Home | History | Annotate | Line # | Download | only in sun3x
pmap.c revision 1.86.6.2
      1  1.86.6.1     tron /*	$NetBSD: pmap.c,v 1.86.6.2 2006/10/23 19:55:56 ghen Exp $	*/
      2       1.1      gwr 
      3       1.1      gwr /*-
      4      1.10   jeremy  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
      5       1.1      gwr  * All rights reserved.
      6       1.1      gwr  *
      7       1.1      gwr  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1      gwr  * by Jeremy Cooper.
      9       1.1      gwr  *
     10       1.1      gwr  * Redistribution and use in source and binary forms, with or without
     11       1.1      gwr  * modification, are permitted provided that the following conditions
     12       1.1      gwr  * are met:
     13       1.1      gwr  * 1. Redistributions of source code must retain the above copyright
     14       1.1      gwr  *    notice, this list of conditions and the following disclaimer.
     15       1.1      gwr  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1      gwr  *    notice, this list of conditions and the following disclaimer in the
     17       1.1      gwr  *    documentation and/or other materials provided with the distribution.
     18       1.1      gwr  * 3. All advertising materials mentioning features or use of this software
     19       1.1      gwr  *    must display the following acknowledgement:
     20       1.1      gwr  *        This product includes software developed by the NetBSD
     21       1.1      gwr  *        Foundation, Inc. and its contributors.
     22       1.1      gwr  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1      gwr  *    contributors may be used to endorse or promote products derived
     24       1.1      gwr  *    from this software without specific prior written permission.
     25       1.1      gwr  *
     26       1.1      gwr  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1      gwr  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1      gwr  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1      gwr  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1      gwr  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1      gwr  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1      gwr  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1      gwr  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1      gwr  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1      gwr  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1      gwr  * POSSIBILITY OF SUCH DAMAGE.
     37       1.1      gwr  */
     38       1.1      gwr 
     39       1.1      gwr /*
     40       1.1      gwr  * XXX These comments aren't quite accurate.  Need to change.
     41       1.1      gwr  * The sun3x uses the MC68851 Memory Management Unit, which is built
     42       1.1      gwr  * into the CPU.  The 68851 maps virtual to physical addresses using
     43       1.1      gwr  * a multi-level table lookup, which is stored in the very memory that
     44       1.1      gwr  * it maps.  The number of levels of lookup is configurable from one
     45       1.1      gwr  * to four.  In this implementation, we use three, named 'A' through 'C'.
     46       1.1      gwr  *
     47       1.1      gwr  * The MMU translates virtual addresses into physical addresses by
     48      1.84      wiz  * traversing these tables in a process called a 'table walk'.  The most
     49       1.1      gwr  * significant 7 bits of the Virtual Address ('VA') being translated are
     50       1.1      gwr  * used as an index into the level A table, whose base in physical memory
     51       1.1      gwr  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
     52       1.1      gwr  * address found at that index in the A table is used as the base
     53       1.1      gwr  * address for the next table, the B table.  The next six bits of the VA are
     54       1.1      gwr  * used as an index into the B table, which in turn gives the base address
     55       1.1      gwr  * of the third and final C table.
     56       1.1      gwr  *
     57       1.1      gwr  * The next six bits of the VA are used as an index into the C table to
     58       1.1      gwr  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
     59       1.1      gwr  * to which the remaining 13 bits of the VA are added, producing the
     60       1.1      gwr  * mapped physical address.
     61       1.1      gwr  *
     62       1.1      gwr  * To map the entire memory space in this manner would require 2114296 bytes
     63       1.1      gwr  * of page tables per process - quite expensive.  Instead we will
     64       1.1      gwr  * allocate a fixed but considerably smaller space for the page tables at
     65       1.1      gwr  * the time the VM system is initialized.  When the pmap code is asked by
     66       1.1      gwr  * the kernel to map a VA to a PA, it allocates tables as needed from this
     67       1.1      gwr  * pool.  When there are no more tables in the pool, tables are stolen
     68       1.1      gwr  * from the oldest mapped entries in the tree.  This is only possible
     69       1.1      gwr  * because all memory mappings are stored in the kernel memory map
     70       1.1      gwr  * structures, independent of the pmap structures.  A VA which references
     71       1.1      gwr  * one of these invalidated maps will cause a page fault.  The kernel
     72       1.1      gwr  * will determine that the page fault was caused by a task using a valid
     73       1.1      gwr  * VA, but for some reason (which does not concern it), that address was
     74       1.1      gwr  * not mapped.  It will ask the pmap code to re-map the entry and then
     75       1.1      gwr  * it will resume executing the faulting task.
     76       1.1      gwr  *
     77       1.1      gwr  * In this manner the most efficient use of the page table space is
     78       1.1      gwr  * achieved.  Tasks which do not execute often will have their tables
     79       1.1      gwr  * stolen and reused by tasks which execute more frequently.  The best
     80       1.1      gwr  * size for the page table pool will probably be determined by
     81       1.1      gwr  * experimentation.
     82       1.1      gwr  *
     83       1.1      gwr  * You read all of the comments so far.  Good for you.
     84       1.1      gwr  * Now go play!
     85       1.1      gwr  */
     86       1.1      gwr 
     87       1.1      gwr /*** A Note About the 68851 Address Translation Cache
     88       1.1      gwr  * The MC68851 has a 64 entry cache, called the Address Translation Cache
     89       1.1      gwr  * or 'ATC'.  This cache stores the most recently used page descriptors
     90       1.1      gwr  * accessed by the MMU when it does translations.  Using a marker called a
     91       1.1      gwr  * 'task alias' the MMU can store the descriptors from 8 different table
     92       1.1      gwr  * spaces concurrently.  The task alias is associated with the base
     93       1.1      gwr  * address of the level A table of that address space.  When an address
     94       1.1      gwr  * space is currently active (the CRP currently points to its A table)
     95       1.1      gwr  * the only cached descriptors that will be obeyed are ones which have a
     96       1.1      gwr  * matching task alias of the current space associated with them.
     97       1.1      gwr  *
     98       1.1      gwr  * Since the cache is always consulted before any table lookups are done,
     99       1.1      gwr  * it is important that it accurately reflect the state of the MMU tables.
    100       1.1      gwr  * Whenever a change has been made to a table that has been loaded into
    101       1.1      gwr  * the MMU, the code must be sure to flush any cached entries that are
    102       1.1      gwr  * affected by the change.  These instances are documented in the code at
    103       1.1      gwr  * various points.
    104       1.1      gwr  */
    105       1.1      gwr /*** A Note About the Note About the 68851 Address Translation Cache
    106       1.1      gwr  * 4 months into this code I discovered that the sun3x does not have
    107       1.1      gwr  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
    108       1.1      gwr  * the 68030 CPU.
    109       1.1      gwr  * All though it behaves very similarly to the 68851, it only has 1 task
    110       1.8      gwr  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
    111       1.8      gwr  * of the previous note does not apply to the sun3x pmap.
    112       1.1      gwr  */
    113      1.83    lukem 
    114      1.83    lukem #include <sys/cdefs.h>
    115  1.86.6.1     tron __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.86.6.2 2006/10/23 19:55:56 ghen Exp $");
    116      1.45      gwr 
    117      1.45      gwr #include "opt_ddb.h"
    118      1.82   martin #include "opt_pmap_debug.h"
    119       1.1      gwr 
    120       1.1      gwr #include <sys/param.h>
    121       1.1      gwr #include <sys/systm.h>
    122       1.1      gwr #include <sys/proc.h>
    123       1.1      gwr #include <sys/malloc.h>
    124      1.56  tsutsui #include <sys/pool.h>
    125       1.1      gwr #include <sys/user.h>
    126       1.1      gwr #include <sys/queue.h>
    127      1.20  thorpej #include <sys/kcore.h>
    128      1.38      gwr 
    129      1.38      gwr #include <uvm/uvm.h>
    130      1.43      mrg 
    131       1.1      gwr #include <machine/cpu.h>
    132      1.17      gwr #include <machine/kcore.h>
    133      1.33      gwr #include <machine/mon.h>
    134       1.1      gwr #include <machine/pmap.h>
    135       1.1      gwr #include <machine/pte.h>
    136      1.37      gwr #include <machine/vmparam.h>
    137      1.75      chs #include <m68k/cacheops.h>
    138      1.33      gwr 
    139      1.33      gwr #include <sun3/sun3/cache.h>
    140      1.33      gwr #include <sun3/sun3/machdep.h>
    141       1.1      gwr 
    142       1.1      gwr #include "pmap_pvt.h"
    143       1.1      gwr 
    144       1.1      gwr /* XXX - What headers declare these? */
    145       1.1      gwr extern struct pcb *curpcb;
    146       1.1      gwr extern int physmem;
    147       1.7      gwr 
    148       1.1      gwr /* Defined in locore.s */
    149       1.1      gwr extern char kernel_text[];
    150       1.1      gwr 
    151       1.1      gwr /* Defined by the linker */
    152       1.1      gwr extern char etext[], edata[], end[];
    153       1.1      gwr extern char *esym;	/* DDB */
    154       1.1      gwr 
    155       1.7      gwr /*************************** DEBUGGING DEFINITIONS ***********************
    156       1.7      gwr  * Macros, preprocessor defines and variables used in debugging can make *
    157       1.7      gwr  * code hard to read.  Anything used exclusively for debugging purposes  *
    158       1.7      gwr  * is defined here to avoid having such mess scattered around the file.  *
    159       1.7      gwr  *************************************************************************/
    160       1.8      gwr #ifdef	PMAP_DEBUG
    161       1.7      gwr /*
    162       1.7      gwr  * To aid the debugging process, macros should be expanded into smaller steps
    163       1.7      gwr  * that accomplish the same goal, yet provide convenient places for placing
    164       1.8      gwr  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
    165       1.7      gwr  * 'INLINE' keyword is defined to an empty string.  This way, any function
    166       1.7      gwr  * defined to be a 'static INLINE' will become 'outlined' and compiled as
    167       1.7      gwr  * a separate function, which is much easier to debug.
    168       1.7      gwr  */
    169       1.7      gwr #define	INLINE	/* nothing */
    170       1.7      gwr 
    171       1.1      gwr /*
    172       1.7      gwr  * It is sometimes convenient to watch the activity of a particular table
    173       1.7      gwr  * in the system.  The following variables are used for that purpose.
    174       1.1      gwr  */
    175       1.7      gwr a_tmgr_t *pmap_watch_atbl = 0;
    176       1.7      gwr b_tmgr_t *pmap_watch_btbl = 0;
    177       1.7      gwr c_tmgr_t *pmap_watch_ctbl = 0;
    178       1.1      gwr 
    179       1.7      gwr int pmap_debug = 0;
    180       1.7      gwr #define DPRINT(args) if (pmap_debug) printf args
    181       1.7      gwr 
    182       1.7      gwr #else	/********** Stuff below is defined if NOT debugging **************/
    183       1.7      gwr 
    184       1.7      gwr #define	INLINE	inline
    185      1.10   jeremy #define DPRINT(args)  /* nada */
    186       1.7      gwr 
    187      1.10   jeremy #endif	/* PMAP_DEBUG */
    188       1.7      gwr /*********************** END OF DEBUGGING DEFINITIONS ********************/
    189       1.1      gwr 
    190       1.1      gwr /*** Management Structure - Memory Layout
    191       1.1      gwr  * For every MMU table in the sun3x pmap system there must be a way to
    192       1.1      gwr  * manage it; we must know which process is using it, what other tables
    193       1.1      gwr  * depend on it, and whether or not it contains any locked pages.  This
    194       1.1      gwr  * is solved by the creation of 'table management'  or 'tmgr'
    195       1.1      gwr  * structures.  One for each MMU table in the system.
    196       1.1      gwr  *
    197       1.1      gwr  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
    198       1.1      gwr  *
    199       1.1      gwr  *      towards lower memory
    200       1.1      gwr  * kernAbase -> +-------------------------------------------------------+
    201       1.1      gwr  *              | Kernel     MMU A level table                          |
    202       1.1      gwr  * kernBbase -> +-------------------------------------------------------+
    203       1.1      gwr  *              | Kernel     MMU B level tables                         |
    204       1.1      gwr  * kernCbase -> +-------------------------------------------------------+
    205       1.1      gwr  *              |                                                       |
    206       1.1      gwr  *              | Kernel     MMU C level tables                         |
    207       1.1      gwr  *              |                                                       |
    208       1.7      gwr  * mmuCbase  -> +-------------------------------------------------------+
    209       1.7      gwr  *              | User       MMU C level tables                         |
    210       1.1      gwr  * mmuAbase  -> +-------------------------------------------------------+
    211       1.1      gwr  *              |                                                       |
    212       1.1      gwr  *              | User       MMU A level tables                         |
    213       1.1      gwr  *              |                                                       |
    214       1.1      gwr  * mmuBbase  -> +-------------------------------------------------------+
    215       1.1      gwr  *              | User       MMU B level tables                         |
    216       1.1      gwr  * tmgrAbase -> +-------------------------------------------------------+
    217       1.1      gwr  *              |  TMGR A level table structures                        |
    218       1.1      gwr  * tmgrBbase -> +-------------------------------------------------------+
    219       1.1      gwr  *              |  TMGR B level table structures                        |
    220       1.1      gwr  * tmgrCbase -> +-------------------------------------------------------+
    221       1.1      gwr  *              |  TMGR C level table structures                        |
    222       1.1      gwr  * pvbase    -> +-------------------------------------------------------+
    223       1.1      gwr  *              |  Physical to Virtual mapping table (list heads)       |
    224       1.1      gwr  * pvebase   -> +-------------------------------------------------------+
    225       1.1      gwr  *              |  Physical to Virtual mapping table (list elements)    |
    226       1.1      gwr  *              |                                                       |
    227       1.1      gwr  *              +-------------------------------------------------------+
    228       1.1      gwr  *      towards higher memory
    229       1.1      gwr  *
    230       1.1      gwr  * For every A table in the MMU A area, there will be a corresponding
    231       1.1      gwr  * a_tmgr structure in the TMGR A area.  The same will be true for
    232       1.1      gwr  * the B and C tables.  This arrangement will make it easy to find the
    233       1.1      gwr  * controling tmgr structure for any table in the system by use of
    234       1.1      gwr  * (relatively) simple macros.
    235       1.1      gwr  */
    236       1.7      gwr 
    237       1.7      gwr /*
    238       1.8      gwr  * Global variables for storing the base addresses for the areas
    239       1.1      gwr  * labeled above.
    240       1.1      gwr  */
    241      1.69      chs static vaddr_t  	kernAphys;
    242       1.1      gwr static mmu_long_dte_t	*kernAbase;
    243       1.1      gwr static mmu_short_dte_t	*kernBbase;
    244       1.1      gwr static mmu_short_pte_t	*kernCbase;
    245      1.15      gwr static mmu_short_pte_t	*mmuCbase;
    246      1.15      gwr static mmu_short_dte_t	*mmuBbase;
    247       1.1      gwr static mmu_long_dte_t	*mmuAbase;
    248       1.1      gwr static a_tmgr_t		*Atmgrbase;
    249       1.1      gwr static b_tmgr_t		*Btmgrbase;
    250       1.1      gwr static c_tmgr_t		*Ctmgrbase;
    251      1.15      gwr static pv_t 		*pvbase;
    252       1.1      gwr static pv_elem_t	*pvebase;
    253      1.15      gwr struct pmap 		kernel_pmap;
    254       1.1      gwr 
    255       1.8      gwr /*
    256       1.8      gwr  * This holds the CRP currently loaded into the MMU.
    257       1.8      gwr  */
    258       1.8      gwr struct mmu_rootptr kernel_crp;
    259       1.8      gwr 
    260       1.8      gwr /*
    261       1.8      gwr  * Just all around global variables.
    262       1.1      gwr  */
    263       1.1      gwr static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
    264       1.1      gwr static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
    265       1.1      gwr static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
    266       1.7      gwr 
    267       1.7      gwr 
    268       1.7      gwr /*
    269       1.7      gwr  * Flags used to mark the safety/availability of certain operations or
    270       1.7      gwr  * resources.
    271       1.7      gwr  */
    272      1.69      chs static boolean_t bootstrap_alloc_enabled = FALSE; /*Safe to use pmap_bootstrap_alloc().*/
    273      1.24   jeremy int tmp_vpages_inuse;	/* Temporary virtual pages are in use */
    274       1.1      gwr 
    275       1.1      gwr /*
    276       1.1      gwr  * XXX:  For now, retain the traditional variables that were
    277       1.1      gwr  * used in the old pmap/vm interface (without NONCONTIG).
    278       1.1      gwr  */
    279      1.81  thorpej /* Kernel virtual address space available: */
    280      1.81  thorpej vaddr_t	virtual_avail, virtual_end;
    281       1.1      gwr /* Physical address space available: */
    282      1.69      chs paddr_t	avail_start, avail_end;
    283       1.1      gwr 
    284       1.7      gwr /* This keep track of the end of the contiguously mapped range. */
    285      1.69      chs vaddr_t virtual_contig_end;
    286       1.7      gwr 
    287       1.7      gwr /* Physical address used by pmap_next_page() */
    288      1.69      chs paddr_t avail_next;
    289       1.7      gwr 
    290       1.7      gwr /* These are used by pmap_copy_page(), etc. */
    291      1.69      chs vaddr_t tmp_vpages[2];
    292       1.1      gwr 
    293      1.56  tsutsui /* memory pool for pmap structures */
    294      1.56  tsutsui struct pool	pmap_pmap_pool;
    295      1.56  tsutsui 
    296       1.7      gwr /*
    297       1.7      gwr  * The 3/80 is the only member of the sun3x family that has non-contiguous
    298       1.1      gwr  * physical memory.  Memory is divided into 4 banks which are physically
    299       1.1      gwr  * locatable on the system board.  Although the size of these banks varies
    300       1.1      gwr  * with the size of memory they contain, their base addresses are
    301       1.1      gwr  * permenently fixed.  The following structure, which describes these
    302       1.1      gwr  * banks, is initialized by pmap_bootstrap() after it reads from a similar
    303       1.1      gwr  * structure provided by the ROM Monitor.
    304       1.1      gwr  *
    305       1.1      gwr  * For the other machines in the sun3x architecture which do have contiguous
    306       1.1      gwr  * RAM, this list will have only one entry, which will describe the entire
    307       1.1      gwr  * range of available memory.
    308       1.1      gwr  */
    309      1.20  thorpej struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
    310       1.1      gwr u_int total_phys_mem;
    311       1.1      gwr 
    312       1.7      gwr /*************************************************************************/
    313       1.7      gwr 
    314       1.7      gwr /*
    315       1.7      gwr  * XXX - Should "tune" these based on statistics.
    316       1.7      gwr  *
    317       1.7      gwr  * My first guess about the relative numbers of these needed is
    318       1.7      gwr  * based on the fact that a "typical" process will have several
    319       1.7      gwr  * pages mapped at low virtual addresses (text, data, bss), then
    320       1.7      gwr  * some mapped shared libraries, and then some stack pages mapped
    321       1.7      gwr  * near the high end of the VA space.  Each process can use only
    322       1.7      gwr  * one A table, and most will use only two B tables (maybe three)
    323       1.7      gwr  * and probably about four C tables.  Therefore, the first guess
    324       1.7      gwr  * at the relative numbers of these needed is 1:2:4 -gwr
    325       1.7      gwr  *
    326       1.7      gwr  * The number of C tables needed is closely related to the amount
    327       1.7      gwr  * of physical memory available plus a certain amount attributable
    328       1.7      gwr  * to the use of double mappings.  With a few simulation statistics
    329       1.7      gwr  * we can find a reasonably good estimation of this unknown value.
    330       1.7      gwr  * Armed with that and the above ratios, we have a good idea of what
    331       1.7      gwr  * is needed at each level. -j
    332       1.7      gwr  *
    333       1.7      gwr  * Note: It is not physical memory memory size, but the total mapped
    334       1.7      gwr  * virtual space required by the combined working sets of all the
    335       1.7      gwr  * currently _runnable_ processes.  (Sleeping ones don't count.)
    336       1.7      gwr  * The amount of physical memory should be irrelevant. -gwr
    337       1.7      gwr  */
    338      1.22   jeremy #ifdef	FIXED_NTABLES
    339       1.7      gwr #define NUM_A_TABLES	16
    340       1.7      gwr #define NUM_B_TABLES	32
    341       1.7      gwr #define NUM_C_TABLES	64
    342      1.22   jeremy #else
    343      1.22   jeremy unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
    344      1.22   jeremy #endif	/* FIXED_NTABLES */
    345       1.7      gwr 
    346       1.7      gwr /*
    347       1.7      gwr  * This determines our total virtual mapping capacity.
    348       1.7      gwr  * Yes, it is a FIXED value so we can pre-allocate.
    349       1.7      gwr  */
    350       1.7      gwr #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
    351      1.15      gwr 
    352      1.15      gwr /*
    353      1.15      gwr  * The size of the Kernel Virtual Address Space (KVAS)
    354      1.15      gwr  * for purposes of MMU table allocation is -KERNBASE
    355      1.15      gwr  * (length from KERNBASE to 0xFFFFffff)
    356      1.15      gwr  */
    357      1.15      gwr #define	KVAS_SIZE		(-KERNBASE)
    358      1.15      gwr 
    359      1.15      gwr /* Numbers of kernel MMU tables to support KVAS_SIZE. */
    360      1.15      gwr #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
    361      1.15      gwr #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
    362      1.15      gwr #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
    363       1.7      gwr 
    364       1.7      gwr /*************************** MISCELANEOUS MACROS *************************/
    365      1.55  tsutsui #define pmap_lock(pmap) simple_lock(&pmap->pm_lock)
    366      1.55  tsutsui #define pmap_unlock(pmap) simple_unlock(&pmap->pm_lock)
    367      1.55  tsutsui #define pmap_add_ref(pmap) ++pmap->pm_refcount
    368      1.55  tsutsui #define pmap_del_ref(pmap) --pmap->pm_refcount
    369      1.55  tsutsui #define pmap_refcount(pmap) pmap->pm_refcount
    370      1.64  thorpej 
    371      1.64  thorpej void *pmap_bootstrap_alloc(int);
    372       1.7      gwr 
    373      1.86      chs static INLINE void *mmu_ptov(paddr_t);
    374      1.86      chs static INLINE paddr_t mmu_vtop(void *);
    375       1.7      gwr 
    376       1.7      gwr #if	0
    377      1.86      chs static INLINE a_tmgr_t * mmuA2tmgr(mmu_long_dte_t *);
    378      1.26   jeremy #endif /* 0 */
    379      1.86      chs static INLINE b_tmgr_t * mmuB2tmgr(mmu_short_dte_t *);
    380      1.86      chs static INLINE c_tmgr_t * mmuC2tmgr(mmu_short_pte_t *);
    381       1.7      gwr 
    382      1.86      chs static INLINE pv_t *pa2pv(paddr_t);
    383      1.86      chs static INLINE int   pteidx(mmu_short_pte_t *);
    384      1.86      chs static INLINE pmap_t current_pmap(void);
    385       1.7      gwr 
    386       1.7      gwr /*
    387       1.7      gwr  * We can always convert between virtual and physical addresses
    388       1.7      gwr  * for anything in the range [KERNBASE ... avail_start] because
    389       1.7      gwr  * that range is GUARANTEED to be mapped linearly.
    390       1.7      gwr  * We rely heavily upon this feature!
    391       1.7      gwr  */
    392       1.7      gwr static INLINE void *
    393      1.86      chs mmu_ptov(paddr_t pa)
    394       1.7      gwr {
    395      1.69      chs 	vaddr_t va;
    396       1.7      gwr 
    397       1.7      gwr 	va = (pa + KERNBASE);
    398       1.8      gwr #ifdef	PMAP_DEBUG
    399       1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    400       1.7      gwr 		panic("mmu_ptov");
    401       1.7      gwr #endif
    402       1.7      gwr 	return ((void*)va);
    403       1.7      gwr }
    404      1.69      chs 
    405      1.86      chs static INLINE paddr_t
    406      1.86      chs mmu_vtop(void *vva)
    407       1.7      gwr {
    408      1.69      chs 	vaddr_t va;
    409       1.7      gwr 
    410      1.69      chs 	va = (vaddr_t)vva;
    411       1.8      gwr #ifdef	PMAP_DEBUG
    412       1.7      gwr 	if ((va < KERNBASE) || (va >= virtual_contig_end))
    413      1.72  tsutsui 		panic("mmu_vtop");
    414       1.7      gwr #endif
    415       1.7      gwr 	return (va - KERNBASE);
    416       1.7      gwr }
    417       1.7      gwr 
    418       1.7      gwr /*
    419       1.7      gwr  * These macros map MMU tables to their corresponding manager structures.
    420       1.1      gwr  * They are needed quite often because many of the pointers in the pmap
    421       1.1      gwr  * system reference MMU tables and not the structures that control them.
    422       1.1      gwr  * There needs to be a way to find one when given the other and these
    423       1.1      gwr  * macros do so by taking advantage of the memory layout described above.
    424       1.1      gwr  * Here's a quick step through the first macro, mmuA2tmgr():
    425       1.1      gwr  *
    426       1.1      gwr  * 1) find the offset of the given MMU A table from the base of its table
    427       1.1      gwr  *    pool (table - mmuAbase).
    428       1.1      gwr  * 2) convert this offset into a table index by dividing it by the
    429       1.1      gwr  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
    430       1.1      gwr  * 3) use this index to select the corresponding 'A' table manager
    431       1.1      gwr  *    structure from the 'A' table manager pool (Atmgrbase[index]).
