1.1      gwr  */
   2817  1.49      chs boolean_t
   2818  1.49      chs pmap_clear_reference(pg)
   2819  1.49      chs 	struct vm_page *pg;
   2820   1.1      gwr {
   2821  1.49      chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2822  1.49      chs 	boolean_t rv;
   2823  1.49      chs 
   2824  1.49      chs 	rv = pmap_is_referenced(pg);
   2825   1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2826  1.49      chs 	return rv;
   2827   1.1      gwr }
   2828   1.1      gwr 
   2829   1.1      gwr /* pmap_clear_pv			INTERNAL
   2830   1.1      gwr  **
   2831   1.1      gwr  * Clears the specified flag from the specified physical address.
   2832   1.1      gwr  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2833   1.1      gwr  *
   2834   1.1      gwr  * Flag is one of:
   2835   1.1      gwr  *   PV_FLAGS_MDFY - Page modified bit.
   2836   1.1      gwr  *   PV_FLAGS_USED - Page used (referenced) bit.
   2837   1.1      gwr  *
   2838   1.1      gwr  * This routine must not only clear the flag on the pv list
   2839   1.1      gwr  * head.  It must also clear the bit on every pte in the pv
   2840   1.1      gwr  * list associated with the address.
   2841   1.1      gwr  */
   2842   1.1      gwr void
   2843   1.1      gwr pmap_clear_pv(pa, flag)
   2844  1.69      chs 	paddr_t pa;
   2845   1.1      gwr 	int flag;
   2846   1.1      gwr {
   2847   1.1      gwr 	pv_t      *pv;
   2848  1.69      chs 	int       idx;
   2849  1.69      chs 	vaddr_t   va;
   2850   1.7      gwr 	pmap_t          pmap;
   2851   1.1      gwr 	mmu_short_pte_t *pte;
   2852   1.7      gwr 	c_tmgr_t        *c_tbl;
   2853   1.1      gwr 
   2854   1.1      gwr 	pv = pa2pv(pa);
   2855   1.1      gwr 	pv->pv_flags &= ~(flag);
   2856  1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2857   1.7      gwr 		pte = &kernCbase[idx];
   2858   1.1      gwr 		pte->attr.raw &= ~(flag);
   2859  1.69      chs 
   2860   1.7      gwr 		/*
   2861   1.7      gwr 		 * The MC68030 MMU will not set the modified or
   2862   1.7      gwr 		 * referenced bits on any MMU tables for which it has
   2863   1.7      gwr 		 * a cached descriptor with its modify bit set.  To insure
   2864   1.7      gwr 		 * that it will modify these bits on the PTE during the next
   2865   1.7      gwr 		 * time it is written to or read from, we must flush it from
   2866   1.7      gwr 		 * the ATC.
   2867   1.7      gwr 		 *
   2868   1.7      gwr 		 * Ordinarily it is only necessary to flush the descriptor
   2869   1.7      gwr 		 * if it is used in the current address space.  But since I
   2870   1.7      gwr 		 * am not sure that there will always be a notion of
   2871   1.7      gwr 		 * 'the current address space' when this function is called,
   2872   1.7      gwr 		 * I will skip the test and always flush the address.  It
   2873   1.7      gwr 		 * does no harm.
   2874   1.7      gwr 		 */
   2875  1.69      chs 
   2876   1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2877   1.7      gwr 		TBIS(va);
   2878   1.1      gwr 	}
   2879   1.1      gwr }
   2880   1.1      gwr 
   2881   1.1      gwr /* pmap_extract			INTERFACE
   2882   1.1      gwr  **
   2883   1.1      gwr  * Return the physical address mapped by the virtual address
   2884  1.48  thorpej  * in the specified pmap.
   2885   1.1      gwr  *
   2886   1.1      gwr  * Note: this function should also apply an exclusive lock
   2887   1.1      gwr  * on the pmap system during its duration.
   2888   1.1      gwr  */
   2889  1.48  thorpej boolean_t
   2890  1.48  thorpej pmap_extract(pmap, va, pap)
   2891  1.48  thorpej 	pmap_t pmap;
   2892  1.48  thorpej 	vaddr_t va;
   2893  1.48  thorpej 	paddr_t *pap;
   2894   1.1      gwr {
   2895   1.1      gwr 	int a_idx, b_idx, pte_idx;
   2896   1.1      gwr 	a_tmgr_t	*a_tbl;
   2897   1.1      gwr 	b_tmgr_t	*b_tbl;
   2898   1.1      gwr 	c_tmgr_t	*c_tbl;
   2899   1.1      gwr 	mmu_short_pte_t	*c_pte;
   2900   1.1      gwr 
   2901   1.1      gwr 	if (pmap == pmap_kernel())
   2902  1.48  thorpej 		return pmap_extract_kernel(va, pap);
   2903   1.1      gwr 
   2904   1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2905   1.7      gwr 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   2906  1.48  thorpej 		return FALSE;
   2907   1.1      gwr 
   2908   1.7      gwr 	if (!MMU_VALID_DT(*c_pte))
   2909  1.48  thorpej 		return FALSE;
   2910   1.7      gwr 
   2911  1.48  thorpej 	if (pap != NULL)
   2912  1.48  thorpej 		*pap = MMU_PTE_PA(*c_pte);
   2913  1.48  thorpej 	return (TRUE);
   2914   1.1      gwr }
   2915   1.1      gwr 
   2916   1.1      gwr /* pmap_extract_kernel		INTERNAL
   2917   1.1      gwr  **
   2918   1.8      gwr  * Extract a translation from the kernel address space.
   2919   1.1      gwr  */
   2920  1.48  thorpej boolean_t
   2921  1.48  thorpej pmap_extract_kernel(va, pap)
   2922  1.48  thorpej 	vaddr_t va;
   2923  1.48  thorpej 	paddr_t *pap;
   2924   1.1      gwr {
   2925   1.1      gwr 	mmu_short_pte_t *pte;
   2926   1.1      gwr 
   2927  1.25    veego 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   2928  1.48  thorpej 	if (!MMU_VALID_DT(*pte))
   2929  1.48  thorpej 		return (FALSE);
   2930  1.48  thorpej 	if (pap != NULL)
   2931  1.48  thorpej 		*pap = MMU_PTE_PA(*pte);
   2932  1.48  thorpej 	return (TRUE);
   2933   1.1      gwr }
   2934   1.1      gwr 
   2935   1.1      gwr /* pmap_remove_kernel		INTERNAL
   2936   1.1      gwr  **
   2937   1.1      gwr  * Remove the mapping of a range of virtual addresses from the kernel map.
   2938   1.9      gwr  * The arguments are already page-aligned.
   2939   1.1      gwr  */
   2940   1.1      gwr void
   2941   1.9      gwr pmap_remove_kernel(sva, eva)
   2942  1.69      chs 	vaddr_t sva;
   2943  1.69      chs 	vaddr_t eva;
   2944   1.1      gwr {
   2945   1.9      gwr 	int idx, eidx;
   2946   1.9      gwr 
   2947   1.9      gwr #ifdef	PMAP_DEBUG
   2948   1.9      gwr 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2949   1.9      gwr 		panic("pmap_remove_kernel: alignment");
   2950   1.9      gwr #endif
   2951   1.1      gwr 
   2952  1.25    veego 	idx  = m68k_btop(sva - KERNBASE);
   2953  1.25    veego 	eidx = m68k_btop(eva - KERNBASE);
   2954   1.9      gwr 
   2955  1.24   jeremy 	while (idx < eidx) {
   2956   1.9      gwr 		pmap_remove_pte(&kernCbase[idx++]);
   2957  1.24   jeremy 		TBIS(sva);
   2958  1.24   jeremy 		sva += NBPG;
   2959  1.24   jeremy 	}
   2960   1.1      gwr }
   2961   1.1      gwr 
   2962   1.1      gwr /* pmap_remove			INTERFACE
   2963   1.1      gwr  **
   2964   1.1      gwr  * Remove the mapping of a range of virtual addresses from the given pmap.
   2965   1.7      gwr  *
   2966   1.7      gwr  * If the range contains any wired entries, this function will probably create
   2967   1.7      gwr  * disaster.
   2968   1.1      gwr  */
   2969   1.1      gwr void
   2970   1.1      gwr pmap_remove(pmap, start, end)
   2971   1.1      gwr 	pmap_t pmap;
   2972  1.69      chs 	vaddr_t start;
   2973  1.69      chs 	vaddr_t end;
   2974   1.1      gwr {
   2975   1.7      gwr 
   2976   1.1      gwr 	if (pmap == pmap_kernel()) {
   2977   1.1      gwr 		pmap_remove_kernel(start, end);
   2978   1.1      gwr 		return;
   2979   1.1      gwr 	}
   2980   1.1      gwr 
   2981   1.7      gwr 	/*
   2982   1.7      gwr 	 * If the pmap doesn't have an A table of its own, it has no mappings
   2983   1.7      gwr 	 * that can be removed.
   2984   1.1      gwr 	 */
   2985   1.7      gwr 	if (pmap->pm_a_tmgr == NULL)
   2986   1.7      gwr 		return;
   2987   1.7      gwr 
   2988   1.7      gwr 	/*
   2989   1.7      gwr 	 * Remove the specified range from the pmap.  If the function
   2990   1.7      gwr 	 * returns true, the operation removed all the valid mappings
   2991   1.7      gwr 	 * in the pmap and freed its A table.  If this happened to the
   2992   1.7      gwr 	 * currently loaded pmap, the MMU root pointer must be reloaded
   2993   1.7      gwr 	 * with the default 'kernel' map.
   2994   1.7      gwr 	 */
   2995   1.7      gwr 	if (pmap_remove_a(pmap->pm_a_tmgr, start, end)) {
   2996   1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2997   1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   2998   1.9      gwr 			loadcrp(&kernel_crp);
   2999   1.9      gwr 			/* will do TLB flush below */
   3000   1.9      gwr 		}
   3001   1.7      gwr 		pmap->pm_a_tmgr = NULL;
   3002   1.7      gwr 		pmap->pm_a_phys = kernAphys;
   3003   1.1      gwr 	}
   3004   1.9      gwr 
   3005   1.9      gwr 	/*
   3006   1.9      gwr 	 * If we just modified the current address space,
   3007   1.9      gwr 	 * make sure to flush the MMU cache.
   3008   1.9      gwr 	 *
   3009   1.9      gwr 	 * XXX - this could be an unecessarily large flush.
   3010   1.9      gwr 	 * XXX - Could decide, based on the size of the VA range
   3011   1.9      gwr 	 * to be removed, whether to flush "by pages" or "all".
   3012   1.9      gwr 	 */
   3013   1.9      gwr 	if (pmap == current_pmap())
   3014   1.9      gwr 		TBIAU();
   3015   1.1      gwr }
   3016   1.1      gwr 
   3017   1.1      gwr /* pmap_remove_a			INTERNAL
   3018   1.1      gwr  **
   3019   1.1      gwr  * This is function number one in a set of three that removes a range
   3020   1.1      gwr  * of memory in the most efficient manner by removing the highest possible
   3021   1.1      gwr  * tables from the memory space.  This particular function attempts to remove
   3022   1.1      gwr  * as many B tables as it can, delegating the remaining fragmented ranges to
   3023   1.1      gwr  * pmap_remove_b().
   3024   1.1      gwr  *
   3025   1.7      gwr  * If the removal operation results in an empty A table, the function returns
   3026   1.7      gwr  * TRUE.
   3027   1.7      gwr  *
   3028   1.1      gwr  * It's ugly but will do for now.