    432       1.1      gwr  */
    433       1.7      gwr /*  This function is not currently used. */
    434       1.7      gwr #if	0
    435       1.7      gwr static INLINE a_tmgr_t *
    436      1.86      chs mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
    437       1.7      gwr {
    438      1.69      chs 	int idx;
    439       1.7      gwr 
    440       1.7      gwr 	/* Which table is this in? */
    441       1.7      gwr 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
    442       1.8      gwr #ifdef	PMAP_DEBUG
    443       1.7      gwr 	if ((idx < 0) || (idx >= NUM_A_TABLES))
    444       1.7      gwr 		panic("mmuA2tmgr");
    445       1.7      gwr #endif
    446       1.7      gwr 	return (&Atmgrbase[idx]);
    447       1.7      gwr }
    448       1.7      gwr #endif	/* 0 */
    449       1.7      gwr 
    450       1.7      gwr static INLINE b_tmgr_t *
    451      1.86      chs mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
    452       1.7      gwr {
    453      1.69      chs 	int idx;
    454       1.7      gwr 
    455       1.7      gwr 	/* Which table is this in? */
    456       1.7      gwr 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
    457       1.8      gwr #ifdef	PMAP_DEBUG
    458       1.7      gwr 	if ((idx < 0) || (idx >= NUM_B_TABLES))
    459       1.7      gwr 		panic("mmuB2tmgr");
    460       1.7      gwr #endif
    461       1.7      gwr 	return (&Btmgrbase[idx]);
    462       1.7      gwr }
    463       1.7      gwr 
    464       1.7      gwr /* mmuC2tmgr			INTERNAL
    465       1.7      gwr  **
    466       1.7      gwr  * Given a pte known to belong to a C table, return the address of
    467       1.7      gwr  * that table's management structure.
    468       1.7      gwr  */
    469       1.7      gwr static INLINE c_tmgr_t *
    470      1.86      chs mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
    471       1.7      gwr {
    472      1.69      chs 	int idx;
    473       1.7      gwr 
    474       1.7      gwr 	/* Which table is this in? */
    475       1.7      gwr 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
    476       1.8      gwr #ifdef	PMAP_DEBUG
    477       1.7      gwr 	if ((idx < 0) || (idx >= NUM_C_TABLES))
    478       1.7      gwr 		panic("mmuC2tmgr");
    479       1.7      gwr #endif
    480       1.7      gwr 	return (&Ctmgrbase[idx]);
    481       1.7      gwr }
    482       1.7      gwr 
    483       1.8      gwr /* This is now a function call below.
    484       1.1      gwr  * #define pa2pv(pa) \
    485       1.1      gwr  *	(&pvbase[(unsigned long)\
    486      1.25    veego  *		m68k_btop(pa)\
    487       1.1      gwr  *	])
    488       1.1      gwr  */
    489       1.1      gwr 
    490       1.7      gwr /* pa2pv			INTERNAL
    491       1.7      gwr  **
    492       1.7      gwr  * Return the pv_list_head element which manages the given physical
    493       1.7      gwr  * address.
    494       1.7      gwr  */
    495       1.7      gwr static INLINE pv_t *
    496      1.86      chs pa2pv(paddr_t pa)
    497       1.7      gwr {
    498      1.69      chs 	struct pmap_physmem_struct *bank;
    499      1.69      chs 	int idx;
    500       1.7      gwr 
    501       1.7      gwr 	bank = &avail_mem[0];
    502       1.7      gwr 	while (pa >= bank->pmem_end)
    503       1.7      gwr 		bank = bank->pmem_next;
    504       1.7      gwr 
    505       1.7      gwr 	pa -= bank->pmem_start;
    506      1.25    veego 	idx = bank->pmem_pvbase + m68k_btop(pa);
    507       1.8      gwr #ifdef	PMAP_DEBUG
    508       1.7      gwr 	if ((idx < 0) || (idx >= physmem))
    509       1.7      gwr 		panic("pa2pv");
    510       1.7      gwr #endif
    511       1.7      gwr 	return &pvbase[idx];
    512       1.7      gwr }
    513       1.7      gwr 
    514       1.7      gwr /* pteidx			INTERNAL
    515       1.7      gwr  **
    516       1.7      gwr  * Return the index of the given PTE within the entire fixed table of
    517       1.7      gwr  * PTEs.
    518       1.7      gwr  */
    519       1.7      gwr static INLINE int
    520      1.86      chs pteidx(mmu_short_pte_t *pte)
    521       1.7      gwr {
    522       1.7      gwr 	return (pte - kernCbase);
    523       1.7      gwr }
    524       1.7      gwr 
    525       1.7      gwr /*
    526       1.8      gwr  * This just offers a place to put some debugging checks,
    527      1.76  thorpej  * and reduces the number of places "curlwp" appears...
    528       1.7      gwr  */
    529      1.86      chs static INLINE pmap_t
    530      1.86      chs current_pmap(void)
    531       1.7      gwr {
    532       1.7      gwr 	struct vmspace *vm;
    533      1.67      chs 	struct vm_map *map;
    534       1.7      gwr 	pmap_t	pmap;
    535       1.7      gwr 
    536      1.76  thorpej 	if (curlwp == NULL)
    537       1.9      gwr 		pmap = &kernel_pmap;
    538       1.9      gwr 	else {
    539      1.76  thorpej 		vm = curproc->p_vmspace;
    540       1.9      gwr 		map = &vm->vm_map;
    541       1.9      gwr 		pmap = vm_map_pmap(map);
    542       1.9      gwr 	}
    543       1.7      gwr 
    544       1.7      gwr 	return (pmap);
    545       1.7      gwr }
    546       1.7      gwr 
    547       1.7      gwr 
    548       1.1      gwr /*************************** FUNCTION DEFINITIONS ************************
    549       1.1      gwr  * These appear here merely for the compiler to enforce type checking on *
    550       1.1      gwr  * all function calls.                                                   *
    551       1.7      gwr  *************************************************************************/
    552       1.1      gwr 
    553       1.1      gwr /** Internal functions
    554      1.37      gwr  ** Most functions used only within this module are defined in
    555      1.37      gwr  **   pmap_pvt.h (why not here if used only here?)
    556       1.1      gwr  **/
    557      1.86      chs static void pmap_page_upload(void);
    558       1.1      gwr 
    559       1.1      gwr /** Interface functions
    560       1.1      gwr  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
    561       1.1      gwr  **   defined.
    562       1.1      gwr  **/
    563      1.86      chs void pmap_pinit(pmap_t);
    564      1.86      chs void pmap_release(pmap_t);
    565       1.1      gwr 
    566       1.1      gwr /********************************** CODE ********************************
    567       1.1      gwr  * Functions that are called from other parts of the kernel are labeled *
    568       1.1      gwr  * as 'INTERFACE' functions.  Functions that are only called from       *
    569       1.1      gwr  * within the pmap module are labeled as 'INTERNAL' functions.          *
    570       1.1      gwr  * Functions that are internal, but are not (currently) used at all are *
    571       1.1      gwr  * labeled 'INTERNAL_X'.                                                *
    572       1.1      gwr  ************************************************************************/
    573       1.1      gwr 
    574       1.1      gwr /* pmap_bootstrap			INTERNAL
    575       1.1      gwr  **
    576      1.33      gwr  * Initializes the pmap system.  Called at boot time from
    577      1.33      gwr  * locore2.c:_vm_init()
    578       1.1      gwr  *
    579       1.1      gwr  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
    580       1.1      gwr  *           system implement pmap_steal_memory() is redundant.
    581       1.1      gwr  *           Don't release this code without removing one or the other!
    582       1.1      gwr  */
    583      1.86      chs void
    584      1.86      chs pmap_bootstrap(vaddr_t nextva)
    585       1.1      gwr {
    586       1.1      gwr 	struct physmemory *membank;
    587       1.1      gwr 	struct pmap_physmem_struct *pmap_membank;
    588      1.69      chs 	vaddr_t va, eva;
    589      1.69      chs 	paddr_t pa;
    590       1.1      gwr 	int b, c, i, j;	/* running table counts */
    591      1.40      gwr 	int size, resvmem;
    592       1.1      gwr 
    593       1.1      gwr 	/*
    594       1.1      gwr 	 * This function is called by __bootstrap after it has
    595       1.1      gwr 	 * determined the type of machine and made the appropriate
    596       1.1      gwr 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
    597       1.1      gwr 	 * by that.)  It allocates and sets up enough of the pmap system
    598       1.1      gwr 	 * to manage the kernel's address space.
    599       1.1      gwr 	 */
    600       1.1      gwr 
    601       1.1      gwr 	/*
    602       1.7      gwr 	 * Determine the range of kernel virtual and physical
    603       1.7      gwr 	 * space available. Note that we ABSOLUTELY DEPEND on
    604       1.7      gwr 	 * the fact that the first bank of memory (4MB) is
    605       1.7      gwr 	 * mapped linearly to KERNBASE (which we guaranteed in
    606       1.7      gwr 	 * the first instructions of locore.s).
    607       1.7      gwr 	 * That is plenty for our bootstrap work.
    608       1.1      gwr 	 */
    609      1.25    veego 	virtual_avail = m68k_round_page(nextva);
    610       1.7      gwr 	virtual_contig_end = KERNBASE + 0x400000; /* +4MB */
    611       1.1      gwr 	virtual_end = VM_MAX_KERNEL_ADDRESS;
    612       1.7      gwr 	/* Don't need avail_start til later. */
    613       1.1      gwr 
    614       1.7      gwr 	/* We may now call pmap_bootstrap_alloc(). */
    615       1.7      gwr 	bootstrap_alloc_enabled = TRUE;
    616       1.1      gwr 
    617       1.1      gwr 	/*
    618       1.1      gwr 	 * This is a somewhat unwrapped loop to deal with
    619       1.1      gwr 	 * copying the PROM's 'phsymem' banks into the pmap's
    620       1.1      gwr 	 * banks.  The following is always assumed:
    621       1.1      gwr 	 * 1. There is always at least one bank of memory.
    622       1.1      gwr 	 * 2. There is always a last bank of memory, and its
    623       1.1      gwr 	 *    pmem_next member must be set to NULL.
    624       1.1      gwr 	 */
    625       1.1      gwr 	membank = romVectorPtr->v_physmemory;
    626       1.1      gwr 	pmap_membank = avail_mem;
    627       1.1      gwr 	total_phys_mem = 0;
    628       1.1      gwr 
    629      1.40      gwr 	for (;;) { /* break on !membank */
    630       1.1      gwr 		pmap_membank->pmem_start = membank->address;
    631       1.1      gwr 		pmap_membank->pmem_end = membank->address + membank->size;
    632       1.1      gwr 		total_phys_mem += membank->size;
    633      1.40      gwr 		membank = membank->next;
    634      1.40      gwr 		if (!membank)
    635      1.40      gwr 			break;
    636       1.1      gwr 		/* This silly syntax arises because pmap_membank
    637       1.1      gwr 		 * is really a pre-allocated array, but it is put into
    638       1.1      gwr 		 * use as a linked list.
    639       1.1      gwr 		 */
    640       1.1      gwr 		pmap_membank->pmem_next = pmap_membank + 1;
    641       1.1      gwr 		pmap_membank = pmap_membank->pmem_next;
    642       1.1      gwr 	}
    643      1.40      gwr 	/* This is the last element. */
    644      1.40      gwr 	pmap_membank->pmem_next = NULL;
    645       1.1      gwr 
    646       1.1      gwr 	/*
    647      1.40      gwr 	 * Note: total_phys_mem, physmem represent
    648      1.40      gwr 	 * actual physical memory, including that
    649      1.40      gwr 	 * reserved for the PROM monitor.
    650       1.1      gwr 	 */
    651      1.40      gwr 	physmem = btoc(total_phys_mem);
    652       1.1      gwr 
    653       1.1      gwr 	/*
    654      1.60  tsutsui 	 * Avail_end is set to the first byte of physical memory
    655      1.60  tsutsui 	 * after the end of the last bank.  We use this only to
    656      1.60  tsutsui 	 * determine if a physical address is "managed" memory.
    657      1.60  tsutsui 	 * This address range should be reduced to prevent the
    658      1.40      gwr 	 * physical pages needed by the PROM monitor from being used
    659      1.40      gwr 	 * in the VM system.
    660       1.1      gwr 	 */
    661      1.40      gwr 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
    662      1.40      gwr 	resvmem = m68k_round_page(resvmem);
    663      1.60  tsutsui 	avail_end = pmap_membank->pmem_end - resvmem;
    664       1.1      gwr 
    665       1.1      gwr 	/*
    666      1.15      gwr 	 * First allocate enough kernel MMU tables to map all
    667      1.15      gwr 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
    668       1.1      gwr 	 * Note: All must be aligned on 256 byte boundaries.
    669      1.15      gwr 	 * Start with the level-A table (one of those).
    670       1.1      gwr 	 */
    671      1.69      chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
    672       1.7      gwr 	kernAbase = pmap_bootstrap_alloc(size);
    673      1.71  tsutsui 	memset(kernAbase, 0, size);
    674       1.1      gwr 
    675      1.15      gwr 	/* Now the level-B kernel tables... */
    676      1.15      gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
    677       1.7      gwr 	kernBbase = pmap_bootstrap_alloc(size);
    678      1.71  tsutsui 	memset(kernBbase, 0, size);
    679       1.1      gwr 
    680      1.15      gwr 	/* Now the level-C kernel tables... */
    681      1.15      gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
    682      1.15      gwr 	kernCbase = pmap_bootstrap_alloc(size);
    683      1.71  tsutsui 	memset(kernCbase, 0, size);
    684       1.7      gwr 	/*
    685       1.7      gwr 	 * Note: In order for the PV system to work correctly, the kernel
    686       1.7      gwr 	 * and user-level C tables must be allocated contiguously.
    687       1.7      gwr 	 * Nothing should be allocated between here and the allocation of
    688       1.7      gwr 	 * mmuCbase below.  XXX: Should do this as one allocation, and
    689       1.7      gwr 	 * then compute a pointer for mmuCbase instead of this...
    690      1.15      gwr 	 *
    691      1.15      gwr 	 * Allocate user MMU tables.
    692      1.70      wiz 	 * These must be contiguous with the preceding.
    693       1.7      gwr 	 */
    694      1.22   jeremy 
    695      1.22   jeremy #ifndef	FIXED_NTABLES
    696      1.22   jeremy 	/*
    697      1.22   jeremy 	 * The number of user-level C tables that should be allocated is
    698      1.22   jeremy 	 * related to the size of physical memory.  In general, there should
    699      1.22   jeremy 	 * be enough tables to map four times the amount of available RAM.
    700      1.22   jeremy 	 * The extra amount is needed because some table space is wasted by
    701      1.22   jeremy 	 * fragmentation.
    702      1.22   jeremy 	 */
    703      1.22   jeremy 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
    704      1.22   jeremy 	NUM_B_TABLES = NUM_C_TABLES / 2;
    705      1.22   jeremy 	NUM_A_TABLES = NUM_B_TABLES / 2;
    706      1.22   jeremy #endif	/* !FIXED_NTABLES */
    707      1.22   jeremy 
    708      1.15      gwr 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
    709      1.15      gwr 	mmuCbase = pmap_bootstrap_alloc(size);
    710      1.15      gwr 
    711      1.15      gwr 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
    712      1.15      gwr 	mmuBbase = pmap_bootstrap_alloc(size);
    713       1.1      gwr 
    714      1.69      chs 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
    715      1.15      gwr 	mmuAbase = pmap_bootstrap_alloc(size);
    716       1.7      gwr 
    717       1.7      gwr 	/*
    718       1.7      gwr 	 * Fill in the never-changing part of the kernel tables.
    719       1.7      gwr 	 * For simplicity, the kernel's mappings will be editable as a
    720       1.1      gwr 	 * flat array of page table entries at kernCbase.  The
    721       1.1      gwr 	 * higher level 'A' and 'B' tables must be initialized to point
    722       1.1      gwr 	 * to this lower one.
    723       1.1      gwr 	 */
    724       1.1      gwr 	b = c = 0;
    725       1.1      gwr 
    726       1.7      gwr 	/*
    727       1.7      gwr 	 * Invalidate all mappings below KERNBASE in the A table.
    728       1.1      gwr 	 * This area has already been zeroed out, but it is good
    729       1.1      gwr 	 * practice to explicitly show that we are interpreting
    730       1.1      gwr 	 * it as a list of A table descriptors.
    731       1.1      gwr 	 */
    732       1.1      gwr 	for (i = 0; i < MMU_TIA(KERNBASE); i++) {
    733       1.1      gwr 		kernAbase[i].addr.raw = 0;
    734       1.1      gwr 	}
    735       1.1      gwr 
    736       1.7      gwr 	/*
    737       1.7      gwr 	 * Set up the kernel A and B tables so that they will reference the
    738       1.1      gwr 	 * correct spots in the contiguous table of PTEs allocated for the
    739       1.1      gwr 	 * kernel's virtual memory space.
    740       1.1      gwr 	 */
    741       1.1      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
    742       1.1      gwr 		kernAbase[i].attr.raw =
    743       1.1      gwr 			MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
    744       1.7      gwr 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
    745       1.1      gwr 
    746       1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++) {
    747       1.7      gwr 			kernBbase[b + j].attr.raw = mmu_vtop(&kernCbase[c])
    748       1.1      gwr 				| MMU_DT_SHORT;
    749       1.1      gwr 			c += MMU_C_TBL_SIZE;
    750       1.1      gwr 		}
    751       1.1      gwr 		b += MMU_B_TBL_SIZE;
    752       1.1      gwr 	}
    753       1.1      gwr 
    754       1.7      gwr 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
    755       1.7      gwr 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
    756       1.7      gwr 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
    757       1.7      gwr 
    758       1.7      gwr 	/*
    759       1.7      gwr 	 * We are now done with pmap_bootstrap_alloc().  Round up
    760       1.7      gwr 	 * `virtual_avail' to the nearest page, and set the flag
    761       1.7      gwr 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
    762       1.7      gwr 	 */
    763      1.79  thorpej 	pmap_bootstrap_aalign(PAGE_SIZE);
    764       1.7      gwr 	bootstrap_alloc_enabled = FALSE;
    765       1.7      gwr 
    766       1.7      gwr 	/*
    767       1.7      gwr 	 * Now that we are done with pmap_bootstrap_alloc(), we
    768       1.7      gwr 	 * must save the virtual and physical addresses of the
    769       1.7      gwr 	 * end of the linearly mapped range, which are stored in
    770       1.7      gwr 	 * virtual_contig_end and avail_start, respectively.
    771       1.7      gwr 	 * These variables will never change after this point.
    772       1.7      gwr 	 */
    773       1.7      gwr 	virtual_contig_end = virtual_avail;
    774       1.7      gwr 	avail_start = virtual_avail - KERNBASE;
    775       1.7      gwr 
    776       1.7      gwr 	/*
    777       1.7      gwr 	 * `avail_next' is a running pointer used by pmap_next_page() to
    778       1.7      gwr 	 * keep track of the next available physical page to be handed
    779       1.7      gwr 	 * to the VM system during its initialization, in which it
    780       1.7      gwr 	 * asks for physical pages, one at a time.
    781       1.7      gwr 	 */
    782       1.7      gwr 	avail_next = avail_start;
    783       1.7      gwr 
    784       1.7      gwr 	/*
    785       1.7      gwr 	 * Now allocate some virtual addresses, but not the physical pages
    786       1.7      gwr 	 * behind them.  Note that virtual_avail is already page-aligned.
    787       1.7      gwr 	 *
    788       1.7      gwr 	 * tmp_vpages[] is an array of two virtual pages used for temporary
    789       1.7      gwr 	 * kernel mappings in the pmap module to facilitate various physical
    790       1.7      gwr 	 * address-oritented operations.
    791       1.7      gwr 	 */
    792       1.7      gwr 	tmp_vpages[0] = virtual_avail;
    793      1.79  thorpej 	virtual_avail += PAGE_SIZE;
    794       1.7      gwr 	tmp_vpages[1] = virtual_avail;
    795      1.79  thorpej 	virtual_avail += PAGE_SIZE;
    796       1.7      gwr 
    797       1.7      gwr 	/** Initialize the PV system **/
    798       1.7      gwr 	pmap_init_pv();
    799       1.7      gwr 
    800       1.7      gwr 	/*
    801       1.7      gwr 	 * Fill in the kernel_pmap structure and kernel_crp.
    802       1.7      gwr 	 */
    803       1.7      gwr 	kernAphys = mmu_vtop(kernAbase);
    804       1.7      gwr 	kernel_pmap.pm_a_tmgr = NULL;
    805       1.7      gwr 	kernel_pmap.pm_a_phys = kernAphys;
    806       1.7      gwr 	kernel_pmap.pm_refcount = 1; /* always in use */
    807      1.55  tsutsui 	simple_lock_init(&kernel_pmap.pm_lock);
    808       1.7      gwr 
    809       1.7      gwr 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
    810       1.7      gwr 	kernel_crp.rp_addr = kernAphys;
    811       1.7      gwr 
    812       1.1      gwr 	/*
    813       1.1      gwr 	 * Now pmap_enter_kernel() may be used safely and will be
    814       1.7      gwr 	 * the main interface used hereafter to modify the kernel's
    815       1.7      gwr 	 * virtual address space.  Note that since we are still running
    816       1.7      gwr 	 * under the PROM's address table, none of these table modifications
    817       1.7      gwr 	 * actually take effect until pmap_takeover_mmu() is called.
    818       1.1      gwr 	 *
    819       1.7      gwr 	 * Note: Our tables do NOT have the PROM linear mappings!
    820       1.7      gwr 	 * Only the mappings created here exist in our tables, so
    821       1.7      gwr 	 * remember to map anything we expect to use.
    822       1.1      gwr 	 */
    823      1.69      chs 	va = (vaddr_t)KERNBASE;
    824       1.7      gwr 	pa = 0;
    825       1.1      gwr 
    826       1.1      gwr 	/*
    827       1.7      gwr 	 * The first page of the kernel virtual address space is the msgbuf
    828       1.7      gwr 	 * page.  The page attributes (data, non-cached) are set here, while
    829       1.7      gwr 	 * the address is assigned to this global pointer in cpu_startup().
    830      1.29      gwr 	 * It is non-cached, mostly due to paranoia.
    831       1.1      gwr 	 */
    832      1.29      gwr 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
    833      1.79  thorpej 	va += PAGE_SIZE; pa += PAGE_SIZE;
    834       1.1      gwr 
    835       1.7      gwr 	/* Next page is used as the temporary stack. */
    836       1.1      gwr 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
    837      1.79  thorpej 	va += PAGE_SIZE; pa += PAGE_SIZE;
    838       1.1      gwr 
    839       1.1      gwr 	/*
    840       1.1      gwr 	 * Map all of the kernel's text segment as read-only and cacheable.
    841       1.1      gwr 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
    842       1.1      gwr 	 * of kernel text and the first bytes of kernel data will often be
    843       1.1      gwr 	 * sharing the same page.  Therefore, the last page of kernel text
    844       1.1      gwr 	 * has to be mapped as read/write, to accomodate the data.
    845       1.1      gwr 	 */
    846      1.69      chs 	eva = m68k_trunc_page((vaddr_t)etext);
    847      1.79  thorpej 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
    848       1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
    849       1.1      gwr 
    850       1.7      gwr 	/*
    851       1.7      gwr 	 * Map all of the kernel's data as read/write and cacheable.
    852       1.7      gwr 	 * This includes: data, BSS, symbols, and everything in the
    853       1.7      gwr 	 * contiguous memory used by pmap_bootstrap_alloc()
    854       1.1      gwr 	 */
    855      1.79  thorpej 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
    856       1.1      gwr 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
    857       1.1      gwr 
    858       1.7      gwr 	/*
    859       1.7      gwr 	 * At this point we are almost ready to take over the MMU.  But first
    860       1.7      gwr 	 * we must save the PROM's address space in our map, as we call its
    861       1.7      gwr 	 * routines and make references to its data later in the kernel.
    862       1.1      gwr 	 */
    863       1.7      gwr 	pmap_bootstrap_copyprom();
    864       1.7      gwr 	pmap_takeover_mmu();
    865      1.13      gwr 	pmap_bootstrap_setprom();
    866       1.1      gwr 
    867       1.1      gwr 	/* Notify the VM system of our page size. */
    868      1.79  thorpej 	uvmexp.pagesize = PAGE_SIZE;
    869      1.43      mrg 	uvm_setpagesize();
    870      1.37      gwr 
    871      1.37      gwr 	pmap_page_upload();
    872       1.1      gwr }
    873       1.1      gwr 
    874       1.1      gwr 
    875       1.1      gwr /* pmap_alloc_usermmu			INTERNAL
    876       1.1      gwr  **
    877       1.1      gwr  * Called from pmap_bootstrap() to allocate MMU tables that will
    878       1.1      gwr  * eventually be used for user mappings.
    879       1.1      gwr  */
    880      1.86      chs void
    881      1.86      chs pmap_alloc_usermmu(void)
    882       1.1      gwr {
    883       1.7      gwr 	/* XXX: Moved into caller. */
    884       1.1      gwr }
    885       1.1      gwr 
    886       1.1      gwr /* pmap_alloc_pv			INTERNAL
    887       1.1      gwr  **
    888       1.1      gwr  * Called from pmap_bootstrap() to allocate the physical
    889       1.1      gwr  * to virtual mapping list.  Each physical page of memory
    890       1.1      gwr  * in the system has a corresponding element in this list.
    891       1.1      gwr  */
    892      1.86      chs void
    893      1.86      chs pmap_alloc_pv(void)
    894       1.1      gwr {
    895       1.1      gwr 	int	i;
    896       1.1      gwr 	unsigned int	total_mem;
    897       1.1      gwr 
    898       1.7      gwr 	/*
    899       1.7      gwr 	 * Allocate a pv_head structure for every page of physical
    900       1.1      gwr 	 * memory that will be managed by the system.  Since memory on
    901       1.1      gwr 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
    902       1.1      gwr 	 * count by subtraction of the lowest available address from the
    903       1.1      gwr 	 * highest, but rather we have to step through each memory
    904       1.1      gwr 	 * bank and add the number of pages in each to the total.
    905       1.1      gwr 	 *
    906       1.1      gwr 	 * At this time we also initialize the offset of each bank's
    907       1.1      gwr 	 * starting pv_head within the pv_head list so that the physical
    908       1.1      gwr 	 * memory state routines (pmap_is_referenced(),
    909       1.1      gwr 	 * pmap_is_modified(), et al.) can quickly find coresponding
    910       1.1      gwr 	 * pv_heads in spite of the non-contiguity.