   3029   1.1      gwr  */
   3030   1.7      gwr boolean_t
   3031   1.1      gwr pmap_remove_a(a_tbl, start, end)
   3032   1.1      gwr 	a_tmgr_t *a_tbl;
   3033  1.69      chs 	vaddr_t start;
   3034  1.69      chs 	vaddr_t end;
   3035   1.1      gwr {
   3036   1.7      gwr 	boolean_t empty;
   3037   1.1      gwr 	int idx;
   3038  1.69      chs 	vaddr_t nstart, nend;
   3039   1.1      gwr 	b_tmgr_t *b_tbl;
   3040   1.1      gwr 	mmu_long_dte_t  *a_dte;
   3041   1.1      gwr 	mmu_short_dte_t *b_dte;
   3042   1.8      gwr 
   3043   1.7      gwr 	/*
   3044   1.7      gwr 	 * The following code works with what I call a 'granularity
   3045   1.7      gwr 	 * reduction algorithim'.  A range of addresses will always have
   3046   1.7      gwr 	 * the following properties, which are classified according to
   3047   1.7      gwr 	 * how the range relates to the size of the current granularity
   3048   1.7      gwr 	 * - an A table entry:
   3049   1.7      gwr 	 *
   3050   1.7      gwr 	 *            1 2       3 4
   3051   1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   3052   1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   3053   1.7      gwr 	 *
   3054   1.7      gwr 	 * A range will always start on a granularity boundary, illustrated
   3055   1.7      gwr 	 * by '+' signs in the table above, or it will start at some point
   3056   1.7      gwr 	 * inbetween a granularity boundary, as illustrated by point 1.
   3057   1.7      gwr 	 * The first step in removing a range of addresses is to remove the
   3058   1.7      gwr 	 * range between 1 and 2, the nearest granularity boundary.  This
   3059   1.7      gwr 	 * job is handled by the section of code governed by the
   3060   1.7      gwr 	 * 'if (start < nstart)' statement.
   3061   1.7      gwr 	 *
   3062   1.7      gwr 	 * A range will always encompass zero or more intergral granules,
   3063   1.7      gwr 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3064   1.7      gwr 	 * remove.  The removal of these granules is the second step, and
   3065   1.7      gwr 	 * is handled by the code block 'if (nstart < nend)'.
   3066   1.7      gwr 	 *
   3067   1.7      gwr 	 * Lastly, a range will always end on a granularity boundary,
   3068   1.7      gwr 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3069   1.7      gwr 	 * 4.  The last step involves removing this range and is handled by
   3070   1.7      gwr 	 * the code block 'if (nend < end)'.
   3071   1.7      gwr 	 */
   3072   1.1      gwr 	nstart = MMU_ROUND_UP_A(start);
   3073   1.1      gwr 	nend = MMU_ROUND_A(end);
   3074   1.1      gwr 
   3075   1.1      gwr 	if (start < nstart) {
   3076   1.7      gwr 		/*
   3077   1.7      gwr 		 * This block is executed if the range starts between
   3078   1.7      gwr 		 * a granularity boundary.
   3079   1.7      gwr 		 *
   3080   1.7      gwr 		 * First find the DTE which is responsible for mapping
   3081   1.7      gwr 		 * the start of the range.
   3082   1.7      gwr 		 */
   3083   1.1      gwr 		idx = MMU_TIA(start);
   3084   1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3085   1.7      gwr 
   3086   1.7      gwr 		/*
   3087   1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3088   1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3089   1.7      gwr 		 * a finer granularity.
   3090   1.7      gwr 		 */
   3091   1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3092   1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3093   1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3094   1.7      gwr 
   3095   1.7      gwr 			/*
   3096   1.7      gwr 			 * The sub range to be removed starts at the start
   3097   1.7      gwr 			 * of the full range we were asked to remove, and ends
   3098   1.7      gwr 			 * at the greater of:
   3099   1.7      gwr 			 * 1. The end of the full range, -or-
   3100   1.7      gwr 			 * 2. The end of the full range, rounded down to the
   3101   1.7      gwr 			 *    nearest granularity boundary.
   3102   1.7      gwr 			 */
   3103   1.7      gwr 			if (end < nstart)
   3104   1.8      gwr 				empty = pmap_remove_b(b_tbl, start, end);
   3105   1.7      gwr 			else
   3106   1.8      gwr 				empty = pmap_remove_b(b_tbl, start, nstart);
   3107   1.7      gwr 
   3108   1.7      gwr 			/*
   3109   1.7      gwr 			 * If the removal resulted in an empty B table,
   3110   1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3111   1.7      gwr 			 * the valid entry count of the A table.
   3112   1.7      gwr 			 */
   3113   1.7      gwr 			if (empty) {
   3114   1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3115   1.7      gwr 				a_tbl->at_ecnt--;
   3116   1.1      gwr 			}
   3117   1.1      gwr 		}
   3118   1.7      gwr 		/*
   3119   1.7      gwr 		 * If the DTE is invalid, the address range is already non-
   3120  1.68      wiz 		 * existent and can simply be skipped.
   3121   1.7      gwr 		 */
   3122   1.1      gwr 	}
   3123   1.1      gwr 	if (nstart < nend) {
   3124   1.7      gwr 		/*
   3125   1.8      gwr 		 * This block is executed if the range spans a whole number
   3126   1.7      gwr 		 * multiple of granules (A table entries.)
   3127   1.7      gwr 		 *
   3128   1.7      gwr 		 * First find the DTE which is responsible for mapping
   3129   1.7      gwr 		 * the start of the first granule involved.
   3130   1.7      gwr 		 */
   3131   1.1      gwr 		idx = MMU_TIA(nstart);
   3132   1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3133   1.7      gwr 
   3134   1.7      gwr 		/*
   3135   1.7      gwr 		 * Remove entire sub-granules (B tables) one at a time,
   3136   1.7      gwr 		 * until reaching the end of the range.
   3137   1.7      gwr 		 */
   3138   1.7      gwr 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3139   1.1      gwr 			if (MMU_VALID_DT(*a_dte)) {
   3140   1.7      gwr 				/*
   3141   1.7      gwr 				 * Find the B table manager for the
   3142   1.7      gwr 				 * entry and free it.
   3143   1.7      gwr 				 */
   3144   1.7      gwr 				b_dte = mmu_ptov(a_dte->addr.raw);
   3145   1.1      gwr 				b_tbl = mmuB2tmgr(b_dte);
   3146   1.7      gwr 				free_b_table(b_tbl, TRUE);
   3147   1.7      gwr 
   3148   1.7      gwr 				/*
   3149   1.7      gwr 				 * Invalidate the DTE that points to the
   3150   1.7      gwr 				 * B table and decrement the valid entry
   3151   1.7      gwr 				 * count of the A table.