    911       1.1      gwr 	 */
    912       1.1      gwr 	total_mem = 0;
    913      1.20  thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
    914      1.25    veego 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
    915       1.1      gwr 		total_mem += avail_mem[i].pmem_end -
    916       1.1      gwr 			avail_mem[i].pmem_start;
    917       1.1      gwr 		if (avail_mem[i].pmem_next == NULL)
    918       1.1      gwr 			break;
    919       1.1      gwr 	}
    920       1.1      gwr 	pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
    921      1.25    veego 		m68k_btop(total_phys_mem));
    922       1.1      gwr }
    923       1.1      gwr 
    924       1.1      gwr /* pmap_alloc_usertmgr			INTERNAL
    925       1.1      gwr  **
    926       1.1      gwr  * Called from pmap_bootstrap() to allocate the structures which
    927       1.1      gwr  * facilitate management of user MMU tables.  Each user MMU table
    928       1.1      gwr  * in the system has one such structure associated with it.
    929       1.1      gwr  */
    930      1.86      chs void
    931      1.86      chs pmap_alloc_usertmgr(void)
    932       1.1      gwr {
    933       1.1      gwr 	/* Allocate user MMU table managers */
    934       1.7      gwr 	/* It would be a lot simpler to just make these BSS, but */
    935       1.7      gwr 	/* we may want to change their size at boot time... -j */
    936       1.1      gwr 	Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
    937       1.1      gwr 		* NUM_A_TABLES);
    938       1.1      gwr 	Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
    939       1.1      gwr 		* NUM_B_TABLES);
    940       1.1      gwr 	Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
    941       1.1      gwr 		* NUM_C_TABLES);
    942       1.1      gwr 
    943       1.7      gwr 	/*
    944       1.7      gwr 	 * Allocate PV list elements for the physical to virtual
    945       1.1      gwr 	 * mapping system.
    946       1.1      gwr 	 */
    947       1.1      gwr 	pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
    948       1.7      gwr 		sizeof(pv_elem_t) * (NUM_USER_PTES + NUM_KERN_PTES));
    949       1.1      gwr }
    950       1.1      gwr 
    951       1.1      gwr /* pmap_bootstrap_copyprom()			INTERNAL
    952       1.1      gwr  **
    953       1.1      gwr  * Copy the PROM mappings into our own tables.  Note, we
    954       1.1      gwr  * can use physical addresses until __bootstrap returns.
    955       1.1      gwr  */
    956      1.86      chs void
    957      1.86      chs pmap_bootstrap_copyprom(void)
    958       1.1      gwr {
    959      1.33      gwr 	struct sunromvec *romp;
    960       1.1      gwr 	int *mon_ctbl;
    961       1.1      gwr 	mmu_short_pte_t *kpte;
    962       1.1      gwr 	int i, len;
    963       1.1      gwr 
    964       1.1      gwr 	romp = romVectorPtr;
    965       1.1      gwr 
    966       1.1      gwr 	/*
    967      1.33      gwr 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
    968      1.33      gwr 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
    969       1.1      gwr 	 */
    970       1.1      gwr 	mon_ctbl = *romp->monptaddr;
    971      1.33      gwr 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE);
    972       1.1      gwr 	kpte = &kernCbase[i];
    973      1.33      gwr 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
    974       1.1      gwr 
    975       1.1      gwr 	for (i = 0; i < len; i++) {
    976       1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
    977       1.1      gwr 	}
    978       1.1      gwr 
    979       1.1      gwr 	/*
    980       1.1      gwr 	 * Copy the mappings at MON_DVMA_BASE (to the end).
    981       1.1      gwr 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
    982      1.32      gwr 	 * Actually, we only want the last page, which the
    983      1.32      gwr 	 * PROM has set up for use by the "ie" driver.
    984      1.32      gwr 	 * (The i82686 needs its SCP there.)
    985      1.32      gwr 	 * If we copy all the mappings, pmap_enter_kernel
    986      1.32      gwr 	 * may complain about finding valid PTEs that are
    987      1.32      gwr 	 * not recorded in our PV lists...
    988       1.1      gwr 	 */
    989       1.1      gwr 	mon_ctbl = *romp->shadowpteaddr;
    990      1.33      gwr 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE);
    991       1.1      gwr 	kpte = &kernCbase[i];
    992      1.33      gwr 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
    993      1.32      gwr 	for (i = (len-1); i < len; i++) {
    994       1.1      gwr 		kpte[i].attr.raw = mon_ctbl[i];
    995       1.1      gwr 	}
    996       1.1      gwr }
    997       1.1      gwr 
    998       1.1      gwr /* pmap_takeover_mmu			INTERNAL
    999       1.1      gwr  **
   1000       1.1      gwr  * Called from pmap_bootstrap() after it has copied enough of the
   1001       1.1      gwr  * PROM mappings into the kernel map so that we can use our own
   1002       1.1      gwr  * MMU table.
   1003       1.1      gwr  */
   1004      1.86      chs void
   1005      1.86      chs pmap_takeover_mmu(void)
   1006       1.1      gwr {
   1007       1.1      gwr 
   1008      1.13      gwr 	loadcrp(&kernel_crp);
   1009       1.1      gwr }
   1010       1.1      gwr 
   1011      1.13      gwr /* pmap_bootstrap_setprom()			INTERNAL
   1012      1.13      gwr  **
   1013      1.13      gwr  * Set the PROM mappings so it can see kernel space.
   1014      1.13      gwr  * Note that physical addresses are used here, which
   1015      1.13      gwr  * we can get away with because this runs with the
   1016      1.13      gwr  * low 1GB set for transparent translation.
   1017      1.13      gwr  */
   1018      1.86      chs void
   1019      1.86      chs pmap_bootstrap_setprom(void)
   1020      1.13      gwr {
   1021      1.13      gwr 	mmu_long_dte_t *mon_dte;
   1022      1.13      gwr 	extern struct mmu_rootptr mon_crp;
   1023      1.13      gwr 	int i;
   1024      1.13      gwr 
   1025      1.13      gwr 	mon_dte = (mmu_long_dte_t *) mon_crp.rp_addr;
   1026      1.13      gwr 	for (i = MMU_TIA(KERNBASE); i < MMU_TIA(KERN_END); i++) {
   1027      1.13      gwr 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
   1028      1.13      gwr 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
   1029      1.13      gwr 	}
   1030      1.13      gwr }
   1031      1.13      gwr 
   1032      1.13      gwr 
   1033       1.1      gwr /* pmap_init			INTERFACE
   1034       1.1      gwr  **
   1035       1.1      gwr  * Called at the end of vm_init() to set up the pmap system to go
   1036       1.7      gwr  * into full time operation.  All initialization of kernel_pmap
   1037       1.7      gwr  * should be already done by now, so this should just do things
   1038       1.7      gwr  * needed for user-level pmaps to work.
   1039       1.1      gwr  */
   1040      1.86      chs void
   1041      1.86      chs pmap_init(void)
   1042       1.1      gwr {
   1043       1.1      gwr 	/** Initialize the manager pools **/
   1044       1.1      gwr 	TAILQ_INIT(&a_pool);
   1045       1.1      gwr 	TAILQ_INIT(&b_pool);
   1046       1.1      gwr 	TAILQ_INIT(&c_pool);
   1047       1.1      gwr 
   1048       1.1      gwr 	/**************************************************************
   1049       1.1      gwr 	 * Initialize all tmgr structures and MMU tables they manage. *
   1050       1.1      gwr 	 **************************************************************/
   1051       1.1      gwr 	/** Initialize A tables **/
   1052       1.1      gwr 	pmap_init_a_tables();
   1053       1.1      gwr 	/** Initialize B tables **/
   1054       1.1      gwr 	pmap_init_b_tables();
   1055       1.1      gwr 	/** Initialize C tables **/
   1056       1.1      gwr 	pmap_init_c_tables();
   1057      1.56  tsutsui 
   1058      1.56  tsutsui 	/** Initialize the pmap pools **/
   1059      1.56  tsutsui 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1060      1.74  thorpej 	    &pool_allocator_nointr);
   1061       1.1      gwr }
   1062       1.1      gwr 
   1063       1.1      gwr /* pmap_init_a_tables()			INTERNAL
   1064       1.1      gwr  **
   1065       1.1      gwr  * Initializes all A managers, their MMU A tables, and inserts
   1066       1.1      gwr  * them into the A manager pool for use by the system.
   1067       1.1      gwr  */
   1068      1.86      chs void
   1069      1.86      chs pmap_init_a_tables(void)
   1070       1.1      gwr {
   1071       1.1      gwr 	int i;
   1072       1.1      gwr 	a_tmgr_t *a_tbl;
   1073       1.1      gwr 
   1074      1.86      chs 	for (i = 0; i < NUM_A_TABLES; i++) {
   1075       1.1      gwr 		/* Select the next available A manager from the pool */
   1076       1.1      gwr 		a_tbl = &Atmgrbase[i];
   1077       1.1      gwr 
   1078       1.7      gwr 		/*
   1079       1.7      gwr 		 * Clear its parent entry.  Set its wired and valid
   1080       1.1      gwr 		 * entry count to zero.
   1081       1.1      gwr 		 */
   1082       1.1      gwr 		a_tbl->at_parent = NULL;
   1083       1.1      gwr 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
   1084       1.1      gwr 
   1085       1.1      gwr 		/* Assign it the next available MMU A table from the pool */
   1086       1.1      gwr 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
   1087       1.1      gwr 
   1088       1.7      gwr 		/*
   1089       1.7      gwr 		 * Initialize the MMU A table with the table in the `proc0',
   1090       1.1      gwr 		 * or kernel, mapping.  This ensures that every process has
   1091       1.1      gwr 		 * the kernel mapped in the top part of its address space.
   1092       1.1      gwr 		 */
   1093      1.71  tsutsui 		memcpy(a_tbl->at_dtbl, kernAbase, MMU_A_TBL_SIZE *
   1094       1.1      gwr 			sizeof(mmu_long_dte_t));
   1095       1.1      gwr 
   1096       1.7      gwr 		/*
   1097       1.7      gwr 		 * Finally, insert the manager into the A pool,
   1098       1.1      gwr 		 * making it ready to be used by the system.
   1099       1.1      gwr 		 */
   1100       1.1      gwr 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1101       1.1      gwr     }
   1102       1.1      gwr }
   1103       1.1      gwr 
   1104       1.1      gwr /* pmap_init_b_tables()			INTERNAL
   1105       1.1      gwr  **
   1106       1.1      gwr  * Initializes all B table managers, their MMU B tables, and
   1107       1.1      gwr  * inserts them into the B manager pool for use by the system.
   1108       1.1      gwr  */
   1109      1.86      chs void
   1110      1.86      chs pmap_init_b_tables(void)
   1111       1.1      gwr {
   1112      1.86      chs 	int i, j;
   1113       1.1      gwr 	b_tmgr_t *b_tbl;
   1114       1.1      gwr 
   1115      1.86      chs 	for (i = 0; i < NUM_B_TABLES; i++) {
   1116       1.1      gwr 		/* Select the next available B manager from the pool */
   1117       1.1      gwr 		b_tbl = &Btmgrbase[i];
   1118       1.1      gwr 
   1119       1.1      gwr 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
   1120       1.1      gwr 		b_tbl->bt_pidx = 0;		/* parent index,      */
   1121       1.1      gwr 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
   1122       1.1      gwr 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
   1123       1.1      gwr 
   1124       1.1      gwr 		/* Assign it the next available MMU B table from the pool */
   1125       1.1      gwr 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
   1126       1.1      gwr 
   1127       1.1      gwr 		/* Invalidate every descriptor in the table */
   1128       1.1      gwr 		for (j=0; j < MMU_B_TBL_SIZE; j++)
   1129       1.1      gwr 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
   1130       1.1      gwr 
   1131       1.1      gwr 		/* Insert the manager into the B pool */
   1132       1.1      gwr 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1133       1.1      gwr 	}
   1134       1.1      gwr }
   1135       1.1      gwr 
   1136       1.1      gwr /* pmap_init_c_tables()			INTERNAL
   1137       1.1      gwr  **
   1138       1.1      gwr  * Initializes all C table managers, their MMU C tables, and
   1139       1.1      gwr  * inserts them into the C manager pool for use by the system.
   1140       1.1      gwr  */
   1141      1.86      chs void
   1142      1.86      chs pmap_init_c_tables(void)
   1143       1.1      gwr {
   1144      1.86      chs 	int i, j;
   1145       1.1      gwr 	c_tmgr_t *c_tbl;
   1146       1.1      gwr 
   1147      1.86      chs 	for (i = 0; i < NUM_C_TABLES; i++) {
   1148       1.1      gwr 		/* Select the next available C manager from the pool */
   1149       1.1      gwr 		c_tbl = &Ctmgrbase[i];
   1150       1.1      gwr 
   1151       1.1      gwr 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
   1152       1.1      gwr 		c_tbl->ct_pidx = 0;		/* parent index,      */
   1153       1.1      gwr 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
   1154      1.26   jeremy 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
   1155      1.26   jeremy 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
   1156      1.26   jeremy 		c_tbl->ct_va = 0;		/* base of managed range */
   1157       1.1      gwr 
   1158       1.1      gwr 		/* Assign it the next available MMU C table from the pool */
   1159       1.1      gwr 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
   1160       1.1      gwr 
   1161       1.1      gwr 		for (j=0; j < MMU_C_TBL_SIZE; j++)
   1162       1.1      gwr 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
   1163       1.1      gwr 
   1164       1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1165       1.1      gwr 	}
   1166       1.1      gwr }
   1167       1.1      gwr 
   1168       1.1      gwr /* pmap_init_pv()			INTERNAL
   1169       1.1      gwr  **
   1170       1.1      gwr  * Initializes the Physical to Virtual mapping system.
   1171       1.1      gwr  */
   1172      1.86      chs void
   1173      1.86      chs pmap_init_pv(void)
   1174       1.1      gwr {
   1175      1.86      chs 	int i;
   1176       1.7      gwr 
   1177       1.7      gwr 	/* Initialize every PV head. */
   1178      1.25    veego 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
   1179       1.7      gwr 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
   1180       1.7      gwr 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
   1181       1.7      gwr 	}
   1182       1.1      gwr }
   1183       1.1      gwr 
   1184       1.1      gwr /* get_a_table			INTERNAL
   1185       1.1      gwr  **
   1186       1.1      gwr  * Retrieve and return a level A table for use in a user map.
   1187       1.1      gwr  */
   1188       1.1      gwr a_tmgr_t *
   1189      1.86      chs get_a_table(void)
   1190       1.1      gwr {
   1191       1.1      gwr 	a_tmgr_t *tbl;
   1192       1.7      gwr 	pmap_t pmap;
   1193       1.1      gwr 
   1194       1.1      gwr 	/* Get the top A table in the pool */
   1195      1.86      chs 	tbl = TAILQ_FIRST(&a_pool);
   1196       1.7      gwr 	if (tbl == NULL) {
   1197       1.7      gwr 		/*
   1198      1.85      wiz 		 * XXX - Instead of panicking here and in other get_x_table
   1199       1.7      gwr 		 * functions, we do have the option of sleeping on the head of
   1200       1.7      gwr 		 * the table pool.  Any function which updates the table pool
   1201       1.7      gwr 		 * would then issue a wakeup() on the head, thus waking up any
   1202       1.7      gwr 		 * processes waiting for a table.
   1203       1.7      gwr 		 *
   1204       1.7      gwr 		 * Actually, the place to sleep would be when some process
   1205       1.7      gwr 		 * asks for a "wired" mapping that would run us short of
   1206       1.7      gwr 		 * mapping resources.  This design DEPENDS on always having
   1207       1.7      gwr 		 * some mapping resources in the pool for stealing, so we
   1208       1.7      gwr 		 * must make sure we NEVER let the pool become empty. -gwr
   1209       1.7      gwr 		 */
   1210       1.1      gwr 		panic("get_a_table: out of A tables.");
   1211       1.7      gwr 	}
   1212       1.7      gwr 
   1213       1.1      gwr 	TAILQ_REMOVE(&a_pool, tbl, at_link);
   1214       1.7      gwr 	/*
   1215       1.7      gwr 	 * If the table has a non-null parent pointer then it is in use.
   1216       1.1      gwr 	 * Forcibly abduct it from its parent and clear its entries.
   1217       1.1      gwr 	 * No re-entrancy worries here.  This table would not be in the
   1218       1.1      gwr 	 * table pool unless it was available for use.
   1219       1.7      gwr 	 *
   1220       1.7      gwr 	 * Note that the second argument to free_a_table() is FALSE.  This
   1221       1.7      gwr 	 * indicates that the table should not be relinked into the A table
   1222       1.7      gwr 	 * pool.  That is a job for the function that called us.
   1223       1.1      gwr 	 */
   1224       1.1      gwr 	if (tbl->at_parent) {
   1225  1.86.6.2     ghen 		KASSERT(tbl->at_wcnt == 0);
   1226       1.7      gwr 		pmap = tbl->at_parent;
   1227       1.8      gwr 		free_a_table(tbl, FALSE);
   1228       1.7      gwr 		pmap->pm_a_tmgr = NULL;
   1229       1.7      gwr 		pmap->pm_a_phys = kernAphys;
   1230       1.1      gwr 	}
   1231       1.1      gwr 	return tbl;
   1232       1.1      gwr }
   1233       1.1      gwr 
   1234       1.1      gwr /* get_b_table			INTERNAL
   1235       1.1      gwr  **
   1236       1.1      gwr  * Return a level B table for use.
   1237       1.1      gwr  */
   1238       1.1      gwr b_tmgr_t *
   1239      1.86      chs get_b_table(void)
   1240       1.1      gwr {
   1241       1.1      gwr 	b_tmgr_t *tbl;
   1242       1.1      gwr 
   1243       1.1      gwr 	/* See 'get_a_table' for comments. */
   1244      1.86      chs 	tbl = TAILQ_FIRST(&b_pool);
   1245       1.1      gwr 	if (tbl == NULL)
   1246       1.1      gwr 		panic("get_b_table: out of B tables.");
   1247       1.1      gwr 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
   1248       1.1      gwr 	if (tbl->bt_parent) {
   1249  1.86.6.2     ghen 		KASSERT(tbl->bt_wcnt == 0);
   1250       1.1      gwr 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
   1251       1.1      gwr 		tbl->bt_parent->at_ecnt--;
   1252       1.8      gwr 		free_b_table(tbl, FALSE);
   1253       1.1      gwr 	}
   1254       1.1      gwr 	return tbl;
   1255       1.1      gwr }
   1256       1.1      gwr 
   1257       1.1      gwr /* get_c_table			INTERNAL
   1258       1.1      gwr  **
   1259       1.1      gwr  * Return a level C table for use.
   1260       1.1      gwr  */
   1261       1.1      gwr c_tmgr_t *
   1262      1.86      chs get_c_table(void)
   1263       1.1      gwr {
   1264       1.1      gwr 	c_tmgr_t *tbl;
   1265       1.1      gwr 
   1266       1.1      gwr 	/* See 'get_a_table' for comments */
   1267      1.86      chs 	tbl = TAILQ_FIRST(&c_pool);
   1268       1.1      gwr 	if (tbl == NULL)
   1269       1.1      gwr 		panic("get_c_table: out of C tables.");
   1270       1.1      gwr 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
   1271       1.1      gwr 	if (tbl->ct_parent) {
   1272  1.86.6.2     ghen 		KASSERT(tbl->ct_wcnt == 0);
   1273       1.1      gwr 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
   1274       1.1      gwr 		tbl->ct_parent->bt_ecnt--;
   1275       1.8      gwr 		free_c_table(tbl, FALSE);
   1276       1.1      gwr 	}
   1277       1.1      gwr 	return tbl;
   1278       1.1      gwr }
   1279       1.1      gwr 
   1280       1.7      gwr /*
   1281       1.7      gwr  * The following 'free_table' and 'steal_table' functions are called to
   1282       1.1      gwr  * detach tables from their current obligations (parents and children) and
   1283       1.1      gwr  * prepare them for reuse in another mapping.
   1284       1.1      gwr  *
   1285       1.1      gwr  * Free_table is used when the calling function will handle the fate
   1286       1.1      gwr  * of the parent table, such as returning it to the free pool when it has
   1287       1.1      gwr  * no valid entries.  Functions that do not want to handle this should
   1288       1.1      gwr  * call steal_table, in which the parent table's descriptors and entry
   1289       1.1      gwr  * count are automatically modified when this table is removed.
   1290       1.1      gwr  */
   1291       1.1      gwr 
   1292       1.1      gwr /* free_a_table			INTERNAL
   1293       1.1      gwr  **
   1294       1.1      gwr  * Unmaps the given A table and all child tables from their current
   1295       1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1296       1.7      gwr  * If 'relink' is true, the function will return the table to the head
   1297       1.7      gwr  * of the available table pool.
   1298       1.1      gwr  *
   1299       1.1      gwr  * Cache note: The MC68851 will automatically flush all
   1300       1.1      gwr  * descriptors derived from a given A table from its
   1301       1.1      gwr  * Automatic Translation Cache (ATC) if we issue a
   1302       1.1      gwr  * 'PFLUSHR' instruction with the base address of the
   1303       1.1      gwr  * table.  This function should do, and does so.
   1304       1.1      gwr  * Note note: We are using an MC68030 - there is no
   1305       1.1      gwr  * PFLUSHR.
   1306       1.1      gwr  */
   1307      1.86      chs int
   1308      1.86      chs free_a_table(a_tmgr_t *a_tbl, boolean_t relink)
   1309       1.1      gwr {
   1310       1.1      gwr 	int i, removed_cnt;
   1311       1.1      gwr 	mmu_long_dte_t	*dte;
   1312       1.1      gwr 	mmu_short_dte_t *dtbl;
   1313  1.86.6.2     ghen 	b_tmgr_t	*b_tbl;
   1314  1.86.6.2     ghen 	uint8_t at_wired, bt_wired;
   1315       1.1      gwr 
   1316       1.7      gwr 	/*
   1317       1.7      gwr 	 * Flush the ATC cache of all cached descriptors derived
   1318       1.1      gwr 	 * from this table.
   1319      1.22   jeremy 	 * Sun3x does not use 68851's cached table feature
   1320       1.1      gwr 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
   1321       1.1      gwr 	 */
   1322       1.1      gwr 
   1323       1.7      gwr 	/*
   1324       1.7      gwr 	 * Remove any pending cache flushes that were designated
   1325       1.1      gwr 	 * for the pmap this A table belongs to.
   1326       1.1      gwr 	 * a_tbl->parent->atc_flushq[0] = 0;
   1327      1.22   jeremy 	 * Not implemented in sun3x.
   1328       1.1      gwr 	 */
   1329       1.1      gwr 
   1330       1.7      gwr 	/*
   1331       1.7      gwr 	 * All A tables in the system should retain a map for the
   1332       1.1      gwr 	 * kernel. If the table contains any valid descriptors
   1333       1.1      gwr 	 * (other than those for the kernel area), invalidate them all,
   1334       1.1      gwr 	 * stopping short of the kernel's entries.
   1335       1.1      gwr 	 */
   1336       1.1      gwr 	removed_cnt = 0;
   1337  1.86.6.2     ghen 	at_wired = a_tbl->at_wcnt;
   1338       1.1      gwr 	if (a_tbl->at_ecnt) {
   1339       1.1      gwr 		dte = a_tbl->at_dtbl;
   1340       1.8      gwr 		for (i=0; i < MMU_TIA(KERNBASE); i++) {
   1341       1.7      gwr 			/*
   1342       1.7      gwr 			 * If a table entry points to a valid B table, free
   1343       1.1      gwr 			 * it and its children.
   1344       1.1      gwr 			 */
   1345       1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1346       1.7      gwr 				/*
   1347       1.7      gwr 				 * The following block does several things,
   1348       1.1      gwr 				 * from innermost expression to the
   1349       1.1      gwr 				 * outermost:
   1350       1.1      gwr 				 * 1) It extracts the base (cc 1996)
   1351       1.1      gwr 				 *    address of the B table pointed
   1352       1.1      gwr 				 *    to in the A table entry dte[i].
   1353       1.1      gwr 				 * 2) It converts this base address into
   1354       1.1      gwr 				 *    the virtual address it can be
   1355       1.1      gwr 				 *    accessed with. (all MMU tables point
   1356       1.1      gwr 				 *    to physical addresses.)
   1357       1.1      gwr 				 * 3) It finds the corresponding manager
   1358       1.1      gwr 				 *    structure which manages this MMU table.
   1359       1.1      gwr 				 * 4) It frees the manager structure.
   1360       1.1      gwr 				 *    (This frees the MMU table and all
   1361       1.1      gwr 				 *    child tables. See 'free_b_table' for
   1362       1.1      gwr 				 *    details.)
   1363       1.1      gwr 				 */
   1364       1.7      gwr 				dtbl = mmu_ptov(dte[i].addr.raw);
   1365  1.86.6.2     ghen 				b_tbl = mmuB2tmgr(dtbl);
   1366  1.86.6.2     ghen 				bt_wired = b_tbl->bt_wcnt;
   1367  1.86.6.2     ghen 				removed_cnt += free_b_table(b_tbl, TRUE);
   1368  1.86.6.2     ghen 				if (bt_wired)
   1369  1.86.6.2     ghen 					a_tbl->at_wcnt--;
   1370       1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1371       1.1      gwr 			}
   1372       1.8      gwr 		}
   1373       1.8      gwr 		a_tbl->at_ecnt = 0;
   1374       1.1      gwr 	}
   1375  1.86.6.2     ghen 	KASSERT(a_tbl->at_wcnt == 0);
   1376  1.86.6.2     ghen 
   1377       1.7      gwr 	if (relink) {
   1378       1.7      gwr 		a_tbl->at_parent = NULL;
   1379  1.86.6.2     ghen 		if (!at_wired)
   1380  1.86.6.2     ghen 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1381       1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   1382       1.7      gwr 	}
   1383       1.1      gwr 	return removed_cnt;
   1384       1.1      gwr }
   1385       1.1      gwr 
   1386       1.1      gwr /* free_b_table			INTERNAL
   1387       1.1      gwr  **
   1388       1.1      gwr  * Unmaps the given B table and all its children from their current
   1389       1.1      gwr  * mappings.  Returns the number of pages that were invalidated.
   1390       1.1      gwr  * (For comments, see 'free_a_table()').