   3152   1.7      gwr 				 */
   3153   1.1      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3154   1.1      gwr 				a_tbl->at_ecnt--;
   3155   1.1      gwr 			}
   3156   1.1      gwr 	}
   3157   1.1      gwr 	if (nend < end) {
   3158   1.7      gwr 		/*
   3159   1.7      gwr 		 * This block is executed if the range ends beyond a
   3160   1.7      gwr 		 * granularity boundary.
   3161   1.7      gwr 		 *
   3162   1.7      gwr 		 * First find the DTE which is responsible for mapping
   3163   1.7      gwr 		 * the start of the nearest (rounded down) granularity
   3164   1.7      gwr 		 * boundary.
   3165   1.7      gwr 		 */
   3166   1.1      gwr 		idx = MMU_TIA(nend);
   3167   1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3168   1.7      gwr 
   3169   1.7      gwr 		/*
   3170   1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3171   1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3172   1.7      gwr 		 * a finer granularity.
   3173   1.7      gwr 		 */
   3174   1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3175   1.7      gwr 			/*
   3176   1.7      gwr 			 * Find the B table manager for the entry
   3177   1.7      gwr 			 * and hand it to pmap_remove_b() along with
   3178   1.7      gwr 			 * the sub range.
   3179   1.7      gwr 			 */
   3180   1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3181   1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3182   1.7      gwr 
   3183   1.8      gwr 			empty = pmap_remove_b(b_tbl, nend, end);
   3184   1.7      gwr 
   3185   1.7      gwr 			/*
   3186   1.7      gwr 			 * If the removal resulted in an empty B table,
   3187   1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3188   1.7      gwr 			 * the valid entry count of the A table.
   3189   1.7      gwr 			 */
   3190   1.7      gwr 			if (empty) {
   3191   1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3192   1.7      gwr 				a_tbl->at_ecnt--;
   3193   1.7      gwr 			}
   3194   1.1      gwr 		}
   3195   1.1      gwr 	}
   3196   1.7      gwr 
   3197   1.7      gwr 	/*
   3198   1.7      gwr 	 * If there are no more entries in the A table, release it
   3199   1.7      gwr 	 * back to the available pool and return TRUE.
   3200   1.7      gwr 	 */
   3201   1.7      gwr 	if (a_tbl->at_ecnt == 0) {
   3202   1.7      gwr 		a_tbl->at_parent = NULL;
   3203   1.7      gwr 		TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3204   1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3205   1.7      gwr 		empty = TRUE;
   3206   1.7      gwr 	} else {
   3207   1.7      gwr 		empty = FALSE;
   3208   1.7      gwr 	}
   3209   1.7      gwr 
   3210   1.7      gwr 	return empty;
   3211   1.1      gwr }
   3212   1.1      gwr 
   3213   1.1      gwr /* pmap_remove_b			INTERNAL
   3214   1.1      gwr  **
   3215   1.1      gwr  * Remove a range of addresses from an address space, trying to remove entire
   3216   1.1      gwr  * C tables if possible.
   3217   1.7      gwr  *
   3218   1.7      gwr  * If the operation results in an empty B table, the function returns TRUE.
   3219   1.1      gwr  */
   3220   1.7      gwr boolean_t
   3221   1.8      gwr pmap_remove_b(b_tbl, start, end)
   3222   1.1      gwr 	b_tmgr_t *b_tbl;
   3223  1.69      chs 	vaddr_t start;
   3224  1.69      chs 	vaddr_t end;
   3225   1.1      gwr {
   3226   1.7      gwr 	boolean_t empty;
   3227   1.1      gwr 	int idx;
   3228  1.69      chs 	vaddr_t nstart, nend, rstart;
   3229   1.1      gwr 	c_tmgr_t *c_tbl;
   3230   1.1      gwr 	mmu_short_dte_t  *b_dte;
   3231   1.1      gwr 	mmu_short_pte_t  *c_dte;
   3232   1.1      gwr 
   3233   1.1      gwr 
   3234   1.1      gwr 	nstart = MMU_ROUND_UP_B(start);
   3235   1.1      gwr 	nend = MMU_ROUND_B(end);
   3236   1.1      gwr 
   3237   1.1      gwr 	if (start < nstart) {
   3238   1.1      gwr 		idx = MMU_TIB(start);
   3239   1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3240   1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3241   1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3242   1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3243   1.7      gwr 			if (end < nstart)
   3244   1.8      gwr 				empty = pmap_remove_c(c_tbl, start, end);
   3245   1.7      gwr 			else
   3246   1.8      gwr 				empty = pmap_remove_c(c_tbl, start, nstart);
   3247   1.7      gwr 			if (empty) {
   3248   1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3249   1.7      gwr 				b_tbl->bt_ecnt--;
   3250   1.1      gwr 			}
   3251   1.1      gwr 		}
   3252   1.1      gwr 	}
   3253   1.1      gwr 	if (nstart < nend) {
   3254   1.1      gwr 		idx = MMU_TIB(nstart);
   3255   1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3256   1.1      gwr 		rstart = nstart;
   3257   1.1      gwr 		while (rstart < nend) {
   3258   1.1      gwr 			if (MMU_VALID_DT(*b_dte)) {
   3259   1.7      gwr 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3260   1.1      gwr 				c_tbl = mmuC2tmgr(c_dte);
   3261   1.7      gwr 				free_c_table(c_tbl, TRUE);
   3262   1.1      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3263   1.1      gwr 				b_tbl->bt_ecnt--;
   3264   1.1      gwr 			}
   3265   1.1      gwr 			b_dte++;
   3266   1.1      gwr 			rstart += MMU_TIB_RANGE;
   3267   1.1      gwr 		}
   3268   1.1      gwr 	}
   3269   1.1      gwr 	if (nend < end) {
   3270   1.1      gwr 		idx = MMU_TIB(nend);
   3271   1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3272   1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3273   1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3274   1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3275   1.8      gwr 			empty = pmap_remove_c(c_tbl, nend, end);
   3276   1.7      gwr 			if (empty) {
   3277   1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3278   1.7      gwr 				b_tbl->bt_ecnt--;
   3279   1.7      gwr 			}
   3280   1.1      gwr 		}
   3281   1.1      gwr 	}
   3282   1.7      gwr 
   3283   1.7      gwr 	if (b_tbl->bt_ecnt == 0) {
   3284   1.7      gwr 		b_tbl->bt_parent = NULL;
   3285   1.7      gwr 		TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3286   1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3287   1.7      gwr 		empty = TRUE;
   3288   1.7      gwr 	} else {
   3289   1.7      gwr 		empty = FALSE;
   3290   1.7      gwr 	}
   3291   1.7      gwr 
   3292   1.7      gwr 	return empty;
   3293   1.1      gwr }
   3294   1.1      gwr 
   3295   1.1      gwr /* pmap_remove_c			INTERNAL
   3296   1.1      gwr  **
   3297   1.1      gwr  * Remove a range of addresses from the given C table.