   1391       1.1      gwr  */
   1392      1.86      chs int
   1393      1.86      chs free_b_table(b_tmgr_t *b_tbl, boolean_t relink)
   1394       1.1      gwr {
   1395       1.1      gwr 	int i, removed_cnt;
   1396       1.1      gwr 	mmu_short_dte_t *dte;
   1397       1.1      gwr 	mmu_short_pte_t	*dtbl;
   1398  1.86.6.2     ghen 	c_tmgr_t	*c_tbl;
   1399  1.86.6.2     ghen 	uint8_t bt_wired, ct_wired;
   1400       1.1      gwr 
   1401       1.1      gwr 	removed_cnt = 0;
   1402  1.86.6.2     ghen 	bt_wired = b_tbl->bt_wcnt;
   1403       1.1      gwr 	if (b_tbl->bt_ecnt) {
   1404       1.1      gwr 		dte = b_tbl->bt_dtbl;
   1405       1.8      gwr 		for (i=0; i < MMU_B_TBL_SIZE; i++) {
   1406       1.1      gwr 			if (MMU_VALID_DT(dte[i])) {
   1407       1.7      gwr 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
   1408  1.86.6.2     ghen 				c_tbl = mmuC2tmgr(dtbl);
   1409  1.86.6.2     ghen 				ct_wired = c_tbl->ct_wcnt;
   1410  1.86.6.2     ghen 				removed_cnt += free_c_table(c_tbl, TRUE);
   1411  1.86.6.2     ghen 				if (ct_wired)
   1412  1.86.6.2     ghen 					b_tbl->bt_wcnt--;
   1413       1.8      gwr 				dte[i].attr.raw = MMU_DT_INVALID;
   1414       1.1      gwr 			}
   1415       1.8      gwr 		}
   1416       1.8      gwr 		b_tbl->bt_ecnt = 0;
   1417       1.1      gwr 	}
   1418  1.86.6.2     ghen 	KASSERT(b_tbl->bt_wcnt == 0);
   1419       1.1      gwr 
   1420       1.7      gwr 	if (relink) {
   1421       1.7      gwr 		b_tbl->bt_parent = NULL;
   1422  1.86.6.2     ghen 		if (!bt_wired)
   1423  1.86.6.2     ghen 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1424       1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   1425       1.7      gwr 	}
   1426       1.1      gwr 	return removed_cnt;
   1427       1.1      gwr }
   1428       1.1      gwr 
   1429       1.1      gwr /* free_c_table			INTERNAL
   1430       1.1      gwr  **
   1431       1.1      gwr  * Unmaps the given C table from use and returns it to the pool for
   1432       1.1      gwr  * re-use.  Returns the number of pages that were invalidated.
   1433       1.1      gwr  *
   1434       1.1      gwr  * This function preserves any physical page modification information
   1435       1.1      gwr  * contained in the page descriptors within the C table by calling
   1436       1.1      gwr  * 'pmap_remove_pte().'
   1437       1.1      gwr  */
   1438      1.86      chs int
   1439      1.86      chs free_c_table(c_tmgr_t *c_tbl, boolean_t relink)
   1440       1.1      gwr {
   1441  1.86.6.2     ghen 	mmu_short_pte_t *c_pte;
   1442       1.1      gwr 	int i, removed_cnt;
   1443  1.86.6.2     ghen 	uint8_t ct_wired;
   1444       1.1      gwr 
   1445       1.1      gwr 	removed_cnt = 0;
   1446  1.86.6.2     ghen 	ct_wired = c_tbl->ct_wcnt;
   1447       1.8      gwr 	if (c_tbl->ct_ecnt) {
   1448       1.8      gwr 		for (i=0; i < MMU_C_TBL_SIZE; i++) {
   1449  1.86.6.2     ghen 			c_pte = &c_tbl->ct_dtbl[i];
   1450  1.86.6.2     ghen 			if (MMU_VALID_DT(*c_pte)) {
   1451  1.86.6.2     ghen 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   1452  1.86.6.2     ghen 					c_tbl->ct_wcnt--;
   1453  1.86.6.2     ghen 				pmap_remove_pte(c_pte);
   1454       1.1      gwr 				removed_cnt++;
   1455       1.1      gwr 			}
   1456       1.8      gwr 		}
   1457       1.8      gwr 		c_tbl->ct_ecnt = 0;
   1458       1.8      gwr 	}
   1459  1.86.6.2     ghen 	KASSERT(c_tbl->ct_wcnt == 0);
   1460       1.8      gwr 
   1461       1.7      gwr 	if (relink) {
   1462       1.7      gwr 		c_tbl->ct_parent = NULL;
   1463  1.86.6.2     ghen 		if (!ct_wired)
   1464  1.86.6.2     ghen 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1465       1.7      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   1466       1.7      gwr 	}
   1467       1.1      gwr 	return removed_cnt;
   1468       1.1      gwr }
   1469       1.1      gwr 
   1470       1.1      gwr 
   1471       1.1      gwr /* pmap_remove_pte			INTERNAL
   1472       1.1      gwr  **
   1473       1.1      gwr  * Unmap the given pte and preserve any page modification
   1474       1.1      gwr  * information by transfering it to the pv head of the
   1475       1.1      gwr  * physical page it maps to.  This function does not update
   1476       1.1      gwr  * any reference counts because it is assumed that the calling
   1477       1.8      gwr  * function will do so.
   1478       1.1      gwr  */
   1479       1.1      gwr void
   1480      1.86      chs pmap_remove_pte(mmu_short_pte_t *pte)
   1481       1.1      gwr {
   1482       1.7      gwr 	u_short     pv_idx, targ_idx;
   1483      1.69      chs 	paddr_t     pa;
   1484       1.1      gwr 	pv_t       *pv;
   1485       1.1      gwr 
   1486       1.1      gwr 	pa = MMU_PTE_PA(*pte);
   1487       1.1      gwr 	if (is_managed(pa)) {
   1488       1.1      gwr 		pv = pa2pv(pa);
   1489       1.7      gwr 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
   1490       1.7      gwr 
   1491       1.7      gwr 		/*
   1492       1.7      gwr 		 * If the PTE being removed is the first (or only) PTE in
   1493       1.7      gwr 		 * the list of PTEs currently mapped to this page, remove the
   1494       1.7      gwr 		 * PTE by changing the index found on the PV head.  Otherwise
   1495       1.7      gwr 		 * a linear search through the list will have to be executed
   1496       1.7      gwr 		 * in order to find the PVE which points to the PTE being
   1497       1.7      gwr 		 * removed, so that it may be modified to point to its new
   1498       1.7      gwr 		 * neighbor.
   1499       1.7      gwr 		 */
   1500      1.69      chs 
   1501       1.7      gwr 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
   1502       1.7      gwr 		if (pv_idx == targ_idx) {
   1503       1.7      gwr 			pv->pv_idx = pvebase[targ_idx].pve_next;
   1504       1.7      gwr 		} else {
   1505      1.69      chs 
   1506       1.7      gwr 			/*
   1507      1.32      gwr 			 * Find the PV element pointing to the target
   1508      1.32      gwr 			 * element.  Note: may have pv_idx==PVE_EOL
   1509       1.7      gwr 			 */
   1510      1.69      chs 
   1511      1.32      gwr 			for (;;) {
   1512      1.32      gwr 				if (pv_idx == PVE_EOL) {
   1513      1.32      gwr 					goto pv_not_found;
   1514      1.32      gwr 				}
   1515      1.32      gwr 				if (pvebase[pv_idx].pve_next == targ_idx)
   1516      1.32      gwr 					break;
   1517       1.7      gwr 				pv_idx = pvebase[pv_idx].pve_next;
   1518       1.7      gwr 			}
   1519      1.69      chs 
   1520       1.7      gwr 			/*
   1521       1.7      gwr 			 * At this point, pv_idx is the index of the PV
   1522       1.7      gwr 			 * element just before the target element in the list.
   1523       1.7      gwr 			 * Unlink the target.
   1524       1.7      gwr 			 */
   1525      1.69      chs 
   1526       1.7      gwr 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
   1527       1.7      gwr 		}
   1528      1.69      chs 
   1529       1.7      gwr 		/*
   1530       1.7      gwr 		 * Save the mod/ref bits of the pte by simply
   1531       1.1      gwr 		 * ORing the entire pte onto the pv_flags member
   1532       1.1      gwr 		 * of the pv structure.
   1533       1.1      gwr 		 * There is no need to use a separate bit pattern
   1534       1.1      gwr 		 * for usage information on the pv head than that
   1535       1.1      gwr 		 * which is used on the MMU ptes.
   1536       1.1      gwr 		 */
   1537      1.69      chs 
   1538      1.69      chs pv_not_found:
   1539       1.7      gwr 		pv->pv_flags |= (u_short) pte->attr.raw;
   1540       1.1      gwr 	}
   1541       1.1      gwr 	pte->attr.raw = MMU_DT_INVALID;
   1542       1.1      gwr }
   1543       1.1      gwr 
   1544       1.1      gwr /* pmap_stroll			INTERNAL
   1545       1.1      gwr  **
   1546       1.1      gwr  * Retrieve the addresses of all table managers involved in the mapping of
   1547      1.77      wiz  * the given virtual address.  If the table walk completed successfully,
   1548      1.77      wiz  * return TRUE.  If it was only partially successful, return FALSE.
   1549       1.1      gwr  * The table walk performed by this function is important to many other
   1550       1.1      gwr  * functions in this module.
   1551       1.7      gwr  *
   1552       1.7      gwr  * Note: This function ought to be easier to read.
   1553       1.1      gwr  */
   1554       1.1      gwr boolean_t
   1555      1.86      chs pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   1556      1.86      chs     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   1557      1.86      chs     int *pte_idx)
   1558       1.1      gwr {
   1559       1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1560       1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1561       1.1      gwr 
   1562       1.1      gwr 	if (pmap == pmap_kernel())
   1563       1.1      gwr 		return FALSE;
   1564       1.1      gwr 
   1565       1.7      gwr 	/* Does the given pmap have its own A table? */
   1566       1.7      gwr 	*a_tbl = pmap->pm_a_tmgr;
   1567       1.1      gwr 	if (*a_tbl == NULL)
   1568       1.1      gwr 		return FALSE; /* No.  Return unknown. */
   1569       1.1      gwr 	/* Does the A table have a valid B table
   1570       1.1      gwr 	 * under the corresponding table entry?
   1571       1.1      gwr 	 */
   1572       1.1      gwr 	*a_idx = MMU_TIA(va);
   1573       1.1      gwr 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
   1574       1.1      gwr 	if (!MMU_VALID_DT(*a_dte))
   1575       1.1      gwr 		return FALSE; /* No. Return unknown. */
   1576       1.1      gwr 	/* Yes. Extract B table from the A table. */
   1577       1.7      gwr 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
   1578       1.1      gwr 	/* Does the B table have a valid C table
   1579       1.1      gwr 	 * under the corresponding table entry?
   1580       1.1      gwr 	 */
   1581       1.1      gwr 	*b_idx = MMU_TIB(va);
   1582       1.1      gwr 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
   1583       1.1      gwr 	if (!MMU_VALID_DT(*b_dte))
   1584       1.1      gwr 		return FALSE; /* No. Return unknown. */
   1585       1.1      gwr 	/* Yes. Extract C table from the B table. */
   1586       1.7      gwr 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
   1587       1.1      gwr 	*pte_idx = MMU_TIC(va);
   1588       1.1      gwr 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
   1589       1.1      gwr 
   1590       1.1      gwr 	return	TRUE;
   1591       1.1      gwr }
   1592       1.1      gwr 
   1593       1.1      gwr /* pmap_enter			INTERFACE
   1594       1.1      gwr  **
   1595       1.1      gwr  * Called by the kernel to map a virtual address
   1596       1.1      gwr  * to a physical address in the given process map.
   1597       1.1      gwr  *
   1598       1.1      gwr  * Note: this function should apply an exclusive lock
   1599       1.1      gwr  * on the pmap system for its duration.  (it certainly
   1600       1.1      gwr  * would save my hair!!)
   1601       1.7      gwr  * This function ought to be easier to read.
   1602       1.1      gwr  */
   1603      1.86      chs int
   1604      1.86      chs pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1605       1.1      gwr {
   1606       1.7      gwr 	boolean_t insert, managed; /* Marks the need for PV insertion.*/
   1607       1.7      gwr 	u_short nidx;            /* PV list index                     */
   1608      1.52   jeremy 	int mapflags;            /* Flags for the mapping (see NOTE1) */
   1609       1.8      gwr 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
   1610       1.1      gwr 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
   1611       1.1      gwr 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
   1612       1.1      gwr 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
   1613       1.1      gwr 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
   1614       1.1      gwr 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
   1615       1.1      gwr 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
   1616       1.1      gwr 	pv_t      *pv;           /* pv list head                      */
   1617      1.52   jeremy 	boolean_t wired;         /* is the mapping to be wired?       */
   1618       1.1      gwr 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
   1619       1.1      gwr 
   1620       1.1      gwr 	if (pmap == pmap_kernel()) {
   1621       1.1      gwr 		pmap_enter_kernel(va, pa, prot);
   1622      1.61      chs 		return 0;
   1623       1.1      gwr 	}
   1624       1.7      gwr 
   1625      1.52   jeremy 	/*
   1626      1.52   jeremy 	 * Determine if the mapping should be wired.
   1627      1.52   jeremy 	 */
   1628      1.52   jeremy 	wired = ((flags & PMAP_WIRED) != 0);
   1629      1.52   jeremy 
   1630      1.52   jeremy 	/*
   1631      1.52   jeremy 	 * NOTE1:
   1632      1.52   jeremy 	 *
   1633      1.52   jeremy 	 * On November 13, 1999, someone changed the pmap_enter() API such
   1634      1.52   jeremy 	 * that it now accepts a 'flags' argument.  This new argument
   1635      1.52   jeremy 	 * contains bit-flags for the architecture-independent (UVM) system to
   1636      1.52   jeremy 	 * use in signalling certain mapping requirements to the architecture-
   1637      1.52   jeremy 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
   1638      1.52   jeremy 	 * one of the flags within it.
   1639      1.52   jeremy 	 *
   1640      1.52   jeremy 	 * In addition to flags signaled by the architecture-independent
   1641      1.52   jeremy 	 * system, parts of the architecture-dependent section of the sun3x
   1642      1.52   jeremy 	 * kernel pass their own flags in the lower, unused bits of the
   1643      1.52   jeremy 	 * physical address supplied to this function.  These flags are
   1644      1.52   jeremy 	 * extracted and stored in the temporary variable 'mapflags'.
   1645      1.52   jeremy 	 *
   1646      1.52   jeremy 	 * Extract sun3x specific flags from the physical address.
   1647      1.52   jeremy 	 */
   1648      1.52   jeremy 	mapflags  = (pa & ~MMU_PAGE_MASK);
   1649      1.52   jeremy 	pa       &= MMU_PAGE_MASK;
   1650       1.7      gwr 
   1651       1.7      gwr 	/*
   1652      1.22   jeremy 	 * Determine if the physical address being mapped is on-board RAM.
   1653      1.22   jeremy 	 * Any other area of the address space is likely to belong to a
   1654      1.22   jeremy 	 * device and hence it would be disasterous to cache its contents.
   1655       1.7      gwr 	 */
   1656       1.7      gwr 	if ((managed = is_managed(pa)) == FALSE)
   1657      1.52   jeremy 		mapflags |= PMAP_NC;
   1658       1.7      gwr 
   1659       1.7      gwr 	/*
   1660       1.7      gwr 	 * For user mappings we walk along the MMU tables of the given
   1661       1.1      gwr 	 * pmap, reaching a PTE which describes the virtual page being
   1662       1.1      gwr 	 * mapped or changed.  If any level of the walk ends in an invalid
   1663       1.1      gwr 	 * entry, a table must be allocated and the entry must be updated
   1664       1.1      gwr 	 * to point to it.
   1665       1.1      gwr 	 * There is a bit of confusion as to whether this code must be
   1666       1.1      gwr 	 * re-entrant.  For now we will assume it is.  To support
   1667       1.1      gwr 	 * re-entrancy we must unlink tables from the table pool before
   1668       1.1      gwr 	 * we assume we may use them.  Tables are re-linked into the pool
   1669       1.1      gwr 	 * when we are finished with them at the end of the function.
   1670       1.1      gwr 	 * But I don't feel like doing that until we have proof that this
   1671       1.1      gwr 	 * needs to be re-entrant.
   1672       1.1      gwr 	 * 'llevel' records which tables need to be relinked.
   1673       1.1      gwr 	 */
   1674       1.1      gwr 	llevel = NONE;
   1675       1.1      gwr 
   1676       1.7      gwr 	/*
   1677       1.7      gwr 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
   1678       1.7      gwr 	 * A table, allocate a new one from the available pool.
   1679       1.1      gwr 	 */
   1680       1.1      gwr 
   1681       1.7      gwr 	a_tbl = pmap->pm_a_tmgr;
   1682       1.7      gwr 	if (a_tbl == NULL) {
   1683       1.7      gwr 		/*
   1684       1.7      gwr 		 * This pmap does not currently have an A table.  Allocate
   1685       1.7      gwr 		 * a new one.
   1686       1.7      gwr 		 */
   1687       1.7      gwr 		a_tbl = get_a_table();
   1688       1.7      gwr 		a_tbl->at_parent = pmap;
   1689       1.7      gwr 
   1690       1.7      gwr 		/*
   1691       1.7      gwr 		 * Assign this new A table to the pmap, and calculate its
   1692       1.7      gwr 		 * physical address so that loadcrp() can be used to make
   1693       1.7      gwr 		 * the table active.
   1694       1.7      gwr 		 */
   1695       1.7      gwr 		pmap->pm_a_tmgr = a_tbl;
   1696       1.7      gwr 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
   1697       1.7      gwr 
   1698       1.7      gwr 		/*
   1699       1.7      gwr 		 * If the process receiving a new A table is the current
   1700       1.7      gwr 		 * process, we are responsible for setting the MMU so that
   1701       1.9      gwr 		 * it becomes the current address space.  This only adds
   1702       1.9      gwr 		 * new mappings, so no need to flush anything.
   1703       1.7      gwr 		 */
   1704       1.9      gwr 		if (pmap == current_pmap()) {
   1705       1.9      gwr 			kernel_crp.rp_addr = pmap->pm_a_phys;
   1706       1.9      gwr 			loadcrp(&kernel_crp);
   1707       1.9      gwr 		}
   1708       1.7      gwr 
   1709       1.1      gwr 		if (!wired)
   1710       1.1      gwr 			llevel = NEWA;
   1711       1.1      gwr 	} else {
   1712       1.7      gwr 		/*
   1713       1.7      gwr 		 * Use the A table already allocated for this pmap.
   1714       1.1      gwr 		 * Unlink it from the A table pool if necessary.
   1715       1.1      gwr 		 */
   1716       1.1      gwr 		if (wired && !a_tbl->at_wcnt)
   1717       1.1      gwr 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   1718       1.1      gwr 	}
   1719       1.1      gwr 
   1720       1.7      gwr 	/*
   1721       1.7      gwr 	 * Step 2 - Walk into the B table.  If there is no valid B table,
   1722       1.1      gwr 	 * allocate one.
   1723       1.1      gwr 	 */
   1724       1.1      gwr 
   1725       1.1      gwr 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
   1726       1.1      gwr 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
   1727       1.1      gwr 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
   1728       1.7      gwr 		/* The descriptor is valid.  Use the B table it points to. */
   1729       1.1      gwr 		/*************************************
   1730       1.1      gwr 		 *               a_idx               *
   1731       1.1      gwr 		 *                 v                 *
   1732       1.1      gwr 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
   1733       1.1      gwr 		 *          | | | | | | | | | | | |  *
   1734       1.1      gwr 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
   1735       1.1      gwr 		 *                 |                 *
   1736       1.1      gwr 		 *                 \- b_tbl -> +-+-  *
   1737       1.1      gwr 		 *                             | |   *
   1738       1.1      gwr 		 *                             +-+-  *
   1739       1.1      gwr 		 *************************************/
   1740       1.7      gwr 		b_dte = mmu_ptov(a_dte->addr.raw);
   1741       1.1      gwr 		b_tbl = mmuB2tmgr(b_dte);
   1742       1.7      gwr 
   1743       1.7      gwr 		/*
   1744       1.7      gwr 		 * If the requested mapping must be wired, but this table
   1745       1.7      gwr 		 * being used to map it is not, the table must be removed
   1746       1.7      gwr 		 * from the available pool and its wired entry count
   1747       1.7      gwr 		 * incremented.
   1748       1.7      gwr 		 */
   1749       1.1      gwr 		if (wired && !b_tbl->bt_wcnt) {
   1750       1.1      gwr 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   1751       1.7      gwr 			a_tbl->at_wcnt++;
   1752       1.1      gwr 		}
   1753       1.1      gwr 	} else {
   1754       1.7      gwr 		/* The descriptor is invalid.  Allocate a new B table. */
   1755       1.7      gwr 		b_tbl = get_b_table();
   1756       1.7      gwr 
   1757       1.1      gwr 		/* Point the parent A table descriptor to this new B table. */
   1758       1.7      gwr 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
   1759       1.7      gwr 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
   1760       1.7      gwr 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
   1761       1.7      gwr 
   1762       1.1      gwr 		/* Create the necessary back references to the parent table */
   1763       1.1      gwr 		b_tbl->bt_parent = a_tbl;
   1764       1.1      gwr 		b_tbl->bt_pidx = a_idx;
   1765       1.7      gwr 
   1766       1.7      gwr 		/*
   1767       1.7      gwr 		 * If this table is to be wired, make sure the parent A table
   1768       1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1769       1.1      gwr 		 * entry.
   1770       1.1      gwr 		 */
   1771       1.1      gwr 		if (wired)
   1772       1.1      gwr 			a_tbl->at_wcnt++;
   1773       1.1      gwr 		else if (llevel == NONE)
   1774       1.1      gwr 			llevel = NEWB;
   1775       1.1      gwr 	}
   1776       1.1      gwr 
   1777       1.7      gwr 	/*
   1778       1.7      gwr 	 * Step 3 - Walk into the C table, if there is no valid C table,
   1779       1.1      gwr 	 * allocate one.
   1780       1.1      gwr 	 */
   1781       1.1      gwr 
   1782       1.1      gwr 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
   1783       1.1      gwr 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
   1784       1.1      gwr 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
   1785       1.7      gwr 		/* The descriptor is valid.  Use the C table it points to. */
   1786       1.1      gwr 		/**************************************
   1787       1.1      gwr 		 *               c_idx                *
   1788       1.1      gwr 		 * |                v                 *
   1789       1.1      gwr 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
   1790       1.1      gwr 		 *             | | | | | | | | | | |  *
   1791       1.1      gwr 		 *             +-+-+-+-+-+-+-+-+-+-+- *
   1792       1.1      gwr 		 *                  |                 *
   1793       1.1      gwr 		 *                  \- c_tbl -> +-+-- *
   1794       1.1      gwr 		 *                              | | | *
   1795       1.1      gwr 		 *                              +-+-- *
   1796       1.1      gwr 		 **************************************/
   1797       1.7      gwr 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
   1798       1.1      gwr 		c_tbl = mmuC2tmgr(c_pte);
   1799       1.7      gwr 
   1800       1.7      gwr 		/* If mapping is wired and table is not */
   1801       1.1      gwr 		if (wired && !c_tbl->ct_wcnt) {
   1802       1.1      gwr 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   1803       1.1      gwr 			b_tbl->bt_wcnt++;
   1804       1.1      gwr 		}
   1805       1.1      gwr 	} else {
   1806       1.7      gwr 		/* The descriptor is invalid.  Allocate a new C table. */
   1807       1.7      gwr 		c_tbl = get_c_table();
   1808       1.7      gwr 
   1809       1.1      gwr 		/* Point the parent B table descriptor to this new C table. */
   1810       1.7      gwr 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
   1811       1.7      gwr 		b_dte->attr.raw |= MMU_DT_SHORT;
   1812       1.7      gwr 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
   1813       1.7      gwr 
   1814       1.1      gwr 		/* Create the necessary back references to the parent table */
   1815       1.1      gwr 		c_tbl->ct_parent = b_tbl;
   1816       1.1      gwr 		c_tbl->ct_pidx = b_idx;
   1817      1.26   jeremy 		/*
   1818      1.26   jeremy 		 * Store the pmap and base virtual managed address for faster
   1819      1.26   jeremy 		 * retrieval in the PV functions.
   1820      1.26   jeremy 		 */
   1821      1.26   jeremy 		c_tbl->ct_pmap = pmap;
   1822      1.26   jeremy 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
   1823       1.7      gwr 
   1824       1.7      gwr 		/*
   1825       1.7      gwr 		 * If this table is to be wired, make sure the parent B table
   1826       1.1      gwr 		 * wired count is updated to reflect that it has another wired
   1827       1.1      gwr 		 * entry.
   1828       1.1      gwr 		 */
   1829       1.1      gwr 		if (wired)
   1830       1.1      gwr 			b_tbl->bt_wcnt++;
   1831       1.1      gwr 		else if (llevel == NONE)
   1832       1.1      gwr 			llevel = NEWC;
   1833       1.1      gwr 	}
   1834       1.1      gwr 
   1835       1.7      gwr 	/*
   1836       1.7      gwr 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
   1837       1.1      gwr 	 * slot of the C table, describing the PA to which the VA is mapped.
   1838       1.1      gwr 	 */
   1839       1.1      gwr 
   1840       1.1      gwr 	pte_idx = MMU_TIC(va);
   1841       1.1      gwr 	c_pte = &c_tbl->ct_dtbl[pte_idx];
   1842       1.1      gwr 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
   1843       1.7      gwr 		/*
   1844       1.7      gwr 		 * The PTE is currently valid.  This particular call
   1845       1.1      gwr 		 * is just a synonym for one (or more) of the following
   1846       1.1      gwr 		 * operations:
   1847       1.7      gwr 		 *     change protection of a page
   1848       1.1      gwr 		 *     change wiring status of a page
   1849       1.1      gwr 		 *     remove the mapping of a page
   1850       1.1      gwr 		 */
   1851       1.7      gwr 
   1852       1.7      gwr 		/* First check if this is a wiring operation. */
   1853  1.86.6.2     ghen 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
   1854       1.7      gwr 			/*
   1855  1.86.6.2     ghen 			 * The existing mapping is wired, so adjust wired
   1856  1.86.6.2     ghen 			 * entry count here. If new mapping is still wired,
   1857  1.86.6.2     ghen 			 * wired entry count will be incremented again later.