   3298   1.1      gwr  */
   3299   1.7      gwr boolean_t
   3300   1.8      gwr pmap_remove_c(c_tbl, start, end)
   3301   1.1      gwr 	c_tmgr_t *c_tbl;
   3302  1.69      chs 	vaddr_t start;
   3303  1.69      chs 	vaddr_t end;
   3304   1.1      gwr {
   3305   1.7      gwr 	boolean_t empty;
   3306   1.1      gwr 	int idx;
   3307   1.1      gwr 	mmu_short_pte_t *c_pte;
   3308   1.1      gwr 
   3309   1.1      gwr 	idx = MMU_TIC(start);
   3310   1.1      gwr 	c_pte = &c_tbl->ct_dtbl[idx];
   3311   1.8      gwr 	for (;start < end; start += MMU_PAGE_SIZE, c_pte++) {
   3312   1.7      gwr 		if (MMU_VALID_DT(*c_pte)) {
   3313   1.1      gwr 			pmap_remove_pte(c_pte);
   3314   1.7      gwr 			c_tbl->ct_ecnt--;
   3315   1.7      gwr 		}
   3316   1.1      gwr 	}
   3317   1.7      gwr 
   3318   1.7      gwr 	if (c_tbl->ct_ecnt == 0) {
   3319   1.7      gwr 		c_tbl->ct_parent = NULL;
   3320   1.7      gwr 		TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3321   1.9      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3322   1.9      gwr 		empty = TRUE;
   3323   1.9      gwr 	} else {
   3324   1.9      gwr 		empty = FALSE;
   3325   1.9      gwr 	}
   3326   1.7      gwr 
   3327   1.9      gwr 	return empty;
   3328   1.1      gwr }
   3329   1.1      gwr 
   3330   1.1      gwr /* is_managed				INTERNAL
   3331   1.1      gwr  **
   3332   1.1      gwr  * Determine if the given physical address is managed by the PV system.
   3333   1.1      gwr  * Note that this logic assumes that no one will ask for the status of
   3334   1.1      gwr  * addresses which lie in-between the memory banks on the 3/80.  If they
   3335   1.1      gwr  * do so, it will falsely report that it is managed.
   3336   1.7      gwr  *
   3337   1.8      gwr  * Note: A "managed" address is one that was reported to the VM system as
   3338   1.8      gwr  * a "usable page" during system startup.  As such, the VM system expects the
   3339   1.8      gwr  * pmap module to keep an accurate track of the useage of those pages.
   3340   1.8      gwr  * Any page not given to the VM system at startup does not exist (as far as
   3341   1.8      gwr  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3342   1.8      gwr  * those pages which belong to the ROM monitor and the memory allocated before
   3343   1.8      gwr  * the VM system was started.
   3344   1.1      gwr  */
   3345   1.1      gwr boolean_t
   3346   1.1      gwr is_managed(pa)
   3347  1.69      chs 	paddr_t pa;
   3348   1.1      gwr {
   3349   1.1      gwr 	if (pa >= avail_start && pa < avail_end)
   3350   1.1      gwr 		return TRUE;
   3351   1.1      gwr 	else
   3352   1.1      gwr 		return FALSE;
   3353   1.1      gwr }
   3354   1.1      gwr 
   3355   1.1      gwr /* pmap_bootstrap_alloc			INTERNAL
   3356   1.1      gwr  **
   3357   1.1      gwr  * Used internally for memory allocation at startup when malloc is not
   3358   1.1      gwr  * available.  This code will fail once it crosses the first memory
   3359   1.1      gwr  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3360   1.1      gwr  * will be in charge of allocation.
   3361   1.1      gwr  */
   3362   1.1      gwr void *
   3363   1.1      gwr pmap_bootstrap_alloc(size)
   3364   1.1      gwr 	int size;
   3365   1.1      gwr {
   3366   1.1      gwr 	void *rtn;
   3367   1.1      gwr 
   3368   1.8      gwr #ifdef	PMAP_DEBUG
   3369   1.7      gwr 	if (bootstrap_alloc_enabled == FALSE) {
   3370   1.7      gwr 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3371   1.7      gwr 		sunmon_abort();
   3372   1.7      gwr 	}
   3373   1.7      gwr #endif
   3374   1.7      gwr 
   3375   1.1      gwr 	rtn = (void *) virtual_avail;
   3376   1.1      gwr 	virtual_avail += size;
   3377   1.1      gwr 
   3378   1.8      gwr #ifdef	PMAP_DEBUG
   3379   1.7      gwr 	if (virtual_avail > virtual_contig_end) {
   3380   1.7      gwr 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3381   1.7      gwr 		sunmon_abort();
   3382   1.1      gwr 	}
   3383   1.7      gwr #endif
   3384   1.1      gwr 
   3385   1.1      gwr 	return rtn;
   3386   1.1      gwr }
   3387   1.1      gwr 
   3388   1.1      gwr /* pmap_bootstap_aalign			INTERNAL
   3389   1.1      gwr  **
   3390   1.7      gwr  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3391   1.7      gwr  * return a chunk of memory aligned to the specified size.
   3392   1.8      gwr  *
   3393   1.8      gwr  * Note: This function will only support alignment sizes that are powers
   3394   1.8      gwr  * of two.
   3395   1.1      gwr  */
   3396   1.1      gwr void
   3397   1.1      gwr pmap_bootstrap_aalign(size)
   3398   1.1      gwr 	int size;
   3399   1.1      gwr {
   3400   1.7      gwr 	int off;
   3401   1.7      gwr 
   3402   1.7      gwr 	off = virtual_avail & (size - 1);
   3403   1.7      gwr 	if (off) {
   3404   1.7      gwr 		(void) pmap_bootstrap_alloc(size - off);
   3405   1.1      gwr 	}
   3406   1.1      gwr }
   3407   1.7      gwr 
   3408   1.8      gwr /* pmap_pa_exists
   3409   1.8      gwr  **
   3410   1.8      gwr  * Used by the /dev/mem driver to see if a given PA is memory
   3411   1.8      gwr  * that can be mapped.  (The PA is not in a hole.)
   3412   1.8      gwr  */
   3413   1.8      gwr int
   3414   1.8      gwr pmap_pa_exists(pa)
   3415  1.69      chs 	paddr_t pa;
   3416   1.8      gwr {
   3417  1.69      chs 	int i;
   3418  1.21      gwr 
   3419  1.21      gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3420  1.21      gwr 		if ((pa >= avail_mem[i].pmem_start) &&
   3421  1.21      gwr 			(pa <  avail_mem[i].pmem_end))
   3422  1.21      gwr 			return (1);
   3423  1.21      gwr 		if (avail_mem[i].pmem_next == NULL)
   3424  1.21      gwr 			break;
   3425  1.21      gwr 	}
   3426   1.8      gwr 	return (0);
   3427   1.8      gwr }
   3428   1.8      gwr 
   3429  1.31      gwr /* Called only from locore.s and pmap.c */
   3430  1.31      gwr void	_pmap_switch __P((pmap_t pmap));
   3431  1.31      gwr 
   3432  1.31      gwr /*
   3433  1.31      gwr  * _pmap_switch			INTERNAL
   3434  1.31      gwr  *
   3435  1.31      gwr  * This is called by locore.s:cpu_switch() when it is
   3436  1.31      gwr  * switching to a new process.  Load new translations.
   3437  1.31      gwr  * Note: done in-line by locore.s unless PMAP_DEBUG
   3438  1.24   jeremy  *
   3439  1.31      gwr  * Note that we do NOT allocate a context here, but
   3440  1.31      gwr  * share the "kernel only" context until we really
   3441  1.31      gwr  * need our own context for user-space mappings in
   3442  1.31      gwr  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3443   1.1      gwr  */
   3444   1.1      gwr void
   3445  1.31      gwr _pmap_switch(pmap)
   3446  1.31      gwr 	pmap_t pmap;
   3447   1.1      gwr {
   3448   1.7      gwr 	u_long rootpa;
   3449   1.7      gwr 
   3450  1.31      gwr 	/*
   3451  1.31      gwr 	 * Only do reload/flush if we have to.
   3452  1.31      gwr 	 * Note that if the old and new process
   3453  1.31      gwr 	 * were BOTH using the "null" context,
   3454  1.31      gwr 	 * then this will NOT flush the TLB.
   3455  1.31      gwr 	 */
   3456   1.7      gwr 	rootpa = pmap->pm_a_phys;
   3457  1.31      gwr 	if (kernel_crp.rp_addr != rootpa) {
   3458  1.31      gwr 		DPRINT(("pmap_activate(%p)\n", pmap));
   3459   1.7      gwr 		kernel_crp.rp_addr = rootpa;
   3460   1.7      gwr 		loadcrp(&kernel_crp);
   3461   1.8      gwr 		TBIAU();
   3462  1.31      gwr 	}
   3463  1.31      gwr }
   3464  1.31      gwr 
   3465  1.31      gwr /*
   3466  1.31      gwr  * Exported version of pmap_activate().  This is called from the
   3467  1.31      gwr  * machine-independent VM code when a process is given a new pmap.
   3468  1.31      gwr  * If (p == curproc) do like cpu_switch would do; otherwise just
   3469  1.31      gwr  * take this as notification that the process has a new pmap.
   3470  1.31      gwr  */
   3471  1.31      gwr void
   3472  1.31      gwr pmap_activate(p)
   3473  1.31      gwr 	struct proc *p;
   3474  1.31      gwr {
   3475  1.31      gwr 	if (p == curproc) {
   3476  1.69      chs 		_pmap_switch(p->p_vmspace->vm_map.pmap);
   3477   1.7      gwr 	}
   3478   1.1      gwr }
   3479   1.1      gwr 
   3480  1.30  thorpej /*
   3481  1.30  thorpej  * pmap_deactivate			INTERFACE
   3482  1.30  thorpej  **
   3483  1.30  thorpej  * This is called to deactivate the specified process's address space.
   3484  1.30  thorpej  */
   3485  1.30  thorpej void
   3486  1.30  thorpej pmap_deactivate(p)
   3487  1.30  thorpej struct proc *p;
   3488   1.1      gwr {
   3489  1.69      chs 	/* Nothing to do. */
   3490   1.1      gwr }
   3491   1.1      gwr 
   3492  1.17      gwr /*
   3493  1.28      gwr  * Fill in the sun3x-specific part of the kernel core header
   3494  1.28      gwr  * for dumpsys().  (See machdep.c for the rest.)
   3495  1.17      gwr  */
   3496  1.17      gwr void
   3497  1.28      gwr pmap_kcore_hdr(sh)
   3498  1.28      gwr 	struct sun3x_kcore_hdr *sh;
   3499  1.17      gwr {
   3500  1.17      gwr 	u_long spa, len;
   3501  1.17      gwr 	int i;
   3502  1.20  thorpej 
   3503  1.28      gwr 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3504  1.28      gwr 	sh->pg_valid = MMU_DT_PAGE;
   3505  1.20  thorpej 	sh->contig_end = virtual_contig_end;
   3506  1.69      chs 	sh->kernCbase = (u_long)kernCbase;
   3507  1.20  thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3508  1.17      gwr 		spa = avail_mem[i].pmem_start;
   3509  1.25    veego 		spa = m68k_trunc_page(spa);
   3510  1.17      gwr 		len = avail_mem[i].pmem_end - spa;
   3511  1.25    veego 		len = m68k_round_page(len);
   3512  1.20  thorpej 		sh->ram_segs[i].start = spa;
   3513  1.20  thorpej 		sh->ram_segs[i].size  = len;
   3514  1.17      gwr 	}
   3515  1.17      gwr }
   3516  1.17      gwr 
   3517  1.17      gwr 
   3518   1.1      gwr /* pmap_virtual_space			INTERFACE
   3519   1.1      gwr  **
   3520   1.1      gwr  * Return the current available range of virtual addresses in the
   3521   1.1      gwr  * arguuments provided.  Only really called once.