   1858       1.7      gwr 			 */
   1859  1.86.6.2     ghen 			c_tbl->ct_wcnt--;
   1860  1.86.6.2     ghen 			if (!wired) {
   1861  1.86.6.2     ghen 				/*
   1862  1.86.6.2     ghen 				 * The mapping of this PTE is being changed
   1863  1.86.6.2     ghen 				 * from wired to unwired.
   1864  1.86.6.2     ghen 				 * Adjust wired entry counts in each table and
   1865  1.86.6.2     ghen 				 * set llevel flag to put unwired tables back
   1866  1.86.6.2     ghen 				 * into the active pool.
   1867  1.86.6.2     ghen 				 */
   1868  1.86.6.2     ghen 				if (c_tbl->ct_wcnt == 0) {
   1869  1.86.6.2     ghen 					llevel = NEWC;
   1870  1.86.6.2     ghen 					if (--b_tbl->bt_wcnt == 0) {
   1871  1.86.6.2     ghen 						llevel = NEWB;
   1872  1.86.6.2     ghen 						if (--a_tbl->at_wcnt == 0) {
   1873  1.86.6.2     ghen 							llevel = NEWA;
   1874  1.86.6.2     ghen 						}
   1875  1.86.6.2     ghen 					}
   1876  1.86.6.2     ghen 				}
   1877  1.86.6.2     ghen 			}
   1878       1.7      gwr 		}
   1879       1.7      gwr 
   1880       1.1      gwr 		/* Is the new address the same as the old? */
   1881       1.1      gwr 		if (MMU_PTE_PA(*c_pte) == pa) {
   1882       1.7      gwr 			/*
   1883       1.7      gwr 			 * Yes, mark that it does not need to be reinserted
   1884       1.7      gwr 			 * into the PV list.
   1885       1.7      gwr 			 */
   1886       1.7      gwr 			insert = FALSE;
   1887       1.7      gwr 
   1888       1.7      gwr 			/*
   1889       1.7      gwr 			 * Clear all but the modified, referenced and wired
   1890       1.7      gwr 			 * bits on the PTE.
   1891       1.7      gwr 			 */
   1892       1.7      gwr 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
   1893       1.7      gwr 				| MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
   1894       1.1      gwr 		} else {
   1895       1.1      gwr 			/* No, remove the old entry */
   1896       1.1      gwr 			pmap_remove_pte(c_pte);
   1897       1.7      gwr 			insert = TRUE;
   1898       1.1      gwr 		}
   1899       1.8      gwr 
   1900       1.8      gwr 		/*
   1901       1.8      gwr 		 * TLB flush is only necessary if modifying current map.
   1902       1.8      gwr 		 * However, in pmap_enter(), the pmap almost always IS
   1903       1.8      gwr 		 * the current pmap, so don't even bother to check.
   1904       1.8      gwr 		 */
   1905       1.8      gwr 		TBIS(va);
   1906       1.1      gwr 	} else {
   1907       1.7      gwr 		/*
   1908       1.7      gwr 		 * The PTE is invalid.  Increment the valid entry count in
   1909       1.8      gwr 		 * the C table manager to reflect the addition of a new entry.
   1910       1.7      gwr 		 */
   1911       1.1      gwr 		c_tbl->ct_ecnt++;
   1912       1.8      gwr 
   1913       1.8      gwr 		/* XXX - temporarily make sure the PTE is cleared. */
   1914       1.8      gwr 		c_pte->attr.raw = 0;
   1915       1.1      gwr 
   1916       1.7      gwr 		/* It will also need to be inserted into the PV list. */
   1917       1.7      gwr 		insert = TRUE;
   1918       1.7      gwr 	}
   1919       1.7      gwr 
   1920       1.7      gwr 	/*
   1921       1.7      gwr 	 * If page is changing from unwired to wired status, set an unused bit
   1922       1.7      gwr 	 * within the PTE to indicate that it is wired.  Also increment the
   1923       1.7      gwr 	 * wired entry count in the C table manager.
   1924       1.7      gwr 	 */
   1925       1.7      gwr 	if (wired) {
   1926       1.1      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
   1927       1.7      gwr 		c_tbl->ct_wcnt++;
   1928       1.1      gwr 	}
   1929       1.1      gwr 
   1930       1.7      gwr 	/*
   1931       1.7      gwr 	 * Map the page, being careful to preserve modify/reference/wired
   1932       1.7      gwr 	 * bits.  At this point it is assumed that the PTE either has no bits
   1933       1.7      gwr 	 * set, or if there are set bits, they are only modified, reference or
   1934       1.7      gwr 	 * wired bits.  If not, the following statement will cause erratic
   1935       1.7      gwr 	 * behavior.
   1936       1.7      gwr 	 */
   1937       1.8      gwr #ifdef	PMAP_DEBUG
   1938       1.7      gwr 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
   1939       1.7      gwr 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
   1940       1.7      gwr 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
   1941       1.7      gwr 		Debugger();
   1942       1.7      gwr 	}
   1943       1.7      gwr #endif
   1944       1.7      gwr 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
   1945       1.7      gwr 
   1946       1.7      gwr 	/*
   1947       1.7      gwr 	 * If the mapping should be read-only, set the write protect
   1948       1.7      gwr 	 * bit in the PTE.
   1949       1.7      gwr 	 */
   1950       1.7      gwr 	if (!(prot & VM_PROT_WRITE))
   1951       1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
   1952       1.7      gwr 
   1953       1.7      gwr 	/*
   1954  1.86.6.1     tron 	 * Mark the PTE as used and/or modified as specified by the flags arg.
   1955  1.86.6.1     tron 	 */
   1956  1.86.6.1     tron 	if (flags & VM_PROT_ALL) {
   1957  1.86.6.1     tron 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
   1958  1.86.6.1     tron 		if (flags & VM_PROT_WRITE) {
   1959  1.86.6.1     tron 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
   1960  1.86.6.1     tron 		}
   1961  1.86.6.1     tron 	}
   1962  1.86.6.1     tron 
   1963  1.86.6.1     tron 	/*
   1964       1.7      gwr 	 * If the mapping should be cache inhibited (indicated by the flag
   1965       1.7      gwr 	 * bits found on the lower order of the physical address.)
   1966       1.7      gwr 	 * mark the PTE as a cache inhibited page.
   1967       1.7      gwr 	 */
   1968      1.52   jeremy 	if (mapflags & PMAP_NC)
   1969       1.7      gwr 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
   1970       1.7      gwr 
   1971       1.7      gwr 	/*
   1972       1.7      gwr 	 * If the physical address being mapped is managed by the PV
   1973       1.7      gwr 	 * system then link the pte into the list of pages mapped to that
   1974       1.7      gwr 	 * address.
   1975       1.7      gwr 	 */
   1976       1.7      gwr 	if (insert && managed) {
   1977       1.7      gwr 		pv = pa2pv(pa);
   1978       1.7      gwr 		nidx = pteidx(c_pte);
   1979       1.7      gwr 
   1980       1.7      gwr 		pvebase[nidx].pve_next = pv->pv_idx;
   1981       1.7      gwr 		pv->pv_idx = nidx;
   1982       1.7      gwr 	}
   1983       1.1      gwr 
   1984  1.86.6.2     ghen 	/* Move any allocated or unwired tables back into the active pool. */
   1985       1.1      gwr 
   1986       1.1      gwr 	switch (llevel) {
   1987       1.1      gwr 		case NEWA:
   1988       1.1      gwr 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   1989       1.1      gwr 			/* FALLTHROUGH */
   1990       1.1      gwr 		case NEWB:
   1991       1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   1992       1.1      gwr 			/* FALLTHROUGH */
   1993       1.1      gwr 		case NEWC:
   1994       1.1      gwr 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   1995       1.1      gwr 			/* FALLTHROUGH */
   1996       1.1      gwr 		default:
   1997       1.1      gwr 			break;
   1998       1.1      gwr 	}
   1999      1.51  thorpej 
   2000      1.61      chs 	return 0;
   2001       1.1      gwr }
   2002       1.1      gwr 
   2003       1.1      gwr /* pmap_enter_kernel			INTERNAL
   2004       1.1      gwr  **
   2005       1.1      gwr  * Map the given virtual address to the given physical address within the
   2006       1.1      gwr  * kernel address space.  This function exists because the kernel map does
   2007       1.1      gwr  * not do dynamic table allocation.  It consists of a contiguous array of ptes
   2008       1.1      gwr  * and can be edited directly without the need to walk through any tables.
   2009       1.1      gwr  *
   2010       1.1      gwr  * XXX: "Danger, Will Robinson!"
   2011       1.1      gwr  * Note that the kernel should never take a fault on any page
   2012       1.1      gwr  * between [ KERNBASE .. virtual_avail ] and this is checked in
   2013       1.1      gwr  * trap.c for kernel-mode MMU faults.  This means that mappings
   2014       1.1      gwr  * created in that range must be implicily wired. -gwr
   2015       1.1      gwr  */
   2016      1.86      chs void
   2017      1.86      chs pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2018       1.1      gwr {
   2019       1.7      gwr 	boolean_t       was_valid, insert;
   2020      1.32      gwr 	u_short         pte_idx;
   2021      1.69      chs 	int             flags;
   2022       1.1      gwr 	mmu_short_pte_t *pte;
   2023       1.7      gwr 	pv_t            *pv;
   2024      1.69      chs 	paddr_t     old_pa;
   2025       1.7      gwr 
   2026      1.32      gwr 	flags = (pa & ~MMU_PAGE_MASK);
   2027      1.32      gwr 	pa &= MMU_PAGE_MASK;
   2028      1.32      gwr 
   2029      1.32      gwr 	if (is_managed(pa))
   2030      1.32      gwr 		insert = TRUE;
   2031      1.32      gwr 	else
   2032      1.32      gwr 		insert = FALSE;
   2033       1.7      gwr 
   2034       1.7      gwr 	/*
   2035       1.7      gwr 	 * Calculate the index of the PTE being modified.
   2036       1.7      gwr 	 */
   2037      1.25    veego 	pte_idx = (u_long) m68k_btop(va - KERNBASE);
   2038       1.1      gwr 
   2039      1.22   jeremy 	/* This array is traditionally named "Sysmap" */
   2040       1.7      gwr 	pte = &kernCbase[pte_idx];
   2041       1.7      gwr 
   2042       1.7      gwr 	if (MMU_VALID_DT(*pte)) {
   2043       1.1      gwr 		was_valid = TRUE;
   2044       1.7      gwr 		/*
   2045      1.32      gwr 		 * If the PTE already maps a different
   2046      1.32      gwr 		 * physical address, umap and pv_unlink.
   2047      1.24   jeremy 		 */
   2048      1.24   jeremy 		old_pa = MMU_PTE_PA(*pte);
   2049      1.32      gwr 		if (pa != old_pa)
   2050      1.32      gwr 			pmap_remove_pte(pte);
   2051      1.32      gwr 		else {
   2052      1.24   jeremy 		    /*
   2053      1.32      gwr 		     * Old PA and new PA are the same.  No need to
   2054      1.32      gwr 		     * relink the mapping within the PV list.
   2055      1.24   jeremy 		     */
   2056      1.24   jeremy 		     insert = FALSE;
   2057       1.8      gwr 
   2058       1.7      gwr 		    /*
   2059      1.24   jeremy 		     * Save any mod/ref bits on the PTE.
   2060       1.7      gwr 		     */
   2061      1.24   jeremy 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
   2062       1.7      gwr 		}
   2063       1.7      gwr 	} else {
   2064       1.8      gwr 		pte->attr.raw = MMU_DT_INVALID;
   2065       1.7      gwr 		was_valid = FALSE;
   2066       1.7      gwr 	}
   2067       1.7      gwr 
   2068       1.7      gwr 	/*
   2069       1.8      gwr 	 * Map the page.  Being careful to preserve modified/referenced bits
   2070       1.8      gwr 	 * on the PTE.
   2071       1.7      gwr 	 */
   2072       1.7      gwr 	pte->attr.raw |= (pa | MMU_DT_PAGE);
   2073       1.1      gwr 
   2074       1.1      gwr 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
   2075       1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2076       1.7      gwr 	if (flags & PMAP_NC)
   2077       1.1      gwr 		pte->attr.raw |= MMU_SHORT_PTE_CI;
   2078       1.8      gwr 	if (was_valid)
   2079       1.7      gwr 		TBIS(va);
   2080       1.1      gwr 
   2081       1.7      gwr 	/*
   2082       1.7      gwr 	 * Insert the PTE into the PV system, if need be.
   2083       1.7      gwr 	 */
   2084       1.7      gwr 	if (insert) {
   2085       1.7      gwr 		pv = pa2pv(pa);
   2086       1.7      gwr 		pvebase[pte_idx].pve_next = pv->pv_idx;
   2087       1.7      gwr 		pv->pv_idx = pte_idx;
   2088       1.7      gwr 	}
   2089      1.34      gwr }
   2090      1.34      gwr 
   2091      1.86      chs void
   2092      1.86      chs pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2093      1.49      chs {
   2094      1.69      chs 	mmu_short_pte_t	*pte;
   2095      1.69      chs 
   2096      1.69      chs 	/* This array is traditionally named "Sysmap" */
   2097      1.69      chs 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE)];
   2098      1.69      chs 
   2099      1.69      chs 	KASSERT(!MMU_VALID_DT(*pte));
   2100      1.69      chs 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
   2101      1.69      chs 	if (!(prot & VM_PROT_WRITE))
   2102      1.69      chs 		pte->attr.raw |= MMU_SHORT_PTE_WP;
   2103      1.49      chs }
   2104      1.49      chs 
   2105      1.86      chs void
   2106      1.86      chs pmap_kremove(vaddr_t va, vsize_t len)
   2107      1.49      chs {
   2108      1.69      chs 	int idx, eidx;
   2109      1.69      chs 
   2110      1.69      chs #ifdef	PMAP_DEBUG
   2111  1.86.6.2     ghen 	if ((va & PGOFSET) || (len & PGOFSET))
   2112      1.72  tsutsui 		panic("pmap_kremove: alignment");
   2113      1.69      chs #endif
   2114      1.69      chs 
   2115      1.69      chs 	idx  = m68k_btop(va - KERNBASE);
   2116      1.69      chs 	eidx = m68k_btop(va + len - KERNBASE);
   2117      1.69      chs 
   2118      1.69      chs 	while (idx < eidx) {
   2119      1.69      chs 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
   2120      1.69      chs 		TBIS(va);
   2121      1.79  thorpej 		va += PAGE_SIZE;
   2122      1.49      chs 	}
   2123      1.49      chs }
   2124      1.49      chs 
   2125      1.35   jeremy /* pmap_map			INTERNAL
   2126      1.35   jeremy  **
   2127      1.35   jeremy  * Map a contiguous range of physical memory into a contiguous range of
   2128      1.35   jeremy  * the kernel virtual address space.
   2129      1.35   jeremy  *
   2130      1.35   jeremy  * Used for device mappings and early mapping of the kernel text/data/bss.
   2131      1.35   jeremy  * Returns the first virtual address beyond the end of the range.
   2132      1.34      gwr  */
   2133      1.86      chs vaddr_t
   2134      1.86      chs pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
   2135      1.34      gwr {
   2136      1.34      gwr 	int sz;
   2137      1.34      gwr 
   2138      1.34      gwr 	sz = endpa - pa;
   2139      1.34      gwr 	do {
   2140      1.34      gwr 		pmap_enter_kernel(va, pa, prot);
   2141      1.79  thorpej 		va += PAGE_SIZE;
   2142      1.79  thorpej 		pa += PAGE_SIZE;
   2143      1.79  thorpej 		sz -= PAGE_SIZE;
   2144      1.34      gwr 	} while (sz > 0);
   2145      1.73    chris 	pmap_update(pmap_kernel());
   2146      1.34      gwr 	return(va);
   2147       1.1      gwr }
   2148       1.1      gwr 
   2149       1.1      gwr /* pmap_protect			INTERFACE
   2150       1.1      gwr  **
   2151       1.7      gwr  * Apply the given protection to the given virtual address range within
   2152       1.1      gwr  * the given map.
   2153       1.1      gwr  *
   2154       1.1      gwr  * It is ok for the protection applied to be stronger than what is
   2155       1.1      gwr  * specified.  We use this to our advantage when the given map has no
   2156       1.7      gwr  * mapping for the virtual address.  By skipping a page when this
   2157       1.1      gwr  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
   2158       1.1      gwr  * and therefore do not need to map the page just to apply a protection
   2159       1.1      gwr  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
   2160       1.7      gwr  *
   2161       1.7      gwr  * XXX - This function could be speeded up by using pmap_stroll() for inital
   2162       1.7      gwr  *       setup, and then manual scrolling in the for() loop.
   2163       1.1      gwr  */
   2164      1.86      chs void
   2165      1.86      chs pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2166       1.1      gwr {
   2167       1.7      gwr 	boolean_t iscurpmap;
   2168       1.1      gwr 	int a_idx, b_idx, c_idx;
   2169       1.1      gwr 	a_tmgr_t *a_tbl;
   2170       1.1      gwr 	b_tmgr_t *b_tbl;
   2171       1.1      gwr 	c_tmgr_t *c_tbl;
   2172       1.1      gwr 	mmu_short_pte_t *pte;
   2173       1.1      gwr 
   2174       1.1      gwr 	if (pmap == pmap_kernel()) {
   2175       1.7      gwr 		pmap_protect_kernel(startva, endva, prot);
   2176       1.1      gwr 		return;
   2177       1.1      gwr 	}
   2178       1.1      gwr 
   2179      1.11   jeremy 	/*
   2180      1.12   jeremy 	 * In this particular pmap implementation, there are only three
   2181      1.12   jeremy 	 * types of memory protection: 'all' (read/write/execute),
   2182      1.12   jeremy 	 * 'read-only' (read/execute) and 'none' (no mapping.)
   2183      1.12   jeremy 	 * It is not possible for us to treat 'executable' as a separate
   2184      1.12   jeremy 	 * protection type.  Therefore, protection requests that seek to
   2185      1.12   jeremy 	 * remove execute permission while retaining read or write, and those
   2186      1.12   jeremy 	 * that make little sense (write-only for example) are ignored.
   2187      1.11   jeremy 	 */
   2188      1.12   jeremy 	switch (prot) {
   2189      1.12   jeremy 		case VM_PROT_NONE:
   2190      1.12   jeremy 			/*
   2191      1.12   jeremy 			 * A request to apply the protection code of
   2192      1.12   jeremy 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
   2193      1.12   jeremy 			 */
   2194      1.12   jeremy 			pmap_remove(pmap, startva, endva);
   2195      1.12   jeremy 			return;
   2196      1.12   jeremy 		case	VM_PROT_EXECUTE:
   2197      1.12   jeremy 		case	VM_PROT_READ:
   2198      1.12   jeremy 		case	VM_PROT_READ|VM_PROT_EXECUTE:
   2199      1.12   jeremy 			/* continue */
   2200      1.12   jeremy 			break;
   2201      1.12   jeremy 		case	VM_PROT_WRITE:
   2202      1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_READ:
   2203      1.12   jeremy 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
   2204      1.12   jeremy 		case	VM_PROT_ALL:
   2205      1.12   jeremy 			/* None of these should happen in a sane system. */
   2206      1.12   jeremy 			return;
   2207      1.11   jeremy 	}
   2208      1.11   jeremy 
   2209      1.11   jeremy 	/*
   2210      1.11   jeremy 	 * If the pmap has no A table, it has no mappings and therefore
   2211      1.11   jeremy 	 * there is nothing to protect.
   2212      1.11   jeremy 	 */
   2213      1.11   jeremy 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
   2214      1.11   jeremy 		return;
   2215      1.11   jeremy 
   2216      1.11   jeremy 	a_idx = MMU_TIA(startva);
   2217      1.11   jeremy 	b_idx = MMU_TIB(startva);
   2218      1.11   jeremy 	c_idx = MMU_TIC(startva);
   2219      1.11   jeremy 	b_tbl = (b_tmgr_t *) c_tbl = NULL;
   2220      1.11   jeremy 
   2221       1.7      gwr 	iscurpmap = (pmap == current_pmap());
   2222      1.11   jeremy 	while (startva < endva) {
   2223      1.11   jeremy 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   2224      1.11   jeremy 		  if (b_tbl == NULL) {
   2225      1.11   jeremy 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
   2226      1.69      chs 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
   2227      1.69      chs 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
   2228      1.11   jeremy 		  }
   2229      1.11   jeremy 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   2230      1.11   jeremy 		    if (c_tbl == NULL) {
   2231      1.11   jeremy 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
   2232      1.69      chs 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
   2233      1.69      chs 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
   2234      1.11   jeremy 		    }
   2235      1.11   jeremy 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
   2236      1.11   jeremy 		      pte = &c_tbl->ct_dtbl[c_idx];
   2237      1.12   jeremy 		      /* make the mapping read-only */
   2238      1.12   jeremy 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
   2239      1.11   jeremy 		      /*
   2240      1.11   jeremy 		       * If we just modified the current address space,
   2241      1.11   jeremy 		       * flush any translations for the modified page from
   2242      1.11   jeremy 		       * the translation cache and any data from it in the
   2243      1.11   jeremy 		       * data cache.
   2244      1.11   jeremy 		       */
   2245      1.11   jeremy 		      if (iscurpmap)
   2246      1.11   jeremy 		          TBIS(startva);
   2247      1.11   jeremy 		    }
   2248      1.79  thorpej 		    startva += PAGE_SIZE;
   2249       1.1      gwr 
   2250      1.11   jeremy 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
   2251      1.11   jeremy 		      c_tbl = NULL;
   2252      1.11   jeremy 		      c_idx = 0;
   2253      1.11   jeremy 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2254      1.11   jeremy 		        b_tbl = NULL;
   2255      1.11   jeremy 		        b_idx = 0;
   2256      1.11   jeremy 		      }
   2257      1.11   jeremy 		    }
   2258      1.11   jeremy 		  } else { /* C table wasn't valid */
   2259      1.11   jeremy 		    c_tbl = NULL;
   2260      1.11   jeremy 		    c_idx = 0;
   2261      1.11   jeremy 		    startva += MMU_TIB_RANGE;
   2262      1.11   jeremy 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
   2263      1.11   jeremy 		      b_tbl = NULL;
   2264      1.11   jeremy 		      b_idx = 0;
   2265      1.11   jeremy 		    }
   2266      1.11   jeremy 		  } /* C table */
   2267      1.11   jeremy 		} else { /* B table wasn't valid */
   2268      1.11   jeremy 		  b_tbl = NULL;
   2269      1.11   jeremy 		  b_idx = 0;
   2270      1.11   jeremy 		  startva += MMU_TIA_RANGE;
   2271      1.11   jeremy 		  a_idx++;
   2272      1.11   jeremy 		} /* B table */
   2273       1.1      gwr 	}
   2274       1.1      gwr }
   2275       1.1      gwr 
   2276       1.1      gwr /* pmap_protect_kernel			INTERNAL
   2277       1.1      gwr  **
   2278       1.7      gwr  * Apply the given protection code to a kernel address range.
   2279       1.1      gwr  */
   2280      1.86      chs void
   2281      1.86      chs pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
   2282       1.1      gwr {
   2283      1.69      chs 	vaddr_t va;
   2284       1.1      gwr 	mmu_short_pte_t *pte;
   2285       1.1      gwr 
   2286      1.25    veego 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE)];
   2287      1.79  thorpej 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
   2288       1.7      gwr 		if (MMU_VALID_DT(*pte)) {
   2289       1.7      gwr 		    switch (prot) {
   2290       1.7      gwr 		        case VM_PROT_ALL:
   2291       1.7      gwr 		            break;
   2292       1.7      gwr 		        case VM_PROT_EXECUTE:
   2293       1.7      gwr 		        case VM_PROT_READ:
   2294       1.7      gwr 		        case VM_PROT_READ|VM_PROT_EXECUTE:
   2295       1.7      gwr 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
   2296       1.7      gwr 		            break;
   2297       1.7      gwr 		        case VM_PROT_NONE:
   2298       1.7      gwr 		            /* this is an alias for 'pmap_remove_kernel' */
   2299       1.7      gwr 		            pmap_remove_pte(pte);
   2300       1.7      gwr 		            break;
   2301       1.7      gwr 		        default:
   2302       1.7      gwr 		            break;
   2303       1.7      gwr 		    }
   2304       1.7      gwr 		    /*
   2305       1.7      gwr 		     * since this is the kernel, immediately flush any cached
   2306       1.7      gwr 		     * descriptors for this address.
   2307       1.7      gwr 		     */
   2308       1.7      gwr 		    TBIS(va);
   2309       1.1      gwr 		}
   2310       1.1      gwr 	}
   2311       1.1      gwr }
   2312       1.1      gwr 
   2313      1.47  thorpej /* pmap_unwire				INTERFACE
   2314       1.1      gwr  **
   2315      1.47  thorpej  * Clear the wired attribute of the specified page.
   2316       1.1      gwr  *
   2317       1.1      gwr  * This function is called from vm_fault.c to unwire
   2318      1.47  thorpej  * a mapping.
   2319       1.1      gwr  */
   2320      1.86      chs void
   2321      1.86      chs pmap_unwire(pmap_t pmap, vaddr_t va)
   2322       1.1      gwr {
   2323       1.1      gwr 	int a_idx, b_idx, c_idx;
   2324       1.1      gwr 	a_tmgr_t *a_tbl;
   2325       1.1      gwr 	b_tmgr_t *b_tbl;
   2326       1.1      gwr 	c_tmgr_t *c_tbl;
   2327       1.1      gwr 	mmu_short_pte_t *pte;
   2328       1.1      gwr 
   2329       1.1      gwr 	/* Kernel mappings always remain wired. */
   2330       1.1      gwr 	if (pmap == pmap_kernel())
   2331       1.1      gwr 		return;
   2332       1.1      gwr 
   2333       1.7      gwr 	/*
   2334       1.7      gwr 	 * Walk through the tables.  If the walk terminates without
   2335       1.1      gwr 	 * a valid PTE then the address wasn't wired in the first place.