   3522   1.1      gwr  */
   3523   1.1      gwr void
   3524   1.1      gwr pmap_virtual_space(vstart, vend)
   3525  1.69      chs 	vaddr_t *vstart, *vend;
   3526   1.1      gwr {
   3527   1.1      gwr 	*vstart = virtual_avail;
   3528   1.1      gwr 	*vend = virtual_end;
   3529   1.1      gwr }
   3530   1.1      gwr 
   3531  1.37      gwr /*
   3532  1.37      gwr  * Provide memory to the VM system.
   3533  1.37      gwr  *
   3534  1.37      gwr  * Assume avail_start is always in the
   3535  1.37      gwr  * first segment as pmap_bootstrap does.
   3536  1.37      gwr  */
   3537  1.37      gwr static void
   3538  1.37      gwr pmap_page_upload()
   3539  1.37      gwr {
   3540  1.69      chs 	paddr_t	a, b;	/* memory range */
   3541  1.37      gwr 	int i;
   3542  1.37      gwr 
   3543  1.37      gwr 	/* Supply the memory in segments. */
   3544  1.37      gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3545  1.37      gwr 		a = atop(avail_mem[i].pmem_start);
   3546  1.37      gwr 		b = atop(avail_mem[i].pmem_end);
   3547  1.37      gwr 		if (i == 0)
   3548  1.37      gwr 			a = atop(avail_start);
   3549  1.60  tsutsui 		if (avail_mem[i].pmem_end > avail_end)
   3550  1.60  tsutsui 			b = atop(avail_end);
   3551  1.37      gwr 
   3552  1.39  thorpej 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3553  1.37      gwr 
   3554  1.37      gwr 		if (avail_mem[i].pmem_next == NULL)
   3555  1.37      gwr 			break;
   3556  1.37      gwr 	}
   3557   1.1      gwr }
   3558   1.8      gwr 
   3559   1.8      gwr /* pmap_count			INTERFACE
   3560   1.8      gwr  **
   3561   1.8      gwr  * Return the number of resident (valid) pages in the given pmap.
   3562   1.8      gwr  *
   3563   1.8      gwr  * Note:  If this function is handed the kernel map, it will report
   3564   1.8      gwr  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3565   1.8      gwr  * map statistics.
   3566   1.8      gwr  */
   3567   1.8      gwr segsz_t
   3568   1.8      gwr pmap_count(pmap, type)
   3569   1.8      gwr 	pmap_t pmap;
   3570   1.8      gwr 	int    type;
   3571   1.8      gwr {
   3572   1.8      gwr 	u_int     count;
   3573   1.8      gwr 	int       a_idx, b_idx;
   3574   1.8      gwr 	a_tmgr_t *a_tbl;
   3575   1.8      gwr 	b_tmgr_t *b_tbl;
   3576   1.8      gwr 	c_tmgr_t *c_tbl;
   3577   1.8      gwr 
   3578   1.8      gwr 	/*
   3579   1.8      gwr 	 * If the pmap does not have its own A table manager, it has no
   3580   1.8      gwr 	 * valid entires.
   3581   1.8      gwr 	 */
   3582   1.8      gwr 	if (pmap->pm_a_tmgr == NULL)
   3583   1.8      gwr 		return 0;
   3584   1.8      gwr 
   3585   1.8      gwr 	a_tbl = pmap->pm_a_tmgr;
   3586   1.8      gwr 
   3587   1.8      gwr 	count = 0;
   3588   1.8      gwr 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3589   1.8      gwr 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3590   1.8      gwr 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3591   1.8      gwr 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3592   1.8      gwr 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3593   1.8      gwr 	                c_tbl = mmuC2tmgr(
   3594   1.8      gwr 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3595   1.8      gwr 	                if (type == 0)
   3596   1.8      gwr 	                    /*
   3597   1.8      gwr 	                     * A resident entry count has been requested.
   3598   1.8      gwr 	                     */
   3599   1.8      gwr 	                    count += c_tbl->ct_ecnt;
   3600   1.8      gwr 	                else
   3601   1.8      gwr 	                    /*
   3602   1.8      gwr 	                     * A wired entry count has been requested.
   3603   1.8      gwr 	                     */
   3604   1.8      gwr 	                    count += c_tbl->ct_wcnt;
   3605   1.8      gwr 	            }
   3606   1.8      gwr 	        }
   3607   1.8      gwr 	    }
   3608   1.8      gwr 	}
   3609   1.8      gwr 
   3610   1.8      gwr 	return count;
   3611   1.8      gwr }
   3612   1.8      gwr 
   3613   1.1      gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3614   1.1      gwr  * The following routines are only used by DDB for tricky kernel text    *
   3615   1.1      gwr  * text operations in db_memrw.c.  They are provided for sun3            *
   3616   1.1      gwr  * compatibility.                                                        *
   3617   1.1      gwr  *************************************************************************/
   3618   1.1      gwr /* get_pte			INTERNAL
   3619   1.1      gwr  **
   3620   1.1      gwr  * Return the page descriptor the describes the kernel mapping
   3621   1.1      gwr  * of the given virtual address.