   2336       1.1      gwr 	 * Return immediately.
   2337       1.1      gwr 	 */
   2338       1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
   2339       1.1      gwr 		&b_idx, &c_idx) == FALSE)
   2340       1.1      gwr 		return;
   2341       1.1      gwr 
   2342       1.1      gwr 
   2343       1.1      gwr 	/* Is the PTE wired?  If not, return. */
   2344       1.1      gwr 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
   2345       1.1      gwr 		return;
   2346       1.1      gwr 
   2347       1.1      gwr 	/* Remove the wiring bit. */
   2348       1.1      gwr 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
   2349       1.1      gwr 
   2350       1.7      gwr 	/*
   2351       1.7      gwr 	 * Decrement the wired entry count in the C table.
   2352       1.1      gwr 	 * If it reaches zero the following things happen:
   2353       1.1      gwr 	 * 1. The table no longer has any wired entries and is considered
   2354       1.1      gwr 	 *    unwired.
   2355       1.1      gwr 	 * 2. It is placed on the available queue.
   2356       1.1      gwr 	 * 3. The parent table's wired entry count is decremented.
   2357       1.1      gwr 	 * 4. If it reaches zero, this process repeats at step 1 and
   2358       1.1      gwr 	 *    stops at after reaching the A table.
   2359       1.1      gwr 	 */
   2360       1.7      gwr 	if (--c_tbl->ct_wcnt == 0) {
   2361       1.1      gwr 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   2362       1.7      gwr 		if (--b_tbl->bt_wcnt == 0) {
   2363       1.1      gwr 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   2364       1.7      gwr 			if (--a_tbl->at_wcnt == 0) {
   2365       1.1      gwr 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   2366       1.1      gwr 			}
   2367       1.1      gwr 		}
   2368       1.1      gwr 	}
   2369       1.1      gwr }
   2370       1.1      gwr 
   2371       1.1      gwr /* pmap_copy				INTERFACE
   2372       1.1      gwr  **
   2373       1.1      gwr  * Copy the mappings of a range of addresses in one pmap, into
   2374       1.1      gwr  * the destination address of another.
   2375       1.1      gwr  *
   2376       1.1      gwr  * This routine is advisory.  Should we one day decide that MMU tables
   2377       1.1      gwr  * may be shared by more than one pmap, this function should be used to
   2378       1.1      gwr  * link them together.  Until that day however, we do nothing.
   2379       1.1      gwr  */
   2380       1.1      gwr void
   2381      1.86      chs pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
   2382       1.1      gwr {
   2383       1.1      gwr 	/* not implemented. */
   2384       1.1      gwr }
   2385       1.1      gwr 
   2386       1.1      gwr /* pmap_copy_page			INTERFACE
   2387       1.1      gwr  **
   2388       1.1      gwr  * Copy the contents of one physical page into another.
   2389       1.1      gwr  *
   2390       1.7      gwr  * This function makes use of two virtual pages allocated in pmap_bootstrap()
   2391      1.24   jeremy  * to map the two specified physical pages into the kernel address space.
   2392       1.7      gwr  *
   2393       1.7      gwr  * Note: We could use the transparent translation registers to make the
   2394       1.7      gwr  * mappings.  If we do so, be sure to disable interrupts before using them.
   2395       1.1      gwr  */
   2396      1.86      chs void
   2397      1.86      chs pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
   2398       1.1      gwr {
   2399      1.69      chs 	vaddr_t srcva, dstva;
   2400      1.23   jeremy 	int s;
   2401      1.24   jeremy 
   2402      1.24   jeremy 	srcva = tmp_vpages[0];
   2403      1.24   jeremy 	dstva = tmp_vpages[1];
   2404       1.1      gwr 
   2405      1.58  thorpej 	s = splvm();
   2406      1.69      chs #ifdef DIAGNOSTIC
   2407      1.24   jeremy 	if (tmp_vpages_inuse++)
   2408      1.24   jeremy 		panic("pmap_copy_page: temporary vpages are in use.");
   2409      1.69      chs #endif
   2410      1.23   jeremy 
   2411      1.23   jeremy 	/* Map pages as non-cacheable to avoid cache polution? */
   2412      1.69      chs 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ);
   2413      1.69      chs 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2414       1.7      gwr 
   2415      1.79  thorpej 	/* Hand-optimized version of bcopy(src, dst, PAGE_SIZE) */
   2416      1.24   jeremy 	copypage((char *) srcva, (char *) dstva);
   2417      1.24   jeremy 
   2418      1.79  thorpej 	pmap_kremove(srcva, PAGE_SIZE);
   2419      1.79  thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2420      1.24   jeremy 
   2421      1.69      chs #ifdef DIAGNOSTIC
   2422      1.24   jeremy 	--tmp_vpages_inuse;
   2423      1.69      chs #endif
   2424      1.23   jeremy 	splx(s);
   2425       1.1      gwr }
   2426       1.1      gwr 
   2427       1.1      gwr /* pmap_zero_page			INTERFACE
   2428       1.1      gwr  **
   2429       1.1      gwr  * Zero the contents of the specified physical page.
   2430       1.1      gwr  *
   2431       1.7      gwr  * Uses one of the virtual pages allocated in pmap_boostrap()
   2432      1.24   jeremy  * to map the specified page into the kernel address space.
   2433       1.1      gwr  */
   2434      1.86      chs void
   2435      1.86      chs pmap_zero_page(paddr_t dstpa)
   2436       1.1      gwr {
   2437      1.69      chs 	vaddr_t dstva;
   2438      1.23   jeremy 	int s;
   2439      1.23   jeremy 
   2440      1.24   jeremy 	dstva = tmp_vpages[1];
   2441      1.58  thorpej 	s = splvm();
   2442      1.69      chs #ifdef DIAGNOSTIC
   2443      1.26   jeremy 	if (tmp_vpages_inuse++)
   2444      1.24   jeremy 		panic("pmap_zero_page: temporary vpages are in use.");
   2445      1.69      chs #endif
   2446      1.24   jeremy 
   2447      1.24   jeremy 	/* The comments in pmap_copy_page() above apply here also. */
   2448      1.69      chs 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ|VM_PROT_WRITE);
   2449      1.24   jeremy 
   2450      1.79  thorpej 	/* Hand-optimized version of bzero(ptr, PAGE_SIZE) */
   2451      1.24   jeremy 	zeropage((char *) dstva);
   2452       1.1      gwr 
   2453      1.79  thorpej 	pmap_kremove(dstva, PAGE_SIZE);
   2454      1.69      chs #ifdef DIAGNOSTIC
   2455      1.24   jeremy 	--tmp_vpages_inuse;
   2456      1.69      chs #endif
   2457      1.23   jeremy 	splx(s);
   2458       1.1      gwr }
   2459       1.1      gwr 
   2460       1.1      gwr /* pmap_collect			INTERFACE
   2461       1.1      gwr  **
   2462       1.7      gwr  * Called from the VM system when we are about to swap out
   2463       1.7      gwr  * the process using this pmap.  This should give up any
   2464       1.7      gwr  * resources held here, including all its MMU tables.
   2465       1.1      gwr  */
   2466      1.86      chs void
   2467      1.86      chs pmap_collect(pmap_t pmap)
   2468       1.1      gwr {
   2469       1.7      gwr 	/* XXX - todo... */
   2470       1.1      gwr }
   2471       1.1      gwr 
   2472       1.1      gwr /* pmap_create			INTERFACE
   2473       1.1      gwr  **
   2474       1.1      gwr  * Create and return a pmap structure.
   2475       1.1      gwr  */
   2476      1.86      chs pmap_t
   2477      1.86      chs pmap_create(void)
   2478       1.1      gwr {
   2479       1.1      gwr 	pmap_t	pmap;
   2480       1.1      gwr 
   2481      1.56  tsutsui 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   2482       1.1      gwr 	pmap_pinit(pmap);
   2483       1.1      gwr 	return pmap;
   2484       1.1      gwr }
   2485       1.1      gwr 
   2486       1.1      gwr /* pmap_pinit			INTERNAL
   2487       1.1      gwr  **
   2488       1.1      gwr  * Initialize a pmap structure.
   2489       1.1      gwr  */
   2490      1.86      chs void
   2491      1.86      chs pmap_pinit(pmap_t pmap)
   2492       1.1      gwr {
   2493      1.71  tsutsui 	memset(pmap, 0, sizeof(struct pmap));
   2494       1.7      gwr 	pmap->pm_a_tmgr = NULL;
   2495       1.7      gwr 	pmap->pm_a_phys = kernAphys;
   2496      1.55  tsutsui 	pmap->pm_refcount = 1;
   2497      1.55  tsutsui 	simple_lock_init(&pmap->pm_lock);
   2498       1.1      gwr }
   2499       1.1      gwr 
   2500       1.1      gwr /* pmap_release				INTERFACE
   2501       1.1      gwr  **
   2502       1.1      gwr  * Release any resources held by the given pmap.
   2503       1.1      gwr  *
   2504       1.1      gwr  * This is the reverse analog to pmap_pinit.  It does not
   2505       1.1      gwr  * necessarily mean for the pmap structure to be deallocated,
   2506       1.1      gwr  * as in pmap_destroy.
   2507       1.1      gwr  */
   2508      1.86      chs void
   2509      1.86      chs pmap_release(pmap_t pmap)
   2510       1.1      gwr {
   2511       1.7      gwr 	/*
   2512       1.7      gwr 	 * As long as the pmap contains no mappings,
   2513       1.1      gwr 	 * which always should be the case whenever
   2514       1.1      gwr 	 * this function is called, there really should
   2515       1.1      gwr 	 * be nothing to do.
   2516       1.1      gwr 	 */
   2517       1.1      gwr #ifdef	PMAP_DEBUG
   2518       1.1      gwr 	if (pmap == pmap_kernel())
   2519       1.9      gwr 		panic("pmap_release: kernel pmap");
   2520       1.1      gwr #endif
   2521       1.9      gwr 	/*
   2522       1.9      gwr 	 * XXX - If this pmap has an A table, give it back.
   2523       1.9      gwr 	 * The pmap SHOULD be empty by now, and pmap_remove
   2524       1.9      gwr 	 * should have already given back the A table...
   2525       1.9      gwr 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
   2526       1.9      gwr 	 * at this point, which means some mapping was not
   2527       1.9      gwr 	 * removed when it should have been. -gwr
   2528       1.9      gwr 	 */
   2529       1.7      gwr 	if (pmap->pm_a_tmgr != NULL) {
   2530       1.9      gwr 		/* First make sure we are not using it! */
   2531       1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2532       1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   2533       1.9      gwr 			loadcrp(&kernel_crp);
   2534       1.9      gwr 		}
   2535      1.13      gwr #ifdef	PMAP_DEBUG /* XXX - todo! */
   2536      1.13      gwr 		/* XXX - Now complain... */
   2537      1.13      gwr 		printf("pmap_release: still have table\n");
   2538      1.13      gwr 		Debugger();
   2539      1.13      gwr #endif
   2540       1.7      gwr 		free_a_table(pmap->pm_a_tmgr, TRUE);
   2541       1.7      gwr 		pmap->pm_a_tmgr = NULL;
   2542       1.7      gwr 		pmap->pm_a_phys = kernAphys;
   2543       1.7      gwr 	}
   2544       1.1      gwr }
   2545       1.1      gwr 
   2546       1.1      gwr /* pmap_reference			INTERFACE
   2547       1.1      gwr  **
   2548       1.1      gwr  * Increment the reference count of a pmap.
   2549       1.1      gwr  */
   2550      1.86      chs void
   2551      1.86      chs pmap_reference(pmap_t pmap)
   2552       1.1      gwr {
   2553      1.55  tsutsui 	pmap_lock(pmap);
   2554      1.55  tsutsui 	pmap_add_ref(pmap);
   2555      1.55  tsutsui 	pmap_unlock(pmap);
   2556       1.1      gwr }
   2557       1.1      gwr 
   2558       1.1      gwr /* pmap_dereference			INTERNAL
   2559       1.1      gwr  **
   2560       1.1      gwr  * Decrease the reference count on the given pmap
   2561       1.1      gwr  * by one and return the current count.
   2562       1.1      gwr  */
   2563      1.86      chs int
   2564      1.86      chs pmap_dereference(pmap_t pmap)
   2565       1.1      gwr {
   2566       1.1      gwr 	int rtn;
   2567       1.1      gwr 
   2568      1.55  tsutsui 	pmap_lock(pmap);
   2569      1.55  tsutsui 	rtn = pmap_del_ref(pmap);
   2570      1.55  tsutsui 	pmap_unlock(pmap);
   2571       1.1      gwr 
   2572       1.1      gwr 	return rtn;
   2573       1.1      gwr }
   2574       1.1      gwr 
   2575       1.1      gwr /* pmap_destroy			INTERFACE
   2576       1.1      gwr  **
   2577       1.1      gwr  * Decrement a pmap's reference count and delete
   2578       1.1      gwr  * the pmap if it becomes zero.  Will be called
   2579       1.1      gwr  * only after all mappings have been removed.
   2580       1.1      gwr  */
   2581      1.86      chs void
   2582      1.86      chs pmap_destroy(pmap_t pmap)
   2583       1.1      gwr {
   2584       1.1      gwr 	if (pmap_dereference(pmap) == 0) {
   2585       1.1      gwr 		pmap_release(pmap);
   2586      1.56  tsutsui 		pool_put(&pmap_pmap_pool, pmap);
   2587       1.1      gwr 	}
   2588       1.1      gwr }
   2589       1.1      gwr 
   2590       1.1      gwr /* pmap_is_referenced			INTERFACE
   2591       1.1      gwr  **
   2592       1.1      gwr  * Determine if the given physical page has been
   2593       1.1      gwr  * referenced (read from [or written to.])
   2594       1.1      gwr  */
   2595       1.1      gwr boolean_t
   2596      1.86      chs pmap_is_referenced(struct vm_page *pg)
   2597       1.1      gwr {
   2598      1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2599       1.1      gwr 	pv_t      *pv;
   2600      1.69      chs 	int       idx;
   2601       1.1      gwr 
   2602       1.7      gwr 	/*
   2603       1.7      gwr 	 * Check the flags on the pv head.  If they are set,
   2604       1.1      gwr 	 * return immediately.  Otherwise a search must be done.
   2605       1.7      gwr 	 */
   2606      1.69      chs 
   2607      1.69      chs 	pv = pa2pv(pa);
   2608       1.1      gwr 	if (pv->pv_flags & PV_FLAGS_USED)
   2609       1.1      gwr 		return TRUE;
   2610      1.32      gwr 
   2611      1.32      gwr 	/*
   2612      1.32      gwr 	 * Search through all pv elements pointing
   2613      1.32      gwr 	 * to this page and query their reference bits
   2614      1.32      gwr 	 */
   2615      1.32      gwr 
   2616      1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2617      1.32      gwr 		if (MMU_PTE_USED(kernCbase[idx])) {
   2618      1.32      gwr 			return TRUE;
   2619      1.32      gwr 		}
   2620       1.7      gwr 	}
   2621       1.1      gwr 	return FALSE;
   2622       1.1      gwr }
   2623       1.1      gwr 
   2624       1.1      gwr /* pmap_is_modified			INTERFACE
   2625       1.1      gwr  **
   2626       1.1      gwr  * Determine if the given physical page has been
   2627       1.1      gwr  * modified (written to.)
   2628       1.1      gwr  */
   2629       1.1      gwr boolean_t
   2630      1.86      chs pmap_is_modified(struct vm_page *pg)
   2631       1.1      gwr {
   2632      1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2633       1.1      gwr 	pv_t      *pv;
   2634      1.69      chs 	int       idx;
   2635       1.1      gwr 
   2636       1.1      gwr 	/* see comments in pmap_is_referenced() */
   2637       1.1      gwr 	pv = pa2pv(pa);
   2638      1.32      gwr 	if (pv->pv_flags & PV_FLAGS_MDFY)
   2639       1.1      gwr 		return TRUE;
   2640      1.32      gwr 
   2641      1.32      gwr 	for (idx = pv->pv_idx;
   2642      1.32      gwr 		 idx != PVE_EOL;
   2643      1.32      gwr 		 idx = pvebase[idx].pve_next) {
   2644      1.32      gwr 
   2645      1.32      gwr 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
   2646      1.32      gwr 			return TRUE;
   2647      1.32      gwr 		}
   2648       1.7      gwr 	}
   2649       1.7      gwr 
   2650       1.1      gwr 	return FALSE;
   2651       1.1      gwr }
   2652       1.1      gwr 
   2653       1.1      gwr /* pmap_page_protect			INTERFACE
   2654       1.1      gwr  **
   2655       1.1      gwr  * Applies the given protection to all mappings to the given
   2656       1.1      gwr  * physical page.
   2657       1.1      gwr  */
   2658      1.86      chs void
   2659      1.86      chs pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2660       1.1      gwr {
   2661      1.49      chs 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
   2662       1.1      gwr 	pv_t      *pv;
   2663      1.69      chs 	int       idx;
   2664      1.69      chs 	vaddr_t va;
   2665       1.1      gwr 	struct mmu_short_pte_struct *pte;
   2666       1.8      gwr 	c_tmgr_t  *c_tbl;
   2667       1.8      gwr 	pmap_t    pmap, curpmap;
   2668       1.1      gwr 
   2669       1.8      gwr 	curpmap = current_pmap();
   2670       1.1      gwr 	pv = pa2pv(pa);
   2671      1.32      gwr 
   2672      1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2673       1.7      gwr 		pte = &kernCbase[idx];
   2674       1.1      gwr 		switch (prot) {
   2675       1.1      gwr 			case VM_PROT_ALL:
   2676       1.1      gwr 				/* do nothing */
   2677       1.1      gwr 				break;
   2678       1.7      gwr 			case VM_PROT_EXECUTE:
   2679       1.1      gwr 			case VM_PROT_READ:
   2680       1.1      gwr 			case VM_PROT_READ|VM_PROT_EXECUTE:
   2681       1.8      gwr 				/*
   2682       1.8      gwr 				 * Determine the virtual address mapped by
   2683       1.8      gwr 				 * the PTE and flush ATC entries if necessary.
   2684       1.8      gwr 				 */
   2685       1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2686      1.69      chs 				pte->attr.raw |= MMU_SHORT_PTE_WP;
   2687       1.8      gwr 				if (pmap == curpmap || pmap == pmap_kernel())
   2688       1.8      gwr 					TBIS(va);
   2689       1.1      gwr 				break;
   2690       1.1      gwr 			case VM_PROT_NONE:
   2691       1.7      gwr 				/* Save the mod/ref bits. */
   2692       1.7      gwr 				pv->pv_flags |= pte->attr.raw;
   2693       1.7      gwr 				/* Invalidate the PTE. */
   2694       1.7      gwr 				pte->attr.raw = MMU_DT_INVALID;
   2695       1.8      gwr 
   2696       1.8      gwr 				/*
   2697       1.8      gwr 				 * Update table counts.  And flush ATC entries
   2698       1.8      gwr 				 * if necessary.
   2699       1.8      gwr 				 */
   2700       1.8      gwr 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2701       1.8      gwr 
   2702       1.8      gwr 				/*
   2703       1.8      gwr 				 * If the PTE belongs to the kernel map,
   2704       1.8      gwr 				 * be sure to flush the page it maps.
   2705       1.8      gwr 				 */
   2706       1.8      gwr 				if (pmap == pmap_kernel()) {
   2707       1.8      gwr 					TBIS(va);
   2708       1.8      gwr 				} else {
   2709       1.8      gwr 					/*
   2710       1.8      gwr 					 * The PTE belongs to a user map.
   2711       1.8      gwr 					 * update the entry count in the C
   2712       1.8      gwr 					 * table to which it belongs and flush
   2713       1.8      gwr 					 * the ATC if the mapping belongs to
   2714       1.8      gwr 					 * the current pmap.
   2715       1.8      gwr 					 */
   2716       1.8      gwr 					c_tbl->ct_ecnt--;
   2717       1.8      gwr 					if (pmap == curpmap)
   2718       1.8      gwr 						TBIS(va);
   2719       1.8      gwr 				}
   2720       1.1      gwr 				break;
   2721       1.1      gwr 			default:
   2722       1.1      gwr 				break;
   2723       1.1      gwr 		}
   2724       1.1      gwr 	}
   2725       1.8      gwr 
   2726       1.8      gwr 	/*
   2727       1.8      gwr 	 * If the protection code indicates that all mappings to the page
   2728       1.8      gwr 	 * be removed, truncate the PV list to zero entries.
   2729       1.8      gwr 	 */
   2730       1.7      gwr 	if (prot == VM_PROT_NONE)
   2731       1.7      gwr 		pv->pv_idx = PVE_EOL;
   2732       1.1      gwr }
   2733       1.1      gwr 
   2734       1.7      gwr /* pmap_get_pteinfo		INTERNAL
   2735       1.1      gwr  **
   2736       1.7      gwr  * Called internally to find the pmap and virtual address within that
   2737       1.8      gwr  * map to which the pte at the given index maps.  Also includes the PTE's C
   2738       1.8      gwr  * table manager.
   2739       1.1      gwr  *
   2740       1.7      gwr  * Returns the pmap in the argument provided, and the virtual address
   2741       1.7      gwr  * by return value.
   2742       1.1      gwr  */
   2743      1.86      chs vaddr_t
   2744      1.86      chs pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
   2745       1.1      gwr {
   2746      1.69      chs 	vaddr_t     va = 0;
   2747       1.1      gwr 
   2748       1.7      gwr 	/*
   2749       1.7      gwr 	 * Determine if the PTE is a kernel PTE or a user PTE.
   2750       1.1      gwr 	 */
   2751       1.8      gwr 	if (idx >= NUM_KERN_PTES) {
   2752       1.7      gwr 		/*
   2753       1.7      gwr 		 * The PTE belongs to a user mapping.
   2754       1.7      gwr 		 */
   2755       1.8      gwr 		/* XXX: Would like an inline for this to validate idx... */
   2756      1.26   jeremy 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
   2757      1.26   jeremy 
   2758      1.26   jeremy 		*pmap = (*tbl)->ct_pmap;
   2759      1.26   jeremy 		/*
   2760      1.26   jeremy 		 * To find the va to which the PTE maps, we first take
   2761      1.26   jeremy 		 * the table's base virtual address mapping which is stored
   2762      1.26   jeremy 		 * in ct_va.  We then increment this address by a page for
   2763      1.26   jeremy 		 * every slot skipped until we reach the PTE.
   2764      1.26   jeremy 		 */
   2765      1.26   jeremy 		va =    (*tbl)->ct_va;
   2766      1.26   jeremy 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
   2767       1.7      gwr 	} else {
   2768       1.7      gwr 		/*
   2769       1.7      gwr 		 * The PTE belongs to the kernel map.
   2770       1.7      gwr 		 */
   2771       1.8      gwr 		*pmap = pmap_kernel();
   2772       1.8      gwr 
   2773      1.25    veego 		va = m68k_ptob(idx);
   2774       1.7      gwr 		va += KERNBASE;
   2775       1.7      gwr 	}
   2776       1.7      gwr 
   2777       1.1      gwr 	return va;
   2778       1.1      gwr }
   2779       1.1      gwr 
   2780       1.1      gwr /* pmap_clear_modify			INTERFACE
   2781       1.1      gwr  **
   2782       1.1      gwr  * Clear the modification bit on the page at the specified
   2783       1.1      gwr  * physical address.
   2784       1.1      gwr  *
   2785       1.1      gwr  */
   2786      1.49      chs boolean_t
   2787      1.86      chs pmap_clear_modify(struct vm_page *pg)
   2788       1.1      gwr {
   2789      1.49      chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2790      1.49      chs 	boolean_t rv;
   2791      1.49      chs 
   2792      1.49      chs 	rv = pmap_is_modified(pg);
   2793       1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
   2794      1.49      chs 	return rv;
   2795       1.1      gwr }
   2796       1.1      gwr 
   2797       1.1      gwr /* pmap_clear_reference			INTERFACE
   2798       1.1      gwr  **
   2799       1.1      gwr  * Clear the referenced bit on the page at the specified
   2800       1.1      gwr  * physical address.
   2801       1.1      gwr  */
   2802      1.49      chs boolean_t
   2803      1.86      chs pmap_clear_reference(struct vm_page *pg)
   2804       1.1      gwr {
   2805      1.49      chs 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   2806      1.49      chs 	boolean_t rv;
   2807      1.49      chs 
   2808      1.49      chs 	rv = pmap_is_referenced(pg);
   2809       1.1      gwr 	pmap_clear_pv(pa, PV_FLAGS_USED);
   2810      1.49      chs 	return rv;
   2811       1.1      gwr }
   2812       1.1      gwr 
   2813       1.1      gwr /* pmap_clear_pv			INTERNAL
   2814       1.1      gwr  **
   2815       1.1      gwr  * Clears the specified flag from the specified physical address.
   2816       1.1      gwr  * (Used by pmap_clear_modify() and pmap_clear_reference().)
   2817       1.1      gwr  *
   2818       1.1      gwr  * Flag is one of:
   2819       1.1      gwr  *   PV_FLAGS_MDFY - Page modified bit.
   2820       1.1      gwr  *   PV_FLAGS_USED - Page used (referenced) bit.
   2821       1.1      gwr  *
   2822       1.1      gwr  * This routine must not only clear the flag on the pv list
   2823       1.1      gwr  * head.  It must also clear the bit on every pte in the pv
   2824       1.1      gwr  * list associated with the address.
   2825       1.1      gwr  */
   2826      1.86      chs void
   2827      1.86      chs pmap_clear_pv(paddr_t pa, int flag)
   2828       1.1      gwr {
   2829       1.1      gwr 	pv_t      *pv;
   2830      1.69      chs 	int       idx;
   2831      1.69      chs 	vaddr_t   va;
   2832       1.7      gwr 	pmap_t          pmap;
   2833       1.1      gwr 	mmu_short_pte_t *pte;
   2834       1.7      gwr 	c_tmgr_t        *c_tbl;
   2835       1.1      gwr 
   2836       1.1      gwr 	pv = pa2pv(pa);
   2837       1.1      gwr 	pv->pv_flags &= ~(flag);
   2838      1.69      chs 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
   2839       1.7      gwr 		pte = &kernCbase[idx];
   2840       1.1      gwr 		pte->attr.raw &= ~(flag);
   2841      1.69      chs 
   2842       1.7      gwr 		/*
   2843       1.7      gwr 		 * The MC68030 MMU will not set the modified or
   2844       1.7      gwr 		 * referenced bits on any MMU tables for which it has
   2845       1.7      gwr 		 * a cached descriptor with its modify bit set.  To insure
   2846       1.7      gwr 		 * that it will modify these bits on the PTE during the next
   2847       1.7      gwr 		 * time it is written to or read from, we must flush it from
   2848       1.7      gwr 		 * the ATC.
   2849       1.7      gwr 		 *
   2850       1.7      gwr 		 * Ordinarily it is only necessary to flush the descriptor
   2851       1.7      gwr 		 * if it is used in the current address space.  But since I
   2852       1.7      gwr 		 * am not sure that there will always be a notion of
   2853       1.7      gwr 		 * 'the current address space' when this function is called,
   2854       1.7      gwr 		 * I will skip the test and always flush the address.  It
   2855       1.7      gwr 		 * does no harm.
   2856       1.7      gwr 		 */
   2857      1.69      chs 
   2858       1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   2859       1.7      gwr 		TBIS(va);
   2860       1.1      gwr 	}
   2861       1.1      gwr }
   2862       1.1      gwr 
   2863       1.1      gwr /* pmap_extract			INTERFACE
   2864       1.1      gwr  **
   2865       1.1      gwr  * Return the physical address mapped by the virtual address
   2866      1.48  thorpej  * in the specified pmap.
   2867       1.1      gwr  *
   2868       1.1      gwr  * Note: this function should also apply an exclusive lock
   2869       1.1      gwr  * on the pmap system during its duration.
   2870       1.1      gwr  */
   2871      1.86      chs boolean_t
   2872      1.86      chs pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   2873       1.1      gwr {
   2874       1.1      gwr 	int a_idx, b_idx, pte_idx;
   2875       1.1      gwr 	a_tmgr_t	*a_tbl;
   2876       1.1      gwr 	b_tmgr_t	*b_tbl;
   2877       1.1      gwr 	c_tmgr_t	*c_tbl;
   2878       1.1      gwr 	mmu_short_pte_t	*c_pte;
   2879       1.1      gwr 
   2880       1.1      gwr 	if (pmap == pmap_kernel())
   2881      1.48  thorpej 		return pmap_extract_kernel(va, pap);
   2882       1.1      gwr 
   2883       1.1      gwr 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
   2884       1.7      gwr 		&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE)
   2885      1.48  thorpej 		return FALSE;
   2886       1.1      gwr 
   2887       1.7      gwr 	if (!MMU_VALID_DT(*c_pte))
   2888      1.48  thorpej 		return FALSE;
   2889       1.7      gwr 
   2890      1.48  thorpej 	if (pap != NULL)
   2891      1.48  thorpej 		*pap = MMU_PTE_PA(*c_pte);
   2892      1.48  thorpej 	return (TRUE);
   2893       1.1      gwr }
   2894       1.1      gwr 
   2895       1.1      gwr /* pmap_extract_kernel		INTERNAL
   2896       1.1      gwr  **
   2897       1.8      gwr  * Extract a translation from the kernel address space.
   2898       1.1      gwr  */
   2899      1.86      chs boolean_t
   2900      1.86      chs pmap_extract_kernel(vaddr_t va, paddr_t *pap)
   2901       1.1      gwr {
   2902       1.1      gwr 	mmu_short_pte_t *pte;
   2903       1.1      gwr 
   2904      1.25    veego 	pte = &kernCbase[(u_int) m68k_btop(va - KERNBASE)];
   2905      1.48  thorpej 	if (!MMU_VALID_DT(*pte))
   2906      1.48  thorpej 		return (FALSE);
   2907      1.48  thorpej 	if (pap != NULL)
   2908      1.48  thorpej 		*pap = MMU_PTE_PA(*pte);
   2909      1.48  thorpej 	return (TRUE);
   2910       1.1      gwr }
   2911       1.1      gwr 
   2912       1.1      gwr /* pmap_remove_kernel		INTERNAL
   2913       1.1      gwr  **
   2914       1.1      gwr  * Remove the mapping of a range of virtual addresses from the kernel map.
   2915       1.9      gwr  * The arguments are already page-aligned.
   2916       1.1      gwr  */
   2917      1.86      chs void
   2918      1.86      chs pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
   2919       1.1      gwr {
   2920       1.9      gwr 	int idx, eidx;
   2921       1.9      gwr 
   2922       1.9      gwr #ifdef	PMAP_DEBUG
   2923       1.9      gwr 	if ((sva & PGOFSET) || (eva & PGOFSET))
   2924       1.9      gwr 		panic("pmap_remove_kernel: alignment");
   2925       1.9      gwr #endif
   2926       1.1      gwr 
   2927      1.25    veego 	idx  = m68k_btop(sva - KERNBASE);
   2928      1.25    veego 	eidx = m68k_btop(eva - KERNBASE);
   2929       1.9      gwr 
   2930      1.24   jeremy 	while (idx < eidx) {
   2931       1.9      gwr 		pmap_remove_pte(&kernCbase[idx++]);
   2932      1.24   jeremy 		TBIS(sva);
   2933      1.79  thorpej 		sva += PAGE_SIZE;
   2934      1.24   jeremy 	}
   2935       1.1      gwr }
   2936       1.1      gwr 
   2937       1.1      gwr /* pmap_remove			INTERFACE
   2938       1.1      gwr  **
   2939       1.1      gwr  * Remove the mapping of a range of virtual addresses from the given pmap.
   2940       1.7      gwr  *
   2941       1.1      gwr  */
   2942      1.86      chs void
   2943  1.86.6.2     ghen pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
   2944       1.1      gwr {
   2945       1.7      gwr 
   2946       1.1      gwr 	if (pmap == pmap_kernel()) {
   2947  1.86.6.2     ghen 		pmap_remove_kernel(sva, eva);
   2948       1.1      gwr 		return;
   2949       1.1      gwr 	}
   2950       1.1      gwr 
   2951       1.7      gwr 	/*
   2952       1.7      gwr 	 * If the pmap doesn't have an A table of its own, it has no mappings
   2953       1.7      gwr 	 * that can be removed.
   2954       1.1      gwr 	 */
   2955       1.7      gwr 	if (pmap->pm_a_tmgr == NULL)
   2956       1.7      gwr 		return;
   2957       1.7      gwr 
   2958       1.7      gwr 	/*
   2959       1.7      gwr 	 * Remove the specified range from the pmap.  If the function
   2960       1.7      gwr 	 * returns true, the operation removed all the valid mappings
   2961       1.7      gwr 	 * in the pmap and freed its A table.  If this happened to the
   2962       1.7      gwr 	 * currently loaded pmap, the MMU root pointer must be reloaded
   2963       1.7      gwr 	 * with the default 'kernel' map.
   2964       1.7      gwr 	 */
   2965  1.86.6.2     ghen 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
   2966       1.9      gwr 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
   2967       1.9      gwr 			kernel_crp.rp_addr = kernAphys;
   2968       1.9      gwr 			loadcrp(&kernel_crp);
   2969       1.9      gwr 			/* will do TLB flush below */
   2970       1.9      gwr 		}
   2971       1.7      gwr 		pmap->pm_a_tmgr = NULL;
   2972       1.7      gwr 		pmap->pm_a_phys = kernAphys;
   2973       1.1      gwr 	}
   2974       1.9      gwr 
   2975       1.9      gwr 	/*
   2976       1.9      gwr 	 * If we just modified the current address space,
   2977       1.9      gwr 	 * make sure to flush the MMU cache.
   2978       1.9      gwr 	 *
   2979       1.9      gwr 	 * XXX - this could be an unecessarily large flush.
   2980       1.9      gwr 	 * XXX - Could decide, based on the size of the VA range
   2981       1.9      gwr 	 * to be removed, whether to flush "by pages" or "all".
   2982       1.9      gwr 	 */
   2983       1.9      gwr 	if (pmap == current_pmap())
   2984       1.9      gwr 		TBIAU();
   2985       1.1      gwr }
   2986       1.1      gwr 
   2987       1.1      gwr /* pmap_remove_a			INTERNAL
   2988       1.1      gwr  **
   2989       1.1      gwr  * This is function number one in a set of three that removes a range
   2990       1.1      gwr  * of memory in the most efficient manner by removing the highest possible
   2991       1.1      gwr  * tables from the memory space.  This particular function attempts to remove
   2992       1.1      gwr  * as many B tables as it can, delegating the remaining fragmented ranges to
   2993       1.1      gwr  * pmap_remove_b().
   2994       1.1      gwr  *
   2995       1.7      gwr  * If the removal operation results in an empty A table, the function returns
   2996       1.7      gwr  * TRUE.
   2997       1.7      gwr  *
   2998       1.1      gwr  * It's ugly but will do for now.
   2999       1.1      gwr  */
   3000      1.86      chs boolean_t
   3001  1.86.6.2     ghen pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
   3002       1.1      gwr {
   3003       1.7      gwr 	boolean_t empty;
   3004       1.1      gwr 	int idx;
   3005      1.69      chs 	vaddr_t nstart, nend;
   3006       1.1      gwr 	b_tmgr_t *b_tbl;
   3007       1.1      gwr 	mmu_long_dte_t  *a_dte;
   3008       1.1      gwr 	mmu_short_dte_t *b_dte;
   3009  1.86.6.2     ghen 	uint8_t at_wired, bt_wired;
   3010       1.8      gwr 
   3011       1.7      gwr 	/*
   3012       1.7      gwr 	 * The following code works with what I call a 'granularity
   3013       1.7      gwr 	 * reduction algorithim'.  A range of addresses will always have
   3014       1.7      gwr 	 * the following properties, which are classified according to
   3015       1.7      gwr 	 * how the range relates to the size of the current granularity
   3016       1.7      gwr 	 * - an A table entry:
   3017       1.7      gwr 	 *
   3018       1.7      gwr 	 *            1 2       3 4
   3019       1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   3020       1.7      gwr 	 * -+---+---+---+---+---+---+---+-
   3021       1.7      gwr 	 *
   3022       1.7      gwr 	 * A range will always start on a granularity boundary, illustrated
   3023       1.7      gwr 	 * by '+' signs in the table above, or it will start at some point
   3024       1.7      gwr 	 * inbetween a granularity boundary, as illustrated by point 1.
   3025       1.7      gwr 	 * The first step in removing a range of addresses is to remove the
   3026       1.7      gwr 	 * range between 1 and 2, the nearest granularity boundary.  This
   3027       1.7      gwr 	 * job is handled by the section of code governed by the
   3028       1.7      gwr 	 * 'if (start < nstart)' statement.
   3029       1.7      gwr 	 *
   3030       1.7      gwr 	 * A range will always encompass zero or more intergral granules,
   3031       1.7      gwr 	 * illustrated by points 2 and 3.  Integral granules are easy to
   3032       1.7      gwr 	 * remove.  The removal of these granules is the second step, and
   3033       1.7      gwr 	 * is handled by the code block 'if (nstart < nend)'.
   3034       1.7      gwr 	 *
   3035       1.7      gwr 	 * Lastly, a range will always end on a granularity boundary,
   3036       1.7      gwr 	 * ill. by point 3, or it will fall just beyond one, ill. by point
   3037       1.7      gwr 	 * 4.  The last step involves removing this range and is handled by
   3038       1.7      gwr 	 * the code block 'if (nend < end)'.
   3039       1.7      gwr 	 */
   3040  1.86.6.2     ghen 	nstart = MMU_ROUND_UP_A(sva);
   3041  1.86.6.2     ghen 	nend = MMU_ROUND_A(eva);
   3042  1.86.6.2     ghen 
   3043  1.86.6.2     ghen 	at_wired = a_tbl->at_wcnt;
   3044       1.1      gwr 
   3045  1.86.6.2     ghen 	if (sva < nstart) {
   3046       1.7      gwr 		/*
   3047       1.7      gwr 		 * This block is executed if the range starts between
   3048       1.7      gwr 		 * a granularity boundary.
   3049       1.7      gwr 		 *
   3050       1.7      gwr 		 * First find the DTE which is responsible for mapping
   3051       1.7      gwr 		 * the start of the range.
   3052       1.7      gwr 		 */
   3053  1.86.6.2     ghen 		idx = MMU_TIA(sva);
   3054       1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3055       1.7      gwr 
   3056       1.7      gwr 		/*
   3057       1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3058       1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3059       1.7      gwr 		 * a finer granularity.
   3060       1.7      gwr 		 */
   3061       1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3062       1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3063       1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3064  1.86.6.2     ghen 			bt_wired = b_tbl->bt_wcnt;
   3065       1.7      gwr 
   3066       1.7      gwr 			/*
   3067       1.7      gwr 			 * The sub range to be removed starts at the start
   3068       1.7      gwr 			 * of the full range we were asked to remove, and ends
   3069       1.7      gwr 			 * at the greater of:
   3070       1.7      gwr 			 * 1. The end of the full range, -or-
   3071       1.7      gwr 			 * 2. The end of the full range, rounded down to the
   3072       1.7      gwr 			 *    nearest granularity boundary.
   3073       1.7      gwr 			 */
   3074  1.86.6.2     ghen 			if (eva < nstart)
   3075  1.86.6.2     ghen 				empty = pmap_remove_b(b_tbl, sva, eva);
   3076       1.7      gwr 			else
   3077  1.86.6.2     ghen 				empty = pmap_remove_b(b_tbl, sva, nstart);
   3078  1.86.6.2     ghen 
   3079  1.86.6.2     ghen 			/*
   3080  1.86.6.2     ghen 			 * If the child table no longer has wired entries,
   3081  1.86.6.2     ghen 			 * decrement wired entry count.
   3082  1.86.6.2     ghen 			 */
   3083  1.86.6.2     ghen 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3084  1.86.6.2     ghen 				a_tbl->at_wcnt--;
   3085       1.7      gwr 
   3086       1.7      gwr 			/*
   3087       1.7      gwr 			 * If the removal resulted in an empty B table,
   3088       1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3089       1.7      gwr 			 * the valid entry count of the A table.
   3090       1.7      gwr 			 */
   3091       1.7      gwr 			if (empty) {
   3092       1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3093       1.7      gwr 				a_tbl->at_ecnt--;
   3094       1.1      gwr 			}
   3095       1.1      gwr 		}
   3096       1.7      gwr 		/*
   3097       1.7      gwr 		 * If the DTE is invalid, the address range is already non-
   3098      1.68      wiz 		 * existent and can simply be skipped.
   3099       1.7      gwr 		 */
   3100       1.1      gwr 	}
   3101       1.1      gwr 	if (nstart < nend) {
   3102       1.7      gwr 		/*
   3103       1.8      gwr 		 * This block is executed if the range spans a whole number
   3104       1.7      gwr 		 * multiple of granules (A table entries.)
   3105       1.7      gwr 		 *
   3106       1.7      gwr 		 * First find the DTE which is responsible for mapping
   3107       1.7      gwr 		 * the start of the first granule involved.
   3108       1.7      gwr 		 */
   3109       1.1      gwr 		idx = MMU_TIA(nstart);
   3110       1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3111       1.7      gwr 
   3112       1.7      gwr 		/*
   3113       1.7      gwr 		 * Remove entire sub-granules (B tables) one at a time,
   3114       1.7      gwr 		 * until reaching the end of the range.
   3115       1.7      gwr 		 */
   3116       1.7      gwr 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
   3117       1.1      gwr 			if (MMU_VALID_DT(*a_dte)) {
   3118       1.7      gwr 				/*
   3119       1.7      gwr 				 * Find the B table manager for the
   3120       1.7      gwr 				 * entry and free it.
   3121       1.7      gwr 				 */
   3122       1.7      gwr 				b_dte = mmu_ptov(a_dte->addr.raw);
   3123       1.1      gwr 				b_tbl = mmuB2tmgr(b_dte);
   3124  1.86.6.2     ghen 				bt_wired = b_tbl->bt_wcnt;
   3125  1.86.6.2     ghen 
   3126       1.7      gwr 				free_b_table(b_tbl, TRUE);
   3127       1.7      gwr 
   3128       1.7      gwr 				/*
   3129  1.86.6.2     ghen 				 * All child entries has been removed.
   3130  1.86.6.2     ghen 				 * If there were any wired entries in it,
   3131  1.86.6.2     ghen 				 * decrement wired entry count.
   3132  1.86.6.2     ghen 				 */
   3133  1.86.6.2     ghen 				if (bt_wired)
   3134  1.86.6.2     ghen 					a_tbl->at_wcnt--;
   3135  1.86.6.2     ghen 
   3136  1.86.6.2     ghen 				/*
   3137       1.7      gwr 				 * Invalidate the DTE that points to the
   3138       1.7      gwr 				 * B table and decrement the valid entry
   3139       1.7      gwr 				 * count of the A table.
   3140       1.7      gwr 				 */
   3141       1.1      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3142       1.1      gwr 				a_tbl->at_ecnt--;
   3143       1.1      gwr 			}
   3144       1.1      gwr 	}
   3145  1.86.6.2     ghen 	if (nend < eva) {
   3146       1.7      gwr 		/*
   3147       1.7      gwr 		 * This block is executed if the range ends beyond a
   3148       1.7      gwr 		 * granularity boundary.
   3149       1.7      gwr 		 *
   3150       1.7      gwr 		 * First find the DTE which is responsible for mapping
   3151       1.7      gwr 		 * the start of the nearest (rounded down) granularity
   3152       1.7      gwr 		 * boundary.
   3153       1.7      gwr 		 */
   3154       1.1      gwr 		idx = MMU_TIA(nend);
   3155       1.1      gwr 		a_dte = &a_tbl->at_dtbl[idx];
   3156       1.7      gwr 
   3157       1.7      gwr 		/*
   3158       1.7      gwr 		 * If the DTE is valid then delegate the removal of the sub
   3159       1.7      gwr 		 * range to pmap_remove_b(), which can remove addresses at
   3160       1.7      gwr 		 * a finer granularity.
   3161       1.7      gwr 		 */
   3162       1.1      gwr 		if (MMU_VALID_DT(*a_dte)) {
   3163       1.7      gwr 			/*
   3164       1.7      gwr 			 * Find the B table manager for the entry
   3165       1.7      gwr 			 * and hand it to pmap_remove_b() along with
   3166       1.7      gwr 			 * the sub range.
   3167       1.7      gwr 			 */
   3168       1.7      gwr 			b_dte = mmu_ptov(a_dte->addr.raw);
   3169       1.1      gwr 			b_tbl = mmuB2tmgr(b_dte);
   3170  1.86.6.2     ghen 			bt_wired = b_tbl->bt_wcnt;
   3171       1.7      gwr 
   3172  1.86.6.2     ghen 			empty = pmap_remove_b(b_tbl, nend, eva);
   3173       1.7      gwr 
   3174       1.7      gwr 			/*
   3175  1.86.6.2     ghen 			 * If the child table no longer has wired entries,
   3176  1.86.6.2     ghen 			 * decrement wired entry count.
   3177  1.86.6.2     ghen 			 */
   3178  1.86.6.2     ghen 			if (bt_wired && b_tbl->bt_wcnt == 0)
   3179  1.86.6.2     ghen 				a_tbl->at_wcnt--;
   3180  1.86.6.2     ghen 			/*
   3181       1.7      gwr 			 * If the removal resulted in an empty B table,
   3182       1.7      gwr 			 * invalidate the DTE that points to it and decrement
   3183       1.7      gwr 			 * the valid entry count of the A table.
   3184       1.7      gwr 			 */
   3185       1.7      gwr 			if (empty) {
   3186       1.7      gwr 				a_dte->attr.raw = MMU_DT_INVALID;
   3187       1.7      gwr 				a_tbl->at_ecnt--;
   3188       1.7      gwr 			}
   3189       1.1      gwr 		}
   3190       1.1      gwr 	}
   3191       1.7      gwr 
   3192       1.7      gwr 	/*
   3193       1.7      gwr 	 * If there are no more entries in the A table, release it
   3194       1.7      gwr 	 * back to the available pool and return TRUE.
   3195       1.7      gwr 	 */
   3196       1.7      gwr 	if (a_tbl->at_ecnt == 0) {
   3197  1.86.6.2     ghen 		KASSERT(a_tbl->at_wcnt == 0);
   3198       1.7      gwr 		a_tbl->at_parent = NULL;
   3199  1.86.6.2     ghen 		if (!at_wired)
   3200  1.86.6.2     ghen 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
   3201       1.7      gwr 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
   3202       1.7      gwr 		empty = TRUE;
   3203       1.7      gwr 	} else {
   3204  1.86.6.2     ghen 		/*
   3205  1.86.6.2     ghen 		 * If the table doesn't have wired entries any longer
   3206  1.86.6.2     ghen 		 * but still has unwired entries, put it back into
   3207  1.86.6.2     ghen 		 * the available queue.
   3208  1.86.6.2     ghen 		 */
   3209  1.86.6.2     ghen 		if (at_wired && a_tbl->at_wcnt == 0)
   3210  1.86.6.2     ghen 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
   3211       1.7      gwr 		empty = FALSE;
   3212       1.7      gwr 	}
   3213       1.7      gwr 
   3214       1.7      gwr 	return empty;
   3215       1.1      gwr }
   3216       1.1      gwr 
   3217       1.1      gwr /* pmap_remove_b			INTERNAL
   3218       1.1      gwr  **
   3219       1.1      gwr  * Remove a range of addresses from an address space, trying to remove entire
   3220       1.1      gwr  * C tables if possible.
   3221       1.7      gwr  *
   3222       1.7      gwr  * If the operation results in an empty B table, the function returns TRUE.
   3223       1.1      gwr  */
   3224      1.86      chs boolean_t
   3225  1.86.6.2     ghen pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
   3226       1.1      gwr {
   3227       1.7      gwr 	boolean_t empty;
   3228       1.1      gwr 	int idx;
   3229      1.69      chs 	vaddr_t nstart, nend, rstart;
   3230       1.1      gwr 	c_tmgr_t *c_tbl;
   3231       1.1      gwr 	mmu_short_dte_t  *b_dte;
   3232       1.1      gwr 	mmu_short_pte_t  *c_dte;
   3233  1.86.6.2     ghen 	uint8_t bt_wired, ct_wired;
   3234       1.1      gwr 
   3235  1.86.6.2     ghen 	nstart = MMU_ROUND_UP_B(sva);
   3236  1.86.6.2     ghen 	nend = MMU_ROUND_B(eva);
   3237       1.1      gwr 
   3238  1.86.6.2     ghen 	bt_wired = b_tbl->bt_wcnt;
   3239       1.1      gwr 
   3240  1.86.6.2     ghen 	if (sva < nstart) {
   3241  1.86.6.2     ghen 		idx = MMU_TIB(sva);
   3242       1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3243       1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3244       1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3245       1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3246  1.86.6.2     ghen 			ct_wired = c_tbl->ct_wcnt;
   3247  1.86.6.2     ghen 
   3248  1.86.6.2     ghen 			if (eva < nstart)
   3249  1.86.6.2     ghen 				empty = pmap_remove_c(c_tbl, sva, eva);
   3250       1.7      gwr 			else
   3251  1.86.6.2     ghen 				empty = pmap_remove_c(c_tbl, sva, nstart);
   3252  1.86.6.2     ghen 
   3253  1.86.6.2     ghen 			/*
   3254  1.86.6.2     ghen 			 * If the child table no longer has wired entries,
   3255  1.86.6.2     ghen 			 * decrement wired entry count.
   3256  1.86.6.2     ghen 			 */
   3257  1.86.6.2     ghen 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3258  1.86.6.2     ghen 				b_tbl->bt_wcnt--;
   3259  1.86.6.2     ghen 
   3260       1.7      gwr 			if (empty) {
   3261       1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3262       1.7      gwr 				b_tbl->bt_ecnt--;
   3263       1.1      gwr 			}
   3264       1.1      gwr 		}
   3265       1.1      gwr 	}
   3266       1.1      gwr 	if (nstart < nend) {
   3267       1.1      gwr 		idx = MMU_TIB(nstart);
   3268       1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3269       1.1      gwr 		rstart = nstart;
   3270       1.1      gwr 		while (rstart < nend) {
   3271       1.1      gwr 			if (MMU_VALID_DT(*b_dte)) {
   3272       1.7      gwr 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3273       1.1      gwr 				c_tbl = mmuC2tmgr(c_dte);
   3274  1.86.6.2     ghen 				ct_wired = c_tbl->ct_wcnt;
   3275  1.86.6.2     ghen 
   3276       1.7      gwr 				free_c_table(c_tbl, TRUE);
   3277  1.86.6.2     ghen 
   3278  1.86.6.2     ghen 				/*
   3279  1.86.6.2     ghen 				 * All child entries has been removed.
   3280  1.86.6.2     ghen 				 * If there were any wired entries in it,
   3281  1.86.6.2     ghen 				 * decrement wired entry count.
   3282  1.86.6.2     ghen 				 */
   3283  1.86.6.2     ghen 				if (ct_wired)
   3284  1.86.6.2     ghen 					b_tbl->bt_wcnt--;
   3285  1.86.6.2     ghen 
   3286       1.1      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3287       1.1      gwr 				b_tbl->bt_ecnt--;
   3288       1.1      gwr 			}
   3289       1.1      gwr 			b_dte++;
   3290       1.1      gwr 			rstart += MMU_TIB_RANGE;
   3291       1.1      gwr 		}
   3292       1.1      gwr 	}
   3293  1.86.6.2     ghen 	if (nend < eva) {
   3294       1.1      gwr 		idx = MMU_TIB(nend);
   3295       1.1      gwr 		b_dte = &b_tbl->bt_dtbl[idx];
   3296       1.1      gwr 		if (MMU_VALID_DT(*b_dte)) {
   3297       1.7      gwr 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
   3298       1.1      gwr 			c_tbl = mmuC2tmgr(c_dte);
   3299  1.86.6.2     ghen 			ct_wired = c_tbl->ct_wcnt;
   3300  1.86.6.2     ghen 			empty = pmap_remove_c(c_tbl, nend, eva);
   3301  1.86.6.2     ghen 
   3302  1.86.6.2     ghen 			/*
   3303  1.86.6.2     ghen 			 * If the child table no longer has wired entries,
   3304  1.86.6.2     ghen 			 * decrement wired entry count.