   3622   1.1      gwr  */
   3623  1.14      gwr extern u_long ptest_addr __P((u_long));	/* XXX: locore.s */
   3624  1.33      gwr u_int
   3625  1.13      gwr get_pte(va)
   3626  1.69      chs 	vaddr_t va;
   3627  1.13      gwr {
   3628  1.13      gwr 	u_long pte_pa;
   3629  1.13      gwr 	mmu_short_pte_t *pte;
   3630  1.13      gwr 
   3631  1.13      gwr 	/* Get the physical address of the PTE */
   3632  1.13      gwr 	pte_pa = ptest_addr(va & ~PGOFSET);
   3633  1.13      gwr 
   3634  1.13      gwr 	/* Convert to a virtual address... */
   3635  1.13      gwr 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3636  1.13      gwr 
   3637  1.13      gwr 	/* Make sure it is in our level-C tables... */
   3638  1.13      gwr 	if ((pte < kernCbase) ||
   3639  1.13      gwr 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3640  1.13      gwr 		return 0;
   3641  1.13      gwr 
   3642  1.13      gwr 	/* ... and just return its contents. */
   3643  1.13      gwr 	return (pte->attr.raw);
   3644  1.13      gwr }
   3645  1.13      gwr 
   3646   1.1      gwr 
   3647   1.1      gwr /* set_pte			INTERNAL
   3648   1.1      gwr  **
   3649   1.1      gwr  * Set the page descriptor that describes the kernel mapping
   3650   1.1      gwr  * of the given virtual address.
   3651   1.1      gwr  */
   3652   1.1      gwr void
   3653   1.1      gwr set_pte(va, pte)
   3654  1.69      chs 	vaddr_t va;
   3655  1.33      gwr 	u_int pte;
   3656   1.1      gwr {
   3657   1.1      gwr 	u_long idx;
   3658   1.1      gwr 
   3659   1.7      gwr 	if (va < KERNBASE)
   3660   1.7      gwr 		return;
   3661   1.7      gwr 
   3662  1.25    veego 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3663   1.1      gwr 	kernCbase[idx].attr.raw = pte;
   3664  1.33      gwr 	TBIS(va);
   3665   1.1      gwr }
   3666  1.42       is 
   3667  1.42       is /*
   3668  1.42       is  *	Routine:        pmap_procwr
   3669  1.42       is  *
   3670  1.42       is  *	Function:
   3671  1.42       is  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3672  1.42       is  */
   3673  1.42       is void
   3674  1.42       is pmap_procwr(p, va, len)
   3675  1.42       is 	struct proc	*p;
   3676  1.42       is 	vaddr_t		va;
   3677  1.42       is 	size_t		len;
   3678  1.42       is {
   3679  1.42       is 	(void)cachectl1(0x80000004, va, len, p);
   3680  1.42       is }
   3681  1.42       is 
   3682   1.7      gwr 
   3683   1.8      gwr #ifdef	PMAP_DEBUG
   3684   1.7      gwr /************************** DEBUGGING ROUTINES **************************
   3685   1.7      gwr  * The following routines are meant to be an aid to debugging the pmap  *
   3686   1.7      gwr  * system.  They are callable from the DDB command line and should be   *
   3687   1.7      gwr  * prepared to be handed unstable or incomplete states of the system.   *
   3688   1.7      gwr  ************************************************************************/
   3689   1.7      gwr 
   3690   1.7      gwr /* pv_list
   3691   1.7      gwr  **
   3692   1.7      gwr  * List all pages found on the pv list for the given physical page.
   3693   1.8      gwr  * To avoid endless loops, the listing will stop at the end of the list
   3694   1.7      gwr  * or after 'n' entries - whichever comes first.
   3695   1.7      gwr  */
   3696   1.7      gwr void
   3697   1.7      gwr pv_list(pa, n)
   3698  1.69      chs 	paddr_t pa;
   3699   1.7      gwr 	int n;
   3700   1.7      gwr {
   3701   1.7      gwr 	int  idx;
   3702  1.69      chs 	vaddr_t va;
   3703   1.7      gwr 	pv_t *pv;
   3704   1.7      gwr 	c_tmgr_t *c_tbl;
   3705   1.7      gwr 	pmap_t pmap;
   3706   1.7      gwr 
   3707   1.7      gwr 	pv = pa2pv(pa);
   3708   1.7      gwr 	idx = pv->pv_idx;
   3709  1.69      chs 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3710   1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3711   1.7      gwr 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3712   1.7      gwr 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3713   1.7      gwr 	}
   3714   1.7      gwr }
   3715   1.8      gwr #endif	/* PMAP_DEBUG */
   3716   1.1      gwr 
   3717   1.1      gwr #ifdef NOT_YET
   3718   1.1      gwr /* and maybe not ever */
   3719   1.1      gwr /************************** LOW-LEVEL ROUTINES **************************
   3720   1.1      gwr  * These routines will eventualy be re-written into assembly and placed *
   3721   1.1      gwr  * in locore.s.  They are here now as stubs so that the pmap module can *
   3722   1.1      gwr  * be linked as a standalone user program for testing.                  *
   3723   1.1      gwr  ************************************************************************/
   3724   1.1      gwr /* flush_atc_crp			INTERNAL
   3725   1.1      gwr  **
   3726   1.1      gwr  * Flush all page descriptors derived from the given CPU Root Pointer
   3727   1.1      gwr  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3728   1.1      gwr  * cache.
   3729   1.1      gwr  */
   3730   1.1      gwr void
   3731   1.1      gwr flush_atc_crp(a_tbl)
   3732   1.1      gwr {
   3733   1.1      gwr 	mmu_long_rp_t rp;
   3734   1.1      gwr 
   3735   1.1      gwr 	/* Create a temporary root table pointer that points to the
   3736   1.1      gwr 	 * given A table.
   3737   1.1      gwr 	 */
   3738   1.1      gwr 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3739   1.1      gwr 	rp.addr.raw = (unsigned int) a_tbl;
   3740   1.1      gwr 
   3741   1.1      gwr 	mmu_pflushr(&rp);
   3742   1.1      gwr 	/* mmu_pflushr:
   3743   1.1      gwr 	 * 	movel   sp(4)@,a0
   3744   1.1      gwr 	 * 	pflushr a0@
   3745   1.1      gwr 	 *	rts
   3746   1.1      gwr 	 */
   3747   1.1      gwr }
   3748   1.1      gwr #endif /* NOT_YET */
   3749