   3305  1.86.6.2     ghen 			 */
   3306  1.86.6.2     ghen 			if (ct_wired && c_tbl->ct_wcnt == 0)
   3307  1.86.6.2     ghen 				b_tbl->bt_wcnt--;
   3308  1.86.6.2     ghen 
   3309       1.7      gwr 			if (empty) {
   3310       1.7      gwr 				b_dte->attr.raw = MMU_DT_INVALID;
   3311       1.7      gwr 				b_tbl->bt_ecnt--;
   3312       1.7      gwr 			}
   3313       1.1      gwr 		}
   3314       1.1      gwr 	}
   3315       1.7      gwr 
   3316       1.7      gwr 	if (b_tbl->bt_ecnt == 0) {
   3317  1.86.6.2     ghen 		KASSERT(b_tbl->bt_wcnt == 0);
   3318       1.7      gwr 		b_tbl->bt_parent = NULL;
   3319  1.86.6.2     ghen 		if (!bt_wired)
   3320  1.86.6.2     ghen 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
   3321       1.7      gwr 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
   3322       1.7      gwr 		empty = TRUE;
   3323       1.7      gwr 	} else {
   3324  1.86.6.2     ghen 		/*
   3325  1.86.6.2     ghen 		 * If the table doesn't have wired entries any longer
   3326  1.86.6.2     ghen 		 * but still has unwired entries, put it back into
   3327  1.86.6.2     ghen 		 * the available queue.
   3328  1.86.6.2     ghen 		 */
   3329  1.86.6.2     ghen 		if (bt_wired && b_tbl->bt_wcnt == 0)
   3330  1.86.6.2     ghen 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
   3331  1.86.6.2     ghen 
   3332       1.7      gwr 		empty = FALSE;
   3333       1.7      gwr 	}
   3334       1.7      gwr 
   3335       1.7      gwr 	return empty;
   3336       1.1      gwr }
   3337       1.1      gwr 
   3338       1.1      gwr /* pmap_remove_c			INTERNAL
   3339       1.1      gwr  **
   3340       1.1      gwr  * Remove a range of addresses from the given C table.
   3341       1.1      gwr  */
   3342      1.86      chs boolean_t
   3343  1.86.6.2     ghen pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
   3344       1.1      gwr {
   3345       1.7      gwr 	boolean_t empty;
   3346       1.1      gwr 	int idx;
   3347       1.1      gwr 	mmu_short_pte_t *c_pte;
   3348  1.86.6.2     ghen 	uint8_t ct_wired;
   3349       1.1      gwr 
   3350  1.86.6.2     ghen 	ct_wired = c_tbl->ct_wcnt;
   3351  1.86.6.2     ghen 
   3352  1.86.6.2     ghen 	idx = MMU_TIC(sva);
   3353       1.1      gwr 	c_pte = &c_tbl->ct_dtbl[idx];
   3354  1.86.6.2     ghen 	for (;sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
   3355       1.7      gwr 		if (MMU_VALID_DT(*c_pte)) {
   3356  1.86.6.2     ghen 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
   3357  1.86.6.2     ghen 				c_tbl->ct_wcnt--;
   3358       1.1      gwr 			pmap_remove_pte(c_pte);
   3359       1.7      gwr 			c_tbl->ct_ecnt--;
   3360       1.7      gwr 		}
   3361       1.1      gwr 	}
   3362       1.7      gwr 
   3363       1.7      gwr 	if (c_tbl->ct_ecnt == 0) {
   3364  1.86.6.2     ghen 		KASSERT(c_tbl->ct_wcnt == 0);
   3365       1.7      gwr 		c_tbl->ct_parent = NULL;
   3366  1.86.6.2     ghen 		if (!ct_wired)
   3367  1.86.6.2     ghen 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
   3368       1.9      gwr 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
   3369       1.9      gwr 		empty = TRUE;
   3370       1.9      gwr 	} else {
   3371  1.86.6.2     ghen 		/*
   3372  1.86.6.2     ghen 		 * If the table doesn't have wired entries any longer
   3373  1.86.6.2     ghen 		 * but still has unwired entries, put it back into
   3374  1.86.6.2     ghen 		 * the available queue.
   3375  1.86.6.2     ghen 		 */
   3376  1.86.6.2     ghen 		if (ct_wired && c_tbl->ct_wcnt == 0)
   3377  1.86.6.2     ghen 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
   3378       1.9      gwr 		empty = FALSE;
   3379       1.9      gwr 	}
   3380       1.7      gwr 
   3381       1.9      gwr 	return empty;
   3382       1.1      gwr }
   3383       1.1      gwr 
   3384       1.1      gwr /* is_managed				INTERNAL
   3385       1.1      gwr  **
   3386       1.1      gwr  * Determine if the given physical address is managed by the PV system.
   3387       1.1      gwr  * Note that this logic assumes that no one will ask for the status of
   3388       1.1      gwr  * addresses which lie in-between the memory banks on the 3/80.  If they
   3389       1.1      gwr  * do so, it will falsely report that it is managed.
   3390       1.7      gwr  *
   3391       1.8      gwr  * Note: A "managed" address is one that was reported to the VM system as
   3392       1.8      gwr  * a "usable page" during system startup.  As such, the VM system expects the
   3393       1.8      gwr  * pmap module to keep an accurate track of the useage of those pages.
   3394       1.8      gwr  * Any page not given to the VM system at startup does not exist (as far as
   3395       1.8      gwr  * the VM system is concerned) and is therefore "unmanaged."  Examples are
   3396       1.8      gwr  * those pages which belong to the ROM monitor and the memory allocated before
   3397       1.8      gwr  * the VM system was started.
   3398       1.1      gwr  */
   3399      1.86      chs boolean_t
   3400      1.86      chs is_managed(paddr_t pa)
   3401       1.1      gwr {
   3402       1.1      gwr 	if (pa >= avail_start && pa < avail_end)
   3403       1.1      gwr 		return TRUE;
   3404       1.1      gwr 	else
   3405       1.1      gwr 		return FALSE;
   3406       1.1      gwr }
   3407       1.1      gwr 
   3408       1.1      gwr /* pmap_bootstrap_alloc			INTERNAL
   3409       1.1      gwr  **
   3410       1.1      gwr  * Used internally for memory allocation at startup when malloc is not
   3411       1.1      gwr  * available.  This code will fail once it crosses the first memory
   3412       1.1      gwr  * bank boundary on the 3/80.  Hopefully by then however, the VM system
   3413       1.1      gwr  * will be in charge of allocation.
   3414       1.1      gwr  */
   3415       1.1      gwr void *
   3416      1.86      chs pmap_bootstrap_alloc(int size)
   3417       1.1      gwr {
   3418       1.1      gwr 	void *rtn;
   3419       1.1      gwr 
   3420       1.8      gwr #ifdef	PMAP_DEBUG
   3421       1.7      gwr 	if (bootstrap_alloc_enabled == FALSE) {
   3422       1.7      gwr 		mon_printf("pmap_bootstrap_alloc: disabled\n");
   3423       1.7      gwr 		sunmon_abort();
   3424       1.7      gwr 	}
   3425       1.7      gwr #endif
   3426       1.7      gwr 
   3427       1.1      gwr 	rtn = (void *) virtual_avail;
   3428       1.1      gwr 	virtual_avail += size;
   3429       1.1      gwr 
   3430       1.8      gwr #ifdef	PMAP_DEBUG
   3431       1.7      gwr 	if (virtual_avail > virtual_contig_end) {
   3432       1.7      gwr 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
   3433       1.7      gwr 		sunmon_abort();
   3434       1.1      gwr 	}
   3435       1.7      gwr #endif
   3436       1.1      gwr 
   3437       1.1      gwr 	return rtn;
   3438       1.1      gwr }
   3439       1.1      gwr 
   3440       1.1      gwr /* pmap_bootstap_aalign			INTERNAL
   3441       1.1      gwr  **
   3442       1.7      gwr  * Used to insure that the next call to pmap_bootstrap_alloc() will
   3443       1.7      gwr  * return a chunk of memory aligned to the specified size.
   3444       1.8      gwr  *
   3445       1.8      gwr  * Note: This function will only support alignment sizes that are powers
   3446       1.8      gwr  * of two.
   3447       1.1      gwr  */
   3448      1.86      chs void
   3449      1.86      chs pmap_bootstrap_aalign(int size)
   3450       1.1      gwr {
   3451       1.7      gwr 	int off;
   3452       1.7      gwr 
   3453       1.7      gwr 	off = virtual_avail & (size - 1);
   3454       1.7      gwr 	if (off) {
   3455       1.7      gwr 		(void) pmap_bootstrap_alloc(size - off);
   3456       1.1      gwr 	}
   3457       1.1      gwr }
   3458       1.7      gwr 
   3459       1.8      gwr /* pmap_pa_exists
   3460       1.8      gwr  **
   3461       1.8      gwr  * Used by the /dev/mem driver to see if a given PA is memory
   3462       1.8      gwr  * that can be mapped.  (The PA is not in a hole.)
   3463       1.8      gwr  */
   3464      1.86      chs int
   3465      1.86      chs pmap_pa_exists(paddr_t pa)
   3466       1.8      gwr {
   3467      1.69      chs 	int i;
   3468      1.21      gwr 
   3469      1.21      gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3470      1.21      gwr 		if ((pa >= avail_mem[i].pmem_start) &&
   3471      1.21      gwr 			(pa <  avail_mem[i].pmem_end))
   3472      1.21      gwr 			return (1);
   3473      1.21      gwr 		if (avail_mem[i].pmem_next == NULL)
   3474      1.21      gwr 			break;
   3475      1.21      gwr 	}
   3476       1.8      gwr 	return (0);
   3477       1.8      gwr }
   3478       1.8      gwr 
   3479      1.31      gwr /* Called only from locore.s and pmap.c */
   3480      1.86      chs void	_pmap_switch(pmap_t pmap);
   3481      1.31      gwr 
   3482      1.31      gwr /*
   3483      1.31      gwr  * _pmap_switch			INTERNAL
   3484      1.31      gwr  *
   3485      1.31      gwr  * This is called by locore.s:cpu_switch() when it is
   3486      1.31      gwr  * switching to a new process.  Load new translations.
   3487      1.31      gwr  * Note: done in-line by locore.s unless PMAP_DEBUG
   3488      1.24   jeremy  *
   3489      1.31      gwr  * Note that we do NOT allocate a context here, but
   3490      1.31      gwr  * share the "kernel only" context until we really
   3491      1.31      gwr  * need our own context for user-space mappings in
   3492      1.31      gwr  * pmap_enter_user().  [ s/context/mmu A table/ ]
   3493       1.1      gwr  */
   3494      1.86      chs void
   3495      1.86      chs _pmap_switch(pmap_t pmap)
   3496       1.1      gwr {
   3497       1.7      gwr 	u_long rootpa;
   3498       1.7      gwr 
   3499      1.31      gwr 	/*
   3500      1.31      gwr 	 * Only do reload/flush if we have to.
   3501      1.31      gwr 	 * Note that if the old and new process
   3502      1.31      gwr 	 * were BOTH using the "null" context,
   3503      1.31      gwr 	 * then this will NOT flush the TLB.
   3504      1.31      gwr 	 */
   3505       1.7      gwr 	rootpa = pmap->pm_a_phys;
   3506      1.31      gwr 	if (kernel_crp.rp_addr != rootpa) {
   3507      1.31      gwr 		DPRINT(("pmap_activate(%p)\n", pmap));
   3508       1.7      gwr 		kernel_crp.rp_addr = rootpa;
   3509       1.7      gwr 		loadcrp(&kernel_crp);
   3510       1.8      gwr 		TBIAU();
   3511      1.31      gwr 	}
   3512      1.31      gwr }
   3513      1.31      gwr 
   3514      1.31      gwr /*
   3515      1.31      gwr  * Exported version of pmap_activate().  This is called from the
   3516      1.31      gwr  * machine-independent VM code when a process is given a new pmap.
   3517      1.76  thorpej  * If (p == curlwp) do like cpu_switch would do; otherwise just
   3518      1.31      gwr  * take this as notification that the process has a new pmap.
   3519      1.31      gwr  */
   3520      1.86      chs void
   3521      1.86      chs pmap_activate(struct lwp *l)
   3522      1.31      gwr {
   3523      1.76  thorpej 	if (l->l_proc == curproc) {
   3524      1.76  thorpej 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
   3525       1.7      gwr 	}
   3526       1.1      gwr }
   3527       1.1      gwr 
   3528      1.30  thorpej /*
   3529      1.30  thorpej  * pmap_deactivate			INTERFACE
   3530      1.30  thorpej  **
   3531      1.30  thorpej  * This is called to deactivate the specified process's address space.
   3532      1.30  thorpej  */
   3533      1.86      chs void
   3534      1.86      chs pmap_deactivate(struct lwp *l)
   3535       1.1      gwr {
   3536      1.69      chs 	/* Nothing to do. */
   3537       1.1      gwr }
   3538       1.1      gwr 
   3539      1.17      gwr /*
   3540      1.28      gwr  * Fill in the sun3x-specific part of the kernel core header
   3541      1.28      gwr  * for dumpsys().  (See machdep.c for the rest.)
   3542      1.17      gwr  */
   3543      1.86      chs void
   3544      1.86      chs pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
   3545      1.17      gwr {
   3546      1.17      gwr 	u_long spa, len;
   3547      1.17      gwr 	int i;
   3548      1.20  thorpej 
   3549      1.28      gwr 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
   3550      1.28      gwr 	sh->pg_valid = MMU_DT_PAGE;
   3551      1.20  thorpej 	sh->contig_end = virtual_contig_end;
   3552      1.69      chs 	sh->kernCbase = (u_long)kernCbase;
   3553      1.20  thorpej 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3554      1.17      gwr 		spa = avail_mem[i].pmem_start;
   3555      1.25    veego 		spa = m68k_trunc_page(spa);
   3556      1.17      gwr 		len = avail_mem[i].pmem_end - spa;
   3557      1.25    veego 		len = m68k_round_page(len);
   3558      1.20  thorpej 		sh->ram_segs[i].start = spa;
   3559      1.20  thorpej 		sh->ram_segs[i].size  = len;
   3560      1.17      gwr 	}
   3561      1.17      gwr }
   3562      1.17      gwr 
   3563      1.81  thorpej 
   3564      1.81  thorpej /* pmap_virtual_space			INTERFACE
   3565      1.81  thorpej  **
   3566      1.81  thorpej  * Return the current available range of virtual addresses in the
   3567      1.81  thorpej  * arguuments provided.  Only really called once.
   3568      1.81  thorpej  */
   3569      1.86      chs void
   3570      1.86      chs pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
   3571      1.81  thorpej {
   3572      1.81  thorpej 	*vstart = virtual_avail;
   3573      1.81  thorpej 	*vend = virtual_end;
   3574      1.81  thorpej }
   3575       1.1      gwr 
   3576      1.37      gwr /*
   3577      1.37      gwr  * Provide memory to the VM system.
   3578      1.37      gwr  *
   3579      1.37      gwr  * Assume avail_start is always in the
   3580      1.37      gwr  * first segment as pmap_bootstrap does.
   3581      1.37      gwr  */
   3582      1.86      chs static void
   3583      1.86      chs pmap_page_upload(void)
   3584      1.37      gwr {
   3585      1.69      chs 	paddr_t	a, b;	/* memory range */
   3586      1.37      gwr 	int i;
   3587      1.37      gwr 
   3588      1.37      gwr 	/* Supply the memory in segments. */
   3589      1.37      gwr 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
   3590      1.37      gwr 		a = atop(avail_mem[i].pmem_start);
   3591      1.37      gwr 		b = atop(avail_mem[i].pmem_end);
   3592      1.37      gwr 		if (i == 0)
   3593      1.37      gwr 			a = atop(avail_start);
   3594      1.60  tsutsui 		if (avail_mem[i].pmem_end > avail_end)
   3595      1.60  tsutsui 			b = atop(avail_end);
   3596      1.37      gwr 
   3597      1.39  thorpej 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
   3598      1.37      gwr 
   3599      1.37      gwr 		if (avail_mem[i].pmem_next == NULL)
   3600      1.37      gwr 			break;
   3601      1.37      gwr 	}
   3602       1.1      gwr }
   3603       1.8      gwr 
   3604       1.8      gwr /* pmap_count			INTERFACE
   3605       1.8      gwr  **
   3606       1.8      gwr  * Return the number of resident (valid) pages in the given pmap.
   3607       1.8      gwr  *
   3608       1.8      gwr  * Note:  If this function is handed the kernel map, it will report
   3609       1.8      gwr  * that it has no mappings.  Hopefully the VM system won't ask for kernel
   3610       1.8      gwr  * map statistics.
   3611       1.8      gwr  */
   3612      1.86      chs segsz_t
   3613      1.86      chs pmap_count(pmap_t pmap, int type)
   3614       1.8      gwr {
   3615       1.8      gwr 	u_int     count;
   3616       1.8      gwr 	int       a_idx, b_idx;
   3617       1.8      gwr 	a_tmgr_t *a_tbl;
   3618       1.8      gwr 	b_tmgr_t *b_tbl;
   3619       1.8      gwr 	c_tmgr_t *c_tbl;
   3620       1.8      gwr 
   3621       1.8      gwr 	/*
   3622       1.8      gwr 	 * If the pmap does not have its own A table manager, it has no
   3623       1.8      gwr 	 * valid entires.
   3624       1.8      gwr 	 */
   3625       1.8      gwr 	if (pmap->pm_a_tmgr == NULL)
   3626       1.8      gwr 		return 0;
   3627       1.8      gwr 
   3628       1.8      gwr 	a_tbl = pmap->pm_a_tmgr;
   3629       1.8      gwr 
   3630       1.8      gwr 	count = 0;
   3631       1.8      gwr 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE); a_idx++) {
   3632       1.8      gwr 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
   3633       1.8      gwr 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
   3634       1.8      gwr 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
   3635       1.8      gwr 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
   3636       1.8      gwr 	                c_tbl = mmuC2tmgr(
   3637       1.8      gwr 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
   3638       1.8      gwr 	                if (type == 0)
   3639       1.8      gwr 	                    /*
   3640       1.8      gwr 	                     * A resident entry count has been requested.
   3641       1.8      gwr 	                     */
   3642       1.8      gwr 	                    count += c_tbl->ct_ecnt;
   3643       1.8      gwr 	                else
   3644       1.8      gwr 	                    /*
   3645       1.8      gwr 	                     * A wired entry count has been requested.
   3646       1.8      gwr 	                     */
   3647       1.8      gwr 	                    count += c_tbl->ct_wcnt;
   3648       1.8      gwr 	            }
   3649       1.8      gwr 	        }
   3650       1.8      gwr 	    }
   3651       1.8      gwr 	}
   3652       1.8      gwr 
   3653       1.8      gwr 	return count;
   3654       1.8      gwr }
   3655       1.8      gwr 
   3656       1.1      gwr /************************ SUN3 COMPATIBILITY ROUTINES ********************
   3657       1.1      gwr  * The following routines are only used by DDB for tricky kernel text    *
   3658       1.1      gwr  * text operations in db_memrw.c.  They are provided for sun3            *
   3659       1.1      gwr  * compatibility.                                                        *
   3660       1.1      gwr  *************************************************************************/
   3661       1.1      gwr /* get_pte			INTERNAL
   3662       1.1      gwr  **
   3663       1.1      gwr  * Return the page descriptor the describes the kernel mapping
   3664       1.1      gwr  * of the given virtual address.
   3665       1.1      gwr  */
   3666      1.86      chs extern u_long ptest_addr(u_long);	/* XXX: locore.s */
   3667      1.86      chs u_int
   3668      1.86      chs get_pte(vaddr_t va)
   3669      1.13      gwr {
   3670      1.13      gwr 	u_long pte_pa;
   3671      1.13      gwr 	mmu_short_pte_t *pte;
   3672      1.13      gwr 
   3673      1.13      gwr 	/* Get the physical address of the PTE */
   3674      1.13      gwr 	pte_pa = ptest_addr(va & ~PGOFSET);
   3675      1.13      gwr 
   3676      1.13      gwr 	/* Convert to a virtual address... */
   3677      1.13      gwr 	pte = (mmu_short_pte_t *) (KERNBASE + pte_pa);
   3678      1.13      gwr 
   3679      1.13      gwr 	/* Make sure it is in our level-C tables... */
   3680      1.13      gwr 	if ((pte < kernCbase) ||
   3681      1.13      gwr 		(pte >= &mmuCbase[NUM_USER_PTES]))
   3682      1.13      gwr 		return 0;
   3683      1.13      gwr 
   3684      1.13      gwr 	/* ... and just return its contents. */
   3685      1.13      gwr 	return (pte->attr.raw);
   3686      1.13      gwr }
   3687      1.13      gwr 
   3688       1.1      gwr 
   3689       1.1      gwr /* set_pte			INTERNAL
   3690       1.1      gwr  **
   3691       1.1      gwr  * Set the page descriptor that describes the kernel mapping
   3692       1.1      gwr  * of the given virtual address.
   3693       1.1      gwr  */
   3694      1.86      chs void
   3695      1.86      chs set_pte(vaddr_t va, u_int pte)
   3696       1.1      gwr {
   3697       1.1      gwr 	u_long idx;
   3698       1.1      gwr 
   3699       1.7      gwr 	if (va < KERNBASE)
   3700       1.7      gwr 		return;
   3701       1.7      gwr 
   3702      1.25    veego 	idx = (unsigned long) m68k_btop(va - KERNBASE);
   3703       1.1      gwr 	kernCbase[idx].attr.raw = pte;
   3704      1.33      gwr 	TBIS(va);
   3705       1.1      gwr }
   3706      1.42       is 
   3707      1.42       is /*
   3708      1.42       is  *	Routine:        pmap_procwr
   3709      1.42       is  *
   3710      1.42       is  *	Function:
   3711      1.42       is  *		Synchronize caches corresponding to [addr, addr+len) in p.
   3712      1.42       is  */
   3713      1.86      chs void
   3714      1.86      chs pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   3715      1.42       is {
   3716      1.42       is 	(void)cachectl1(0x80000004, va, len, p);
   3717      1.42       is }
   3718      1.42       is 
   3719       1.7      gwr 
   3720       1.8      gwr #ifdef	PMAP_DEBUG
   3721       1.7      gwr /************************** DEBUGGING ROUTINES **************************
   3722       1.7      gwr  * The following routines are meant to be an aid to debugging the pmap  *
   3723       1.7      gwr  * system.  They are callable from the DDB command line and should be   *
   3724       1.7      gwr  * prepared to be handed unstable or incomplete states of the system.   *
   3725       1.7      gwr  ************************************************************************/
   3726       1.7      gwr 
   3727       1.7      gwr /* pv_list
   3728       1.7      gwr  **
   3729       1.7      gwr  * List all pages found on the pv list for the given physical page.
   3730       1.8      gwr  * To avoid endless loops, the listing will stop at the end of the list
   3731       1.7      gwr  * or after 'n' entries - whichever comes first.
   3732       1.7      gwr  */
   3733      1.86      chs void
   3734      1.86      chs pv_list(paddr_t pa, int n)
   3735       1.7      gwr {
   3736       1.7      gwr 	int  idx;
   3737      1.69      chs 	vaddr_t va;
   3738       1.7      gwr 	pv_t *pv;
   3739       1.7      gwr 	c_tmgr_t *c_tbl;
   3740       1.7      gwr 	pmap_t pmap;
   3741       1.7      gwr 
   3742       1.7      gwr 	pv = pa2pv(pa);
   3743       1.7      gwr 	idx = pv->pv_idx;
   3744      1.69      chs 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
   3745       1.8      gwr 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
   3746       1.7      gwr 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
   3747       1.7      gwr 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
   3748       1.7      gwr 	}
   3749       1.7      gwr }
   3750       1.8      gwr #endif	/* PMAP_DEBUG */
   3751       1.1      gwr 
   3752       1.1      gwr #ifdef NOT_YET
   3753       1.1      gwr /* and maybe not ever */
   3754       1.1      gwr /************************** LOW-LEVEL ROUTINES **************************
   3755      1.78      wiz  * These routines will eventually be re-written into assembly and placed*
   3756       1.1      gwr  * in locore.s.  They are here now as stubs so that the pmap module can *
   3757       1.1      gwr  * be linked as a standalone user program for testing.                  *
   3758       1.1      gwr  ************************************************************************/
   3759       1.1      gwr /* flush_atc_crp			INTERNAL
   3760       1.1      gwr  **
   3761       1.1      gwr  * Flush all page descriptors derived from the given CPU Root Pointer
   3762       1.1      gwr  * (CRP), or 'A' table as it is known here, from the 68851's automatic
   3763       1.1      gwr  * cache.
   3764       1.1      gwr  */
   3765      1.86      chs void
   3766      1.86      chs flush_atc_crp(int a_tbl)
   3767       1.1      gwr {
   3768       1.1      gwr 	mmu_long_rp_t rp;
   3769       1.1      gwr 
   3770       1.1      gwr 	/* Create a temporary root table pointer that points to the
   3771       1.1      gwr 	 * given A table.
   3772       1.1      gwr 	 */
   3773       1.1      gwr 	rp.attr.raw = ~MMU_LONG_RP_LU;
   3774       1.1      gwr 	rp.addr.raw = (unsigned int) a_tbl;
   3775       1.1      gwr 
   3776       1.1      gwr 	mmu_pflushr(&rp);
   3777       1.1      gwr 	/* mmu_pflushr:
   3778       1.1      gwr 	 * 	movel   sp(4)@,a0
   3779       1.1      gwr 	 * 	pflushr a0@
   3780       1.1      gwr 	 *	rts
   3781       1.1      gwr 	 */
   3782       1.1      gwr }
   3783       1.1      gwr #endif /* NOT_YET */
   3784